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Abstract. — We deal with the obstacle problem for a class of nonlinear integro-di¤erential oper-

ators, whose model is the fractional p-Laplacian with measurable coe‰cients. In accordance with
well-known results for the analog for the pure fractional Laplacian operator, the corresponding solu-

tions inherit regularity properties from the obstacle, both in the case of boundedness, continuity, and
Hölder continuity, up to the boundary.
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1. The fractional obstacle problem

The obstacle problem is a fundamental topic in Partial Di¤erential Equations
and Potential Theory, with crucial implications in many contexts in Biology, in
Elasticity, in Financial Mathematics, and so on. See for instance the books [12]
and [27], where many of these applications are described, as well as the classical
literature on this problem. It can be stated in several ways. Roughly speaking,
there is an elliptic operator L and a function h (the obstacle), so that the solution
u to the obstacle problem in a domain W is a minimal supersolution to L ¼ 0
above the obstacle; i.e.,

Lub 0

ub h everywhere in the domain W;

ðboundary conditionsÞ:

8><
>:

The operator L can be a classical second order elliptic operator, an integro-
di¤erential operator, and even a nonlinear one. The study of the obstacle prob-
lem originated in the context of Elasticity as the equation that models the
shape of an elastic membrane which is pushed by an obstacle from one side
a¤ecting its shape. The same equation also arises in Control Theory, specifically
as the question of finding the optimal stopping time for a stochastic process with
payo¤ function. In origin, in both these cases, possibly after linearization, the
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involved operator L coincides with the Laplacian operator. A special very im-
portant case is when the operator L is the fractional Laplacian ð�DÞs; that is,

ð�DÞsuðxÞ ¼ p:v:

Z
Rn

ðuðxÞ � uðyÞÞjx� yj�n�2s dy; x a Rn;

see [9]. The obstacle problem involving the fractional Laplacian operator indeed
appears in many contexts, such as in the analysis of anomalous di¤usion, in the
quasi-geostrophic flow problem, and in pricing of American options regulated by
assets evolving in relation to jump processes; in particular, this important appli-
cation in Financial Mathematics made the obstacle problem very important in
recent times. A large treatment of the fractional obstacle problem can be found
in the important papers by Ca¤arelli, Figalli, Salsa, and Silvestre (see, e.g., [1–3,
30]); see also [10] for the analysis of families of bilateral obstacle problems involv-
ing fractional type energies in aperiodic settings; and the paper [26] for the frac-
tional obstacle problems with drift. However, despite its relatively short history,
this problem has already evolved into an elaborate theory with several connec-
tions to other branches; the literature is too wide to attempt any reasonable
comprehensive treatment in a single paper. We refer the interested reader to the
exhaustive lecture notes [29], and to the forthcoming work by Danielli and Salsa
([6]), and the references therein.

2. The nonlinear integro-differential obstacle problem

Here we are interested in a very general class of nonlinear nonlocal obstacle prob-
lems; i.e., those related to the operator L defined on suitable fractional Sobolev
functions by

LuðxÞ ¼ p:v:

Z
Rn

Kðx; yÞjuðxÞ � uðyÞjp�2ðuðxÞ � uðyÞÞ dy; x a Rn:ð2:1Þ

The nonlinear nonlocal operator L in the display above is driven by its kernel
K : Rn � Rn ! ½0;lÞ, which is a measurable function of di¤erentiability order
s a ð0; 1Þ and summability exponent p > 1,

L�1
aKðx; yÞjx� yjnþsp

aL for a:e: x; y a Rn;

for some Lb 1. Clearly, in the linear case when p ¼ 2 and without coe‰cients
when L ¼ 1, we recover the aforementioned fractional Laplacian operator
ð�DÞs.

