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Abstract. — We study an elliptic problem with exponential nonlinearities describing the statis-

tical mechanics equilibrium of point vortices with variable intensities. For suitable values of the
physical parameters we exclude the existence of blow-up points on the boundary, we prove a mass

quantization property and we apply our analysis to the construction of minimax solutions.
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1. Introduction and main result

Motivated by the theory of hydrodynamic turbulence as developed by Onsager
[8, 17], we consider the problem:

�Du ¼ l
� euR

W eu
þ sg

eguR
W egu

�
in W

u ¼ 0 on qW;

8<
:ð1:1Þ

where l; s > 0, g a ½�1; 1Þ and WHR2 is a smooth bounded domain. Problem
(1.1) is derived by statistical mechanics arguments under a ‘‘deterministic’’
assumption on the point vortex intensities [3, 27]. More precisely, the equation
derived in [27] is given by

�Du ¼ ~ll

Z
½�1;1�

aeauR
W
eau dx

PðdaÞ in W

u ¼ 0 on qW;

8><
>:ð1:2Þ

where u is the stream function of the two-dimensional flow, P is a Borel proba-
bility measure defined on the interval ½�1; 1� describing the point vortex intensity
distribution and ~ll > 0 is a constant related to the inverse temperature. In the
special case PðdaÞ ¼ PgðdaÞ, where

PgðdaÞ ¼ td1ðdaÞ þ ð1� tÞdgðdaÞ;ð1:3Þ



and d1ðdaÞ, dgðdaÞ denote the Dirac measures concentrated at the points 1; g a
½�1; 1�, respectively, and t a ð0; 1�, problem (1.2) takes the form

�Du ¼ ~ll
�
t

euR
W eu dx

þ ð1� tÞg eguR
W egu dx

�
in W

u ¼ 0 on qW:

8<
:ð1:4Þ

Setting

l ¼ ~llt; s ¼ 1� t

t
;ð1:5Þ

problem (1.4) reduces to (1.1).
We observe that taking g ¼ �1 in problem (1.1) we obtain the sinh-Poisson

type problem derived in [19]:

�Du ¼ l
� euR

W
eu

� s
e�uR
W
e�u

�
in W

u ¼ 0 on qW;

8<
:ð1:6Þ

which has received a considerable interest in recent years, see [1, 10, 12, 13, 16,
20] and the references therein. In particular, the blow-up analysis for (1.6) has
been clarified by geometrical arguments involving constant mean curvature sur-
faces in [13]. However, such an approach seems di‰cult to extend to our case.

For s ¼ 0 problem (1.1) reduces to the standard mean field problem

�Du ¼ l
euR

W eu dx
in W

u ¼ 0 on qW;

8<
:ð1:7Þ

which has been extensively analyzed in view of its connections to di¤erential
geometry, physics and biology, see, e.g., [11]. However, even in the ‘‘positive
case’’ g a ð0; 1Þ, problem (1.1) does not necessarily exhibit the properties of a per-
turbation of (1.7). This fact may be seen, for example, by considering the optimal
constant for the Moser-Trudinger inequality associated to (1.1), see [21, 29] or
the proof of Lemma 3.2 below. In this respect, problem (1.1) significantly di¤ers
from its ‘‘stochastic’’ version derived in [14] and recently analyzed in [18, 22, 23,
24, 25, 26]. In fact, our aim in this article is to determine suitable smallness
conditions for jgj and s (see (1.8)–(1.9) below) which ensure that the nonlinearity
egu may indeed be treated as ‘‘lower-order’’ with respect to the ‘‘principal’’ term
eu. In particular, under such smallness conditions we prove the mass quantiza-
tion for blow-up solution sequences, we derive an improved Moser-Trudinger
inequality and we consequently obtain an existence result for solutions in the
supercritical range l > 8p.
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More precisely, for every fixed g satisfying 0 < jgj < 1=2 let

sg :¼
1� 2jgj
2g2

ð1:8Þ

and

ls; g :¼ min
16p

1þ 2sg2
;

4p

jgjð1þ jgjsÞ

� �
:ð1:9Þ

Our main result is the following.

