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Partial Differential Equations — Continuity estimates for p-Laplace type opera-
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ABSTRACT. — We study the Dirichlet problem

div A(x,Vu) = div f in Q,
u=0 ondQ,

in a bounded Lipschitz domain Q « RY, with N > 2. The vector field A : Q x RY — R satisfies
the tipical growth and coercivity conditions of the p-Laplacian type operator with p > 1. We prove
existence and uniqueness results in the case the vector field f belongs to the Orlicz—Zygmund space
ZLlog™* S[(loglogff)_/f(Q7 RM), ¢ = 2 a>0and feRorox=0andf>0. In particular, the

=1
gradient of the solution belongs to ¥ log™* ¥ (loglog & )7/3 (Q,R™). Further, we provide estimates
implying the continuity of the operator which carries any given f into the gradient field Vu of the
solution.
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1. INTRODUCTION

Let Q be a bounded Lipschitz domain of RY, N > 2. We consider the Dirichlet
problem

(1) {div A(x,Vu) =divf inQ,

u=0 ondQ,

where A: Q x RY — R" is a Carathéodory vector field satisfying the following
conditions for a.e. x € Q and all &, € RY

(2) A(x,0) =0
(3) CA(x, &) — A(x, ), & — > = alé — (1] + n])?>
4) |A(x, &) — A(x,m)| < bIE—nl(1€] + )"

where p > 1,0 <a < b.
Let f=(f'f%...,f") be a vector field of class Z*(Q,RY), 1 <s<gq
where ¢ is the conjugate exponent to p, i.e. pg = p +q.
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DEFINITION 1.1. A function u € %" (Q), max{l,p — 1} <r < p, is a solution
of (1) if

(5) /Q CA(x, Vi), Vg d = /Q V) d,

for every g € C°(Q).

By a routine argument, if s > r/(p — 1), it can be seen that the identity (5) still
holds for functions ¢ € #~ 1’Hﬂ—H(Q) with compact support. By virtue of assump-
tions (2)—(4), the model case we have in mind is represented by a Dirichlet
problem involving the p-Laplace operator, namely

(©) { div|Vu|?*Vu = div f in Q,
u=0 ondQ,

We shall refer to a solution in the sense of Definition 1.1 as a distributional
solution or (as some people say) as a very weak solution [20, 24]. Moreover, if
r < p, a solution may have infinite energy, namely |Vu| ¢ 7 (Q).

Existence and uniqueness for a solution to problem (1) is a well studied
problem and known results available in literature depending on the degree of
regularity of the right hand side of (1). Beside the standard fact that a solution
exists, it is unique and belongs to "//01"1’ (Q) if f e 29(Q,RY), the existence of a
solution u € %1’1(9) to problem (1) is obtained in [4] when div f* belongs to
21(Q, RY). On the other hand, uniqueness of solutions to problem (1) generally
fails, as shown by a classical counterexample due to J. Serrin [29]. The presence
of such ““pathological” examples gave rise to new possible definitions of a solu-
tion to problem (1). This is the case of the so-called duality solutions [30], the ap-
proximation solutions (SOLA) [4], the entropy solutions [28, 23, 5]. Regularity
properties of such solutions are given in [25, 26]. Unfortunately, the tecniques de-
velopped in these papers do not provide uniqueness if we consider distributional
solutions and still this question is not completely clear, unless for the special case
p = 23, 14]. In this particular case, the understanding of the problem in the scale
of Sobolev spaces is available, see e.g. [22]. Until now, the case p # 2 has been
treated under suitable regularity assumptions on f, that is to say f belongs to
function spaces slightly larger than the natural setting #7(Q, RY), where ¢ de-
notes the conjugate exponent to p. In particular, we refer the reader to [17] (see
also [11]) and to [12] where the problem is settled in the grand Sobolev spaces and
in Zygmund spaces respectively). We refer also to [3] for the case p = N. We want
to point out that the study of elliptic problems in the setting of Zygmund-Orlicz
spaces has been previously considered in [27] and [6] where the higher integra-
bility of solutions to degenerate elliptic equations of p-Laplacian type is proved.