We need now to recall the definition of the nonlocal tail Tailð f ; z; rÞ of a func-
tion f in the ball of radius r > 0 centered in z a Rn; see [7, 8]. For any function f
initially defined in L

p�1
loc ðRnÞ,

Tailð f ; z; rÞ :¼
�
rsp

Z
RnnBrðzÞ

j f ðxÞjp�1jx� zj�n�sp dx
� 1

p�1

:ð2:2Þ
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In accordance, we recall the definition of the corresponding tail space
Lp�1
sp ðRnÞ,

Lp�1
sp ðRnÞ :¼ f f a L

p�1
loc ðRnÞ : Tailð f ; z; rÞ < l Ez a Rn; Er a ð0;lÞg;

see [17]. As expected, one can check that Ws;pðRnÞHLp�1
sp ðRnÞ, where we de-

noted by Ws;pðRnÞ the usual fractional Sobolev space of order ðs; pÞ, defined by
the norm

kvkW s; pðRnÞ :¼ kvkL pðRnÞ þ ½v�W s; pðRnÞ

¼
�Z

Rn

jvjp dx
�1

p þ
�Z

Rn

Z
Rn

jvðxÞ � vðyÞjp

jx� yjnþsp dx dy
�1

p

:

We finally observe that, since we assume that coe‰cients are merely measur-
able, the involved equation has to have a suitable weak formulation. For this, we
recall the definitions of sub and supersolutions u to

Lu ¼ 0 in Rn:ð2:3Þ

A function u a W
s;p
loc ðWÞBLp�1

sp ðRnÞ is a fractional weak p-supersolution of
(2.3) if

3Lu; h4C

Z
Rn

Z
Rn

Kðx; yÞjuðxÞ � uðyÞjp�2ðuðxÞ � uðyÞÞðhðxÞ � hðyÞÞ dx dy

b 0

for every nonnegative h a Cl
0 ðWÞ. Notice that the summability assumption of

u a Lp�1
sp ðRnÞ is what one expects in the nonlocal framework considered here;

see [15]. A function u a W
s;p
loc ðWÞBLp�1

sp ðRnÞ is a fractional weak p-subsolution

if �u is a fractional weak p-supersolution. A function u is a fractional weak
p-solution if it is both fractional weak p-sub and supersolution.

2.1. The variational framework and first results. From now on, we report the
main facts from [14], to which we refer for a more complete presentation and
for detailed proofs. First, we recall that the obstacle problem can be reformulated
as a standard problem in the theory of variational inequalities on Banach spaces,
by seeking the energy minimizer in convex sets of suitable functions. Let us intro-
duce the variational framework of our problem. Let WTW 0 be open bounded
subsets of Rn, let the obstacle function h : Rn ! ½�l;lÞ be an extended real-
valued function, and let g a Ws;pðW 0ÞBLp�1

sp ðRnÞ be the boundary values. We
define the (non-empty) set

Kg;hðW;W 0Þ :¼ fu a Ws;pðW 0Þ : ub h a:e: in W; u ¼ g a:e: on RnnWg;

and the functional A : Kg;hðW;W 0Þ ! ½Ws;pðW 0Þ� 0 as follows
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AuðvÞ :¼
Z
W 0

Z
W 0

LðuðxÞ; uðyÞÞðvðxÞ � vðyÞÞKðx; yÞ dx dy

þ 2

Z
RnnW 0

Z
W

LðuðxÞ; gðyÞÞvðxÞKðx; yÞ dx dy;

for every u a Kg;hðW;W 0Þ and v a Ws;pðW 0Þ. Notice that the functional Au really
belongs to the dual of the fractional Sobolev space Ws;pðW 0Þ; see [14, Remark 1].
We are now ready to provide the natural definition of solutions to the obstacle
problem in the general nonlocal framework considered here.

Definition 2.1. We say that u a Kg;hðW;W 0Þ is a solution to the obstacle prob-
lem in Kg;hðW;W 0Þ if

Auðv� uÞb 0

whenever v a Kg;hðW;W 0Þ.

