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ABSTRACT. — In the framework of variable exponent Lebesgue and Morrey spaces we prove some
boundedness results for operators with rough kernels, such as the maximal operator, fractional
maximal operator, sharp maximal operators and fractional operators. The approach is based on
some pointwise estimates.
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1. INTRODUCTION

The main operators of harmonic analysis, maximal, singular and of potential
type, with the so called rough kernel have been widely studied, see e.g. [5, 6, 7,
8,9, 12, 16, 17, 23, 24, 25, 26, 29, 34, 39] and references therein. The study of
operators with rough kernels was based on the usage of the rotation method,
which goes back to [15].

The theory of variable exponent spaces has received a thrust in recent years,
due mainly to some applications, for example in the modeling of electro-
rheological fluids [4, 3, 37] as well as thermo-rheological fluids [11], in the study
of image processing [1, 2, 13, 14, 18, 19, 41] and in differential equations with
non-standard growth [28, 33]. For details on variable Lebesgue spaces one can
refer to [21, 22, 31, 32] and the references therein.

We want to study the boundedness of some rough operators in the framework
of variable exponent Lebesgue and Morrey spaces. Since the classical proof is
based upon the rotation method which is not well suited for the case of variable
exponents we obtained some pointwise estimates in Section 3 to circumvent this
problem.

Operator with rough kernel have already been considered in the variable
exponent setting in [20], where their study was based on the extrapolation theory.
Our approach is based upon some pointwise estimates and do not use extrap-
olation theorems and allows, in particular, to consider potential operators and
fractional maximal functions of variable order o(x).

The paper is arranged as follows: In Section 2 we give necessary preliminaries
on variable exponent Lebesgue and Morrey spaces. In Section 3 we provide
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pointwise estimates for maximal and potential operators with rough kernels.
Sections 4 and 5 contain the main results on the boundedness of such operators.

2. VARIABLE EXPONENT SPACES
2.1. Variable Lebesgue spaces
We refer to the books [21, 22], but recall some basics we need on wvariable

exponent Lebesgue spaces. Let U = R" be an open set and p(-) be a real-valued
measurable function on U with values in [1, o). We suppose that

(1) l<p <p(x)<ps <o,
where p_ :=essinfcy p(x), ps :=esssup, .y p(x). As usual, by p'(x) = p(x)/
(p(x) — 1) we indicate the conjugate exponent of p(x) and we have the relations

(p'), = (p-) and (p’)_ = (p+)". By L?V)(U) we denote the space of real-valued
measurable functions f on U such that

bo(f) = [ 10 dx < e

Equipped with the norm
_ . f
”f”p(.) = lnf{ﬂ >0: Ip(.)(;) <1 ,

this is a Banach function space. The variable Lebesgue exponent norm has the
following property

(2) 1 ey = 1 g

for 2 > p—{. In the subsequent sections, we will also need the relation between the
modular 7,)(f) and the norm.

LEMMA 2.1. For every f € LPY)(U), the inequalities

(3) Hf”]]j;t)(U) = Ip(-)(f) = ||f||£;(-)<[])7 if ||f||Lp(-)(U) <1,
4) ||f||£;<~>(U) <L (f) < ||f||{;(><U)a i 1oy 2 1,
are valid.

In the sequel we use the well known log-condition

(5) P — p(y)| < ——2

S —y| <
——mu—ﬂ’|x y=

) 'x’yEU?

N —
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where 4 = A(p) > 0 does not depend on x, y. In the case U is unbounded, we
also use the decay condition: there exists a number p., € (1, 00), such that

A

(6) Ip(x) = peo| < (e + X))’

In the sequel we use the following notation. For an open set U < R", by
P°2(U) we denote the set of exponents p(x) with 1 < p_ < p, < oo, satisfying
the log and decay conditions (the latter required if U is unbounded).

By B(U) we denote the set of exponents p with 1 < p_ < p, < oo such that
the maximal operator is bounded in the space L?1)(U).

The following fact is known, see [38] or [31, Theorem 2.62].

LEMMA 2.2. Let U be a bounded open set in R" and p € P'°%(U). In the case
SUp,.. y (X)) p(x) < n, then

n

< P97,
r'()

where the constant C does not depend on x.

