
Rend. Lincei Mat. Appl. 27 (2016), 335–354
DOI 10.4171/RLM/738

Partial Di¤erential Equations — Continuity estimates for p-Laplace type opera-
tors in Orlicz–Zygmund spaces, by Fernando Farroni, communicated on 11
March 2016.

Abstract. — We study the Dirichlet problem

divAðx;‘uÞ ¼ div f in W;

u ¼ 0 on qW;

�

in a bounded Lipschitz domain WHRN , with Nb 2. The vector field A : W� RN ! RN satisfies
the tipical growth and coercivity conditions of the p-Laplacian type operator with p > 1. We prove

existence and uniqueness results in the case the vector field f belongs to the Orlicz–Zygmund space
Lq log�aLðlog logLÞ�bðW;RNÞ, q ¼ p

p�1 , a > 0 and b a R or a ¼ 0 and b > 0. In particular, the

gradient of the solution belongs to L p log�aLðlog logLÞ�bðW;RNÞ. Further, we provide estimates

implying the continuity of the operator which carries any given f into the gradient field ‘u of the
solution.
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1. Introduction

Let W be a bounded Lipschitz domain of RN , Nb 2. We consider the Dirichlet
problem

divAðx;‘uÞ ¼ div f in W;

u ¼ 0 on qW;

�
ð1Þ

where A : W� RN ! RN is a Carathéodory vector field satisfying the following
conditions for a.e. x a W and all x; h a RN

Aðx; 0Þ ¼ 0ð2Þ
3Aðx; xÞ �Aðx; hÞ; x� h4b ajx� hj2ðjxj þ jhjÞ p�2ð3Þ
jAðx; xÞ �Aðx; hÞja bjx� hjðjxj þ jhjÞ p�2ð4Þ

where p > 1, 0 < aa b.
Let f ¼ ð f 1; f 2; . . . ; f NÞ be a vector field of class LsðW;RNÞ, 1a sa q

where q is the conjugate exponent to p, i.e. pq ¼ pþ q.



Definition 1.1. A function u a W1; r
0 ðWÞ, maxf1; p� 1ga ra p, is a solution

of (1) if Z
W

3Aðx;‘uÞ;‘j4 dx ¼
Z
W

3 f ;‘j4 dx;ð5Þ

for every j a Cl
0 ðWÞ.

By a routine argument, if sb r=ðp� 1Þ, it can be seen that the identity (5) still

holds for functions j a W
1; r

r�pþ1ðWÞ with compact support. By virtue of assump-
tions (2)–(4), the model case we have in mind is represented by a Dirichlet
problem involving the p-Laplace operator, namely

divj‘uj p�2‘u ¼ div f in W;

u ¼ 0 on qW;

�
ð6Þ

We shall refer to a solution in the sense of Definition 1.1 as a distributional
solution or (as some people say) as a very weak solution [20, 24]. Moreover, if
r < p, a solution may have infinite energy, namely j‘uj B L pðWÞ.

Existence and uniqueness for a solution to problem (1) is a well studied
problem and known results available in literature depending on the degree of
regularity of the right hand side of (1). Beside the standard fact that a solution
exists, it is unique and belongs to W

1;p
0 ðWÞ if f a LqðW;RNÞ, the existence of a

solution u a W1;1
0 ðWÞ to problem (1) is obtained in [4] when div f belongs to

L1ðW;RNÞ. On the other hand, uniqueness of solutions to problem (1) generally
fails, as shown by a classical counterexample due to J. Serrin [29]. The presence
of such ‘‘pathological’’ examples gave rise to new possible definitions of a solu-
tion to problem (1). This is the case of the so-called duality solutions [30], the ap-
proximation solutions (SOLA) [4], the entropy solutions [28, 23, 5]. Regularity
properties of such solutions are given in [25, 26]. Unfortunately, the tecniques de-
velopped in these papers do not provide uniqueness if we consider distributional
solutions and still this question is not completely clear, unless for the special case
p ¼ 2 [3, 14]. In this particular case, the understanding of the problem in the scale
of Sobolev spaces is available, see e.g. [22]. Until now, the case pA 2 has been
treated under suitable regularity assumptions on f , that is to say f belongs to
function spaces slightly larger than the natural setting LqðW;RNÞ, where q de-
notes the conjugate exponent to p. In particular, we refer the reader to [17] (see
also [11]) and to [12] where the problem is settled in the grand Sobolev spaces and
in Zygmund spaces respectively). We refer also to [3] for the case p ¼ N. We want
to point out that the study of elliptic problems in the setting of Zygmund–Orlicz
spaces has been previously considered in [27] and [6] where the higher integra-
bility of solutions to degenerate elliptic equations of p-Laplacian type is proved.