The existence and uniqueness of the solution to the obstacle problem and the
fact that such a solution is a weak supersolution to (2.3) is proven in the following

Theorem 2.2 ([14, Theorem 1]). There exists a unique solution to the obstacle
problem in Kg;hðW;W 0Þ. Moreover, the solution to the obstacle problem is a weak
supersolution to (2.3) in W.

Sketch of the proof. First, one can prove by computations that A is mono-
tone on Kg;hðW;W 0Þ. Second, by applying the Hölder inequality together with
some basic estimates in [14, Lemmata 1 and 2], and by carefully treating in a dif-
ferent way the superquadratic case when pb 2 and the subquadratic case when
1 < p < 2, one can prove the weak continuity of A. Then, by using again the
Hölder inequality together with some fractional Sobolev embeddings, one can
prove that A is coercive. This will permit to apply the standard theory of mono-
tone operators in order to deduce the existence of a solution u to the obstacle
problem. The uniqueness is easily proven via a contradiction argument. Finally,
one can show that the function u is a weak supersolution to (2.3) by noticing
that for any nonnegative function j a Cl

0 ðWÞ, the function uþ j belongs to
Kg;hðW;W 0Þ. r

Also, under natural assumptions on the obstacle h, one can prove that the
solution to the obstacle problem is fractional harmonic (see [15] for the definition
and several related properties) away from the contact set, in clear accordance
with the classical results when s ¼ 1.

Corollary 2.3 ([14, Corollary 2]). Let u be the solution to the obstacle problem
in Kg;hðW;W 0Þ. If Br HW is such that

ess inf
Br

ðu� hÞ > 0;
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then u is a weak solution to (2.3) in Br. In particular, if u is lower semicontinuous
and h is upper semicontinuous in W, then u is a weak solution to (2.3) in Wþ :¼
fx a W : uðxÞ > hðxÞg.

The solution to the obstacle problem is the smallest supersolution above the
obstacle in the sense precised below.

Proposition 2.4 ([14, Proposition 1]). Let WTW 00 HW 0. Let u be the solution
to the obstacle problem in Kg;hðW;W 0Þ and let v be a weak supersolution in W 00 such
that minfu; vg a Kg;hðW;W 0Þ. Then ua v almost everywhere.

Sketch of the proof. It will su‰ce to notice that, since u is the solution to
the obstacle problem and minfu; vg ¼ u in RnnW, we have

0a 3Au;minfu; vg � u4;

and, since v is a weak supersolution in W 00 and u�minfu; vg a W
s;p
0 ðWÞ is non-

negative, we have,

0a

Z
Rn

Z
Rn

jvðxÞ � vðyÞjp�2ðuðxÞ � uðyÞÞ

� ðuðxÞ �minfu; vgðxÞ � uðyÞ þminfu; vgðyÞÞKðx; yÞ dx dy:

By summing the preceding inequalities, one can deduce that jfu > vgj ¼ 0. r

Remark 2.5. It is worth noticing that the obstacle function h is an extended
real-valued function. In particular, in our results we are also including the case
when hC�l; i.e., no obstacle at all, whose interpretation is

KgðW;W 0ÞCKg;�lðW;W 0Þ :¼ fu a Ws;pðW 0Þ : u ¼ g a:e: on RnnWg;

that is, the class where we are seeking solutions to the Dirichlet boundary value
problem. Moreover, in view of Theorem 2.2, by solving the obstacle problem in
Kg;�lðW;W 0Þ one obtains a unique weak solution to (2.3) in W with boundary
values g a Ws;pðW 0ÞBLp�1

sp ðRnÞ in the complement of W.

3. Interior regularity results

The regularity of the solution to the obstacle problem inherits the regularity of
the obstacle, both in the case of boundedness, continuity, and Hölder continuity.