Theorem 1.1. Assume that R2nW has a bounded component containing at least
one interior point. Fix 0 < jgj < 1=2 and 0 < s < sg. Then, there exists a solution
to Problem (1.1) for every l a ð8p; ls; gÞ.

We note that 8p < lg;s < 16p whenever 0 < jgj < 1=2 and s a ð0; sgÞ, see
Lemma 3.3 below.

Finally, we remark that problem (1.1) shares some similarity in structure
with Liouville systems and Toda-type systems. Indeed, setting v1 ¼ G � eu, v2 ¼

G � egu, a11 ¼ l

�Z
W

eu, a12 ¼ lsg

�Z
W

egu, a21 ¼ gl

�Z
W

eu, a22 ¼ g2sl

�Z
W

egu,

we obtain u ¼ lv1

�Z
W

eu dxþ lsgv2

�Z
W

egu and problem (1.1) takes the form

�Dvi ¼ expf
P

j¼1;2 a
ijvjg, i ¼ 1; 2, which is a system of Liouville type, as

analyzed in [4, 6]. On the other hand, setting w1 ¼ u, w2 ¼ gu, b11 ¼ l

�Z
W

ew1 ,

b12 ¼ lsg

�Z
W

ew2 , b21 ¼ lg

�Z
W

ew1 , b22 ¼ lsg2
�Z w2

e

, we obtain the system

�Dwi ¼
P

j¼1;2 b
ijewj j ¼ 1; 2, which has a ‘‘Toda-like’’ structure when g < 0,

see [1] and the references therein. However, Theorem 1.1 does not follow directly
from the results for systems of Liouville and Toda type mentioned above, due
to the substantially di¤erent assumptions for the coe‰cients ðaijÞ and ðbijÞ,
i; j ¼ 1; 2.

This note is organized as follows. In Section 2 we use Brezis-Merle estimates
[2] to exclude the existence of blow-up points on the boundary and to derive a
mass quantization property, for suitably small values of g and s. We note that
the exclusion of boundary blow-up points could also be derived by extending
the argument in [22]. Here, we provide a simple ad hoc proof which exploits the
smallness assumptions on jgj and s. In Section 3 we derive an improved Moser-
Trudinger type inequality. We prove Theorem 1.1 by suitably adapting an argu-
ment in [7] and by applying the blow-up results derived in Section 2.

Notation

Henceforth, all integrals are taken with respect to the Lebesgue measure. We may
omit the integration variables if they are clear from the context. We denote by C
a general constant whose actual value may vary from line to line.
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2. Blow-up results

In this section we show that for suitably small values of jgj and s the blow-up
analysis for problem (1.1) is similar to the blow-up analysis for the standard
mean field equation (1.7). We first exclude the existence of boundary blow-up
points. Then, we prove a mass quantization property.

More precisely, let ðun; lnÞ be a solution sequence for (1.1) with ln ! l0 b 0.
We define

Se ¼ fx0 a W : bxn ! x0 such that unðxnÞ !elg

and we set S ¼ Sþ AS�.

2.1. Boundary blow-up exclusion

In the case where g > 0 the boundary blow-up is readily excluded in view of the
moving plane argument in [9], p. 223. Therefore, throughout this subsection, we
consider the ‘‘asymmetric sinh-case’’ of (1.1), namely

�Du ¼ l
� euR

W
eu

� sjgj e�jgjuR
W e�jgju

�
in W

u ¼ 0 on qW:

8<
:ð2:1Þ

We make the following assumption:

lð1þ sjgjÞ < 4p

jgj :ð2:2Þ

In this subsection we show the following.

