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Abstract. — We develop a mathematical model for cross filtration in a hollow fibers dialyzer,

taking into account not only the phenomena occurring within the machine, but also the redistribu-
tion of chemicals between intra- and extracellular compartments in the patient’s body. The scheme

for the cross flow is derived with reference to a single fiber, starting from the basic laws of fluid
dynamics and exploiting the smallness of the ratio between the fiber radius and the fiber length to

obtain significant simplifications. We end up with a system of integral and partial di¤erential equa-
tions in which the input data are in principle unknown. Indeed, the blood composition is consider-

ably altered while going through the fiber and the body reacts redistributing urea, sodium ions, etc.
between intra- and extracellular compartments with its own dynamics, thus updating the various

concentrations at the dialyzer inlet. Such a coupling is an essential feature of the model. We present
numerical simulations, showing a reasonable agreement with the data for a specific patient taken

from the literature.
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1. Introduction

Hollow-fiber dialyzers perform blood purification very e‰ciently and are widely
used in the medical practice. They consist of a bundle of porous fibers with a
channel through which blood is forced by a driving pressure gradient. The diam-
eter of pores is in the range of a few tens of nanometers, the one needed for cross-
filtration processes, allowing the passage of water and light solutes, but not of
large molecules such as albumin (MW 66:5 kDa) and red blood cells. Thus the
fibers behave to plasma as semipermeable membranes and such a property is
associated with the onset of osmosis, a phenomenon in continuous evolution
due to the progressive water migration through the membranes. In the comple-
mentary space of the device a fluid (dialyzate) flows, carrying away the filtrate.
The dialyzate is given an appropriate composition so to match the physiological
concentrations of electrolytes and solutes, thus preventing their loss during the
process. The literature on hemodialysis by ultrafiltration is very large (we refer
the reader to [40], [44] and the literature therein) and includes several papers
on mathematical modeling. Models are generally of compartmental type (see
e.g. [57]), based on ordinary di¤erential equations, with some notable exception.



In particular [2], considers flows through a hollow fiber with a spatial structure, in
the same spirit of the present work.

Here we want to formulate a new mathematical model for the three flows
in the dialyzer (blood flow, dialyzate flow, cross flow), based on the method of
upscaling, which exploits the smallness of the ratio e between the radius of the
fibers and its length (order 10�4). The fundamental advantage of this method
(upscaling) is the fact that it stems from the basic laws of fluid dynamics and,
expanding of all the quantities involved in powers of e and matching terms with
equal powers in the governing equations, leads to approximating equations at the
desired order in e. Actually, the approximation to the order e0 is all we need.
It will be derived in Section 4, after having introduced the basic equations
(Sect. 2) and their appropriate dimensionless version (Sect. 3), based on a double
scaling of spatial and kinetic coordinates (in the longitudinal and in the radial
directions).

A basic feature emphasized by the model above is the fact that the inlet values
of the main quantities (hematocrit, proteins concentration, electrolytes concentra-
tions) are not known. Indeed the composition of the blood which is returned to
the patient has undergone a dramatic change in the device. It is of fundamental
importance to determine the hematological parameters of the blood returning
to the machine, which are the result of a dynamics taking place in the patient’s
body, tending to redistribute water, urea, sodium, etc. among various com-
partments (cells, interstices, blood). Therefore the mathematical model for the
dialyzer has to be complemented by another model expressing the kinetics of
compartmental redistribution of the relevant quantities. Such a task is carried
out in Sect. 5, along with a discussion of the delicate issue of selecting the initial
conditions. Our approach tries to avoid as much as possible heuristic approxima-
tions and to preserve the physical complexity of the process, though making use
of all the powerful simplifications engendered by the upscaling method. In this it
di¤ers substantially from other similar papers like [2], [57], [3] and others.

In Sect. 6 we introduce a simplification by choosing a rheological model of
blood in which we ignore shear thinning, but just allow viscosity to depend on
hematocrit and on proteins concentration. Eventually, we perform some numeri-
cal simulation. A crucial step (irrespective of the blood rheological model) is to
realize that the dialyzer on one side and the body on the other have dynamic re-
sponses exhibiting very di¤erent time scales (10 seconds and 103 seconds, respec-
tively). The consequence is that the evolution of the inlet values in the dialyzer is
definitely slow in its own time scale, so that all quantities evolve in a quasi-
stationary way, leading to a very substantial simplification of the numerical pro-
cedure. The results show that the model is capable of e¤ectively describing a he-
modialysis session, though for simplicity phenomena like membrane fouling and
albumin deposition are neglected. We plan to incorporate them in a future paper.

2. Definitions and basic assumptions

A dialyzer module consists of an array of a large number of parallel hollow
fibers. By symmetry, except for small disturbances, all fibres are surrounded by
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a ‘‘virtual’’ no-flux boundary, confining the permeate flow, with the exception of
the peripheral fibres (a small fraction of the total number).

We assume that the set of no-flux boundaries has a bee-nest structure (Fig. 1).
We replace the original hexagonal cell by an equivalent circular cylinder whose
external radius1 D� is chosen as a function of the mutual distance between the
axes of adjacent fibres, B�. According to the criterion of preserving the cross
section, discussed in [5], we set2 ðD�=B�Þ2 ¼

ffiffiffi
3

p
=p (see again Fig. 1). Hence, we

consider the fiber bundle as an array of identical hollow cylinders surrounded by
a ‘‘virtual’’ cylindrical no-flux boundary.

We now focus on a single cell, Fig. 2, with the caveat that inlet and outlet
pressures applied to the bundle as a whole may not be uniformly distributed3
[29], [41], [42]. The idea of working with single axisymmetric element is alterna-
tive to the approach of averaging all relevant quantities over representative ele-
mentary volumes in the spirit of continuum mechanics (see [44] and the literature
quoted therein). We denote by R�, and H �, the internal and external radius of
the fiber, respectively. The fiber thickness is S � ¼ H � � R�, and the length is L�

(see Fig. 2).
Typically, introducing the aspect ratio

e ¼ R�

L� ;

we have ef 1.
Owing to the symmetry, we consider only a longitudinal and a radial coordi-

nate ðx�; r�Þ. The domain can be divided into three regions (see Fig. 3):

1Throughout this paper the superscript ‘‘�’’ denotes dimensional variables.
2 Indeed, the area of the set of the points which are not in the intersection of the hexagon and of

the circle is about 1% of the area of each of the two domains. We expect the perturbation on the
main quantities to be of the same order.

3Generally averaging pressure in the two flows in the transversal direction over the whole device
is correct. Rigorously speaking, the model refers to an ideal situation.

Figure 1. The bee nest no-flux interfaces and the equivalent geometry.
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• The inner channel, f0 < r� < R�; 0 < x� < L�g, where the blood flows.

• The porous membrane, fR� < r� < H �; 0 < x� < L�g.
• The shell, or the permeate flow region, fH � < r� < D�; 0 < x� < L�g, where
the permeate and the synthetic dialyzate flow.

In practical cases the fiber thickness S � is comparable to R�, that is4

S �

R� ¼ Oð1Þ:

Small toxic compounds such as urea or low molecular weight proteins can
permeate through the membrane but, on the other hand, cells and proteins

4By Oð1Þ we mean a quantity well separated from e and 1=e. A similar convention is adopted for
other orders.

Figure 3. A schematic of the geometry at the fiber level.

Figure 2. A single hollow fiber and the surrounding permeate flow region or shell.
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(e.g. the albumin molecular weight isP66:5 KDa) cannot permeate. Actually the
membrane inner interface is coated by a layer (whose thickness depends on the
longitudinal coordinate and varies in time) of proteins (see, e.g., [1]). Albumin,
accumulating on the membrane surface, causes membrane fouling and lumen
reduction as well. In a first instance we disregard such a phenomenon.

The shell thickness ðD� �H �Þ, is comparable with the inner channel radius,
namely

D� �H �

R� ¼ Oð1Þ:

In Table 1 we have reported the dialyzers typical characteristics.
The membrane, see Fig. 3, is modeled as a uniform and isotropic porous

medium and the flow here occurring is Darcian. We denote by K �, ½K �� ¼ cm2,
the membrane permeability, and assume K � uniform and constant5. The range of
K � is reported in Table 1. The flow through the membrane is driven by the pres-
sure di¤erence locally established between the channel and the shell (the so-called
transmembrane pressure, TMP). Actually, an oncotic pressure, opposing the out-
flow, is present between the inner channel and the shell, with a negative contribu-
tion to TMP. We shall return to such an important issue in the sequel.

Concerning blood, we model it as a two-components mixture6: (i) plasma,
index ‘‘pl ’’, the fluid component; and (ii) cells, mainly Red Blood Cells7, index

Quantity Typical Range Selected Value Units Source of Data

R� 10�2 10�2 cm [28], [15]

L� 20o 30 25 cm [28], [15]

S � 0:2o 0:5� 10�2 0:4� 10�2 cm [28], [15]

D� 2o 2:5� 10�2 2:3� 10�2 cm [28], [15]

D ��H �

R � 0:5o 1:3 0:9

e 10�4 o 10�3 4� 10�4

N 104 104 [49]

K � 10�14 o 10�12 10�12 cm2 [28], [15]

V �
b 7o 8� 10�2 7:9 � 10�2 lt [28], [15]

Table 1. Typical geometrical and physical values. In particular, for N, number of fibers
in the dialyzer, we refer to [49]. V �

b ¼ pNR�2L�, denotes the total blood volume con-
tained in the fibers boundle.

5Recall we are neglecting any membrane fouling phenomena.
6We refer the reader to [7], [38] for the continuum mechanics approach to mixtures.