Theorem 3.1 ([14, Theorem 2]). Let u be the solution to the obstacle problem in
Kg;hðW;W 0Þ. Assume that Brðx0ÞHW 0 and set

M :¼ max ess sup
Brðx0ÞBW

h; ess sup
Brðx0ÞnW

g

( )
:
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Here the interpretation is that ess supA f ¼ �l if A ¼ j. If M is finite, then u is
essentially bounded from above in Br=2ðx0Þ and

ess sup
Br=2ðx0Þ

ðu�mÞþ a d Tailððu�mÞþ; x0; r=2Þ þ cd�g
�Z

Brðx0Þ
ðu�mÞ tþ dx

�1
t

holds for all mbM, t a ð0; pÞ and d a ð0; 1� with constants gC gðn; p; s; tÞ and
cC cðn; p; s; t;LÞ.

Theorem 3.2 ([14, Theorem 3]). Suppose that h is locally Hölder continuous in
W. Then the solution u to the obstacle problem in Kg;hðW;W 0Þ is locally Hölder con-
tinuous in W as well. Moreover, for every x0 a W there is r0 > 0 such that

osc
Brðx0Þ

ua c
�r
r

�ah
Tailðu� hðx0Þ; x0; rÞ þ

�Z
Brðx0Þ

ju� hðx0Þjp dx
�1

p
i

þ c

Z r

r

�r
t

�a
oh

� t
s

� dt

t

for every r a ð0; r0Þ and r a ð0; r=4�, where ohðrÞCohðr; x0Þ :¼ oscBrðx0Þ h, and a,
c and s depend only on n, p, s, and L.

Slightly modifying the proof of the preceding theorem (for which we refer also
to Section 5 below), one can easily obtain the following.

Theorem 3.3 ([14, Theorem 4]). Suppose that h is continuous in W. Then the
solution to the obstacle problem in Kg;hðW;W 0Þ is continuous in W as well.

All the results presented in this section are consistent with their counterparts
for the obstacle problems in the pure fractional Laplacian case. This said, the
related proofs are di¤erent and, though we are dealing with a wider class of non-
linear integro-di¤erential operators with coe‰cients, to a certain extent these
proofs are even simpler, since we can make use of the new nonlocal set-up and
the recent quantitative estimates in [7, 8], by combining them with some well-
known tools from the classical nonlinear Potential Theory. Moreover, since we
allow the obstacle function h to be an extended real-valued function, the degen-
erate case when no obstacle is present does reduce the problem to the standard
Dirichlet boundary value problem, so that the results proven in [14] are new
even when L does coincide with the fractional p-Laplacian ð�DÞsp. Also, as
noticing in Remark 2.5, we assume that the boundary data merely belong to an
appropriate tail space Lp�1

sp ðRnÞ, so that our results are an improvement with
respect to all the previous results in the literature when the data are usually given
in the whole Ws;pðRnÞ.

4. Regularity up to the boundary

The results in the previous sections can be extended up to the boundary of W. For
this, one has to assume that the complement of W satisfies the following measure
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density condition: there exist dW a ð0; 1Þ and r0 > 0 such that for every x0 a qW

inf
0<r<r0

jðRnnWÞBBrðx0Þj
jBrðx0Þj

b dW:ð4:1Þ

This requirement is in the same spirit of the classical nonlinear Potential Theory,
and—as expected in view of the nonlocality of the involved equations—is trans-
lated into an information given on the complement of the set W. Also, it is worth
noticing that this is an improvement with respect to the previous boundary regu-
larity results in all the fractional literature when much stronger Lipschitz regular-
ity or smoothness of the sets are usually assumed.

When the obstacle and the boundary values are bounded on the boundary, so
is the solution to the obstacle problem.

Theorem 4.1 ([14, Theorem 5]). Suppose that u a Kg;hðW;W 0Þ solves the ob-
stacle problem in Kg;hðW;W 0Þ. Let x0 a qW and suppose that

max ess sup
Brðx0Þ

g; ess sup
Brðx0ÞBW

h

( )
< l and ess inf

Brðx0Þ
g > �l

for r a ð0; r0Þ with r0 :¼ distðx0; qW 0Þ. Then u is essentially bounded close to x0.