Our aim is to study existence and uniqueness for the problem (1) in the case
where the vector field f belongs to the Orlicz—Zygmund space

L9log™* L (loglog #) 7 (Q, RY)

g=57,0>0and feR.
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We recall that the Zygmund space #7log * #(loglog ,S,”)_ﬂ(Q, RY), for
1 < g < w0, a,f € Ris the Orlicz space generated by the function

O(1) = D, , 4(t) = t71og *(a + t)(loglog(a + t))fﬁ, t>0,

for suitable large values of the constant a > e® (whose choich is immaterial) and
it is usually equipped with the Luxemburg norm || - || (o (see Section 2.3 for
the definitions). In order to simplify our notation, we will often write [ - |
instead of || - [|zo(q)-

The expected regularity for the solution u of (1) corresponds to the fact that
the gradient Vu belongs to #*log™* #(loglog %) _ﬂ(Q, RY). Indeed, for o and
S positive, some explicit example could be given by means of a radial solutions;
for instance the function

p,o,fp

ro dp
u(x) = / N l—o o
¥l [pN[logp|" " |logllog p[ |°]7
with ¢ > 1 — f3, is a solution to the model case (6) when f is given by

X 1

f(x) =F(I>€|)|x| F(r)=—

p—1
[V [log r|'~*|log[log r| |77

We state our result for positive values of the parameter o. The case o = 0 will
be treated in the last section for reader’s convenience. Our first result is the
following.

THEOREM 1.1. Let1 < p < oo, p #2.
For each f € gqlog*“g(loglogbf)*ﬁ(Q,RN), with pq=p+q and 0 <
o <ﬁ, peR, the problem (1) admits a unique solution u:Q — R, such

that Vu € 27 log™ (loglog £) #(Q,R"). There exists a constant C > 0, C =
C(N, p,o,p,a,b), such that the following estimate holds true

(7) [Vuly.p < CLA1g 0

Moreover the operator

(8) H:Plog™* Z(loglog ) P(Q,RY) — £7log™ Z(loglog #) *(Q, RY)
which carries a given vector field f into the gradient field Vu is continuous.

Related to previous theorem, we provide also a precise continuity estimate for
the operator H. To this aim, we state our next result.

THEOREM 1.2. Let1 < p < o0, p #2.

There exists a constant C >0, C = C(N, p,a,f,a,b), such that, if f and g
belong to ¥9log™* Z(loglog &) P (Q, RN with pg=p+¢q, 0 <o < ﬁ and
S € R then



338 F. FARRONI

Lf =al,.p )W’

C(Lf =gl .01+ |gH]q ap) ( m
q,0,

where f* = max{,0} and

(10) v=1-a2"% ifp>2
(11) y:£<1—fx2_—p> ifl1<p<?2
q p

Estimate (9) has been established in [12] for § = 0, therefore Theorem 1.1 allow
us to extend # as a continuous operator to a space larger that #%log " Z(Q, R")
as long as f# > 0. On the other hand, if # < 0, the space ¥ ?log™* ¥ (loglog Z)fﬂ
is continuously embedded into L%log * Z(Q,RY), so our results provides
higher integrability of the solutions found in [12]. We recall that our estimates
are useful also in describing some quantitative properties of mappings of bounded
distortion (see e.g. [11, 10]), whose coordinate functions always solve an equation
as in (1) with structural assumptions of type (2)—(4). Other sharp estimates related
to mappings of bounded distortion (precisely to quasiconformal mappings) can
be found also in [8, 9].

The paper is organized as follows. Section 2 is devoted to the basic
notation and definitions; in particular, we will introduce the grand Sobolev
spaces and we give the definition of a general Orlicz space. Section 3 col-
lects technical lemmas allowmg the construction of a new norm in the space
Z9log™* Z(loglog #) #(Q). This new norm (which turns to be equivalent to
the Luxemburg one) is introduced in Section 4 and we distinguish the two
cases >0 and f e R from «=0 and f >0 for reader’s convenience. In
Section 5, we prove Theorems 1.1 and 1.2. Our starting point consists of an
estimate below the natural exponent (see Corollary 5.2 below) for problem (1)
as done in [17, 21]. Our proofs strongly rely on the fact that the new norm
introduced in Section 4 takes into account only the behaviour of the #"-norms
of a function in ¥7log™* ¥(log log LYP(Q) for r < ¢ and so it better fits the
estimates of Section 5. Finally, in Section 6 we state and prove two results
similar to Theorem 1.1 and Theorem 1.2 in the setting of Orlicz—Zygmund space
Z1(loglog #) F(Q, RM).