7White blood cells, which can be of di¤erent species, are larger than RBC’s, but by far less
numerous. Platelets, much smaller than RBC’s, occupy a very small volume fraction.
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‘‘RBC ’’. The RBC’s volume fraction, usually referred to as hematocrit, is denoted
by f.

The plasma is a solution consisting of:

Solvent: liquid (serum).
Solutes: low molecular weight components (e.g. urea) and large molecular weight
protein (mainly serum-albumin). Hence, we introduce:

– ĉc�i , i ¼ 1; . . . ;N, ½ĉc�i � ¼ gr=dl, the concentration of the i th low molecular com-
pound in the plasma (mass per plasma unit volume). All of them can permeate
through the membrane.

– ĉc�p , ½ĉc�p � ¼ gr=dl, the concentration of in the plasma (total mass of per plasma
unit volume). They cannot permeate through the membrane.

– c�b , b ¼ p; 1; . . . ;N, the concentration of the b th solute in the whole blood
(mass of the b th solute per blood unit volume). We have

c�b ¼ ð1� fÞĉc�b ; b ¼ p; 1; . . . ;N:ð2:1Þ

The two mixture components (plasma and RBC’s) have essentially the same
density r�, constant (typically r�Q1 gr=cm3). Actually we neglect the influence
of the chemical composition on blood density. This allows to focus on the fluid
dynamic problem, which can be analyzed independently of the removal of chem-
icals from the fluid.

We denote by:

• ~vv�a , a ¼ pl, RBC, the velocity of the a th blood component within the channel.

• ~vv�, the velocity of blood as a whole (i.e. of the mixture). In particular, accord-
ing to [7], [38], we have

~vv� ¼ ð1� fÞ~vv�pl þ f~vv�RBC :ð2:2Þ

• ~qq�, the specific discharge within the membrane.

• ~ww�, the permeate velocity, i.e. the fluid velocity in the shell.

From the rheological point of view we consider blood to be a non-Newtonian
shear-thinning fluid (see [32] and also [33], [47]), whose Cauchy stress is

T� ¼ �p�
chIþ 2m�

blood 1þ 5

2
fgðII �D�Þ

� �
D�;ð2:3Þ

where:

• D� ¼ 1=2ð‘�~vv� þ ð‘�~vv�ÞTÞ, is the symmetric part of the velocity gradient. ‘�

denotes the gradient operator with respect to space coordinates x�, r�, and
ð�ÞT is the transposed matrix.

• p�
ch, is the pressure in the channel.

• II �D� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2 trð4D�2Þ

q
, with tr(�) denoting the trace operator, [33].
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• m�
blood is the blood viscosity, for which we choose the constitutive equation [34]

m�
blood ¼ m�

ref lðĉcpÞ;ð2:4Þ

with m�
ref , viscosity reference value (see Table 2),

lðĉcpÞ ¼ l1 þ l2ĉcp;ð2:5Þ

with l1, l2, reported in Table 2, and

ĉcp ¼
ĉc�p

ĉc�p; ref
;ð2:6Þ

where ĉc�p; ref is the reference value for the protein concentration within the

plasma (see Table 2).

• gðII �D� Þ is a given function. Here we consider a shear-thinning model obtained
combining the one analyzed in [6] with the one presented in [37], and well sum-
marized in [15], namely8

gðII �D� Þ ¼ 1

ð1þ b �II �D�Þn
;ð2:7Þ

where b�, and n, are parameters to be selected according to experimental data.
Many other models have been proposed (see, e.g., [35] or [52], [33], [11], [23],
[47] and [36]), but the choice of the rheology is not so critical in the present
context.

Concerning the dialyzate flow in the in shell, we model it as an incompressible
Newtonian fluid, whose Cauchy stress is

T� ¼ �p�
s Iþ 2m�

H2O
D�

w;

where D�
w ¼ 1=2ð‘�~ww� þ ð‘�~ww�ÞTÞ, p�

s denotes the pressure within the shell and
m�
H2O

, is the water viscosity (see Table 2). Due to the incompressibility constraint
we have

trðD�
wÞ ¼ 0:ð2:8Þ

The flows in the channel and in the shell are both driven by the following pre-
scribed pressures (see Table 2 for typical values):

– inlet (x� ¼ 0) channel pressure: p�
ch; in;

– outlet (x� ¼ L�) channel pressure: p�
ch;out;

– inlet (x� ¼ 0) shell pressure: p�
s; in;

– outlet (x� ¼ L�) shell pressure: p�
s;out.

8Formula (2.7) satisfies the invariance properties since it involves only frame invariant quantities.
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The fluid pressure in the membrane is denoted by p�
m. Next we set

P�
a ¼ p�

a � p�
ch;out; a ¼ ch;m; s;ð2:9Þ

so that the outlet channel (rescaled) pressure is 0. For the time being we consider
p�
ch; in, p

�
ch;out, p

�
s; in, and p�

s;out, constant in time, but minor changes allow to intro-
duce time dependence9. We note that, in practice, p�

ch;out is the patient’s blood
pressure in the receiving vessel. A schematic representation of the pressure levels
is shown in Fig. 4, and reported in Table 2 for the specific case of concordant
flows10.

We remark that in place of using heuristic formulas for the transmembrane
discharge, like the one known as Starling hypothesis [48], frequently adopted in
the context of blood filtration, our model incorporates the full analysis of the
cross flow.

The size of some of the proteins carried in the blood (mainly albumin) is in the
range to produce a non-negligible oncotic pressure11 P�. Hence, following [30],
sect. 2, vol. II, chapt. 29, p. 961–1034, we use the Landis-Pappenheimer law

P�ðĉc�p Þ ¼ A�
1 ĉc

�
p þ A�

2 ĉc
�2
p þ A�

3 ĉc
�3
p ; ½P�� ¼ mmHg;ð2:10Þ

with A�
i , i ¼ 1; 2; 3, reported in Table 3. Osmosis produces a pressure discontinu-

ity at the inner channel walls, so that p�
chjr�¼R� ¼ p�

mjr�¼R� �P�, as we shall illus-
trate in section 6. The fact that ĉc�p appears in (2.10) in place of c�p implies the
assumption that the membrane is everywhere in contact with plasma.

Figure 4. Pressure levels (not on scale).

9 In such a case we keep the symbols P�
ch; in, P

�
ch; out, P

�
s; in, and P�

s; out, to denote the respective order
of magnitude.

10The case of counterflow can be treated in a similar way.
11Oncotic pressure is osmotic pressure referred to colloids. Solutes whose molecules are small

enough to be e¤ectively transported across the membrane (i.e. the j ¼ 1; . . . ;N, solutes) do not con-
tribute to oncotic pressure, because of the particular composition of the dialysate.
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3. Scalings

We use a double scaling for the spatial variables x� and r� (see Fig. 2)

x ¼ x�

L� ; r ¼ r�

eL� :ð3:1Þ

We also introduce

D ¼ D�

R� ; S ¼ S �

R� ; H ¼ H �

R� ;

which are all Oð1Þ (see Table 1).
Next, we introduce v�ref , the characteristic longitudinal blood velocity and q�

ref ,

the characteristic specific cross discharge (typical values are reported in Table 4),
defined according to formulas (3.14), (3.15), below.

Quantity Typical Value Units Source of Data

m�
ref 1:22 cP [34]

m�
H2O

1 cP

m ¼ m�
ref =m

�
H2O

1:22

l1 0:82 [34]

l2 0:18 [34]

ĉc�p; ref 7 gr=dl [28]

fjx¼0 (inlet) fin ¼ 0:4 [28], [15]

fjx¼1 (outlet) 1:25 fin [28], [15]

p�
ch; in 125 mmHg [28]

p�
ch;out 85 mmHg [28]

p�
s; in 61 mmHg [28]

p�
s; out 59 mmHg [28]

Table 2. Typical values for pressure (expressed in mmHg,—recall that 1 mmHg ¼
133:3 Pa ¼ 1:333 � 103 dyn=cm2), hematocrit, viscosity (recall 1 cP ¼ 10�2 dyn s=cm2),
and protein concentration. Note that the inlet and outlet values of the hematocrit are con-
siderably di¤erent due to the water loss along the fibers.

A�
1 mmHg ðgr=dlÞ�1

A�
2 mmHg ðgr=dlÞ�2

A�
3 mmHg ðgr=dlÞ�3

2.1 0.16 0.009

Table 3. Landis Pappenheimer oncotic pressure coe‰cients, [30].
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The characteristic convection time is

t�ref ¼
L�

v�ref
;ð3:2Þ

and we select it as reference time scale (see again Table 4), so that t ¼ t�=t�ref , is
the dimensionless time variable.

Next, we adopt the double rescaling for velocities

vx ¼
v�x
v�ref

; and va;x ¼
v�a;x
v�ref

; a ¼ pl; RBC;ð3:3Þ

vr ¼
v�r
ev�ref

; and va; r ¼
v�a; r
ev�ref

; a ¼ pl; RBC:ð3:4Þ

The flux within the membrane is rescaled as

qx ¼ Se
q�
x

q�
ref

; and qr ¼
q�
r

q�
ref

:ð3:5Þ

Thus we have~qq� ¼ q�
ref

� 1

Se
qx~eex þ qr~eer

�
.