The regularity of the solution to the obstacle problem inherits the regularity
of the obstacle, both in the case of continuity and Hölder continuity, up to the
boundary.

Theorem 4.2 ([14, Theorem 6]). Suppose that u solves the obstacle problem in
Kg;hðW;W 0Þ and assume x0 a qW and B2Rðx0ÞHW 0. If g a Kg;hðW;W 0Þ is Hölder
continuous in BRðx0Þ and W satisfies (4.1) for all raR, then u is Hölder continuous
in BRðx0Þ as well.

Theorem 4.3 ([14, Theorem 7]). Suppose that u solves the obstacle problem in
Kg;hðW;W 0Þ and assume x0 a qW and B2Rðx0ÞHW 0. If g a Kg;hðW;W 0Þ is continu-
ous in BRðx0Þ and W satisfies (4.1) for all raR, then u is continuous in BRðx0Þ as
well.

Remark 4.4. We notice that one has to assume that the datum g belongs to
Kg;hðW;W 0Þ, since otherwise the solution may be discontinuous on every bound-
ary point, as one can see by taking W ¼ B1ð0Þ, W 0 ¼ B2ð0Þ, and ðs; pÞ such that
sp < 1. It plainly follows that the characteristic function wW solves the obstacle
problem in Kg;hðW;W 0Þ with constant functions gC 0 and hC 1. Indeed,
wW a Ws;pðW 0Þ, and one can check that it is a weak supersolution. As a con-
sequence, by recalling Proposition 2.4, the function wW is the solution to the
obstacle problem in Kg;hðW;W 0Þ. See [14, Example 1].

Finally, a few observations are in order. Boundary regularity for nonlocal
equations driven by singular, possibly degenerate, operators as in (2.1) seems
to be a di‰cult problem in a general nonlinear framework under natural assump-
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tions on the involved quantities (see [19]). The situation simplifies considerably
in the linear case when p ¼ 2; see for instance the forthcoming survey [28] and
the references therein. Coming back to the nonlinear case, to our knowledge,
the solely nonlocal result of global Hölder regularity has been obtained very
recently in the interesting paper [20], where the authors deal with the non-
homogeneous equation, in the special case when the operator L in (2.1) does
coincide with the nonlinear fractional Laplacian ð�DÞsp, by considering exclu-
sively zero Dirichlet boundary data, and by strongly assuming C1;1-regularity
up to the boundary for the domain W. The proofs there are indeed strongly based
on the construction of suitable barriers near qW, by relying on the fact that the
function x 7! xs

þ is an explicit solution in the half-space. For this, one cannot ex-
pect to plainly extend such a strategy in the general framework considered here,
in view of the presence of merely measurable coe‰cients in (2.1). In [14], nonzero
boundary Dirichlet data can be chosen, and the domain W has to satisfy only the
natural measure density condition given in (4.1). Consequently, a new proof is
needed which extend up to the boundary part of the results in [7, 8] together
with a careful handling of the tail-type contributions.

5. Some idea from the proofs

As one can expect, the main di‰culty into the treatment of the operators L in
(2.1) lies in their very definition, which combines the typical issues given by its
nonlocal feature together with the ones given by its nonlinear growth behavior;
also, further e¤orts are needed due to the presence of merely measurable coe‰-
cients in the kernel K. For this, some very important tools recently introduced
in the nonlocal theory, as the by-now classic s-harmonic extension, the strong
three-term commutators estimates to deduce the regularity of weak fractional
harmonic maps ([5]), the pseudo-di¤erential commutator and energy estimates
in [23–25], and many other successful tricks seem not to be trivially adaptable
to the nonlinear framework considered here. Increased di‰culties are due to the
non-Hilbertian structure of the involved fractional Sobolev spaces Ws;p when
pA 2. In spite of that, some related regularity results have been very recently
achieved in this context, in [7, 8, 13, 14, 16–18, 20] and many others, where often
a fundamental role to understand the nonlocality of the nonlinear operators L
has been played by the nonlocal tail defined by (2.2) in order to obtain fine quan-
titative controls of the long-range interactions.