Proposition 2.1. Let ðun; lnÞ be a solution sequence for problem (2.1) with
ln ! l0 b 0 and assume that l0 satisfies (2.2). Then, SB qW ¼ j.

We first reduce problem (2.1) to a mean field type problem with smooth
weight function. Let G ¼ Gðx; yÞ be the Green’s function defined for x; y a W
by

�DGð�; yÞ ¼ dy in W

Gð�; yÞ ¼ 0 on qW:

�

Let u :¼ uþ � u�, where

uþ ¼ G � l euR
W
eu

u� ¼ G � lsjgj e�jgjuR
W
e�jgju :
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We observe that

�Duþ ¼ l
hðxÞeuþR
W hðxÞeuþ in W

uþ ¼ 0 on qW;

8<
:

where hðxÞ ¼ e�u� satisfies khk
C 1; aðWÞ aC, hC 1 on qW. In fact, we have

�Du� ¼ lsjgj e�jgjuR
W e�jgju in W

u� ¼ 0 on qW;

8<
:

where lsjgj e�jgjuR
W
e�jgju

is Lq-bounded for some q > 1. To see this fact, recall from [2]

that if u satisfies:

�Du ¼ f in W

u ¼ 0 on qW;

�

for some f a L1ðWÞ, then for any small d > 0 we have

Z
W

exp
ð4p� dÞ
k f kL1ðWÞ

juj
( )

a
4p2

d
ðdiamWÞ2:ð2:3Þ

Hence, by elliptic estimates, ku�kLlðWÞ aC. Now we write the equation for u� in
the form

�Du� ¼ lsjgj e
jgju��jgjuþR
W e�jgju in W

u� ¼ 0 on qW

8<
:ð2:4Þ

and we observe that since uþ b 0 we have e�jgjuþ a 1. Hence, the right hand side
in (2.4) is LlðWÞ-bounded. It follows that ku�kW 2; pðWÞ aC for every p a ð1;þlÞ.
In particular, ku�kC 1; aðWÞ aC.

Proof of Proposition 2.1. We adapt an argument of [9] p. 223 to our case.
Let x0 a qW and let Dr be a closed disc touching W only at x0. For convenience
we assume Dr ¼ Dð0; rÞ and x0 ¼ ðr; 0Þ. Then, the inversion mapping x 7! y ¼
r2x=jxj2 fixes the boundary of Dr and maps W to a region yðWÞ contained inside
Dr. Setting vðyÞ ¼ uþðxÞ, recalling that

Dx ¼
r2

jyj4
�y21 þ y22 �2y1y2
�2y1y2 y21 � y22

� �
; DT

x Dx ¼
r4

jyj4
I ;ð2:5Þ
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where I denotes the identity mapping, we obtain the following equation for v:

Dvþ r
r4

jyj4
hðxðyÞÞev ¼ 0 in yðWÞ:

Claim. For every x0 a qW there exist rðx0Þ > 0, dðx0Þ > 0 and d 0ðx0Þ > 0 such
that the function

HðyÞ ¼ r4

jyj4
hðxðyÞÞ

is decreasing in y1-direction in the set

rðx0Þ
1þ dðx0Þ

a jyja rðx0Þ; y1 > 0; jy2ja d 0ðx0Þ
� �

H yðWÞ;

provided that ra rðx0Þ.

Proof of Claim. In view of (2.5) we compute:

qy1
1

jyj4
¼ � 4y1

jyj6

qy1hðxðyÞÞ ¼
r2

jyj4
fðqx1hðxðyÞÞÞð�y21 þ y22Þ þ ðqx2hðxðyÞÞÞð�2y1y2Þg

and therefore

1

r4
qy1HðyÞ

¼ 1

jyj6
�4y1hðxðyÞÞ þ

r2

jyj2
½ðqx1hðxðyÞÞÞð�y21 þ y22Þ þ ðqx2hðxðyÞÞÞð�2y1y2Þ�

( )