We denote by w�
ref , the characteristic longitudinal fluid velocity in the shell

(see formula (3.20) below), and define

wx ¼
w�
x

w�
ref

; and wr ¼
w�
r

ew�
ref

:ð3:6Þ

The characteristic pressure drop (see also Fig. 4) along the fiber is

DP�
ch ¼ p�

ch; in � p�
ch;out > 0;ð3:7Þ

and, recalling (2.9), we introduce the dimensionless rescaled pressures

Pa ¼
P�
a

DP�
ch

¼
p�
a � p�

ch;out

DP�
ch

; a ¼ ch;m; s:

In a parallel way we set DP�
s ¼ p�

s; in � p�
s;out > 0, and

Ps; in ¼
p�
s; in � p�

ch;out

DP�
ch

; Ps;out ¼
p�
s;out � p�

ch;out

DP�
ch

:

Finally

DPTM ¼ 1

DP�
ch

�p�
ch; in þ p�

ch;out

2
�

p�
s; in þ p�

s;out

2

�
> 0;ð3:8Þ
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giving the average TMP (scaled with DP�
ch). We refer to Table 4 for the typical

values of reference quantities.
We thus have:

• Inner channel

inlet: Pchjx¼0 ¼ 1;

outlet: Pchjx¼1 ¼ 0:

�
ð3:9Þ

• Outer shell (see Table 4 for typical values)

inlet: Psjx¼0 ¼ Ps; in;

outlet: Psjx¼1 ¼ Ps;out:

�
ð3:10Þ

Concerning the oncotic pressure, we rescale it with (see Table 4)

P�
ref ¼ A�

1 ĉc
�
p; ref :ð3:11Þ

Thus, recalling (2.6), we may write

P� ¼ P�
ref P̂PðĉcpÞ; with P̂PðĉcpÞ ¼ ĉcp þ B1ĉc

2
p þ B2ĉc

3
p ;ð3:12Þ

with B1, and B2, given in Table 5.

Quantity Exper. Value Units Source of Data Estimated Value (Formula)

v�ref 1o 2 cm=s [28] 2 (3.14)

w�
ref P2 cm=s [28] 3.8 (3.20)

q�
ref 10�3 o 10�4 cm=s [28] 1:5� 10�3 (3.15)

t�ref 12o 25 s [28] 12 (3.2)

Os 0.37 (3.13)

DP�
s 2 mmHg [28]

DP�
ch 40 mmHg [28]

P�
ref mmHg 14.7 (3.11)

DPTM 1:12 (3.8)

Ps; in �0:6 (3.10)

Ps; out �0:65 (3.10)

Table 4. We remark that the measured value of v�ref , q
�
ref , and w�

ref , reported in the table
agrees with the ones obtained by formulas (3.14), (3.15) and (3.20), respectively. The ratio
between the blood velocity and the typical cross discharge can be considered OðeÞ, in
agreement with (3.16). The estimated values are computed using the selected values re-
ported in Tables 2 and 1.
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Next, we introduce the characteristic number

Os ¼
P�

ref

DP�
ch

;ð3:13Þ

measuring the importance of the oncotic pressure w.r.t. the hydraulic pressure.
In general Osk 1 (see, e.g., Table 4).

The reference longitudinal velocity in the cannel, v�ref , is estimated recalling the
Poiseuille flow in a tube of radius R�. We thus set

v�ref ¼
DP�

ch

8m�
ref L

� R
�2:ð3:14Þ

Concerning the characteristic discharge within the membrane, i.e. q�
ref , we

define it exploiting Darcy’s law, in which we take DPTMDP�
ch as average trans-

membrane pressure, namely

q�
ref ¼

K �

m�
H2O

DPTMDP�
ch

SR� :ð3:15Þ

In particular, recalling (3.14) we have

q�
ref

v�ref
¼ emGDPTM ;ð3:16Þ

with (see Table 2)

m ¼
m�
ref

m�
H2O

;ð3:17Þ

and

G ¼ 8K �L�2

SR�4 ¼ 8

e2S
Da;ð3:18Þ

where

Da ¼ K �

R�2 ;ð3:19Þ

B1 ¼
A�

2 ĉc
�
p; ref

A�
1

B2 ¼
A�

3c
�2
p; ref

A�
1

0.53 0.21

Table 5. Values of B1 and B2, in (3.12).
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is the so-called Darcy’s number (see Table 6 for typical values. Parametr F

defined in (3.21) below).
We introduce two more references quantities: the overall blood inlet discharge

Q�
in and the overall plasma transmembrane (or lateral) discharge Q�

TM . We have

Q�
in ¼ OðNpR�2v�ref Þ; Q�

TM ¼ Oð2pNR�L�q�
ref Þ;

where N is the number on fibers in the dialyzer (see Table 2). The ratio

F ¼ Q�
TM

Q�
in

;

in usual operating conditions isP10�2 (see Table 7).
Actually the selection of an appropriate reference value for Q�

TM , is a rather
delicate issue. Indeed, assuming Q�

TM simply proportional (via the total fibers sur-
face) to the Darcy’s discharge, it is equivalent to neglect backfiltration. The latter
is an important phenomena which, in certain circumstances, may even counter-
balance the outflow. So, taking Q�

TM P 2pNR�L�q�
ref , may lead to a large over-

estimation of the actual lateral discharge. Hence, 2pNR�L�q�
ref , represents an

upper bound for the lateral flow, rather than a characteristic value. The resulting
estimate of F, is therefore an estimate of the maximum value of the ratio between
the lateral and inlet discharge.

Next, exploiting the basic formula of Poiseuille flow in an annulus, we define
the reference permeate velocity

w�
ref ¼

DP�
s

m�
H2O

L� R
�2ðD2 �H 2Þ ¼ mv�ref F;ð3:20Þ

where m is given by (3.17) and

F ¼ 8
DP�

s

DP�
ch

ðD2 �H 2Þ:ð3:21Þ

We refer to Table 6 for a typical value of F.

G Da F q�
ref =v

�
ref

0:1o 10 10�10 o 10�8 0:8 10�5 o 10�4

Table 6. Typical values for G, Da, F, and q�
ref =v

�
ref .

Q�
in ½ml=min� Q�

TM ½ml=min� F

200 1.6 P10�2

Table 7. In some cases Q�
TM P 20 ml=min, so that FP 10�1. Recall that 1 ml ¼ 1 cm3.
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4. The mathematical model

To model the complex flow dynamics occurring in the structure, we have to
analyze separately the three di¤erent regions and then we impose the coupling
boundary conditions at the interfaces. We end up with this integro-di¤erential
model governing the evolution of the various unknown in the dialyzer

lðĉcpÞ
8

�
1þ 5

2
fg
�qvx
qr

�� qvx

qr
¼ � r

2

�
� qPch

qx
þ Rpgx

�
;

vxjr¼1 ¼ � 1

B

qvx

qr

����
r¼1

;

Z 1

0

r
qvx

qx
dr ¼ mSG

lnH
ðPs � Pch þ Os P̂PðĉcpÞÞ;

Pchjx¼0 ¼ 1; Pchjx¼1 ¼ 0;

q2Ps

qx2
¼ G

K0
½Ps � Pch þ Os P̂PðĉcpÞ�;

Psðx ¼ 0Þ ¼ Ps; in; Psðx ¼ 1Þ ¼ Ps;out;

1

f

Df

Dt
¼ 2

mSG

lnH
ðPch � Ps � Os P̂PðĉcpÞÞ

fjx¼0 ¼ finðtÞ;
1

ĉcp

Dĉcp

Dt
¼ 2

1� f

mSG

lnH
ðPch � Ps � Os P̂PðĉcpÞÞ;

1

ĉci

Dĉci

Dt
¼ �2Di

�
1� r

ðdÞ
i

ĉci

�
;

ĉcpjx¼0 ¼ ĉcp; inðtÞ; ĉcijx¼0 ¼ ĉci; inðtÞ; i ¼ 1; 2; . . . ;N;

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð4:1Þ

where

RP ¼ r�g�L�

DP�
ch

;ð4:2Þ

Di, i ¼ 1; 2; . . .N, is the dimensionless di¤usion of the i th low molecular com-
pound (see (6.35) in Appendix A). Concerning the other dimensionless param-
eters K0, B, and r

ðdÞ
i appearing in (4.1), as well as its detailed derivation, we refer

to Appendix A. Here we just list the three assumptions that we considered for the
derivation (4.1).

Assumption 1. Since the fiber radius is of the order of a few RBC’s diameters,
the flow conditions are such that, from the very beginning, we have:
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– f ¼ fðx; tÞ, as a consequence of e‰cient RBC’s radial dispersion.
– v�RBC; rC 0, consistently with the fairly uniform radial distribution of the RBC’s

and with the fact that RBC’s do not cross the membrane.
– The RBC’s di¤usive longitudinal velocity with respect to blood is negligible.

Hence v�RBC;x ¼ v�x.

Assumption 2. Proteins are uniformly distributed over the fiber cross section,
namely ĉc�p ¼ ĉc�p ðx; tÞ.

Assumption 3. Solutes are uniformly distributed over the fiber cross section
ĉci ¼ ĉciðx; tÞ, i ¼ 1; . . . ;N.

We stress that the inlet values finðtÞ, ĉcp; inðtÞ, and ĉci; inðtÞ, i ¼ 1; 2; . . . ;N, are actu-
ally unknown. Their determination requires the coupling of the system above
with the solutes dynamics and water redistribution taking place in the patient’s
body, considered as a separate compartment. This task will be carried out in the
next section.

5. Inlet conditions for the hematocrit f, and for the solutes

concentrations

We follow [14], considering a two-compartment model: intracellular and extrac-
ellular. Other models (see for instance [27] or [19] and the literature therein) con-
sider a further division of the extracellular compartment in: interstitial and blood
sub-compartments. Such an approach is certainly appealing, but requires a con-
stitutive equation for fluid and mass exchange rate between the interstices and
blood sub-compartments12, leading to a considerable increase of the number of
unknowns and equations. On the contrary, models like [14] have the advantage
of simplicity, though they miss the information on how water is exchanged be-
tween interstices and blood. In the present approach we will bypass this di‰culty
by assuming, that:

Assumption 4. The inlet hematocrit is constant. So, recalling (6.50),

finðt�Þ ¼ fo:ð5:1Þ

Accordingly, since the total mass of ‘‘large proteins’’ in the patient’s plasma does
not vary during the continuous renal replacement therapy (CRRT ), the inlet protein
concentration is also constant. Hence, setting ĉc�p; in ¼ ĉc�p; ref , we have

ĉcp; in ¼ 1 Etb 0; and ĉcpðx; 0Þ ¼ 1:ð5:2Þ

12 In [54] the problem is analyzed considering also the di¤erence between the blood pressure at
the arterial and venous capillaries.
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From the physical point of view, the above assumption means that the refilling
process (occurring from interstices to blood) is faster than the average outlet-to-
inlet blood circulation time (order of few min).