Our aim is to study existence and uniqueness for the problem (1) in the case
where the vector field f belongs to the Orlicz–Zygmund space

Lq log�aLðlog logLÞ�bðW;RNÞ

q ¼ p

p�1 , a > 0 and b a R.
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We recall that the Zygmund space Lq log�aLðlog logLÞ�bðW;RNÞ, for
1 < q < l, a; b a R is the Orlicz space generated by the function

FðtÞCFp;a;bðtÞ ¼ tq log�aðaþ tÞðlog logðaþ tÞÞ�b; tb 0;

for suitable large values of the constant ab ee (whose choich is immaterial) and
it is usually equipped with the Luxemburg norm k � kLFðWÞ (see Section 2.3 for

the definitions). In order to simplify our notation, we will often write w � xp;a;b
instead of k � kLFðWÞ.

The expected regularity for the solution u of (1) corresponds to the fact that

the gradient ‘u belongs to L p log�aLðlog logLÞ�bðW;RNÞ. Indeed, for a and
b positive, some explicit example could be given by means of a radial solutions;
for instance the function

uðxÞ ¼
Z r0

jxj

dr

½rN jlog rj1�ajlogjlog rj js�
1
p

with s > 1� b, is a solution to the model case (6) when f is given by

f ðxÞ ¼ F ðjxjÞ x

jxj F ðrÞ ¼ � 1

½rN jlog rj1�ajlogjlog rj js�
p�1

p

We state our result for positive values of the parameter a. The case a ¼ 0 will
be treated in the last section for reader’s convenience. Our first result is the
following.

Theorem 1.1. Let 1 < p < l, pA 2.
For each f a Lq log�aLðlog logLÞ�bðW;RNÞ, with pq ¼ pþ q and 0 <

a <
p

jp�2j , b a R, the problem (1) admits a unique solution u : W ! R, such

that ‘u a L p log�aLðlog logLÞ�bðW;RNÞ. There exists a constant C > 0, C ¼
CðN; p; a; b; a; bÞ, such that the following estimate holds true

w‘ux p
p;a;b aCw f xqq;a;bð7Þ

Moreover the operator

H : Lq log�aLðlog logLÞ�bðW;RNÞ ! L p log�aLðlog logLÞ�bðW;RNÞð8Þ

which carries a given vector field f into the gradient field ‘u is continuous.

Related to previous theorem, we provide also a precise continuity estimate for
the operatorH. To this aim, we state our next result.

Theorem 1.2. Let 1 < p < l, pA 2.
There exists a constant C > 0, C ¼ CðN; p; a; b; a; bÞ, such that, if f and g

belong to Lq log�aLðlog logLÞ�bðW;RNÞ with pq ¼ pþ q, 0 < a <
p

jp�2j and
b a R then
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wHf �Hgx p
p;a;bð9Þ

aCðw f � gxgq;a;bwj f j þ jgjx1�g
q;a;bÞ

q
�
1� log

w f � gxq;a;b
wj f j þ jgjxq;a;b

�bþ

;

where bþ ¼ maxfb; 0g and

g ¼ 1� a
p� 2

p
if p > 2ð10Þ

g ¼ p

q

�
1� a

2� p

p

�
if 1 < p < 2ð11Þ

Estimate (9) has been established in [12] for b ¼ 0, therefore Theorem 1.1 allow
us to extendH as a continuous operator to a space larger thatLq log�aLðW;RNÞ
as long as b > 0. On the other hand, if b < 0, the space Lq log�aLðlog logLÞ�b

is continuously embedded into Lq log�aLðW;RNÞ, so our results provides
higher integrability of the solutions found in [12]. We recall that our estimates
are useful also in describing some quantitative properties of mappings of bounded
distortion (see e.g. [11, 10]), whose coordinate functions always solve an equation
as in (1) with structural assumptions of type (2)–(4). Other sharp estimates related
to mappings of bounded distortion (precisely to quasiconformal mappings) can
be found also in [8, 9].

The paper is organized as follows. Section 2 is devoted to the basic
notation and definitions; in particular, we will introduce the grand Sobolev
spaces and we give the definition of a general Orlicz space. Section 3 col-
lects technical lemmas allowing the construction of a new norm in the space
Lq log�aLðlog logLÞ�bðWÞ. This new norm (which turns to be equivalent to
the Luxemburg one) is introduced in Section 4 and we distinguish the two
cases a > 0 and b a R from a ¼ 0 and b > 0 for reader’s convenience. In
Section 5, we prove Theorems 1.1 and 1.2. Our starting point consists of an
estimate below the natural exponent (see Corollary 5.2 below) for problem (1)
as done in [17, 21]. Our proofs strongly rely on the fact that the new norm
introduced in Section 4 takes into account only the behaviour of the Lr-norms
of a function in Lq log�aLðlog logLÞ�bðWÞ for r < q and so it better fits the
estimates of Section 5. Finally, in Section 6 we state and prove two results
similar to Theorem 1.1 and Theorem 1.2 in the setting of Orlicz–Zygmund space
Lqðlog logLÞ�bðW;RNÞ.