2. PRELIMINARY RESULTS
2.1. Basic notation

We indicate that quantities u,o > 0 are equivalent by writing u ~ o; namely,
1t ~ ¢ will mean that there exist constants ¢y, ¢; > 0 such that c;u < g < .
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From now on, Q will denote a bounded Lipschitz domain in R". For a func-
tion v e LP(Q) with 1 < p < o0 we set

o, = ( f, 1" )

. 1
Barred integrals denote averages, namely ][ =— / .
o 19l

2.2. Grand Lebesgue and grand Sobolev spaces

For 1 < p < oo we denote by #”)(Q) the grand—Lebesqgue space consisting of all
functions v € (o, | L7 *(€2) such that

1
”UH,,) = sup glp(f |U|p7£dx)1w < o0
O<e<p—1 Q

Moreover

#
v|| y ~ sup (8 ][ v”_edx)'H.
vl . Q| |

<e<p—1

The Marcinkiewicz class weak—%7(Q) is contained in #7)(Q) (see [20, Lemma

1.1)).

More generally, if o > 0 we denote by #*?)(Q) the grand-Lebesque space
consisting of all functions v € (o, , | £7*(€2) such that

L
lol, = sup & ][|v|“dx”

O<e<p—1
2.3. Orlicz and Zygmund spaces
We need to recall some basic properties of Orlicz spaces; for more details on
Orlicz spaces we refer to [1] and also to [16].
Let ® : [0,00) — [0, 00) be a Young function, that is ®(0) = 0, ® is increasing

and convex. If Q is a open subset of R", we define the Orlicz space L®(Q) gen-
erated by the Young function ® as the set of measurable functions f : Q — R

such that
Lf (%)
/Q(I)<T>dx < o0,

for some 1 > 0. This space is equipped with the Luxemburg norm

IIfIILcD(Q):inf{;»o;/Q ('f( )|)d <1}
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We shall need to consider the Zygmund space ¥ “log™* £ (Q), for 1 < g < o0,
o > 0. This is the Orlicz space generated by the function

®(t) =tllog *(a+1), t=>0,

where a > e is a suitably large constant, so that @ is increasing and convex on
[0,00[. The choice of a will be immaterial. More explicitly, for a measurable
function f on Q, f € LYlog * ¥ (Q) simply means that

/Qlfl"log‘“(a+ |f) dx < 0.

Equipped with the Luxemburg norm ¥ ?log * ¥ (Q) is a Banach space. An
equivalent norm to the Luxemburg one, which involves the norms in #97¢(Q),
for 0 < ¢ < ¢ — 1 has been introduced in [12] (see also [13]) by defining

€0 ! 1/q
1/ @o10g=0 = eI fllg-. de
0

for any f measurable function defined on Q. Here ¢ € |0,¢ — 1] is fixed. A simple
application of the Lebesgue dominated convergence theorem proves that

; u/q _
(12) lim &%/, = 0.

for all f e Z?log ™ £(Q), see [15]. We stress that (12) does not hold uniformly,
as f varies in a bounded set of ¥7log™* £ (Q). Nevertheless, one can prove the
following (see again [12]).

LEMMA 2.1. For each compact subset M = ¥ ?log™* £ (Q), condition (12) holds
uniformly for f € M, that is

lim(su e/ ) =0.
im (sup &1,

3. INTEGRAL ESTIMATES

In this Section we collect a series of integral estimates. To this aim, we let
I' = I'(«) be the well known Euler Gamma function defined as

(o) = / e tdy
0

for oo > 0.