¼ 1

jyj6
�y1 4hðxðyÞÞ þ r2

jyj2
ðqx1hÞy1

" #
þ r2

jyj2
y22ðqx1hÞ þ

r2

jyj2
ðqx2hÞð�2y1y2Þ

( )
:

We estimate, for jyjb r=ð1þ dÞ, jy2j < d 0:

r2

jyj2
ðqx1hÞy1

�����
�����a ð1þ dÞ2khk

C 1ðWÞr

r2

jyj2
y22ðqx1hÞ

�����
�����a ð1þ dÞ2khk

C 1ðWÞðd
0Þ2

r2

jyj2
ðqx2hÞð�2y1y2Þ

�����
�����a 2ð1þ dÞ2khk

C 1ðWÞrd
0:
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By choosing r ¼ rðx0Þ su‰ciently small, we achieve

4hðxðyÞÞ þ r2

jyj2
ðqx1hÞy1 b 2:

Then, for d 0 su‰ciently small, we have

�y1 4hðxðyÞÞ þ r2

jyj2
ðqx1Þy1

" #
þ r2

jyj2
y22ðqx1hÞ þ

r2

jyj2
ðqx2hÞð�2y1y2Þ

a�2y1 þ ð1þ dÞ2khk
C 1ðWÞðd

0Þ2 þ 2ð1þ dÞ2khk
C 1ðWÞrd

0

a� r

2
< 0:

Now the argument in [9] concludes the proof. r

2.2. Mass quantization

In view of Proposition 2.1 we have SB qW ¼ j. Therefore, by local blow-up
results from [15, 23] we know that setting

m1ðdxÞ :¼ l
euR
W
eu

dx; mgðdxÞ :¼ l
eguR
W
egu

dx

we have

m1ðdxÞ *
� X

p AS

m1ðpÞdpðdxÞ þ r1ðxÞ dx

mgðdxÞ *
� X

p AS

mgðpÞdpðdxÞ þ rgðxÞ dx:
ð2:6Þ

Lemma 2.1. At every fixed p a S we have the quadratic identity:

8pðm1ðpÞ þ smgðpÞÞ ¼ ðm1ðpÞ þ sgmgðpÞÞ2:ð2:7Þ

Proof. We recall from [15] that if ðuk; ~llkÞ is a solution sequence for (1.4) with

~ll
eukR
W euk

*
� X

p AS

~mm1ðpÞdpðdxÞ þ ~rr1ðxÞ; ~ll
egukR
W eguk

*
� X

p AS

~mmgðpÞdpðdxÞ þ ~rrgðxÞ;

where dpðdxÞ denotes the Dirac mass centered at p a W, then the following
relation holds:

8pðt ~mm1ðpÞ þ ð1� tÞ ~mmgðpÞÞ ¼ ðt ~mm1ðpÞ þ ð1� tÞg ~mmgðpÞÞ2;
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for every p a S. In view of (1.5) we have t ~mm1ðpÞ ¼ m1ðpÞ and ð1� tÞ ~mmgðpÞ ¼
smgðpÞ. Hence, we derive the asserted identity. Alternatively, we may derive
identity (2.7) by applying the Pohozaev identity in a standard way. r

Lemma 2.2. Let un be a solution sequence for (1.1). For any g a ½�1; 1� we have
Z
W

egun b c0 > 0:

Proof. If g > 0, we have un b 0 in W by the maximum principle and therefore

Z
W

egun b jWj > 0:

Therefore, we assume g < 0. We note that since kunkW 1; q
0

ðWÞ aC for any

q a ½1; 2Þ, there exists u0 a W
1;q
0 ðWÞ such that un ! u0 weakly in W

1;q
0 ðWÞ,

strongly in LpðWÞ for any pb 1 and a.e. in W. In view of Fatou’s lemma, we
derive

lim inf
n!l

Z
W

egun b

Z
W

egu0 > 0: r

Proposition 2.2 (Mass quantization). Let ðun; lnÞ be a solution sequence for
(1.1) with ln ! l0. Assume that jgj < 1=2 and s a ð0; sgÞ, where sg is defined in
(1.8). Moreover, assume that

8p < l0 <
4p

jgjð1þ jgjsÞ :ð2:8Þ

Then, we have mgðpÞ ¼ 0 and consequently m1ðpÞ ¼ 8p, r1C 0 and l0 a 8pN.