Sketch of the proof of Theorem 3.1. In order to prove the boundedness
result, one can test the equation with a suitable class of functions, by noticing
that for any mbM the function um ¼ u�m solves the corresponding obstacle
problem. Thus, after some careful estimates on the local and the nonlocal con-
tributions in the energy formulation, one can arrive to prove a Caccioppoli-
type inequality with tail. For similar approach in order to achieve fractional
Caccioppoli-type inequalities, though not taking into account the tail, see also
[11, 21, 22]. At this level, by following the strategy in the proof of [7, Theorem
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1.1], it yields a local boundedness for the truncated functions um. Finally, via a
covering argument which goes back to the one in the proof of [8, Theorem 1.1],
together with a standard iteration argument, one arrives at the desired result. r

Sketch of the proof of Theorem 3.2. The first step is to prove that for any
point x0 in the contact set, and for any r a ð0;RÞ, one can find s a ð0; 1Þ and c,
both depending only on n, p, s, L, such that

osc
Bsrðx0Þ

uþ Tailðu� hðx0Þ; x0; srÞð5:1Þ

a
1

2

�
osc
Brðx0Þ

uþ Tailðu� hðx0Þ; x0; rÞ
�
þ cohðrÞ:

In order to do this, we combine the weak Harnack estimates in [8, Theorem 1.2]
with the boundedness estimate in Theorem 3.1 (applied with m ¼ d þ 2ohðrÞb
supB2rðx0Þ h there). Then we choose the parameter d in (3.1) interpolating between
the local and nonlocal terms in a suitable way. This gives (5.1). The subsequent
step relies into an iterative argument in order to conclude the analysis on the
contact set. Finally, we analyze the continuity outside the contact set. For this,
it su‰ces to apply Corollary 2.3 which assures that u is a weak solution in
Br0ðx0Þ, so that one can use the results in [7] by noticing that the proofs there
are valid also by assuming that u merely belongs to W

s;p
loc ðWÞBLp�1

sp ðRnÞ instead
than Ws;pðRnÞ. r

Sketch of the proof of Theorem 4.1. Assume that x0 a qW. Let
wþ :¼ ðu� kþÞþ and w� :¼ ðk� � uÞþ, where kþ bmaxfess supBrðx0Þ g;
ess supBrðx0ÞBW hg and k� a ess infBrðx0Þ g. We obtain the Caccioppoli-type esti-
mate with tail below, whose proof is a verbatim repetition of the proof of
[7, Theorem 1.4] after noticing that v ¼ uHwej

p, j a Cl
0 ðBrðx0ÞÞ, 0a ja 1,

belongs to Kg;hðW;W 0Þ for all indicated ke. If followsZ
Brðx0Þ

Z
Brðx0Þ

jweðxÞjðxÞ � weðyÞjðyÞjpKðx; yÞ dx dy

a c

Z
Brðx0Þ

Z
Brðx0Þ

w
p
eðxÞjjðxÞ � jðyÞjpKðx; yÞ dx dy

þ c

Z
Brðx0Þ

weðxÞjpðxÞ dx
�

sup
y A supp j

Z
RnnBrðx0Þ

w
p�1
e ðxÞKðx; yÞ dx

�
:

Then, one can deduce that u is essentially bounded in Br=2ðx0Þ by extending the
proof of Theorem 1.1 in [7] and using the estimate above with we. r