LeEmMA 3.1. Forany o >0,y € Rand g € (0,1)

o
v

y & )
(13) lim fog™ / t*ogt|’e ™ dt = ['(a)
A— 0 £ Jo
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PRrOOF. In order to simplify our notation, we define

/10( &0 .
14 I _ o—1 1 Y, —At
(14 () =17 | Moge

By the change of variable s = At we get

&0/ log A — logs\”»
o a—1 —s
(15) I(}) _/0 s (71(%/1 ) e *ds

For s € (0, o0), we define

(16) ils) =5 BB 00
(17) h(s) = s* e

so that

(18) 1) = [ its)as

(19) I'(a) = /0 h(s) ds

341

Clearly i) — h a.e. in (0, 00) as A — oo, therefore our proof is a matter of using

the dominated convergence theorem to get

lim I(2) = ['(«)

A—0
We distinguish two cases, depending on the sign of .

CASE 1: y > 0. For A > ¢ and for all s € (0, c0) we have

hi(s) < g(s) = 5" (1 + [logs])e™

We observe that g € (0, 0), so we pass to the limit as 1 — oo in (15) and we

get (13).

CASE 2: y < 0. For sufficiently large values of /4 we have
A> e

Then, we split the integral 7(4) as the sum of two terms

1(2) = i (4) + I(4)
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where

Vi log/ —1

B gl —logs\7 _

20 L(A) = L (e -RA—L B
(20) 1(%) /0 s ( log A )e s

&0/ log A —logs\?
21 L(A) = (222 el Y ey
@1 (i) = [ (e

Since y is negative we have

<log/l—logs

- )y <277 forallse (0,V2)
log 4

so we pass to the limit as A — oo in (20) with the aid of the dominated convergece
theorem and we obtain

(22) lim 7;(2) = T'(x)

A— 00
In order to complete our proof, it remains to show that

(23) lim (A1) =0

A— 00
Observe that
y Vi :
e / L
24 LM< —2——— s e 2 ds
( ) 2() (logl)/ Vi

since §(s) = s* 'e? is a function in £!(0, o) the right hand side of (24) appro-
ches to zero as 4 — oo and so (23) immediately follows. O

LEmMA 3.2. Forany y > 0ande¢ € (0,1)

) L[ . dr 1
(25) lim logU/ llogt] 7 e M= =2
J—00 0 Y

PROOF. Let us observe that
~loge| 7!

; e e 20,8) foralli>0

h; (1)

as long as y > 0. Indeed, an integration by parts yelds

£ i —1 7 )
26)  log’ ) / |1ogz|*>*1e*)-f? _ Jog? 71 Z108%) ©
0 y

, @
+ % log” /1/ (—logt) e *dt
0
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The first term at the right hand side of (26) approches to zero as A — oo, while the
second term can be handled as in the proof of Lemma 4.2 (it is sufficient to follow
the argument there for « = 1 and when y is exchanged with —y) so the proof ends
by passing to the limit as 4 — oo in (26). O

4. PROPERTIES OF THE SPACE #%1log™* ¥ (loglog ) #(Q)

In this section, we study the Zygmund space #*log™* ¥ (loglog &) - (Q,RY),
for 1 <g< oo, « >0 and f € R. This is the Orlicz space generated by the
function

®(1) = 1*1og*(a+ 1)(loglog(a + 1)) ", 1=0,

where a > e is a suitably large constant so that @ is increasing and convex
on [0,00). In particular, the main goal of the section is the construction
of a new norm on Z%log™* Z(loglog #) ?(Q) which is equivalent to the
Luxembourg one and only takes into account the L’"-norms of a function in
ZLog ™ Z(loglog 3)71} (Q), whenever r < p. This will be useful in order to get
the proofs of Theorem 1.1 and Theorem 1.2 that we will provide later.

The first case we take into account corresponds to the choice o« > 0. To do
that, we consider a measurable function f defined on Q and then we set

€0 . _p 1/q
O Wl = | ol A1 e
Here ¢ € |0, 1] is fixed. Our task is to prove the following
LemMA 4.1. Let f € R and let ¢ € (0,1) A measurable function f belongs to

L9log™* L(loglog ) (Q)

(28) Hf”f"log’zﬂ’(loglogj)’/” < 0.