The dynamics of the water stored/consumed in the body is schematically rep-
resented in Fig. 5.

Following [14], we introduce:

• M �
U; icðt�Þ, total mass of urea in the intracellular compartment.

• M �
U; ecðt�Þ, total mass of urea in the extracellular compartment.

• M �
Na; ecðt�Þ, total mass of Na in the extracellular compartment.

• V �
ecðt�Þ, V �

icðt�Þ, the volume of water stored, at time t�, in the extracellular com-
partment (namely in the blood and in the interstitial space), and in the intra-
cellular compartment, respectively.

The solutes inlet concentrations are the ones in the extracellular compartment,
namely

ĉc�i; inðt�Þ ¼
M �

i; ecðt�Þ
V �

ecðt�Þ
; i ¼ U; Na:ð5:3Þ

As stated in [14], the redistribution of fluid and solutes between the compart-
ments has to fulfill the requirement of osmotic equilibrium, namely

M �
Na; ecðt�Þ þM �

U; ecðt�Þ þM �
eq; ec

V �
ecðt�Þ

¼
M �

U; icðt�Þ þM �
eq; ic

V �
icðt�Þ

;ð5:4Þ

where M �
eq; ic, and M �

eq; ec, represent the equivalent mass of all other solutes gen-
erating osmosis in the intracellular and extracellular compartment, respectively.
Still according to [14] they do not change significantly during the treatment. In
particular, M �

eq; ec ¼ C �
eq; ecð0ÞV �

ecð0Þ, where C �
eq; ecð0Þ is the initial concentration

in the extracellular compartment (see Table 8) and V �
ecð0Þ is the initial volume of

the water stored in the extracellular compartment. The latter can be estimated in

Figure 5. A schematic representation of a compartments model [14].
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terms of the total initial volume of water stored in the body V �
Tð0Þ. In particular,

(see Table 8 and [14])

V �
icð0Þ

V �
Tð0Þ

¼ 5

8
; and

V �
ecð0Þ

V �
Tð0Þ

¼ 3

8
ð5:5Þ

Concerning M �
eq; ic, we assume that, at the initial time the urea concentration

in the extracellular and in the intracellular compartment are equal, that is
(in Table 8 we have reported the typical value of M �

U; ecð0Þ=V �
ecð0Þ)

M �
U; ecð0Þ
V �

ecð0Þ
¼

M �
U; icð0Þ
V �

icð0Þ
; )

ð5:5Þ
M �

U; icð0Þ ¼
5

3
M �

U; ecð0Þ:ð5:6Þ

Hence

M �
eq; ic ¼

5

3
M �

Na; ecð0Þ
�
1þ

M �
eq; ec

M �
Na; ecð0Þ

�
:ð5:7Þ

The solute masses vary because of the exchange that takes place between the
compartments, and because of the extraction (ultrafiltration) and generation
(metabolism). Hence, considering the total fluid mass balance, [14] we can
write

d

dt�
½V �

ecðt�Þ þ V �
icðt�Þ� ¼ � _RR�

dM �
U; icðt�Þ
dt�

¼ �K �
UV

�
Tð0Þ

�M �
U; icðt�Þ
V �

icðt�Þ
�
M �

U; ecðt�Þ
V �

ecðt�Þ

�
;

dM �
U; ecðt�Þ
dt�

¼ K �
UV

�
Tð0Þ

�M �
U; icðt�Þ
V �

icðt�Þ
�
M �

U; ecðt�Þ
V �

ecðt�Þ

�
þ G�

U � J�
U;

dM �
Na; ecðt�Þ
dt�

¼ G�
Na � J�

Na;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð5:8Þ

where V �
ex is given by (5.4), and where:

• _RR�, is the net water extraction rate13

_RR�ðt�Þ ¼ 2pR�N

Z L�

0

v�r jr�¼R� dx
� �Q�

r ;ð5:9Þ

13We recall that, focussing on a single fiber, the lateral plasma discharge is proportional to
ð1� fÞv�pl; rjr �¼R � , or, exploiting (6.17)2, to v�r jr �¼R � .
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where N is number of fibers in the hemodiafilter14 (see Table 1) and Q�
r is the

replacement fluid flow rate. Actually, dialyzers operating in a ‘‘fast’’ regime (i.e.
with a relatively large transmembrane flow) are equipped with a device (see,
e.g. [39]) which may inject some plasma-like fluid into the blood just before it
is returned to the patient’s vein15.

• K �
U , is the urea mass transfer rate between the intracellular and extracellular

compartments Table 8.

• G�
i , i ¼ U; Na, is the generation rate of the i th solute (see Table 8).

• J�
i , i ¼ U; Na, is the solute extraction rate due to the dialyzer, that is

J�
i ðt�Þ ¼ 2pR�N

Z L�

0

ðTOTAL OUTFLUXÞi dx�
� �

:

Parameter Value Units Source of data

V �
ecð0Þ 3

8V
�
T ð0Þ lt [20]

V �
icð0Þ 5

8V
�
T ð0Þ lt [20]

M �
eq; ecð0Þ=V �

ecð0Þ 6 mEq=lt [43], [20]

M �
Na; ecð0Þ=V �

ecð0Þ 140 mEq=lt ¼ mmol=lt [14]

M �
U; ecð0Þ=V �

ecð0Þ 10 mmol=lt [14]

M �
eq; icð0Þ=V �

ecð0Þ 243:3 mmol=lt

K �
UV

�
Tð0Þ 0:77 lt=min [14], [27]

V �
T ð0Þ 40 lt [14]

K �
U 0:018 min�1 [14], [27]

G�
U 0:075 mmol=min [14]

G�
Na 0:107 mEq=min [14]

Table 8. Compartments model data. Concerning M �
U; ecð0Þ=V �

ecð0Þ, and M �
Na; ecð0Þ=V �

ecð0Þ,
we refer to Table 10 and to formula (5.11). Next, M �

eq; icð0Þ=V �
ecð0Þ, has been computed

referring to Naþmoles.

14For the moment we assume that the filtration rate is the same for all the fibers. Formula (5.9)

can be corrected introducing a non-uniform distribution of the driving pressures.
15The target value fluid removal may be reached before urea, creatinine, etc., have attained the

desired concentrations. In that case two options are possible: (i) a flux Q�
r UQ�, will be necessary

to stabilize the hematocrit value; or (ii) a flux Q�
r ¼ 0, but the device operates in condition such

that

Z L �

0

v�r jr �¼R � dx
� ¼ 0. The selection of the most appropriate strategy is a delicate task of the

operator.

386 c. ronco et al.



Concerning _RR�ðt�Þ, we introduce the total volume of the fibers (see also
Table 1)

V �
b ¼ pR�2L�N;ð5:10Þ

and recall (6.61), so that

_RR�ðt�Þ ¼ V �
b

t�ref
2

Z 1

0

mSG

lnH
ðPch � Ps � Os P̂PðĉcpÞÞ dx�Qr

� �
;

where

Qr ¼
t�ref
V �

b

Q�
r :

Next, for what J�
i , i ¼ U; Na, is concerned we exploit (6.65), (6.67), (6.17)2,

(6.35) and (6.61) so to get

J�
i ðt�Þ ¼ 2pR�N

Z L�

0

ðJ�
i; conv þJ�

i;di¤ Þ dx�

¼ 2
V �

b ĉc
�
i; ref

t�ref

�Z 1

0

ĉci

�
mSG

lnH
ðPch � Ps � Os P̂PðĉcpÞÞ þ ð1� fÞDi

�
dx

�Dir
ðdÞ
i

Z 1

0

ð1� fÞ dx
�
;

with r
ðdÞ
i given by (6.36) and V �

b by (5.10).
The inlet quantities to be inserted into system (4.1) are fin given by (5.1), ĉcp; in

given by (5.2), and ĉci; in, i ¼ U; Na, given by (5.3). The mathematical formulation
of the model, at the e0 order approximation, is now completed.