Sketch of the proof of Theorem 4.2. We may assume x0 ¼ 0 and
gð0Þ ¼ 0. Moreover, we may choose R0 such that oscB0

ga oscB0
u for

B0CBR0
ð0Þ since otherwise we have nothing to prove, and we define o0 :¼

8ðoscB0
uþ Tailðu; 0;R0ÞÞ. The proof of the Hölder continuity up to the boundary

relies on a logarithmic estimate with tail ([14, Lemma 5]), obtained by suitably
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choosing test functions and by carefully estimating the local and nonlocal energy
contributions separately in the super and subquadratic cases. Such a logarithmic
lemma can be subsequently extended to truncations of the solution to the obstacle
problem, as follows: let BR TW 0, let Br HBR=2 be concentric balls and let

l > kþbmax ess sup
BR

g; ess sup
BRBW

h

( )
and �l < k� a ess inf

BR

g;

then the functions we :¼ ess supBR
ðu� keÞe� ðu� keÞeþ e satisfy the follow-

ing estimate Z
Br

Z
Br

log
weðxÞ
weðyÞ

����
����
p

Kðx; yÞ dx dyð5:2Þ

a crn�sp
�
1þ e1�p

� r

R

�sp
TailððweÞ�; x0;RÞ

p�1
�

for every e > 0. Then, we combine the estimate in the display above with a frac-
tional Poincaré-type inequality ([14, Lemma 7]) together with some estimates for
the tail term thanks to an application of the Chebyshev inequality and in view of
the result in Theorem 4.1. We arrive to prove the existence of t0, s and y depend-
ing only on n, p, s and dW, such that if

osc
Brð0Þ

uþ s Tailðu; 0; rÞao and osc
Brð0Þ

ga
o

8

hold for a ball Brð0Þ and for o > 0, then

osc
Btrð0Þ

uþ s Tailðu; 0; trÞa ð1� yÞo

holds for every t a ð0; t0�. Finally, as we can take ta t0 such that

osc
t jB0

ga ð1� yÞ j o0

8
for every j ¼ 0; 1; . . . ;

an iterative argument will give that u belongs to C0;aðB0Þ. r

6. Further developments

We conclude this paper by briefly commenting about some open problems that
arise in this framework.

A first natural open problem concerns the optimal regularity for the solutions
to the nonlinear nonlocal obstacle problem. We recall that for the classical obsta-
cle problem, when L coincides with the Laplacian operator, the solutions are
known to be in C1;1. The intuition behind this regularity result is that in the
contact set one has �Du ¼ �Dh, while where u > h one has �Du ¼ 0; since the
Laplacian jumps from �Dh to 0 across the free boundary, the second derivatives
of u must have a discontinuity . . . and thus C1;1 is the maximum regularity class
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that can be expected. Surprisingly, when LC ð�DÞs, despite the previous local
argument does suggest that the solutions u belong to C2s, the optimal regularity
is C1; s; that is, the regularity exponent is higher than the order of the equation. In
the nonlinear nonlocal framework presented here, starting from the Hölder regu-
larity proven in [14], one still expects higher regularity results. Notwithstanding,
in view of the interplay between the local and nonlocal contributions, and with-
out having the possibility to rely on all the linear tools mentioned at the begin-
ning of Section 5, it is not completely clear what the optimal exponent could be
as the nonlinear growth does take its part. For preliminary results in this direc-
tion, it is worth mentioning the very recent paper [4], where optimal regularity
results of the solution to the obstacle problem, and of the free boundary near reg-
ular points, have been achieved for integro-di¤erential operators as in (2.1) in the
linear case when p ¼ 2.

Another interesting open problem concerns the regularity in a generic point of
the free boundary, which is known to be analytic in the case of the Laplacian,
except on a well-defined set of singular points, and smooth in the case of the frac-
tional Laplacian.

Finally, a natural goal is the investigation of the related parabolic version of
the nonlinear nonlocal obstacle problem, as it is inspired in the so-called optimal
stopping problem with deadline, by corresponding to the American option pric-
ing problem with expiration at some given time. An extension in the setting pre-
sented here could be quite important as it would essentially describe a situation
which also takes into account the interactions coming from far together with a
natural inhomogeneity. Accordingly with the optimal stopping problem model,
a starting point in such an investigation could be the special case when the ob-
stacle h coincides with the boundary value g.
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