2. Preliminary results

2.1. Basic notation

We indicate that quantities m; sb 0 are equivalent by writing mP s; namely,
mP s will mean that there exist constants c1; c2 > 0 such that c1ma sa c2m.
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From now on, W will denote a bounded Lipschitz domain in RN . For a func-
tion v a L pðWÞ with 1a p < l we set

kvkp ¼
�Z

W

jvj p dx
�1

p

Barred integrals denote averages, namely

Z
W

¼ 1

jWj

Z
W

.

2.2. Grand Lebesgue and grand Sobolev spaces

For 1 < p < l we denote by L pÞðWÞ the grand–Lebesgue space consisting of all
functions v a

T
0<eap�1 L

p�eðWÞ such that

kvkpÞ ¼ sup
0<eap�1

e
1
p

�Z
W

jvj p�e
dx

� 1
p�e

< l:

Moreover

kvkpÞ P sup
0<eap�1

�
e

Z
W

jvj p�e
dx

� 1
p�e

:

The Marcinkiewicz class weak–L pðWÞ is contained in L pÞðWÞ (see [20, Lemma
1.1]).

More generally, if a > 0 we denote by La;pÞðWÞ the grand–Lebesgue space
consisting of all functions v a

T
0<eap�1 L

p�eðWÞ such that

kvka;pÞ ¼ sup
0<eap�1

e
a
p

�Z
W

jvj p�e
dx

� 1
p�e

< l:

2.3. Orlicz and Zygmund spaces

We need to recall some basic properties of Orlicz spaces; for more details on
Orlicz spaces we refer to [1] and also to [16].

Let F : ½0;lÞ ! ½0;lÞ be a Young function, that is Fð0Þ ¼ 0, F is increasing
and convex. If W is a open subset of RN , we define the Orlicz space LFðWÞ gen-
erated by the Young function F as the set of measurable functions f : W ! R
such that Z

W

F
� j f ðxÞj

l

�
dx < l;

for some l > 0. This space is equipped with the Luxemburg norm

k f kLFðWÞ ¼ inf l > 0 :

Z
W

F
� j f ðxÞj

l

�
dxa 1

� �
:
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We shall need to consider the Zygmund space Lq log�aLðWÞ, for 1 < q < l,
a > 0. This is the Orlicz space generated by the function

FðtÞ ¼ tq log�aðaþ tÞ; tb 0;

where ab e is a suitably large constant, so that F is increasing and convex on
½0;l½. The choice of a will be immaterial. More explicitly, for a measurable
function f on W, f a Lq log�aLðWÞ simply means thatZ

W

j f jq log�aðaþ j f jÞ dx < l:

Equipped with the Luxemburg norm Lq log�aLðWÞ is a Banach space. An
equivalent norm to the Luxemburg one, which involves the norms in Lq�eðWÞ,
for 0 < ea q� 1 has been introduced in [12] (see also [13]) by defining

k f kLq log�aL ¼
Z e0

0

ea�1k f kqq�e de

� �1=q

for any f measurable function defined on W. Here e0 a �0; q� 1� is fixed. A simple
application of the Lebesgue dominated convergence theorem proves that

lim
e#0

ea=qk f kq�e ¼ 0;ð12Þ

for all f a Lq log�aLðWÞ, see [15]. We stress that (12) does not hold uniformly,
as f varies in a bounded set of Lq log�aLðWÞ. Nevertheless, one can prove the
following (see again [12]).

Lemma 2.1. For each compact subset MHLq log�aLðWÞ, condition (12) holds
uniformly for f a M, that is

lim
e#0

�
sup
f AM

ea=qk f kq�e

�
¼ 0:

3. Integral estimates

In this Section we collect a series of integral estimates. To this aim, we let
G ¼ GðaÞ be the well known Euler Gamma function defined as

GðaÞ ¼
Z l

0

ta�1e�t dt

for a > 0.

Lemma 3.1. For any a > 0, g a R and e0 a ð0; 1Þ

lim
l!l

la

logg l

Z e0

0

ta�1jlog tjge�lt dt ¼ GðaÞð13Þ
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Proof. In order to simplify our notation, we define

IðlÞ ¼ la

logg l

Z e0

0

ta�1jlog tjge�lt dtð14Þ

By the change of variable s ¼ lt we get

IðlÞ ¼
Z e0l

0

sa�1
� log l� log s

log l

�g
e�s dsð15Þ

For s a ð0;lÞ, we define

hlðsÞ ¼ sa�1 log l� log s

log l

����
����
g

e�swð0; e0lÞðsÞð16Þ

hðsÞ ¼ sa�1e�sð17Þ

so that

IðlÞ ¼
Z l

0

hlðsÞ dsð18Þ

GðaÞ ¼
Z l

0

hðsÞ dsð19Þ

Clearly hl ! h a.e. in ð0;lÞ as l ! l, therefore our proof is a matter of using
the dominated convergence theorem to get

lim
l!l

IðlÞ ¼ GðaÞ

We distinguish two cases, depending on the sign of g.