Proof. Throughout this proof we omit the subscript n. Similarly as above,

in view of (2.3) with f ¼ l
�

euR
W
eu
þ sg e guR

W
e gu

�
, k f kL1ðWÞ a lð1þ sjgjÞ, we have

that kegukLqðWÞ is bounded if 1 < q < 4p=½ljgjð1þ sjgjÞ�. The existence of such
a q > 1 follows from (2.8). Moreover, since by assumption we have l > 8p, we
derive that necessarily

8p <
4p

jgjð1þ sjgjÞ :

This inequality holds in view of the assumption s a ð0; sgÞ. Therefore we
have that 1 < 4p=½ljgjð1þ sjgjÞ� and kegukLqðWÞ is bounded for some q > 1.
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Hence, mgðpÞ ¼ 0. Now (2.7) implies m1ðpÞ ¼ 8p. We decompose u ¼ w1 þ w2,
with

�Dw1 ¼ l
euR
W eu

in W

w1 ¼ 0 on qW;

8<
:

and

�Dw2 ¼ sgl
eguR
W egu

in W

w2 ¼ 0 on qW:

8<
:

Then, setting

f ¼ sgl
eguR
W egu

we have kfkLqðWÞ aC for some q > 1 and therefore kw2kLlðWÞ aC. It follows
that eu ¼ hew1 with h ¼ ew2 b e infW w2 b e�CðlÞ > 0. Moreover,

w1 ! G � ðm1ðpÞdp þ r1Þ ¼ 4 log
1

jx� pj þ oþ G � r1

with o smooth in the closure of a neighbourhood U of p. Therefore, by Fatou’s
lemma:

lim inf

Z
W

eu b

Z
W

lim inf eu b e�CðlÞ
Z
U

eo
dx

jx� pj4
¼ þl:

Hence r1C 0 since u is locally uniformly bounded in WnS.
Now, the first equation in (2.6) implies the mass quantization l a 8pN. r

3. Proof of Theorem 1.1

In this section we prove Theorem 1.1 by suitably adapting a variational argument
due to [7]. The variational functional for Problem (1.1) is given by:

JlðuÞ ¼
1

2

Z
W

j‘uj2 dx� l ln

Z
W

eu dx� ls ln

Z
W

egu dx:

3.1. An improved Moser-Trudinger inequality

We observe that the standard well-known improved Moser-Trudinger inequality
[5] readily implies an improved inequality for Jl. For any fixed a0; d0 > 0 we
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consider the set

Aa0;d0 :¼ u a H 1
0 ðWÞ : bW1;W2 HW s:t:

ðiÞ distðW1;W2Þb d0

ðiiÞ
R
Wi
eu dxR

W eu dx
b a0; i ¼ 1; 2

8><
>:

9>=
>;:

Lemma 3.1 (Improved Moser-Trudinger Inequality). The functional Jl is
bounded from below on Aa0;d0 if

l <
16p

1þ 2sg2
:ð3:1Þ

Proof. For � a ð0; 1Þ to be fixed later we decompose:

JlðuÞ ¼ ð1� �Þ 1

2

Z
W

j‘uj2 dx� l

1� �
ln

Z
W

eu
� �

ð3:2Þ

þ �

g2
1

2

Z
W

j‘guj2 dx� lsg2

�
ln

Z
W

egu
� �

:¼ K 1ðuÞ þ K gðuÞ

In view of the Improved Moser-Trudinger inequality, the functional K 1 is
bounded below on Aa0;d0 if

l

1� �
< 16p:ð3:3Þ

On the other hand, the functional K g is bounded below on H 1
0 ðWÞ if

lsg2

�
a 8p:ð3:4Þ

Considering (3.3) and (3.4) we can take a suitable � a ð0; 1Þ satisfying

� < 1� l

16p
and �b

lsg2

8p

if

lsg2

8p
< 1� l

16p

which is equivalent to (3.1). r

Remark 3.1. Actually, we expect boundedness below of Jl for all l a ð8p; 16pÞ.
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Lemma 3.2. For every 0 < jgj < 1=2 and for every 0 < s < ð1� 2jgjÞ=ð2g2Þ ¼
sg, the functional Jl is bounded below on H 1

0 ðWÞ if and only if la 8p.

Proof. We rewrite

JlðuÞ ¼ ~JJ~llðuÞ ¼
1

2

Z
W

j‘uj2 dx� ~llt ln

Z
W

eu dx� ~llð1� tÞ ln
Z
W

egu dx:ð3:5Þ

where:

s ¼ 1� t

t
and ~ll ¼ l

t
t a ð0; 1�:

We use a result from [21] for the functionals of the form

JP
~ll
ðuÞ ¼ 1

2

Z
W

j‘uj2 dx� ~ll

Z
I

�
log

Z
W

eau dx
�
PðdaÞ;

u a H 1
0 ðWÞ. Note that JP

~ll
is the Euler-Lagrange funtional for problem (1.2). In

view of Theorem 4 in [21] (see also [28]) we have that ~JJ~ll is bounded below if
and only if ~lla lP where

lP ¼ 8p inf
PðKeÞ

ð
R
Ke

aPðdaÞÞ2
;KeH IeB suppP

( )
;

Iþ ¼ ½0; 1�, I� ¼ ½�1; 0Þ and P ¼ Pg is defined by (1.3), i.e., PgðdaÞ ¼ td1ðdaÞþ
ð1� tÞdgðdaÞ.

Assume gb 0. In this case, we have

t
PgðKÞ

ð
R
K
aPgðdaÞÞ2

¼
1; if K ¼ f1g

t
g2ð1�tÞ ¼

1
sg2

; if K ¼ fgg
t

ðtþgð1�tÞÞ2
¼ 1þs

ð1þsgÞ2
; if K ¼ fg; 1g:

8>><
>>:

Hence, if g > 0 we have tlP ¼ 8p whenever 0 < sa 1�2g

2g2
¼ sg.

Analogously, for g < 0 we have

t
PgðKÞ

ð
R
K
aPgðdaÞÞ2

¼
1; if K ¼ f1g

t
g2ð1�tÞ ¼

1
sg2

; if K ¼ fgg:

(

Hence, if g < 0 we have that tlP ¼ 8p if 0 < s < sg. r

Lemma 3.3. Let 0 < jgj < 1=2 and let 0 < s < sg, where sg is defined in (1.8).
Then, we have 8p < lg;sa 16p, where lg;s is defined in (1.9).
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Proof. The upper bound is clear. Therefore, we only prove the lower bound
lg;s > 8p. We readily check that

16p

1þ 2sg2
> 8p if and only if s <

1

2g2

and

4p

jgjð1þ sjgjÞ > 8p if and only if s < sg ¼
1� 2jgj
2g2

<
1

2g2
:

The claim follows. r

For every u a H 1
0 ðWÞ we consider the measure:

mu ¼
euR

W eu dx
dx a MðWÞ

and the corresponding ‘‘center of mass’’:

xmðuÞ ¼
Z
W

x dmu a R2:

Lemma 3.4. Let l a
	
8p; 16p

1þ2sg2



and let fungHH 1

0 ðWÞ be a sequence such that
JlðunÞ ! �l and xmðunÞ ! x0 a R2: Then, x0 a W and

mun * dx0 weakly � in CðWÞ0:

Proof. For every fixed r > 0 we denote by QnðrÞ the concentration function of
mn, i.e.