XU\B(x,r)

(7) '|nfoc(x)

[x =

2.2. Variable exponent Morrey spaces

For more about Morrey spaces see [27, 35, 36]. Let 4 be a measurable function on
U with values in [0,7]. We define the variable Morrey space L?():*()(U) as the
set of all real-valued measurable functions on U such that

xeU,r>0

Ly (f) == sup 7~ /U ( )If(y)l”(” dy < oo,

where U(x,r) = U n B(x,r). The norm in the space L?*)*)(U) can be intro-
duced in two forms, namely

1/ = inf{n >0: Ip(~),}.(~)(§) < 1}

and

i
(8) 1/l :="sup |Ir Of xueenllpe)s

xeU,r>0
which are equal, see [10]. We take

1 200y = 1A o A | roarwy = IF 1l

whichever is more convenient. We also have the following important property
(see [10, 30]).
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LEMMA 2.3. For every f € L' (U), the inequalities

) A1 50.00) < Doer20 ) < W 00wy I 1 Toow) <1,
(10) 10170 )= Ip(-)7/1(~)<f) < Hf||Lp<v>./1<~>(U)a i 11 oorior ) = 1,
are valid.

Similarly to property (2), from (8) we have

— o
(11) 1N ooy = sup [lrr fxyeenllzao o
xeU,r>0
(12) = HfHfop(-)-/l(v)(U)

whenever ¢ > 1/p_.
The following theorem is known, see [10].

THEOREM 2.4. Let U be an open bounded set in R", 1 < p_ < p(x) < p; < 0,
0 < i(x) <Ay <nandpePP(U). Then the maximal operator

Mf) =swp— [ f()ldy

>0 1" U(x,r)

is bounded in the space L*")*0)(U).

3. POINTWISE ESTIMATES OF MAXIMAL AND FRACTIONAL ROUGH OPERATORS

To deal with the boundedness problem of rough operators, we will use some
pointwise estimates related to the maximal rough operator, the fractional maxi-
mal rough operator and the fractional rough operator.

3.1. The case of the maximal operator

Let us consider the maximal operator with rough kernel

(13) Mof(x) =sup~ [ 1Q()/(x— y)|dy,

>0 " J)y<r

in the case Q = 1, we simply write Mq f = Mf. It is known that the operator Mq
is bounded in L?(R"), 1 < p < oo, if Q e L'(S"™') and Q is a homogeneous
function of degree 0, i.e.

(14) Q(ix) = Q(x)

for all A > 0 and x € R", see e.g. [40, p. 72].
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LemMA 3.1. Let f e L{, (R"), Q satisfy (14) and Q e L*(S"™") with s > 1. Then

Q| o g
(15) Mof(x) < M(M(Ifl‘ )(x))7.

1
PrOOF. We have

l _ :l ' n—1 .
el = [T e [ 106001 go)ldo

9o 1 .o
e e T RTICEPl Y
[yl<r

where we used (14), the Holder inequality on S"~! and on the interval (0, r). The
inequality (15) now follows. O

3.2. The case of fractional maximal operator

The fractional maximal operator Mg , is defined as

Q)| £ (x = y)|dy.

r>0 " |yl<r

LEMMA 3.2. Let f e LP(U), 0<a<n, 1 < p_ <p, < oo and q be defined
pointwise by 1/q(x) = 1/p(x) — a/n. Then we have the following pointwise estimate

(17) MQ.ocf(x)
(18) < (Mg (O] ([ 1709170 a9)

PROOF. Since 22 4+ #U)

q(») n

=1, we have

rﬂ*ﬂ(

S e P o a
|x—yl<r
1 n 1—a/n u/n
<(/ _y|<r|sz<x— WS ) o 01

< [M gy (1 OIT)(0] , (1]
which shows (18). O
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3.3. The case of sharp maximal operator

The sharp maximal operator, also known as the Fefferman—Stein operator, is a
very well-known operator in harmonic analysis. We now introduce the rough
sharp maximal operator as

MES(x) = f2) =sup~ [ 190 1F(x = ) — faen| dy

r>0 1" |y|<r

where f3 is the integral average, namely
foim g [ S0)&
L |
LEMMA 3.3. Let Q satisfy (14) and Q € L' (S"™"). Then

1
(19) 0] < Mo f(3) + MFC) Qe

PrROOF. We have

1
- QI f (x = ¥) = foex.n| dy
| yl<r
1 1
<~ [ em)lifx-y)dy+— / Q)| S| dy
= Jy<r ™ Jy<r
=1+1I.