Case 1: gb 0. For l > e and for all s a ð0;lÞ we have

hlðsÞa gðsÞ ¼ sa�1ð1þ jlog sjÞge�s

We observe that g a L1ð0;lÞ, so we pass to the limit as l ! l in (15) and we
get (13).

Case 2: g < 0. For su‰ciently large values of l we have

l > e�2
0

Then, we split the integral IðlÞ as the sum of two terms

IðlÞ ¼ I1ðlÞ þ I2ðlÞ
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where

I1ðlÞ ¼
Z ffiffi

l
p

0

sa�1
� log l� log s

log l

�g
e�s dsð20Þ

I2ðlÞ ¼
Z e0lffiffi

l
p sa�1

� log l� log s

log l

�g
e�s dsð21Þ

Since g is negative we have

� log l� log s

log l

�g
a 2�g for all s a ð0;

ffiffiffi
l

p
Þ

so we pass to the limit as l ! l in (20) with the aid of the dominated convergece
theorem and we obtain

lim
l!l

I1ðlÞ ¼ GðaÞð22Þ

In order to complete our proof, it remains to show that

lim
l!l

I2ðlÞ ¼ 0ð23Þ

Observe that

I2ðlÞa
ð�log e0Þge�

ffiffi
l

p

2

ðlog lÞg
Z e0lffiffi

l
p sa�1e�

s
2 dsð24Þ

since ~ggðsÞ ¼ sa�1e�
s
2 is a function in L1ð0;lÞ the right hand side of (24) appro-

ches to zero as l ! l and so (23) immediately follows. r

Lemma 3.2. For any g > 0 and e0 a ð0; 1Þ

lim
l!l

logg l

Z e0

0

jlog tj�g�1
e�lt dt

t
¼ 1

g
ð25Þ

Proof. Let us observe that

hlðtÞ ¼
jlog tj�g�1

t
e�lt a L1ð0; e0Þ for all l > 0

as long as g > 0. Indeed, an integration by parts yelds

logg l

Z e0

0

jlog tj�g�1
e�lt dt

t
¼ logg l

ð�log e0Þ�g

g
e�e0lð26Þ

þ l

g
logg l

Z e0

0

ð�log tÞ�g
e�lt dt
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The first term at the right hand side of (26) approches to zero as l ! l, while the
second term can be handled as in the proof of Lemma 4.2 (it is su‰cient to follow
the argument there for a ¼ 1 and when g is exchanged with �g) so the proof ends
by passing to the limit as l ! l in (26). r

4. Properties of the space Lq log�aLðlog logLÞ�bðWÞ

In this section, we study the Zygmund space L p log�aLðlog logLÞ�bðW;RNÞ,
for 1 < q < l, a > 0 and b a R. This is the Orlicz space generated by the
function

FðtÞ ¼ tq log�aðaþ tÞðlog logðaþ tÞÞ�b; tb 0;

where ab ee is a suitably large constant so that F is increasing and convex
on ½0;lÞ. In particular, the main goal of the section is the construction
of a new norm on Lq log�aLðlog logLÞ�bðWÞ which is equivalent to the
Luxembourg one and only takes into account the Lr-norms of a function in
Lq log�aLðlog logLÞ�bðWÞ, whenever r < p. This will be useful in order to get
the proofs of Theorem 1.1 and Theorem 1.2 that we will provide later.

The first case we take into account corresponds to the choice a > 0. To do
that, we consider a measurable function f defined on W and then we set

k f k
Lq log�aLðlog logLÞ�b ¼

Z e0

0

ea�1jlog ej�bk f kqq�e de

� �1=q

ð27Þ

Here e0 a �0; 1½ is fixed. Our task is to prove the following

Lemma 4.1. Let b a R and let e0 a ð0; 1Þ A measurable function f belongs to
Lq log�aLðlog logLÞ�bðWÞ

k f k
L q log�aLðlog logLÞ�b < l:ð28Þ

Moreover, k k
Lq log�aðlog logLÞ�bL

is a norm equivalent to the Luxemburg one,
that is, there exist constants Ci ¼ Ciðq; a; a; e0Þ, i ¼ 1; 2, such that for all f a
Lq log�aLðlog logLÞ�bðWÞ

C1w f xL q log�aLðlog logLÞ�b a k f k
Lq log�aLðlog logLÞ�b aC2w f xLq log�aLðlog logLÞ�b :

The case a ¼ 0 and b > 0 should be treated separately. We consider a measur-
able function f defined on W and then we set

k f k
Lqðlog logLÞ�b ¼

Z e0

0

e�1jlog ej�b�1k f kqq�e de

� �1=q

ð29Þ

Here e0 a �0; 1½ is fixed. Our task is to prove the following
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Lemma 4.2. Let b > 0 and let e0 a ð0; 1Þ A measurable function f belongs to
Lqðlog logLÞ�bðWÞ if and only if

k f k
Lqðlog logLÞ�bðWÞ < l:ð30Þ

Moreover, k k
Lqðlog logLÞ�b is a norm equivalent to the Luxemburg one, that

is, there exist constants Ci ¼ Ciðq; a; a; e0Þ, i ¼ 1; 2, such that for all f a
Lqðlog logLÞ�bðWÞ

C1w f xLqðlog logLÞ�b a k f k
Lqðlog logLÞ�b aC2w f xLqðlog logLÞ�b :

We only prove Lemma 4.1 since Lemma 4.2, can be proved in the same way.
Before we give the proof of Lemma 4.2, we state some preliminary results.