Moreover, | || Silog*(loglog.) P 1S @ norm equivalent to the Luxemburg one,
that is, there exist constants C; = Ci(q,a,a,¢), i = 1,2, such that for all [ €
Llog™* L (loglog £) F(Q)

G [[fﬂf”log’iz’(loglogf)fﬂ = ||f||$"log’“£l’(loglog3’)7/‘ = Czﬂfﬂf"log’zfl’(loglogf)*/j'

The case « = 0 and > 0 should be treated separately. We consider a measur-
able function f defined on Q and then we set

1/q

&0
(29) oo s = [ Hoel 71t}

Here ¢ € |0, 1] is fixed. Our task is to prove the following
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LEMMA 4.2. Let >0 and let ¢ € (0,1) A measurable function f belongs to
Z4(loglog ) *(Q) if and only if

(30) 1/

Moreover, | || Pi(loglog ) # 1S @ norm equivalent to the Luxemburg one, that
is, there exist constants C; = Ci(q,a,a,&), i =1,2, such that for all f €
Z4(loglog £) 7 (Q)

|3”’(loglog$)’ﬂ(Q) < .

G [[fﬂe,‘f"(loglog,Y)"/f = Hf”,,‘["(loglog,f)’/] = CZ[[f]:f"(loglog,f)’ﬁ'

We only prove Lemma 4.1 since Lemma 4.2, can be proved in the same way.
Before we give the proof of Lemma 4.2, we state some preliminary results.

PRrOOF OF LEMMA 4.1. It is immediately seen that || ||$q10g71 (loglog )" defined
by (27) is a norm. Therefore, in the remaing part of the proof we show that (27)
defines a norm equivalent to the Luxemburg one. Observe that for a > e¢ we
have

1 a+ 1D < 117 <297 al + IS+ 1),

a.e. in , hence integrating

Fina =y < 117 < 2700+ 2071 |17 ) a
Q Q
Observe that

€0
/ ¢ oge| " de
0

is finite and it is bounded by some constant C, = Cy(a, 5, &). This in turn implies
&0
o [ e ogal | [ 171 1) x| d
0 Q
o o—1 1 - q—¢
=/ ¢ lloge| || /14— de

&)
<20 1a1Cyn ) +207! [t foge] [ / |f|‘f<a+|f|>‘fdx] d.
0 Q

Fubini’s Theorem implies

(32) e ol | f i1t 1) |

_]{2|f|"(/0808“‘1|10g8|ﬂ(a+|f|)£d8>dx
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From Lemma 3.1, we see that

€0
/ ¢ Mlogt| Pe di ~ 3" (log )" forall 4> e*

and the constants for this equivalence only depend on ¢y, « and f. So in par-

ticular, we have

(33 G ]{2 /19log " (a+ |f1) log*(log(a + |f1)) dx

&0
< / e logel | /14" de
0

< C4[1 + ]{2 1f|"log *(a + | f]) log ¥ (log(a + |f])) dx

for some positive contants.
Assume now that f satisfies (30). As

1A 1lg=e < 1A1G- + 1

q—e =

we see that the first term of (33) is finite, so f € #7log *log " log #(Q).
Furthermore, if [| /| 4 10g#10g #10g » = 1, then (33) implies

fg /19 log *(a+ |f1) log *(log(a + /1)) dx < Cs

for a constant independent of f. By homogeneity,

(34) [[f]]ﬁ"’log’“f(loglogfl’)’p = C5Hf”ﬂ“’log”‘log’/]logﬂ’

for all f.
Let f € #Z7log™* Z(loglog E)_B(Q); if f > 0 the space
L1og™ Z(loglog ) F(Q)

is continuosly embedded into ¥?log™* £ (Q) as long as o < ay. Therefore,
the fact that #7log™* #(Q) is in turn continuously embedded into the grand

Lebesgue space #*9(Q) (see [20]), there exists a constant Cs > 0 such that

Hf”q—s < Cégiao/q[[fﬂfl”’log’“rf(loglogg)*ﬁ’
Therefore,
e < ||f‘|g:§c7[[f]f¥”flog’“y(loglogﬂ’)’ﬂ

1A 11g=e = IANG=EI M g—s <

and by (33) we get (28).
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Infact, if [ /]y u100+ (10glog ) # = 1, then we have
”f”;’f"log’“log’ﬂlogf = CS
and by homogeneity we conclude with the reverse inequality to (34). We remark
that all constants C; appearing in the previous estimates are such that C; =
Ci(Q)“)‘la 80)' a
REMARK 4.3. We examine the dependence of | [| 4s1og-+10g#10g o defined by