QnðrÞ ¼ sup
x AW

Z
Bðx; rÞBW

mn:

For every n, there exists ~xxn a W such that

Qnðr=2Þ ¼
Z
Bð~xxn; r=2ÞBW

mn:

Upon taking a subsequence, we have that ~xxn ! ~xx0 a W.
Now, let us set

Wn
1 ¼ Bð~xxn; r=2ÞBW and Wn

2 ¼ WnBð~xxn; rÞ;

so that

distðWn
1 ;W

n
2 Þb r=2:
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Since JlðunÞ ! �l and since l < 16p
1þ2sg2

, in view of (3.2) necessarily we have
K 1ðunÞ ! �l. Therefore, in view of the standard Improved Moser-Trudinger
inequality [5], we conclude that

minfmnðWn
1 Þ; mnðWn

2 Þg ! 0:

In particular, minfQnðr=2Þ; 1� QnðrÞga minðmnðWn
1 Þ; mnðWn

2 ÞÞ ! 0.
On the other hand, for every fixed r > 0 let kr a N be such that W is covered

by kr balls of radius r=2. Then, 1 ¼ mnðWÞa krQnðr=2Þ, so that Qnðr=2Þb k�1
r for

every n. We conclude that necessarily QnðrÞ ! 1 as n ! l. Since r > 0 is arbi-
trary, we derive in turn that 1� Qnðr=2Þ ¼ mnðWnBð~xxn; r=2ÞÞ ! 0 as n ! l. That

is, mun * d~xx0 . It follows that xmðunÞ ¼
Z
W

x dmn ! ~xx0 ¼ x0 a W, as asserted. r

At this point, in order to prove Theorem 1.1, we shall adapt a construc-
tion in [7]. Let G1 HW be a non-contractible curve which exists since W is
non-simply connected. Let D ¼ fðr; yÞ : 0a r < 1; 0a y < 2pg be the unit disc.
Define

Dl :¼ h a CðD;H 1
0 ðWÞÞ

ðiÞ lim
r!1

sup
y A ½0;2pÞ

Jlðhðr; yÞÞ ¼ �l

ðiiÞ xmðhðr; yÞÞ can be extended continuously to �DD

ðiiiÞ xmðhð1; �ÞÞ is one-to-one from qD onto G1

��������

9>>=
>>;

8>><
>>:

Lemma 3.5. For every l a ð8p; 16pÞ the set Dl is non-empty.

Proof. Let g1ðyÞ : ½0; 2pÞ ! G1 be a parametrization of G1 and let e0 > 0 be suf-
ficiently small so that Bðg1ðyÞ; e0ÞHW. Let jyðxÞ ¼ e�1

0 ðx� g1ðyÞÞ so that
jyðBðg1ðyÞ; e0ÞÞ ¼ Bð0; 1Þ. We define ‘‘truncated Green’s function’’:

VrðX Þ ¼
4 log

1

1� r
for X a Bð0; 1� rÞ

4 log
1

jX j for X a Bð0; 1ÞnBð0; 1� rÞ

8>>><
>>>:

and

vr;yðxÞ ¼
0 for x a WnBðg1ðyÞ; e0ÞÞ
VrðjyðxÞÞ for x a Bðg1ðyÞ; e0Þ:

�

We set

hðr; yÞðxÞ ¼ vr;yðxÞ; x a W:ð3:6Þ
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The function h defined in (3.6) satisfies h a Dl. To see that h verifies the
(i)-condition it is su‰cient to note thatZ

W

egh dxb jWj � pe0 > 0:

Then the claim follows by [7]. r

Define

cl :¼ inf
h ADl

sup
ðr;yÞ AD

Jlðhðr; yÞÞ:ð3:7Þ

We shall prove that cl defines a critical value for Jl using the Struwe Monot-
onicity Trick contained in [26], Proposition 4.1.