Proof of Lemma 4.1. It is immediately seen that k k
Lq log�aLðlog logLÞ�b defined

by (27) is a norm. Therefore, in the remaing part of the proof we show that (27)
defines a norm equivalent to the Luxemburg one. Observe that for ab ee we
have

j f jqðaþ j f jÞ�e
a j f jq�e

a 2q�1½aq þ j f jqðaþ j f jÞ�e�;

a.e. in W, hence integratingZ
W

j f jqðaþ j f jÞ�e
dxa k f kq�e

q�e a 2q�1aq þ 2q�1

Z
W

j f jqðaþ j f jÞ�e
dx:

Observe that Z e0

0

ea�1jlog ej�b
de

is finite and it is bounded by some constant C2 ¼ C2ða; b; e0Þ. This in turn impliesZ e0

0

ea�1jlog ej�b

Z
W

j f jqðaþ j f jÞ�e
dx

� �
deð31Þ

a

Z e0

0

ea�1jlog ej�bk f kq�e
q�e de

a 2q�1aqC2ða; b; e0Þþ 2q�1

Z e0

0

ea�1jlog ej�b

Z
W

j f jqðaþj f jÞ�e
dx

� �
de:

Fubini’s Theorem impliesZ e0

0

ea�1jlog ej�b

Z
W

j f jqðaþ j f jÞ�e
dx

� �
deð32Þ

¼
Z
W

j f jq
�Z e0

0

ea�1jlog ej�bðaþ j f jÞ�e
de
�
dx
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From Lemma 3.1, we see thatZ e0

0

ta�1jlog tj�b
e�lt dtP l�aðlog lÞ�b for all l > ee

and the constants for this equivalence only depend on e0, a and b. So in par-
ticular, we have

C3

Z
W

j f jq log�aðaþ j f jÞ log�bðlogðaþ j f jÞÞ dxð33Þ

a

Z e0

0

ea�1jlog ej�bk f kq�e
q�e de

aC4 1þ
Z
W

j f jq log�aðaþ j f jÞ log�bðlogðaþ j f jÞÞ dx
� �

for some positive contants.
Assume now that f satisfies (30). As

k f kq�e
q�e a k f kqq�e þ 1

we see that the first term of (33) is finite, so f a Lq log�a log�b logLðWÞ.
Furthermore, if k f kLq log�a log�b logL ¼ 1, then (33) impliesZ

W

j f jq log�aðaþ j f jÞ log�bðlogðaþ j f jÞÞ dxaC5

for a constant independent of f . By homogeneity,

w f xLq log�aLðlog logLÞ�b aC5k f kLq log�a log�b logLð34Þ

for all f .
Let f a Lq log�aLðlog logLÞ�bðWÞ; if b > 0 the space

Lq log�aLðlog logLÞ�bðWÞ

is continuosly embedded into Lq log�a0 LðWÞ as long as a < a0. Therefore,
the fact that Lq log�a0 LðWÞ is in turn continuously embedded into the grand
Lebesgue space La0;qÞðWÞ (see [20]), there exists a constant C6 > 0 such that

k f kq�e aC6e
�a0=qw f x

Lq log�aLðlog logLÞ�b ;

Therefore,

k f kqq�e ¼ k f kq�e
q�ek f k

e
q�e a k f kq�e

q�eC7w f x
e

Lq log�aLðlog logLÞ�b

and by (33) we get (28).
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Infact, if w f x
Lq log�aLðlog logLÞ�b ¼ 1, then we have

k f kLq log�a log�b logLaC8

and by homogeneity we conclude with the reverse inequality to (34). We remark
that all constants Ci appearing in the previous estimates are such that Ci ¼
Ciðq; a; a; e0Þ. r

Remark 4.3. We examine the dependence of k kLq log�a log�b logL defined by

(27), on the parameter e0. For fixed 0 < e0 a e1 < 1, by Hölder’s inequality we
have

k f kq�e a k f kq�e
e0
e1

;

and hence

Z e0

0

ea�1jlog ej�bk f kqq�e deð35Þ

a

Z e1

0

ea�1jlog ej�bk f kqq�e de

a

� e1

e0

�a��log e1
�log e0

��b
Z e0

0

ea�1jlog ej�bk f kqq�e de:

5. Existence and uniqueness

Before proving existence and uniqueness for the solution of problem (1), we recall
some known facts. We assume that A ¼ Aðx; xÞ satisfies (2)–(4) and we consider
here the equations

divAðx;‘uÞ ¼ div f in W;ð36Þ
divAðx;‘vÞ ¼ div g in W;ð37Þ

It will be important, for our purposes, to consider first the case where f ; g a
Lq�eqðW;RNÞ, 0 < e < minf1=p; 1=qg. We need a first tecnical result concerning
solutions u; v a W1;p�epðWÞ to (36) and (37), respectively, such that

u� v a W
1;p�ep
0 ðWÞ

It is then possible to prove the following

Lemma 5.1. There exist 0 < epðNÞ < minf1=p; 1=qg and a constant C > 0, C ¼
CðN; p; a; bÞ, such that the following uniform estimate holds
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k‘u� ‘vkp
p�ep aCe

p

p�2k j‘uj þ j‘vj kp
p�ep þ Ck f � gkqq�eq; if p > 2;ð38Þ

k‘u� ‘vkp
p�ep aCe

p

2�pk j‘uj þ j‘vj kp
p�epð39Þ

þ Ck f � gkp
q�eqk j‘uj þ j‘vj kpð2�pÞ

q�eq ; if 1 < p < 2;

for every 0 < e < epðNÞ.

The proof relies on the use of the Hodge decomposition (see e.g. [21]) and it is
achieved as in [17], then we omit it. As in [12] we immediately get the following
corollary.

Corollary 5.2. Under the assumptions of Lemma 5.1, there exist 0 < epðNÞ <
minf1=p; 1=qg and a constant C > 0, C ¼ CðN; p; a; bÞ, such that, for any 0 <
e < epðNÞ the following uniform estimate holds if u ¼ v ¼ 0 on qW

k‘u� ‘vkp
p�ep aCe

p

j p�2jk j f j þ jgj kqq�eq þ Ck f � gkqlq�eqk j f j þ jgj kqð1�lÞ
q�eqð40Þ

where l ¼ minf1; p� 1g.

Proof of Theorem 1.1. We start by proving uniqueness. First, we write esti-
mate (40) for f ¼ g observing that it reduces to

k‘u� ‘vkp
p�ep aCe

p

j p�2jk f kqq�eq:ð41Þ

Under the assumptions that we have on the parameters a and b, the space
Lq log�aLðlog logLÞ�bðW;RNÞ is continuously embedded into the space
Lq log

� p

j p�2jLðW;RNÞ and uniqueness follows by (12) letting e # 0 in (41).
In order to prove the existence of a solution, as a preliminary step, we show

that, if ð fnÞn is a converging sequence in Lq log�aLðlog logLÞ�bðW;RNÞ, such
that for each n

divAðx;‘unÞ ¼ div fn

un ¼ 0 on qW

�
ð42Þ

then ð‘unÞn is a Cauchy sequence in L p log�aLðlog logLÞ�bðW;RNÞ. To prove
this, by Corollary 5.2 we get

k‘um � ‘unkp
p�ep aCe

p

j p�2jk j fmj þ j fnj kqq�eqð43Þ

þ Ck fm � fnkqlq�eqk j fmj þ j fnj kqð1�lÞ
q�eq

where l ¼ minf1; p� 1g. Arguing as in the proof of uniqueness, fixed s > 0, we
find Q a ð0; 1� such that, if 0 < e < QepðNÞ, then

e
p

j p�2jk j fmj þ j fnj kqq�eq < s;

for all m; n a N. Hence (43) yields

k‘um � ‘unkp
p�ep aCðsþ k fm � fnkqlq�eqk j fmj þ j fnj kqð1�lÞ

q�eq Þ:ð44Þ
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We multiply both sides by ea�1jlog ej�b and we integrate with respect to e over
ð0; QepðNÞÞ. For d ¼ ep=Qb ep, we have

k‘um � ‘unkp�ep b k‘um � ‘unkp�d;

hence Z QepðNÞ

0

ea�1jlog ej�bk‘um � ‘unkp
p�ep deð45Þ

b

� Q

p

�a Z e0

0

da�1 log
yd

p

����
����
�b

k‘um � ‘unk p
p�d dd;

where e0 ¼ pepðNÞ.
We consider the case b > 0. We make use of the following inequality

�
�log

yd

p

��b

b

��log epðNÞ � log y

�log e0

��b

ð�log dÞ�b for d a ð0; e0Þð46Þ

which can be justified by observing that the function

RðdÞ ¼
�log yd

p

�log d
¼ 1þ

�log y
p

�log d

is increasing in the interval ð0; e0Þ. Therefore, from (45) we getZ QepðNÞ

0

ea�1jlog ej�bk‘um � ‘unkp
p�ep deð47Þ

b

� Q

p

�a��log epðNÞ � log y

�log e0

��b
Z e0

0

da�1jlog dj�bk‘um � ‘unk p
p�d dd;