Let us now define the dimensionless quantities in a way that their initial value
is 1. We thus set

VicðtÞ ¼
V �

icðtÞ
V �

icð0Þ
¼ V �

icðtÞ
5

8
V �

Tð0Þ
; VecðtÞ ¼

V �
ecðtÞ

V �
ecð0Þ

¼ V �
ecðtÞ

3

8
V �

Tð0Þ
:

and

MU; ecðtÞ ¼
M �

U; ecðt�Þ
M �

U; ecð0Þ
; MU; icðtÞ ¼

M �
U; icðt�Þ

M �
U; icð0Þ

;

MNa; ecðtÞ ¼
M �

Na; ecðt�Þ
M �

Na; ecð0Þ
:
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We are thus in position to define the reference values for the urea and Na plasma
concentrations (see Table 10), namely

ĉc�U; ref ¼
M �

U; ecð0Þ
V �

ecð0Þ
¼

M �
U; ecð0Þ

3

8
V �

Tð0Þ
; ĉc�Na; ref ¼

M �
Na; ecð0Þ
V �

ecð0Þ
¼

M �
Na; ecð0Þ

3

8
V �

Tð0Þ
:ð5:11Þ

Hence, recalling the definition (6.33) and formulas (5.3), (5.11), the inlet dimen-
sionless concentrations are

ĉcU; inðtÞ ¼
MU; ecðtÞ
VecðtÞ

; ĉcNa; inðtÞ ¼
MNa; ecðtÞ
VecðtÞ

:ð5:12Þ

Next, taking (5.6)2 into account, the dimensionless form of (5.4) is

VicðtÞ
VecðtÞ

½A1MNa; ecðtÞ þA2MU; ecðtÞ þA3� ¼ A2MU; icðtÞ þ
3

5
;ð5:13Þ

where the constants Ai, i ¼ 1; 2; 3, are specified in Table 9.
The dimensionless form of system (5.8) is the following

A1

M �
Na; ecð0Þ
M �

eq; ic

0:575

A2

M �
U; ecð0Þ
M �

eq; ic

0:11

A3

M �
eq; ecð0Þ
M �

eq; ic

0:025

B1 K �
Ut

�
ref 6� 10�3

B2
V �

b

V �
T ð0Þ

2� 10�3

GU

t�ref
B1M

�
U; ecð0Þ

G�
U 2:6� 10�2

GNa

t�ref
B1M

�
Na; ecð0Þ

G�
Na 2:6� 10�3

Table 9. V �
b has been taken from Table 1, while K �

U , M
�
Na; ecð0Þ=V �

ecð0Þ, M �
U; ecð0Þ=V �

ecð0Þ,
M �

eq; ecð0Þ=V �
ecð0Þ, and V �

T ð0Þ ¼ 40 lt, from Table 8. We have considered t�ref ¼ 20 s. The
expression of M �

eq; ic, is given by formula (5.7). In computing A2, we have considered the
fact that M �

eq; ic, refers to Na, while M �
U; ec, to urea.
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1

B1

d

dt

3

8
Vec þ

5

8
Vic

� �
¼ � _RR;

1

B1

dMU; ic

dt
¼ � 8

5

�MU; ic

Vic

�MU; ec

Vec

�
;

1

B1

dMU; ec

dt
¼ 8

3

�MU; ic

Vic

�MU; ec

Vec

�
þ GU � JU;

1

B1

dMNa; ecðtÞ
dt

¼ GNa � JNa;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð5:14Þ

where

_RR ¼ B2

B1

Z 1

0

2
mSG

lnH
ðPch � Ps � Os P̂PðĉcpÞÞ dx�Qr

� �
;ð5:15Þ

and

JU ¼ 16

3

B2

B1

Z 1

0

ĉcU
mSG

lnH
ðPch � Ps � Os P̂PðĉcpÞÞ þ ð1� fÞDU

� �
dx;ð5:16Þ

JNa ¼
16

3

B2

B1

Z 1

0

ĉcNa

"
mSG

lnH
ðPch � Ps � Os P̂PðĉcpÞÞð5:17Þ

þ ð1� fÞDNa

�
1� r

ðdÞ
Na

ĉcNa

�#
dx;

and where the constants B1, B2, GU and GNa are defined in Table 9. We refer to

Table 10 for the constant r
ðdÞ
Na. In particular, (5.17) can be rewritten in a form that

is easily ‘‘readable’’ from the physical point of view

JNa ¼
16

3

B2

B1

Z 1

0

ĉcNa
mSG

lnH
ðPch � Ps � Os P̂PðĉcpÞÞ

� �
dx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

convective flux

þ 16

3

B2

B1

Z 1

0

ð1� fÞDNaðĉcNa � r
ðdÞ
NaÞ dx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

di¤usive flux reduced by dialysate solutes

:

The above system suggests the introduction of a new time scale, t�comp, charac-
terizing the compartments dynamics, namely

t�comp ¼
t�ref
B1

:ð5:18Þ
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Hence, recalling the data in table 9, we get t�compP 156t�ref , so that t�comp ¼
30o 60 min. Therefore, we introduce a new dimensionless time

t ¼ t�

t�comp

; , t ¼ tB1;ð5:19Þ

so that t ¼ Oð1Þ, means t ¼ 0ðB1Þ, while t ¼ Oð1Þ, yields t ¼ OðB�1
1 Þ. Hence we

rewrite system (5.14) and (5.13) in this way

d

dt

3

8
Vec þ

5

8
Vic

� �
¼ � _RR;

dMU; ic

dt
¼ � 8

5

�MU; ic

Vic

�MU; ec

Vec

�
;

dMU; ec

dt
¼ 8

3

�MU; ic

Vic

�MU; ec

Vec

�
þ GU � JU;

dMNa; ecðtÞ
dt

¼ GNa � JNa;

VicðtÞ
VecðtÞ

½A1MNa; ecðtÞ þA2MU; ecðtÞ þA3� �A2MU; icðtÞ �
3

5
¼ 0:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð5:20Þ

6. Final simplified model and numerical simulations

We now operate two simplifications that reduce the complexity of the model,
summarized as follows:

(S1) We select t�comp, given by (5.18), as reference time scale and neglect the local
time evolution of f, ĉcp, and ĉci, during their transit within the dialyzer hollow
fiber (in other words we consider a quasi-stationary approximation).

(S2) We consider a simplified rheological model, assuming that the blood be-
haves as a Newtonian fluid, whose viscosity depends on both: hematocrit
and protein concentration. We thus rewrite (2.3) as

T� ¼ �p�
chIþ 2m�

blood

�
1þ 5

2
f
�
D�;ð6:1Þ

with m�
blood given by (2.4).

In order to justify (S1), we consider t, given by (5.19), as new dimensionless time
so that the longitudinal convective derivative (6.21) becomes

D

Dt
¼ q

qt
þ 3vx4

q

qx
! B1

q

qt
þ 3vx4

q

qx
;

where 3vx4 is defined in (6.20). The simplification consists in neglecting B1
qĉci

qt
,

which turns out to be appropriate, since B1 P 10�3. Hence
D

Dt
P3vx4

q

qx
.
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Equations (4.1)9, (4.1)7 with boundary conditions (5.1) and (5.2) give rise to
the following Cauchy problem

3vx4
qĉcp

qx
¼ 2

ĉcp

1� f

mSG

lnH
ðPch � Ps � Os P̂PðĉcpÞÞ; 0 < x < 1;

3vx4
qf

qx
¼ 2f

mSG

lnH
ðPch � Ps � Os P̂PðĉcpÞÞ; 0 < x < 1;

fjx¼0 ¼ fo; ĉcpjx¼0 ¼ 1:

8>>>>><
>>>>>:

ð6:2Þ

Concerning the solutes, equation (4.1)10 simplifies to this initial value
problem16

3vx4
qĉci

qx
¼ �2ĉciDi

�
1� r

ðdÞ
i

ĉci

�
ĉcið0; tÞ ¼ ĉci; inðtÞ;

8><
>: i ¼ U; Na:ð6:3Þ

with ĉci; inðtÞ, i ¼ U; Na, given by (5.12). Since neither 3vx4, nor f, depend on ĉci,
we solve (6.3), getting17

ĉciðx; tÞ ¼ ĉci; inðtÞ|fflfflffl{zfflfflffl}
Mi; ec
Vec

exp �
Z x

0

2Di

3vx4
dx 0

� �
þ r

ðdÞ
i 1� exp �

Z x

0

2Di

3vx4
dx 0

� �
 �
:

Thus, recalling (5.16) and (5.17) and introducing the parameter

A ¼ 2mGS

lnH
;ð6:4Þ

we rewrite Ji, i ¼ U; Na, as follows

JU ¼ MU; ecðtÞ
VecðtÞ

B3;ð6:5Þ

JNa ¼
MNa; ecðtÞ
VecðtÞ

B4 þ r
ðdÞ
NaB5;ð6:6Þ

where

B3 ¼
16

3

B2

B1

Z 1

0

exp �
Z x

0

2DU

3vx4
dx 0

� �
ð6:7Þ

� A

2
ðPch � Ps � Os P̂PðĉcpÞÞ þ ð1� fÞDU

� �
dx;

16Again we have neglected the partial derivative of ĉci w.r.t. t.
17The typical values of r

ðdÞ
i , i ¼ U; Na, are reported in Table 10.
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B4 ¼
16

3

B2

B1

Z 1

0

exp �
Z x

0

2DNa

3vx4
dx 0

� �
ð6:8Þ

� A

2
ðPch � Ps � Os P̂PðĉcpÞÞ þ ð1� fÞDNa

� �
dx;

and

B5 ¼
16

3

B2

B1

Z 1

0

�
A

2
1� exp �

Z x

0

2DNa

3vx4
dx 0

� �
 �
ðPch � Ps � Os P̂PðĉcpÞÞð6:9Þ

� ð1� fÞDNa exp �
Z x

0

2DNa

3vx4
dx 0

� ��
dx

Hence problem (5.20) can be rewritten as follows

d

dt

3

8
Vex þ

5

8
Vic

� �
¼ � _RR;

dMU; ic

dt
¼ � 8

5

�MU; ic

Vic

�MU; ec

Vec

�
;

dMU; ec

dt
¼ 8

3

�MU; ic

Vic

�MU; ec

Vec

�
þ GU �B3

MU; ecðtÞ
VecðtÞ

;

dMNa; ec

dt
¼ GNa �B4

MNa; ecðtÞ
VecðtÞ

�B5;

VicðtÞ
VecðtÞ

½A1MNa; ecðtÞ þA2MU; ecðtÞ þA3� �A2MU; icðtÞ �
3

5
¼ 0:

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð6:10Þ

Concerning the simplifying assumption (S2), namely the rheological model
(6.1), we exploit it in (4.1)1, obtaining

lðĉcpÞ
8

�
1þ 5

2
f
� qvx

qr
¼ � r

2

�
� qPch

qx
þ Rpgx

�
:

Next, we simplify also B.C. (4.1)2, considering B ! l (i.e. a no-slip condition).
So, integrating the above equation between r and 1, and then averaging accord-
ing to (6.20), we obtain