It is immediate that
(20) I < Mqf(x).

We now estimate I7:

1
@) n=w) [ el
y|<r
—wrw - [ e [ o)

1
= ;Mf(x)HQHLl@"*‘)

where the first inequality follows from the fact that fp ,) < Mf(x). Taking into
account (20) and (21) we obtain the desired inequality (19). O
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3.4. The case of fractional operator

In a similar fashion to the maximal operator with rough kernel (13) we can define
the fractional operator with rough kernel

(22) 10 = [ QD) gy

ey

LEMMA 34. Let feL{ (R"), 1 <s< oo, Q satisfy (14), Qe L°(S"") and
a(x) > 0 almost everywhere. Then

23) I (f i) (6)] < o TS ) ()7,

1
B

cx(x
at all points x € R" such that «(x) > 0.

PrROOF. We have

/ Ln_ﬁzv)f(y)dy
Blxr) [x — y["

= [ et ae [ aonf-eo)do

r o(x)—1 _ s 3
<10, [ & a0 [ 1= 00)l” do)
0 Sn—l
Q s n—1 a(x l/
SMV¥ / V-1 dg / f(x — 00)| do—)
o(x)*

Qs T 6) ,
- 1 re n—ao(x) dy
a(x)? B(x,r) [x =y

2(x) 1
= CIQlusr 1y O US 1 1)

where we used (14), the Holder inequality on S"! and on the interval (0, 7). The
inequality (23) now follows. O

COROLLARY 3.5. Let Qe L5(S""), l<s< o, inficpalx)>0 and
f e L (R"). Then

(24) G (28050 ()] < QY gr O (M f ) (x))7
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PROOF. The proof follows from the estimate (23) and the well-known pointwise
estimate

Ia<x> (fXB(xA, i)) =< Cra(X)Mf(x)
see, e.g. [31, Theorem 2.55] for the case of variable o. O

LEMMA 3.6. Let Qe L*(S" '), 1 <s< o0, ae L*(U). Then

ECREp, ’
ssmhr (1 (|f| XR \er)))

(25) U (S 2mm s (x)] <

where [ is an arbitrary function chosen so as

) inp [ = 225 o

and C = C(a, s, ).

PROOF. We have

/l Mf(y) dy

x—y|>r |X — y|n ()

- / RPECRPY / Qo) (x — g0) do
r gn-l

L -l pw
<19y [ &5 o0 [ 1= o)) da)’,
r Sk

where f# > 0 will be chosen later. Hence

/ Q(xi__w)f(y) dy

x—y|>r |X — yln #lx

o(x)

under the choice (x) > 5. Consequently,

[

n—a(x
vyl X =y

9 g0 /1" () ,
s(s"1 s </x—y>r |x_ y|nfcx(X)*/3(X) dy) ’

which completes the proof. |
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LEMMA 3.7. Let U be a bounded open set, p € P'°(U),

(27) sup p(x)a(x) <n,

inf,epoa(x) >0,Qe L(S"™), fe LP"O(U)and 1 < s < oo. Then

(28) S (20 (3)] < CIQI gty ™ T F TS oo -

PRrROOF. By (25) we have

(29) G (S s ) ()]

w0 /17 (»)
< €l sy ( / )
™ O P

e Ef) and get

We apply the Holder inequality with the variable exponent

S (f o) (X))

(=)

*(x) _ px)

2 _ ) e XU\B(x,r)
< ClQ o1y AT =
A'/

Ix — ,|n—“(X)—ﬁ(X)

By the property (2) and the estimate (7), we then obtain

()0 ( 70 5.) ()] < ClQN oo™ 5T £l
(")

with (7) applicable provided that

(30) jlelg[P(X)Of(X) + p()B(x)] < ns'.