On the other hand,Z QepðNÞ

0

ea�1jlog ej�b
dea

ðQepðNÞÞa

a
ð�log epðNÞ � log yÞ�b

and (setting here d ¼ eq) by Hölder’s inequalityZ QepðNÞ

0

ea�1jlog ej�bk fm � fnkqlq�eqk j fmj þ j fnj kqð1�lÞ
q�eq deð48Þ

a q�a

Z e1

0

da�1 log
d

q

����
����
�b

k fm � fnkqq�d dd

" #l

�
Z e1

0

da�1 log
d

q

����
����
�b

k j fmj þ j fnj kqq�d dd

" #1�l

;
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where e1 ¼ qepðNÞ. When p > 2 since e1 < e0 each integral over ð0; e1Þ can be
obviously reduced to an integral over ð0; e0Þ. In case p < 2 < q, we can use (35)
to do the same. Therefore, recalling definition (27), from (44) we get

k‘um � ‘unk p

L p log�aLðlog logLÞ�b aCsð49Þ

þ CQ�aðC0 � log yÞbk fm � fnkql

Lq log�aLðlog logLÞ�b

� k j fmj þ j fnj kqð1�lÞ
Lq log�aLðlog logLÞ�b

with no restrictions on m; n a N. Now, as the sequence ð fnÞn conveges in
Lq log�aLðlog logLÞ�bðWÞ, we have

Q�aðC0 � log yÞbk fm � fnkql

Lq log�aLðlog logLÞ�bk j fmj þ j fnj kqð1�lÞ
Lq log�aLðlog logLÞ�b < s;

provided m and n are su‰ciently large, hence

k‘um � ‘unk p

Lq log�aLðlog logLÞ�b aCs

and so ð‘unÞn is a Cauchy sequence as desired.
Now we are in a position to prove existence of a solution to problem

(1), for a given f a Lq log�aLðlog logLÞ�bðW;RNÞ. Indeed, we approximate
the vector field f by fn a LqðW;RNÞ, n ¼ 1; 2; . . . , such that fn ! f in
Lq log�aLðlog logLÞ�bðW;RNÞ, and for each n we consider the (unique) solu-
tion un to the problem

divAðx;‘unÞ ¼ div fn

un a W
1;p
0 ðWÞ

�
ð50Þ

By what we have seen above, ðunÞn converges in W1
0 L

p log�aðlog logLÞ�bðWÞ,
that is, there exists u a W1

0 L
p log�aðlog logLÞ�bðWÞ such that un ! u. To con-

clude that u solves (1), we only need to note that by (4) we can pass to the limit
as n ! l into the equation of (50), getting

divAðx;‘uÞ ¼ div f ;

since we easily see that Aðx;‘unÞ ! Aðx;‘uÞ in L1ðW;RNÞ.
Estimate (7) follows by the same argument used above, integrating with

respect to e. Also continuity of the operator H follows. Indeed, if fn ! f in
Lq log�aLðlog logLÞ�bðWÞ then

‘un ¼Hfn ! ‘u ¼Hf in L p log�aLðlog logLÞ�bðWÞ:

If b < 0, a similar argument proves the result, we only have to substitute (46)
by �

�log
yd

p

��b

b ð�log dÞ�b for d a ð0; e0Þð51Þ
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to get Z QepðNÞ

0

ea�1jlog ej�bk‘um � ‘unkp
p�ep deð52Þ

b

Z e0

0

da�1jlog dj�bk‘um � ‘unk p
p�d dd;

instead of (47). r

Proof of Theorem 1.2. Let now 0 < a < p=jp� 2j. We start by considering
the case b > 0. We let f ; g a Lq log�aLðlog logLÞ�bðW;RNÞ. Denote by u

and v the solutions of (36) and (37), of class W1
0 L

p log�aLðlog logLÞ�bðWÞ,
respectively. To prove (9), we multiply both sides of (43) by ea�1jlog ej�b and
integrate with respect to e over ð0; QepðNÞÞ, for fixed Q a ð0; 1�. By arguing as in
the proof of (45) and (48), we haveZ QepðNÞ

0

ea�1jlog ej�bk‘u� ‘vkp
p�ep deð53Þ

b

� Q

p

�a��log epðNÞ � log y

�log e0

��b
Z e0

0

da�1jlog dj�bk‘u� ‘vk p
p�d dd;

Z QepðNÞ

0

ea�1jlog ej�bk f � gkqlq�eqk j f j þ jgj kqð1�lÞ
q�eq deð54Þ

a q�a

Z e1

0

da�1 log
d

q

����
����
�b

k f � gkqq�d dd

" #l

�
Z e1

0

da�1 log
d

q

����
����
�b

k j f j þ jgj kqq�d dd

" #1�l

;

respectively, where as above e0 ¼ pepðNÞ, e1 ¼ qepðNÞ and l ¼ minf1; p� 1g. On
the other hand,Z QepðNÞ