(27), on the parameter ¢. For fixed 0 < ¢y < & < 1, by Holder’s inequality we
have

1 llg—e < 1112,

and hence
&0 1 718
(35) / e loge | £]11_, de
el
< / e loge | £]11_, de
0

ey’ —loge \F [* s .
= (80) (—IOgS()) A ¢ |10g8| Hf”q—gd&

5. EXISTENCE AND UNIQUENESS

Before proving existence and uniqueness for the solution of problem (1), we recall
some known facts. We assume that A = A(x, £) satisfies (2)—(4) and we consider
here the equations

(36) div A(x,Vu) =divf inQ,
(37) div A(x,Vv) =divg inQ,

It will be important, for our purposes, to consider first the case where f,g €
277%4(Q,RY), 0 < & < min{1/p, 1/q}. We need a first tecnical result concerning
solutions u,v € #1'7~(Q) to (36) and (37), respectively, such that

u—ve W' Q)

It is then possible to prove the following

LEMMA 5.1. There exist 0 < ¢,(N) < min{1/p,1/q} and a constant C >0, C =
C(N, p,a,b), such that the following uniform estimate holds
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(38)  |[Vu—Vullf_,, < Cer2|| [Val + Vol |2, + Cllf = glld oy if P>2,
(39)  |IVu—Vol}_,, < Cem || [Val + Vo] |},

+ Cllf =gl I [Vul + Vol |27, if 1< p<2,

Sor every 0 < & < ¢g,(N).

The proof relies on the use of the Hodge decomposition (see e.g. [21]) and it is
achieved as in [17], then we omit it. As in [12] we immediately get the following
corollary.

COROLLARY 5.2. Under the assumptions of Lemma 5.1, there exist 0 < g,(N) <
min{l/p,1/q} and a constant C >0, C = C(N, p,a,b), such that, for any 0 <
& < &(N) the following uniform estimate holds if u = v =0 on 0Q

(1
(40) [|Vu—Voll7_,, < Cem 7| ] + gl 1, + CILf = gll 1 1F1 + gl 1"

where 2. = min{l, p — 1}.

PrOOF OF THEOREM 1.1. We start by proving uniqueness. First, we write esti-
mate (40) for f = g observing that it reduces to
(41) IV = Vol2_,, < Cer T f1I2,,-
Under the assumptlons that we have on the parameters o and f, the space
Lllog™ Z(loglog )~ (Q RY) is continuously embedded into the space
ZLlog - =R (Q, R") and uniqueness follows by (12) letting & | 0 in (41).

In order to prove the existence of a solution, as a prehmlnary step, we show

that, if (f,), is a converging sequence in ¥ “log™" #(loglog &)~ (Q RY), such
that for each n

(42) div A(x, Vu,,) = div f,
u, =0 on oQ

then (Vu,), is a Cauchy sequence in #”log™* #(loglog 2@, RY). To prove

this, by Corollary 5.2 we get

(43) Vit — Vaaal|2_,, < Co | |l + ol 1,
+ Cllfon = Sall o I Lol + LAl 122

where A = min{1, p — 1}. Arguing as in the proof of uniqueness, fixed o > 0, we
find & € (0, 1] such that, if 0 < & < 9¢,(N), then

e | ol + Ll 1y <
for all m,n € N. Hence (43) yields

). 1-2
(44) Vet — V|2, < Co+ | fiw = Sull ol Ufinl + 1A 11275,7).
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We multiply both sides by &*~!|log El_ﬂ and we integrate with respect to ¢ over
(0,9¢,(N)). For 0 =¢p/3 > ep, we have

[Vt — V”nH —ep = > (| Vi, — Vun||p—(57

hence

9e,(N)
(45) / e Mloge| || Vi — Vuy||2_,, de
0

(3 [ o

where & = pe,(N).
We consider the case f > 0. We make use of the following inequality

0o —loge,(N) — logO\-F _p
(46) (log ) > ( Coen ) " (~loga) ' ford e (0,20)