Since we also have a restriction

(31) inf [f(x) — a(x)/(s = 1)] > 0,

xeU

317

it is not hard to see that the choice of f(x) satisfying both (30) and (31) is possible

by the assumption (27).

d

LEMMA 3.8. Let U be a bounded open set, Qe L*(S""), 1<s< o0,

inf,cpo(x) >0, p e P(U) and sup, . y[A(x) + a(x)p(x)] < n. Then

n—i(x)

(32) ) (S 1m0 ()] < ClQI o1y 70

when Ip(.)";,(.)(f) <L
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PRrROOF. From (25) we have

[ om0y,
|x—y|>r |X — y|

) pe) s &
(s _“_'</ ‘f',,,%fm dy)
|x—y|>r |X — yl :

J

when inf[f(x) — %] > 0. We now estimate J. By a dyadic decomposition and
using the log-condition on the exponent p we obtain

E i ! ! o(x X)—n s’
(33) J=< Z / @) TSI () = OO dy
=1 /2

Ir<|x—y|<2/t1r

X LAy /
<Y NSOl
=1

Ls" (B(x,27%1r))

[ 1x — -|°‘<X>+ﬂ<x>fn+/‘-;v>x’

r0)

L s’) (U\B(x,27r))

REE .
The term [|(2/r) 7T [f1" ()] »0 can be estimated by the modular,
namely L's” (B(x,27%17))

) A(x)s! ’ .
L@ U ) = €@ [ ay
! B(

s x,27%1r)

< ClLy ) (f) < C

uniformly, by the hypothesis /,

b().()(f) < 1. Regarding the other term in (33) we
obtain
[ — O3 < (27p) O

L([:.(/)) (U\B()QZ/I‘))

when (o(x) + B(x) + AI())(Z)S/) pi}x)
Gathering all the above estimates, we obtain

/ Q(x—y)f( )
|

(x)
x—y|>r |X — y|

A © .)M/‘K L
Snl (x (E 2/ X)+h(x () )/

j=1

whenever (a(x) + f(x )+’<‘>S )2 2x)

)< which also implies the convergence of
the series. Since infycy |f(x) — —xl)] > 0 and sup, .y [A(x) + a(x)p(x)] < n there
exists B(x) that satisfies (a(x) + f ”,(,)(Cij/) i,) <n. o
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4. THEOREMS FOR THE VARIABLE EXPONENT LEBESGUE SPACES

A classical result regarding rough maximal operator states that if Q satisfies (14)
and Q e L'(S"™") that M, is of type (p, p) for 1 < p < oo. The classical proof is
based upon the rotation method which is not well suited for the case of variable
exponents.

We use the pointwise estimates obtained in Section 3 to obtain boundedness
results regarding rough operators in the framework of variable exponent spaces.

THEOREM 4.1. Let Q satisfy (14), Q € L5(S" ), s > (p")., 5 € B(U). Then the
operator Mg is bounded in the space L*)(U).

PRrOOF. By (15) we have

1Mo fllow) < CIM(F))7

LrO(U)-
By the property (2) we then get
1
1Mo f |l Loow) < CIMALIOI,,
L“ (U)
1
< ClIfT° ||
(U)
= C||f||u<->(u)
where the second inequality comes from the fact that £ e B(U). O

We can now show the boundedness of the fractional maximal rough operator,
namely we have the following:

THEOREM 4.2. Let Q satisfy (14), Qe Li(S" "), > [((1-2) )/L and
(-a/m)g o B(U). Then the operator Mg , is (L") (U) — Lq )(U))-bounded.

S

PROOF. Let [ € LPV)(U) such that Z,(,(f) = 1. Then

()

2 n
1MVl oy < Mg (1 O]

() n 1
= (| M, 1< SO ooy
1—a/n
S NV laa P
=1/0) WHuw(u)
<1

where the first inequality comes from the pointwise inequality (18), the second
one from the Theorem 4.1 and the last one from the fact that (| f |f/ ) =



320 H. RAFEIRO AND S. SAMKO

L,y(f) = 1 and the definition of variable exponent Lebesgue norm. The general
case follows from the homogeneity of the fractional maximal rough operators.
O

THEOREM 4.3. Let Q satisfy (14), Q € L*(S"1), s > (p’ )i & € B(U). Then the
operator MZ is bounded in the space LP")(U).

PRrOOF. The proof follows from the pointwise estimate (19)

Q1o
IMES)] < Maf(x) + Mf(x)'”L%

)

the fact that M is bounded whenever p € B(U) (this is valid under the assump-
tion £ € P(U), see [21, Theorem 4.37 or Theorem 3.38]) and Theorem 4.1. 0O

We now want to show the validity of a Sobolev type theorem for the rough
fractional integral operator 1;;(*‘), namely.