3vx4 ¼
Rpgx �

qPch

qx

lðĉcpÞ
�
1þ 5

2
f
� ;ð6:11Þ

which is the expression to be inserted in (6.2) and in (6.7)–(6.9).
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The equation for the pressure field Pch is obtained exploiting (4.1)3, so to get
the boundary value problem

q2Pch

qx2
¼ Al1 1� 9l2

2l1

� ĉcpf

1� f

�� �
½Pch � ðPs þ Os P̂PðĉcpÞÞ�;

Pchð0Þ ¼ 1; Pchð1Þ ¼ 0;

8><
>:ð6:12Þ

with l1, and l2, defined in (2.5) and reported in Table 2.
Thus the dynamics of the dependent variables ff; ĉcp;Pch;Psg, is governed by

the Cauchy problem (6.2) and the boundary values problem (6.12) and (4.1)5,
(4.1)6. For the reader’s convenience we summarize the whole simplified model

qf

qx
¼ Af

lðĉcpÞ
�
1þ 5

2
f
�

Rpgx �
qPch

qx

2
64

3
75½Pch � ðPs þ Os P̂PðĉcpÞÞ�;

qĉcp

qx
¼ ĉcp

1� f
A

lðĉcpÞ
�
1þ 5

2
f
�

Rpgx �
qPch

qx

2
664

3
775½Pch � ðPs þ Os P̂PðĉcpÞÞ�;

q2Pch

qx2
¼ Al1 1� 9l2

2l1

� ĉcpf

1� f

�� �
½Pch � ðPs þ Os P̂PðĉcpÞÞ�;

q2Ps

qx2
¼ G

K0
½Ps � Pch þ Os P̂PðĉcpÞ�;

fjx¼0 ¼ fo; ĉcpjx¼0 ¼ 1; Pchð0Þ ¼ 1; Pchð1Þ ¼ 0;

Psð0Þ ¼ Ps; in; Psð1Þ ¼ Ps;out:

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

ð6:13Þ

Once solved, we compute the constants B3, B4, and B5, given by (6.7)–(6.9), as
well as _RR, and solve problem (6.10). In particular, we are in position to evaluate
the extraction rates. Indeed

_RR� ¼ K �
UV

�
Tð0Þ _RR ¼

Table 8
0:77 _RR lt=min;

J�
U ¼ 3

8

M �
U; ecð0Þ
V �

ecð0Þ
K �

UV
�
Tð0ÞJU ¼

Table 8
2:9JU mmol=min

¼
ð6:5Þ

2:9
MU; ecðtÞ
VecðtÞ

B3 mmol=min;

and

J�
Na ¼

3

8

M �
Na; ecð0Þ
V �

ecð0Þ
K �

UV
�
Tð0ÞJNa ¼

Table 8
40:4JNa mEq=min

¼
ð6:6Þ

40:4
�MNa; ecðtÞ

VecðtÞ
B4 þ r

ðdÞ
NaB5

�
mEq=min;
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The numerical simulations shown in the figures 6–16 below refer to the simpli-
fied blood rheological model, with the data specified in the various Tables of the
paper.

We start with the total proteins concentration Fig. 6 and the hematocrit Fig. 7.
Figure 8 shows the blood pressure profile, while Fig. 9 dialyzate pressure. Actu-

Figure 6. Total Proteins concentration profile (dimensionless).

Figure 7. Hematocrit profile.

Figure 8. Blood pressure profile (dimensionless) within the fiber.
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ally PchðxÞ is almost linear, while PsðxÞ shows a non-linear behavior close to

x ¼ 0. We note that
q2Pch

qx2

����
����P 10�2, while

q2Ps

qx2

����
���� is an order of magnitude larger

(especially close to x ¼ 0). This explains the di¤erent qualitative aspect of PchðxÞ
and PsðxÞ.

Figure 9. Dialyzed pressure profile (dimensionless).

Figure 10. Longitudinal velocity profile (dimensionless).

Figure 11. Radial velocity profile (dimensionless).
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We note that TMP, reported in Fig. 12, is largely amplified in equations
(6.13)1 and (6.13)2 by the respective coe‰cients. We also note that, close to
xP 0:7, TMP becomes negative meaning that backfiltration is active. This fact
is also highlighted in Fig. 11. The mean longitudinal velocity (namely the dis-
charge) is plotted, as a function of the longitudinal coordinate, in Fig. 10. Again
we note that, after xP 0:7, 3vx4 starts growing. This is due to the external liquid
sucked back by osmosis. Indeed, the selected data are such that oncotic pressure
builds up in such a way that the radial velocity becomes negative for 0:7k xa 1,

Figure 12. Trans-Membrane Pressure (dimensionless).

Figure 13. Extracellular urea mass (dimensionless).

Figure 14. Intracellular urea mass (dimensionless).
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producing a decrease both of cp and of f, and correspondingly an increase of the
longitudinal blood velocity.

Extracellular, intracellular urea and extracellular Naþ masses are plotted as
functions of time (see Fig. 13, 14, 15). In Figure 16 we have reported the compar-
ison between the simulation referred to average data and the experimental data
for a specific patient, reported in [14].

Appendix A. Derivation of system (4.1)

The derivation of (4.1) is based on the assumptions listed in section 4.

Flow in the inner channel

Let us write the strain rate tensor D�

D� ¼
v�ref
L�

qvx

qx

1

2e

�qvx
qr

þ e2
qvr

qx

�
0

1

2e

�qvx
qr

þ e2
qvr

qx

� qvr

qr
0

0 0
vr

r

0
BBBBBBB@

1
CCCCCCCA
:

Figure 15. Sodium mass (dimensionless).

Figure 16. Urea concentration in plasma. Comparison between the experimental data of
[14], patient A.V., and those predicted by the model, for average data.
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Hence,

II �D� ¼ 1

e

�v�ref
L�

� qvx

qr

����
����þ Oð1Þ:

The continuity equations for RBC’s and blood as a whole can be written as

qf

qt�
þ ‘� � ðf~vv�RBCÞ ¼ 0; ðRBC’sÞ;ð6:14Þ

‘� �~vv� ¼ 0; , trD� ¼ 0; ðblood incompressibilityÞ:ð6:15Þ

In particular, the latter acquires the dimensionless form

qvx

qx
þ 1

r

q

qr
ðrvrÞ ¼ 0:ð6:16Þ

Now, recalling the definition (2.2), Assumption 1 entails

v�pl;x ¼ v�RBC;x ¼ v�x ;

v�pl; r ¼
1

1� f
v�r ; ) v�r ¼ ð1� fÞv�pl; r;

8<
:ð6:17Þ

respectively. Then, exploiting again this assumption, (6.14) can be given the
dimensionless form

qf

qt
þ vx

qf

qx
þ f

qvx

qx
¼ 0:ð6:18Þ

Taking (6.16) into account, equation (6.18) can be further elaborated, obtaining

qf

qt
þ vx

qf

qx
¼ f

1

r

q

qr
ðrvrÞ:ð6:19Þ

Next, we introduce the mean longitudinal blood velocity

3vx4 ¼ 2

Z 1

0

rvx dr;ð6:20Þ

and the longitudinal convective derivative (following the blood)

D

Dt
¼ q

qt
þ 3vx4

q

qx
:ð6:21Þ

We integrate (6.19) in r over the channel lumen (namely, for 0a ra 1), obtain-
ing by virtue of (6.17)2,

1

f

Df

Dt
¼ 2vrjr¼1 ¼ 2ð1� fÞvpl; rjr¼1;ð6:22Þ
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which has an evident physical meaning: the relative hematocrit change per unit
time is proportional to the plasma out-flux (or influx) through the membrane
inner wall. In particular, when vrjr¼1, f increases (as physically expected) since
plasma flows out from the vessel.

Following [38], the motion equation for the blood (i.e. the fluid mixture) as a
whole is

r�
�q~vv�
qt�

þ~vv� � ‘�~vv�
�
¼ r�~gg� þ ‘� � T�;

where T� is given by (2.3), and ~gg� gravity acceleration. Hence, keeping only the
leading terms18 the dimensionless motion equations for the blood take the form

qPch

qx
¼ RPgx þ

1

8r

q

qr
rlðĉcpÞ

�
1þ 5

2
fg
�qvx
qr

�� qvx

qr

� �
;ð6:23Þ

qPch

qr
¼ 0;ð6:24Þ

where gx ¼
~gg�

j~gg�j �~eex, is the component of the acceleration gravity along the longi-

tudinal axis, and RP is given by (4.2). In particular, with the data of Tables 1 and
4, RP P 0:5.

Flow within the porous membrane

The membrane is modeled as a uniform medium whose permeability K �. In the
membrane the flow governing equations are

‘� �~qq� ¼ 0; continuity equation;

~qq� ¼ � K �

m�
H2O

‘�p�
m; Darcy’s law;

8><
>:

Thus, neglecting Oðe2Þ terms, we get,
q

qr

�
r
qPm

qr

�
¼ 0, whose solution is

Pm ¼ ðPmjr¼H � Pmjr¼1Þ
ln r

lnH
þ Pmjr¼1:ð6:25Þ

In particular, writing the radial component of Darcy’s law in non-dimensional
form, recalling (2.9), (3.5) and (3.15) we obtain

qr ¼ � S

DPTM

qPm

qr
¼ � S

DPTM

ðPmjr¼H � Pmjr¼1Þ
lnH

1

r
:ð6:26Þ

We notice that qr > 0 (positive radial flow) when Pmjr¼1 > Pmjr¼H .