05|
log;‘ Vi, — Vun||£_(5 do,

which can be justified by observing that the function

0o

—log; —log%

R©) = —logo =1 —logo

is increasing in the interval (0, &y). Therefore, from (45) we get

9¢,(N) i W »
(47) /o " logel ||Vum—Vun||p_8pd6

I+ s —loge,(N) — logH o 5 )
Z<p>< —log & /5 llogd| ||Vt — Vu||?_5 do,

On the other hand,

9, (N) ; 8
/ 8x—1|10g8|—ﬁ de < w(_log%(}v) — IOg 0)_ﬁ
0

and (setting here 0 = ¢q) by Holder’s inequality

Be(N) &t 1 - qi q(1-2)
(48) / Hogel ™[ fon — full o 1 ol + 15 1205

é1
Sq—oc/ 51—1
0
X / 6+ !
0

5|~ . ’
log? |l = ill]- 50

1-2
5| 7P .
logg I 1ol + [ Sal g5 do|
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where ¢ = g¢,(N). When p > 2 since ¢ < & each integral over (0,¢) can be
obviously reduced to an integral over (0,¢). In case p < 2 < ¢, we can use (35)
to do the same. Therefore, recalling definition (27), from (44) we get

(49) ||Vum - Vu"”;”log”‘ (loglogf)fﬁ <Co

+C9H(Co —og0)” || fun — full ¥
(1-2)
A ol + 1ol 1

ZLlog " L (loglog Y)

4log™* #(loglog #)~*

with no restrictions on m,n € N. Now, as the sequence (f,), conveges in
Zlog™* Z(loglog #) *(Q ) we have

B q2
87(Co=1080) 1o = fill s+ yogrog ot Vil IS gy < O
provided m and n are sufficiently large, hence

_ P
Hvum Vu" ” ZLog™" L (loglog ¥) -# < Co

and so (Vu,), is a Cauchy sequence as desired.

Now we are in a position to prove ex1stence of a solution to problem
(1), for a given f € Zlog™* Z(loglog #) #(Q, RY). Indeed, we approximate
the vector field f by fnef (Q,RY), n=1,2,..., such that f, — f in
Zlog™* Z(loglog #) #(©, RY), and for each n we consider the (unique) solu-
tion u, to the problem

div A(x, Vu,) = div f,
(50) L,p

u, € Wy ' (Q)
By what we have seen above (u), converges in W 2P log*(loglog £) #(Q),
that is, there exists u € 7! ,,S,W’log “(loglog &)~ (Q) such that u, — u. To con-

clude that u solves (1), we only need to note that by (4) we can pass to the limit
as n — oo into the equation of (50), getting

div A(x, Vu) = div f,
since we easily see that A(x, Vu,) — A(x, Vu) in 2'(Q, RY).
Estimate (7) follows by the same argument used above, integrating with

respect to ¢. Also continuity of the operator H follows. Indeed if f, — f in
Llog™* L (loglog £) P(Q) then

Vu, = Hf, — Vu=Hf in ¥"log * ¥(loglog El’)fﬁ(Q).

If p < 0, a similar argument proves the result, we only have to substitute (46)
by

B
(51) (—log%> > (—logd) ™" ford e (0,¢)
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to get
Je,(N) . 5 ,
(52) /0 e* [loge| "||Vum — Vuu|,_,, de
" a1 —# p
> /0 0" logd| || Vum — V|| 5 do
instead of (47). O

PrROOF OF THEOREM 1.2. Let now 0 < o < p/|p — 2|. We start by considering
the case > 0. We let f,g e ¥?log * Z(loglog ¥)~ (Q RY). Denote by u
and v the solutions of (36) and (37), of class 7' #”log™* % (loglog 2P (@),
respectively. To prove (9), we multiply both sides of (43) by e“*1|loge|7ﬂ and
integrate with respect to ¢ over (0, 3¢,(N)), for fixed & € (0, 1]. By arguing as in
the proof of (45) and (48), we have