THEOREM 4.4. Let U be a bounded open set, Qe L*(S"™"), 1 <5< oo,
inf ey a(x) > 0,sup,.pa(x)p(x) <n,s>(p'), and p e P°8(U). Then the rough

fractional operator Ié(x) is (LPO(U) — L1Y)(U))-bounded, where ﬁ = ﬁ - @

ProoOF. For arbitrary fixed r > 0, from Corollary 3.5 and Lemma 3.7 we have
the following pointwise inequality

o(x L o(x)——2~

() ()] < ClUQ gty (PO ST 25000) ()T + T £ 0).
Taking

_( 171 )”i"‘)
(M)
we obtain
/ 1o X)) p(x) #(x) p(x)

(34) G (] < ClRN L (M TS L

To show the boundedness of IS(X) in the variable exponent Lebesgue space, from
(4), it is enough to show that

for all functions /" in the unit sphere, i.e. || f]|;,0 () =1, and the general result
follows from homogeneity. From the pointwise mequahty (34) it is enough to
show the boundedness of

(x)

(33) Ly (11505 = L (1)),
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To bound the right-hand side in (35) it is enough, from (4), to bound the norm,
i.e. to bound

I N o

From (2) and the fact that s > (p’), implies that p/s" > 1, we get

s\ /s’ K 1 s
ML N ooy = M1

L5 ’(U)
l/s
I ’(U)

= I/ o0

which is bounded since || /|| ;s0 ) = 1. 0

COROLLARY 4.5. Let U be a bounded open set, Q € L“(S”fl), 1 <s< o0,
infyepa(x) >0, sup,.pa(x)p(x) <n, s> (p'), and pe P“8(U). Then the
rough fractional operator Mg ) is (LPV)(U) — L4Y(U))-bounded, where ﬁ =

L2 g

p(x)

1
Maof () =swp s | R/ 4
yi<r

>0 P
ProOOF. Use Theorem 4.4 and the inequality

MQ,oc(x)f < Cnlé(X)fa

which follows from the definitions of the operators. O

5. BOUNDEDNESS RESULTS IN VARIABLE EXPONENT MORREY SPACES

We can now state the boundedness results for rough operators in the framework
of variable exponent Morrey spaces.

THEOREM 5.1. Let U be an open bounded set in R", 0 < A(x) <Ay <n,
s> (p)., QeL’(S" "), 1<s< o, peP(U). Then the rough maximal
operator Mg is bounded in the space L*")*0)(U).
PRrOOF. By (15) we have

1Mol ooy < CUMIP NN Lo -

By the property (12) we then get
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Mo Ny < CIMUT Iy
l/
50 w)
= C||f||Lp<»>.»:<~>(U>
where we used Theorem 2.4 in the second inequality. O

sn

THEOREM 5.2. Let U be a bounded open set, Q satisfy (14), Q e Li*3(S" 1),
s> [((1-2)q) /] . and % € [P’log(U ). Then the rough fractional maximal
operator Mg , is (LP")*0)(U) — L1020 (U))-bounded.

PROOF. Analyzing the proof of inequality (18) we obtain a similar result for the
case of variable exponent Morrey spaces, namely

Mo of (3) < CIM g (L OFF50)] L 00 (D),

where now C depends on the diameter of U. The rest of the proof now follows
closely the same lines as the proof of Theorem 4.2. O

THEOREM 5.3. Let Q satisfy (14), Q € L5(S" 1), s > (p').pe Pg(U). Then
the operator M} is bounded in the space LPV)*1)(U).

PROOF. As in the case of Theorem 4.3, the proof follows from the pointwise
inequality (19). O

THEOREM 5.4. Let U be a bounded open set, Qe L(S"™), 1<s< o0,
inf,cpa(x) >0, sup, . y[A(x) +a(x)p(x)] <n, s> (p'), and p e Plog(U). Then
the rough fractlonal operator I s (Lp(')*}'(')(U)—>L’1 O(U))-bounded,
where -~ = 1 ()

q(x) = p(x)  n=i(x)

PRrROOEF. Gathering (24) and (32), we obtain the pointwise estimate

3 o(x 4 L/ xin—/‘h(,\-)
159 ()] < ClR| gty (PO (MF )T+ 7750,

Taking
= (M1
we arrive at
(36) IO ()()] < ClUR g [(MIF17 ).
By (36) we obtain
Loy 2o TS () < Doy iy (MIFI)),

and now the proof follows the same lines as in Theorem 4.4. |
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