18The Reynolds number, Re ¼
r�v�ref R

�

m�
ref

, isP1.
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Dialyzate flow

Mechanical incompressibility (2.8) is expressed by

qwx

qx
þ 1

r

q

qr
ðrwrÞ ¼ 0;ð6:27Þ

where (3.6) has been exploited. The flow is governed by the Navier–Stokes
equation

r�
�q~ww�

qt�
þ ~ww� � ‘�~ww�

�
¼ �‘�P�

s þ r�~gg� þ m�
H2O

D�~ww�:ð6:28Þ

So, neglecting inertia (recall that the Reynolds number isP1) and keeping only
the leading terms, the dimensionless form of the above equations is

� qPs

qx
þ RPgx þ

F

r

q

qr

�
r
qwx

qr

�
¼ 0;ð6:29Þ

qPs

qr
¼ 0;ð6:30Þ

where again gx is the component of the unit vector ~gg�=j~gg�j, along the x axis and
along the radial direction, the constant F is given by (3.21) and RP by (4.2).

Dynamics of the solutes

Let us first consider proteins. Recalling (2.6), we set

cp ¼
c�p

ĉc�p; ref
¼ ð1� fÞ

ĉc�p
ĉc�p; ref

¼
ð2:6Þ

ð1� fÞĉcp:ð6:31Þ

In Appendix B we show that cp, evolves according to (6.66). In other words, con-
sidering Assumption 2, the evolution equation of ĉcp has the same structure of
(6.22), i.e.

1

ð1� fÞĉcp
D½ð1� fÞĉcp�

Dt
¼ 2vrjr¼1 ¼ 2ð1� fÞvpl; rjr¼1:ð6:32Þ

Considering the light solutes, we define

ĉci ¼
ĉc�i
ĉc�i; ref

; and ci ¼
c�i
ĉc�i; ref

¼ ð1� fÞĉci; i ¼ 1; . . . ;N;ð6:33Þ

where ĉc�i; ref denotes the reference value for the concentration of the i th

solute in the plasma (see section 5). Recalling Assumption 3, and referring
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to Appendix B for more details, we show that the evolution of ĉci is governed
by19

1

ĉci

Dĉci

Dt
¼ �2Di

�
1�

c�i;d
ĉciĉc

�
i; ref

�
;ð6:34Þ

where c�i;d , is the concentration of the i th solute in the dialyzate, and where

Di ¼
L�D�

i

v�ref R
�2 ¼

D�
i t

�
ref

R�2 ; i ¼ 1; . . . ;N;ð6:35Þ

accounts for the di¤usion of the i th low molecular compound through the mem-
brane20. Indeed, D�

i , ½D�
i � ¼ cm2=s, is the e¤ective di¤usivity coe‰cient, whose

typical order of magnitude is21 10�5 cm2=s, [1], so that Di P 1. Introducing
then

r
ðdÞ
i ¼

c�i;d
ĉc�i; ref

; i ¼ 1; 2; . . . ;N;ð6:36Þ

we can write (6.34) as

1

ĉci

Dĉci

Dt
¼ �2Di

�
1� r

ðdÞ
i

ĉci

�
:ð6:37Þ

In Table 10 we have reported the typical values of Di, ĉc
�
i; ref , and r

ðdÞ
i , for urea,

i ¼ U, and sodium i ¼ Na.

19Recalling (2.1) and (6.33) ci ¼ ð1� fÞĉci, i ¼ 1; . . . ;N:

20We are considering a negligible concentration of the i th compound in the dialyzate. As a con-
sequence, the di¤usive flux through the membrane is proportional to ci.

21 If D�
i P 10�5 cm2=s, the dialyzer clearance, defined as ND�

i L
�, ranges around 0:2 lt=min, in

agreement with the values reported in [14].

Value Source of data

DU ¼ DNa P1 [1], [14]

ĉc�U; ref 10 mmol=lt [14]

ĉc�Na; ref 140 mmol=lt [14]

r
ðdÞ
U 0

r
ðdÞ
Na P0:1 [14]

Table 10. Solutes characteristic quantities. ĉc�Na; ref , and ĉc�U; ref , are defined by formula
(5.11).
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Boundary conditions

Referring to Fig. 2, first we state the BC’s for r ¼ 1, r ¼ H and r ¼ D, respec-
tively. The channel and shell inlet and outlet BC’s are given by (3.9) and (3.10),
respectively.

Internal membrane surface f0a xa 1; r ¼ 1g. The boundary conditions we im-
pose are:

1. Mass conservation for the fluid (see [13] for instance), namely

ð1� fÞv�pl rjr�¼R� ¼ q�
r jr�¼R� :ð6:38Þ

Hence, recalling (6.17)2, we obtain

v�r jr�¼R� ¼ q�
r jr�¼R� ;

which, in a dimensionless form, can be rewritten as

vrjr¼1 ¼ ðmGDPTMÞqrjr¼1;ð6:39Þ

with G given by (3.18), m by (3.17) and DPTM by (3.8). In particular, remem-
bering (6.26)

vrjr¼1 ¼ � mGS

lnH
ðPmjr¼H � Pmjr¼1Þ:ð6:40Þ

We remark that vrjr¼1 > 0, if Pmjr¼1 > Pmjr¼H , as physically expected.
2. Sa¤man’s condition [45] for the slip velocity

� qv�x
qr�

����
r�¼R�

¼ aBJffiffiffiffiffiffiffi
K �

p v�x jr�¼R� ;ð6:41Þ

where aBJ is the Beavers–Joseph constant (non-dimensional) relative to the
channel porous wall [4]. Though we have borrowed (6.41) from the theory of
liquid/porous interfaces (see e.g. [22]), we must point out that in the present
case slip is not due to membrane roughness, but to the composite nature of
blood22.
The dimensionless form of (6.41) is

1

B

qvx

qr

����
r¼1

¼ �vxjr¼1:ð6:42Þ

22 It is well known that blood flow in not too small vessels is characterized by the presence of
a thin plasma layer, in which the no-slip condition may have sense. However, treating blood as a

homogeneous fluid, we must somehow translate in the model the fact that the large RBC’s compo-
nent does not stick to the wall. Hence the necessity of allowing some slip.
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with

B ¼ aBJffiffiffiffiffiffi
Da

p :ð6:43Þ

and Da given by (3.19). At this stage we do not specify the order of magnitude
of B. We rather say that, when B ¼ Oð1=eÞ, (6.42) reduces (at the zero order in
e) to a no-slip condition, i.e. vxjr¼1 ¼ 0, while, when B ¼ Oð1Þ, (6.42) makes
slip come into play (which is actually our case).

3. Pressure jump due to the oncotic pressure P�, given by (2.10). We have

p�
chjr�¼R� ¼ p�

mjr�¼R� þP�:

Dividing both members by DP�
ch, and recalling (3.13), we get

Pmjr¼1 ¼ Pchjr¼1 � Os P̂PðĉcpÞ;ð6:44Þ

where the function P̂PðĉcpÞ is defined by (3.12), and Os by (3.13).

External membrane surface f0a xa 1; r ¼ Hg. The boundary condition we
impose are similar to the ones previously stated, namely:

1. Mass conservation, that is

w�
r jr�¼H � ¼ q�

r jr�¼H � :

Recalling (3.16) and (3.20), we have

wrjr¼H ¼ GDPTM

F
qrjr¼H ;

or, by virtue of (6.26),

wrjr¼H ¼ �GS

F

ðPmjr¼H � Pmjr¼1Þ
H lnH

;ð6:45Þ

with G given by (3.18) and F by (3.21).
2. No slip condition

wxjr¼H ¼ 0:ð6:46Þ

3. Pressure continuity,

Psjr¼H ¼ Pmjr¼H :ð6:47Þ

On r ¼ H, there are no osmosis e¤ect.
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External ‘‘virtual’’ surface f0a xa 1; r ¼ Dg. We impose impermeability and
symmetry

wrjr¼D ¼ 0; and
qwx

qr

����
r¼D

¼ 0:ð6:48Þ

Symmetry axis f0a xa 1; r ¼ 0g.

qvx

qr

����
r¼0

¼ 0:ð6:49Þ

Inlet values fx ¼ 0; 0a ra 1g. The model needs inlet conditions for hematocrit
and solutes concentration, which, at this stage, are not available. So, as first
instance, we set

fjx¼0 ¼ finðtÞ; ĉcpjx¼0 ¼ ĉcp; inðtÞ; ĉcijx¼0 ¼ ĉci; inðtÞ; i ¼ 1; 2; . . . ;N:

Actually, as pointed out in [17], the issue of the inlet values is by no means trivial.
It will be discussed in section 5.

Initial conditions. We set

fðx; 0Þ ¼ fo;ð6:50Þ

and

ĉc�p ðx�; 0Þ ¼ ĉc�po; and ĉc�i ðx�; 0Þ ¼ ĉc�io; i ¼ 1; . . .N:ð6:51Þ

all values being taken before the treatment.

Model upscaling

The neat separation of scales enables us to apply an upscaling procedure, expand-
ing all relevant quantities in powers of epsilon and matching terms of similar
order in the governing equations. We proceed to the derivation of the governing
equations at the e0 order approximation.

Outer shell. From (6.30), we derive Ps ¼ Psðx; tÞ. Hence, integrating (6.29) be-
tween r and D, we obtain

qwx

qr
¼ 1

2F

�
� qPs

qx
þ RPgx

��D2

r
� r

�
;ð6:52Þ

where boundary condition (6.48) has been exploited. Next, we integrate (6.52)
with the boundary condition (6.46) getting to

wx ¼
1

2F

�
� qPs

qx
þ RPgx

�
D2 ln

� r

H

�
� 1

2
ðr2 �H 2Þ

� �
:ð6:53Þ

404 c. ronco et al.