0

e
p

j p�2jþa�1jlog ej�bk j f j þ jgj kqq�eq deð55Þ

a
ðQepðNÞÞ

p

j p�2j

qa

Z e1

0

da�1 log
d

q

����
����
�b

k j f j þ jgj kqq�d dd

and therefore we get

k‘u� ‘vk p

L p log�aLðlog logLÞ�bð56Þ

aCQ
p

j p�2j�aðC0 � log yÞbk j f j þ jgj kq

L p log�aLðlog logLÞ�b

þ CQ�aðC0 � log yÞbk f � gkql

L p log�aLðlog logLÞ�b

� k j f j þ jgj kqð1�lÞ
L p log�aLðlog logLÞ�b
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If we choose Q such that

Q
p

j p�2j ¼
� k f � gkq

L q log�a log�b logL

k j f j þ jgj kq

Lq log�a log�b logL

�l
we obtain estimate (9).

If b < 0, a similar argument proves the result, we only have to substitute (53)
by Z QepðNÞ

0

ea�1jlog ej�bk‘u� ‘ukp
p�ep deð57Þ

b

Z e0

0

da�1jlog dj�bk‘u� ‘uk p
p�d dd;

The proof is complete. r

6. Results in the space Lqðlog logLÞ�b

In this section we state and prove two results similar to Theorem 1.1 and
Theorem 1.2, with the di¤erence that our next result are settled in the Orlicz–
Zygmund space Lqðlog logLÞ�bðW;RNÞ. Whenever the parameter a equals to
zero, we use the notation w � xq;b instead of w f xq;0;b.

Theorem 6.1. Let 1 < p < l, pA 2. For each f a Lqðlog logLÞ�bðW;RNÞ,
with pq ¼ pþ q and b > 0, the problem (1) admits a unique solution u : W ! R,

such that ‘u a L pðlog logLÞ�bðW;RNÞ. There exists a constant C > 0, C ¼
CðN; p; a; a; bÞ, such that the following estimate holds true

w‘ux p
p;b aCw f xqq;bð58Þ

Moreover the operatorH is continuous.

The proof of Theorem 6.1 is achieved exactly as for Theorem 1.1, therefore
we omit it. Let us turn to the following next result.

Theorem 6.2. Let 1 < p < l, pA 2 and let b > 0. There exists a constant
C > 0, C ¼ CðN; p; a; a; bÞ, such that, if f and g belong to Lqðlog logLÞ�b �
ðW;RNÞ, with pq ¼ pþ q then

wHf �Hgx p
p;b aCðw f � gxgq;bwj f j þ jgjx1�g

q;b Þ
q
�
1� log

w f � gxq;b
wj f j þ jgjxq;b

�bþ1

ð59Þ

where

g ¼ 1 if p > 2ð60Þ

g ¼ p

q
if 1 < p < 2ð61Þ
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Proof. Let f ; g a Lqðlog logLÞ�bðW;RNÞ. Denote by u and v the solutions
of (36) and (37), of class W1Lqðlog logLÞ�bðWÞ, respectively. To prove (9), we
multiply both sides of (43) by e�1jlog ej�b�1 and integrate with respect to e
over ð0; QepðNÞÞ, for fixed Q a ð0; 1�. By arguing as in the proof of (45) and (48),
we have

Z QepðNÞ

0

e�1jlog ej�b�1k‘u� ‘vkp
p�ep deð62Þ

b

��log epðNÞ � log y

�log e0

��b�1
Z e0

0

d�1jlog dj�b�1k‘u� ‘vk p
p�d dd;

Z QepðNÞ

0

e�1jlog ej�b�1k f � gkqlq�eqk j f j þ jgj kqð1�lÞ
q�eq deð63Þ

a

Z e1

0

d�1 log
d

q

����
����
�b�1

k f � gkqq�d dd

" #l

�
Z e1

0

d�1 log
d

q

����
����
�b�1

k j f j þ jgj kqq�d dd

" #1�l

;

respectively, where as above e0 ¼ pepðNÞ, e1 ¼ qepðNÞ and l ¼ minf1; p� 1g. On
the other hand,

Z QepðNÞ

0

e
p

j p�2j�1jlog ej�b�1k j f j þ jgj kqq�eq deð64Þ

a
ðQepðNÞÞ

p

j p�2j

qa

Z e1

0

d�1 log
d

q

����
����
�b�1

k j f j þ jgj kqq�d dd

and therefore we get

k‘u� ‘vk p

L pðlog logLÞ�bð65Þ

aCQ
p

j p�2jðC0 � log yÞbþ1k j f j þ jgj kq

Lqðlog logLÞ�b

þ CðC0 � log yÞbþ1k f � gkql

Lqðlog logLÞ�bk j f j þ jgj kqð1�lÞ
Lqðlog logLÞ�b

If we choose Q such that

Q
p

j p�2j ¼
� k f � gkq

Lqðlog logLÞ�b

k j f j þ jgj kq

Lqðlog logLÞ�b

�l
we obtain estimate (59). r
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