Wy
(53) /0 e [loge| "||[Vu — Vo), de

I\*( —logey(N) —log 0N+ [, - P
2(;)( —logep ) /o o logdl TV = Vol 5,

e, (N)
&% (1-2)
(54) /0 Hogel IS = glld I L1 + lal 127,

&1
< qfoc [/ 51—1
0
&1
X l/ o !
0

respectively, where as above &y = pe,(N), &1 = ¢q¢,(N) and A = min{l, p — 1}. On
the other hand,

s| " P
logzl Hf—qufo‘dé

1—-4
5| * .
logg A1+ 1gllI5_sdo|

9e,(N) o i
(55) L o P11+ ol Ly
e, (NPT fa | o
< ST [ g iog?| 111+ ol 0

and therefore we get

(56) ||Vu B VU||yplog’“$(loglogY)

< C9a*(Cy —log )| |f] + 19l ||

P log " ¥L(loglog 3)

+ C3 (G 10g9) I/ = g|gp10g*“$(loglog$)

X || |f| + ‘g| ||Jp]0g"j(loglogf)
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If we choose 3 such that

J’q log’“ log?log 2 g

sﬁ—( I/ =
- H|f|+|g|

Z1log*log P log £

we obtain estimate (9).
If f < 0, a similar argument proves the result, we only have to substitute (53)
by

9e,(N) i i )
(57) /0 " |loge| "||Vu — Vul|)_,, de

> / 0" logd| ¥ |[Vu — V|, do,
0

The proof is complete. O

6. RESULTS IN THE SPACE Z‘(loglog 3)7[”

In this section we state and prove two results similar to Theorem 1.1 and
Theorem 1.2, with the dlfference that our next result are settled in the Orlicz—
Zygmund space ¥ ?(loglog &)™ (Q RY). Whenever the parameter o equals to
zero, we use the notation [ - |, 5 instead of [ /], , 4.

THEOREM 6.1. Let 1 < p < o0, p #2. For each f € ¥4(loglog 3)7/;(9, RM),
with pg = p+q and f > 0, the problem (1) admits a unique solution u: Q — R,

such that Vu e £?(loglog #) " (Q,RN). There exists a constant C >0, C =
C(N, p,o,a,b), such that the following estimate holds true

(58) [[V”];/; < C[fﬂ;{ﬁ
Moreover the operator H is continuous.

The proof of Theorem 6.1 is achieved exactly as for Theorem 1.1, therefore
we omit it. Let us turn to the following next result.

THEOREM 6.2. Let 1 < p < oo, p#2 and let > 0. There exists a constant
C>0, C=C(N,p,a,ab), such that, if f and g belong to gq(loglog,f)
(Q, IRN), with pqg = p + q then

(59) [Hf —Hgly , < C(Lf =gl 41/ + IgH];f,f)"( %)ﬂﬂ
q

where

(60) y=1 if p>2

(61) y:§ ifl<p<?2
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PRrROOF. Let f,g e Z9(log log L) (Q RY ) Denote by u and v the solutions
of (36) and (37), of class %! #4(loglog ¥) " (Q) respectively. To prove (9), we
multiply both sides of (43) by & !|loge| ”~' and integrate with respect to &
over (0, 9¢,(N)), for fixed 3 € (0, 1]. By arguing as in the proof of (45) and (48),
we have

) "
(62) /0 e loge) V| Vu — Vo7, de

2(—logep( ) — logﬁ

1 —p—1 _ P
o /5 llogd] | Vu — Vo2, b,

B (V) 1 —p-1 (1-2)
(63) /0 e loge L1 — g™ | 11+ lol 125
&l
< / 6!
0
&1
X / o !
0

respectively, where as above &) = pe,(N), &1 = ¢g¢,(N) and 2 = min{l, p — 1}. On
the other hand,

7
ol ! .
IOgZI' |f—g||q_5d51

.

-4
d
log” AT+ gl ||de5] ,

9ep(N) —p-1
(64) [ e ol P11+ ol 2y @
0
< WelN)TE 7 5 logé’/“” 1416l [0 do
EE 0 q -9
and therefore we get
(65) Hvu_vvniﬁp loglogf)

— 1
< CHT(Co 108 0" £+ 191 1% p10g 1

1
+C(Co—1og O M f = gll %y op iy AN LA s

If we choose 3 such that

'9‘ P ( ||f - g”q q loglogy)*/f /L
-2 =
A1+ gl

we obtain estimate (59). O

Z4(loglog 3’)
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