Now we insert (6.53) into (6.27) and integrate the corresponding in r between H
and D. Taking into account (6.48)1 and (6.45)

K0

G

q2Ps

qx2
¼ Pmjr¼H � Pmjr¼1;

where

K0 ¼
lnH

2S

Z D

H

D2 ln
� r

H

�
� 1

2
ðr2 �H 2Þ

� �
r drð6:54Þ

¼ lnH

2S

D4

2
ln
�D
H

�
�D4

8

�
3�H 2

D2

��
1�H 2

D2

�� �
:

We notice that K0, depends only on geometric parameters. In particular, con-
sidering the data of Table 1, we have K0 ¼ 0:486.

Next, we recall (6.47) and (6.44), so that the pressure field within the shell is
obtained solving the following boundary value problem

q2Ps

qx2
¼ G

K0
½Ps � Pchjr¼1 þ Os P̂PðĉcpÞ�;

Psðx ¼ 0Þ ¼ Ps; in;

Psðx ¼ 1Þ ¼ Ps;out:

8>>><
>>>:ð6:55Þ

with the function P̂PðĉcpÞ, defined by (3.12). It is useful to remark that the
r.h.s. (6.55)1 is proportional to G, given by (3.18), hence to the membrane
permeability.

Inner channel. Equation (6.24) entails Ph ¼ Phðx; tÞ. Hence, from (6.23) and
(6.42) we obtain the Cauchy problem

lðĉcpÞ
8

�
1þ 5

2
fg
�qvx
qr

�� qvx

qr
¼ � r

2

�
� qPch

qx
þ Rpgx

�
;

vxjr¼1 ¼ � 1

B

qvx

qr

����
r¼1

:

8>><
>>:ð6:56Þ

In particular, (6.56)2 can be also rewritten as

lðĉcpÞ
8

�
1þ 5

2
fg
�qvx
qr

��
vx

� �
r¼1

¼ 1

2B

�
� qPh

qx
þ Rpgx

�
:ð6:57Þ

Next, we focus on the continuity equation (6.16), which, integrated over a
cross section, taking into account (6.49) and (6.40), yieldsZ 1

0

r
qvx

qx
dr ¼ mGS

lnH
ðPmjr¼H � Pmjr¼1Þ:
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Recalling then (6.47) and (6.44) we haveZ 1

0

r
qvx

qx
dr ¼ mSG

lnH
ðPs � Pch þ Os P̂PðĉcpÞÞ:ð6:58Þ

We thus obtain the following coupled system

lðĉcpÞ
8

�
1þ 5

2
fg
�qvx
qr

�� qvx

qr
¼ � r

2

�
� qPch

qx
þ Rpgx

�
;

vxjr¼1 ¼ � 1

B

qvx

qr

����
r¼1

;

Z 1

0

r
qvx

qx
dr ¼ mSG

lnH
ðPs � Pch þ Os P̂PðĉcpÞÞ;

Pchjx¼0 ¼ 1; Pchjx¼1 ¼ 0;

8>>>>>>>>>><
>>>>>>>>>>:

ð6:59Þ

where (6.59)2 can be replaced by (6.57).
We now consider equation (6.22) and recall (6.40),

1

f

Df

Dt
¼ 2vrjr¼1 ¼ 2

mSG

lnH
ðPmjr¼1 � Pmjr¼HÞ;

which, exploiting (6.44) and (6.47), can be rewritten as

1

f

Df

Dt
¼ 2

mSG

lnH
ðPch � Ps � Os P̂PðĉcpÞÞ;ð6:60Þ

since

vrjr¼1 ¼
mSG

lnH
ðPch � Ps � Os P̂PðĉcpÞÞ:ð6:61Þ

Equation (6.60) emphasizes the progressive increase of f, provided that
Pch > Ps þ Os P̂PðĉcpÞ.

Concerning ĉcp, we proceed in an analogous way so that, recalling (6.31) and
(6.60), equation (6.32) acquires the form

1

ĉcp

Dĉcp

Dt
¼ 2

1� f

mSG

lnH
ðPch � Ps � Os P̂PðĉcpÞÞ:ð6:62Þ

Thus the complete model is summarized by system (4.1).

Appendix B

According to classical mixture theory [38], the continuity equation for the b th,
b ¼ p; 1; . . . ;N, solute can be rewritten as

qc�b
qt�

þ
qðJ �

b;xÞ
qx� þ 1

r�
qðr�J �

b; rÞ
qr�

¼ 0;ð6:63Þ
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where J �
b;x, and J �

b; r, are the longitudinal and radial fluxes, respectively. Assuming
then c�b ¼ c�b ðx�; t�Þ, b ¼ p; 1; . . . ;N, we multiply (6.63) by 2r�=R�2, and integrate

over the cross section getting

qc�b
qt�

þ 2

R�2

Z R�

0

qðJ �
b;xÞ

qx� r� dr� ¼ � 2

R�2

Z R�

0

qðr�J �
b; rÞ

qr�
dr�:ð6:64Þ

Now we model the l.h.s. of (6.64) as an e¤ective out-flux caused, in general, by
two phenomena: convection and di¤usion. Hence we stipulate that:

• J �
b;x ¼ c�bv

�
x :

• J �
b; rjr�¼R� ¼ J�

b; conv þJ�
b;di¤ , ½J�

b; conv� ¼ ½J�
b;di¤ � ¼ gr=cm2s, are the e¤ective dif-

fusive and convective fluxes of the b th solute through the membrane.

Hence, c�b , b ¼ p; 1; . . . ;N, evolves according to

qc�b
qt�

þ 2

R�2

Z R�

0

qðc�bv�xÞ
qx� r� dr� ¼ � 2

R� ðJ
�
b; conv þJ�

b;di¤ Þ;ð6:65Þ

When b ¼ p, i.e. when we consider the proteins, we have J�
p; conv ¼ J�

p;di¤ ¼ 0
(the membrane is not permeable to the proteins). Hence (6.65) reduces to

qc�p
qt�

þ
qc�p
qx�

� 2

R�2

Z R�

0

v�xr
� dr�

�
þ

2c�p
R�2

�Z R�

0

qv�x
qx� r

� dr�
�
¼ 0:

Considering then the dimensionless variable (i.e. definition (6.31)) and recalling
definition (6.20) along with (6.16), we obtain

1

cp

�qcp
qt

þ 3vx4
qcp

qx

�
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Dcp
Dt

¼ 2vrjr¼1;

i.e.

1

cp

Dcp

Dt
¼ 2vrjr¼1 ¼ 2ð1� fÞvpl; rjr¼1:ð6:66Þ

If b ¼ i, with i ¼ 1; . . . ;N, (solutes flowing through the membrane) we write
(see, e.g., [38])

J�
i; conv ¼ c�i v

�
pl; rjr�¼R� ; and J�

i;di¤ ¼ D�
i c

�
i

R�

�
1�

c�i;d
ĉc�i

�
;ð6:67Þ

where c�i;d is the concentration of the i th solute in the dialysate and D�
i the is the

membrane e¤ective di¤usivity, ½D�
i � ¼ cm2=s, relative to the i th solute. Then

equation (6.65) acquires the form
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qc�i
qt�

þ qc�i
qx�

� 2

R�2

Z R�

0

v�xr
� dr�

�

¼ 2c�i
R� ½v

�
r � v�pl; r�r�¼R�|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
� f

1�f
v�r ð6:17Þ

� 2D�
i c

�
i

R�2

�
1�

c�i;d
ĉc�i

�
:

Considering the dimensionless variables and (6.35), for any i ¼ 1; . . . ;N, we
obtain

1

ci

�qci
qt

þ 3vx4
qci

qx

�
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Dci
Dt

¼ �2
f

1� f
vrjr¼1 þDi

�
1� r

ðdÞ
i

ĉci

�" #
;

with r
ðdÞ
i given by (6.36). Recalling then (6.33) and (6.22) we have

1

ĉci

Dĉci

Dt
¼ �2Di

�
1� r

ðdÞ
i

ĉci

�
;

that is (6.34). So, the concentration in plasma of the b th solute decreases only
because of solute di¤usion through the membrane. The considerations presented
here generalize the classical Kedem–Katchalsky’s model [25]. A limitation of the
model consists in the fact that we have neglected the evolution of the concentra-
tions in the dialyzate (suppoing that the supply of fresh dialyzate is fast enough).
We plan to extend the model to include the dynamics of such quantities in a
future paper.
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[13] J. Coirer, Mécanique des Milieux Continus, Dunod, 1997.
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[16] R. Fåhraeus - T. Lindqvist, The viscosity of blood in narrow capillary tubes, A,
J. Physiol., 96, 362–368, 1931.

[17] A. Fasano - A. Farina, Modeling high flux hollow fibers dialyzers, Discrte and Con-
tinuous Dynamical Sistems, Series B, 17, 1903–1937, 2012.

[18] A. Fasano - R. Santos - A. Sequeira, Blood coagulation: a puzzle for biologists,

a maze for mathematicians, in Modelling Physiological Flows, Ambrosi D., Quarteroni
A., Rozza G., Eds., Springer Italia, to appear.

[19] M. Galach - A. Werynski, Mathematical modeling of renal replacement therapies,
Biocybernetics Biomed. Eng., 24, 3–18, 2004.

[20] A. C. Guyton, Textbook of Medical Physiology, Philadelphia, Saunders, 1986.

[21] J. Himmelfarb - T. A. Ikizler, Hemodialysis, N. Engl. J. Med., 363, 1833–1845,
2010.
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[53] M. Ursino - L. Colì - G. La Manna - M. Grilli Cicilioni - V. Dalmastri - A.

Giudicissi - P. Masotti - G. Avanzolini - S. Stefoni - V. Bonomini, A simple

mathematical model of intradialytic sodium kinetics: ‘‘in vivo’’ validation during

hemodialysis with constant or variable sodium, Int. J. Art. Organs, 19, 393–403, 1996.
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