In view of Lemma 3.5, we have cl < þl.

Lemma 3.6. For any l a ð8p; lg;sÞ, cl > �l.

Proof. Denote by B a bounded component of R2nW with at least an interior
point and such that G1 encloses B. By continuity and by the (iii)-property defining
Dl, we have xmðhðDÞÞIB for all h a Dl. By contradiction, assume that cl ¼
�l. Then, there exists a sequence fhngHDl such that supðr;yÞ AD Jlðhnðr; yÞÞ !
�l. Let x0 be an interior point of B. For every n we take ðrn; ynÞ a D such

that xmðhnðrn; ynÞÞ ¼ x0. In view of Lemma 3.4, it should be x0 a B
�
BW ¼ j, a

contradiction. r

At this point we set

GðuÞ ¼ ln

Z
W

eu dxþ s ln

Z
W

egu dxð3:8Þ

so that our functional (3.5) takes the form

JlðuÞ ¼
1

2

Z
W

j‘uj2 � lGðuÞ:

Lemma 3.7. For 8p < l1 a l2 < 16p, we have Dl1 JDl2 .

Proof. It is su‰cient to note that whenever JlðuÞa 0 it is GðuÞb 0, with G
given by (3.8) and this implies that

Jl1ðuÞb Jl2ðuÞ for 8p < l1 a l2 < 16p if Jl1ðuÞa 0:

Hence, Dl1 JDl2 for every 8p < l1 a l2 < 16p. r
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Lemma 3.8. The function G : H 1
0 ðWÞ ! R defined by (3.8) satisfies:

1) G a C2ðH 1
0 ðWÞ;RÞ

2) G 0 is compact
3) G 00ðuÞj; jh ib 0 for every u; j a H 1

0 ðWÞ, where 3� ; �4 is the L2-inner product.

Proof. For every u; j a H 1
0 ðWÞ we have:

G 0ðuÞj ¼
R
W jeu dxR
W eu dx

þ s

R
W gjegu dxR
W egu dx

and therefore the compactness of G 0 follows by the compactness of the Moser-
Trudinger embedding. Moreover, for every u; j a H 1

0 ðWÞ we have, using the
Schwarz inequality,

G 00ðuÞj; jh i ¼ 1	R
W
eu dx


2 �Z
W

euj2 dx
��Z

W

eu dx
�
�
�Z

W

euj dx
�2� �

þ g2s	R
W egu dx


2 �Z
W

eguj2 dx
��Z

W

egu dx
�
�
�Z

W

eguj dx
�2� �

b 0:

r

Now we are able to prove the following.

Proposition 3.1. Let s > 0 and assume that (1.8) holds. For almost every
l a ð8p; lg;sÞ, cl > �l given by (3.7) is a saddle-type critical value for Jl.

Proof of Proposition 3.1. In view of Lemma 3.8, Lemma 3.5, Lemma 3.6
and Lemma 3.7, we may apply the well known Struwe’s monotonicity trick to
derive the existence of the desired critical value. See [7] or [26], Proposition 4.1
with H ¼ H 1

0 ðWÞ, V ¼ D, A ¼ �l and Fl ¼ Dl. r

Proof of Theorem 1.1 (Completion by blow-up results). We fix l0 a ð8p; lg;sÞ.
In view of Proposition 3.1 there exists ln ! l0 such that problem (1.1) with
l ¼ ln admits a solution un. By the blow up analysis as stated in Proposition
2.2, we have the compactness of solution sequences. Therefore, up to sub-
sequences, we obtain that un ! u0 with u0 a solution to (1.1) with l ¼ l0. r
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con università ed istituti stranieri per la mobilità breve di docenti, ricercatori e studiosi of Università
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