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ABSTRACT. — We study an elliptic problem with exponential nonlinearities describing the statis-
tical mechanics equilibrium of point vortices with variable intensities. For suitable values of the
physical parameters we exclude the existence of blow-up points on the boundary, we prove a mass
quantization property and we apply our analysis to the construction of minimax solutions.

KEY worDs: Mean field equation, blow-up solutions, turbulent Euler flow

MATHEMATICS SUBJECT CLASSIFICATION: 35J91, 35B44, 35J20

1. INTRODUCTION AND MAIN RESULT

Motivated by the theory of hydrodynamic turbulence as developed by Onsager
[8, 17], we consider the problem:

e
Au =

(1.1) B (er“+Jyf )
u=>0 on 0Q),

where 1,6 >0, y e [-1,1) and Q = R? is a smooth bounded domain. Problem
(1.1) is derived by statistical mechanics arguments under a ‘“‘deterministic”
assumption on the point vortex intensities [3, 27]. More precisely, the equation
derived in [27] is given by

—Au= 1 / do) in Q
(1.2) n er‘”dx P(da)

u=>0 on 0Q),
where u is the stream function of the two-dimensional flow, Z is a Borel proba-
bility measure defined on the interval [—1, 1] describing the point vortex intensity

distribution and 4 > 0 is a constant related to the inverse temperature. In the
special case #(do) = #,(dx), where

(1.3) P,(do) = 101 (do) + (1 — 7)o, (da),
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and 0;(dx), 0,(dx) denote the Dirac measures concentrated at the points 1,y €
[—1, 1], respectively, and 7 € (0, 1], problem (1.2) takes the form

u yu

= e .
(1.4) —Au:i(r—fgeudx—l-(l—T)yifgewdx) in Q
u=>0 on 0Q.
Setting
- 1 —
(1.5) A=lt, o= T,
T

problem (1.4) reduces to (1.1).
We observe that taking y = —1 in problem (1.1) we obtain the sinh-Poisson
type problem derived in [19]:

e’ e .
—Auzl(p—gp) n Q

u=>0 on 0Q,

(1.6)

which has received a considerable interest in recent years, see [1, 10, 12, 13, 16,

20] and the references therein. In particular, the blow-up analysis for (1.6) has

been clarified by geometrical arguments involving constant mean curvature sur-

faces in [13]. However, such an approach seems difficult to extend to our case.
For ¢ = 0 problem (1.1) reduces to the standard mean field problem

u

Au=)—
(1.7) 4T evdx

u=20 on 0Q),

in Q

which has been extensively analyzed in view of its connections to differential
geometry, physics and biology, see, e.g., [11]. However, even in the “positive
case” y € (0, 1), problem (1.1) does not necessarily exhibit the properties of a per-
turbation of (1.7). This fact may be seen, for example, by considering the optimal
constant for the Moser-Trudinger inequality associated to (1.1), see [21, 29] or
the proof of Lemma 3.2 below. In this respect, problem (1.1) significantly differs
from its “stochastic”” version derived in [14] and recently analyzed in [18, 22, 23,
24, 25, 26]. In fact, our aim in this article is to determine suitable smallness
conditions for |y| and o (see (1.8)—(1.9) below) which ensure that the nonlinearity
e’ may indeed be treated as “lower-order” with respect to the “principal” term
e". In particular, under such smallness conditions we prove the mass quantiza-
tion for blow-up solution sequences, we derive an improved Moser-Trudinger
inequality and we consequently obtain an existence result for solutions in the
supercritical range A > 8.
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More precisely, for every fixed y satisfying 0 < |y| < 1/2 let

1 -2y
(1.8) g, = 5
and
167 drn
1.9 Ao i= miIn ,
1) s=mind S B E)

Our main result is the following.

THEOREM 1.1. Assume that R*\Q has a bounded component containing at least
one interior point. Fix 0 < |y| < 1/2 and 0 < ¢ < g,. Then, there exists a solution
to Problem (1.1) for every A € (87, Ay ).

We note that 87 < 4, , < 16m whenever 0 < |y| < 1/2 and o € (0,0,), see
Lemma 3.3 below.

Finally, we remark that problem (1.1) shares some similarity in structure
with Liouville systems and Toda-type systems. Indeed, setting vy = G x ¥, v, =

G*eV”, a“: «// eu> au:}ﬂy// eyu7 a21:y;L// eu, a22:y20.;b// eyuJ
Q Q Q Q

we obtain u = Av; / / e" dx + Aoy, / / e’ and problem (1.1) takes the form
—Av; =exp{}_;_; ,a Yv;}, i=1,2, which is a system of Liouville type, as
analyzed in [4, 6]. On the other hand, setting w; = u, wy = yu, b'! = / /

—/lay// e, bZI—/ly// e, b2 = joy // , we obtain the system
Q e

—Aw; = bie" j=1,2, which has a “Toda-like” structure when y < 0,
see [1] and the references therein. However, Theorem 1.1 does not follow directly
from the results for systems of Liouville and Toda type mentioned above, due
to the substantially different assumptions for the coefficients (¢”) and (b%),
i,j=1,2.

This note is organized as follows. In Section 2 we use Brezis-Merle estimates
[2] to exclude the existence of blow-up points on the boundary and to derive a
mass quantization property, for suitably small values of y and . We note that
the exclusion of boundary blow-up points could also be derived by extending
the argument in [22]. Here, we provide a simple ad hoc proof which exploits the
smallness assumptions on |y| and ¢. In Section 3 we derive an improved Moser-
Trudinger type inequality. We prove Theorem 1.1 by suitably adapting an argu-
ment in [7] and by applying the blow-up results derived in Section 2.

Notation

Henceforth, all integrals are taken with respect to the Lebesgue measure. We may
omit the integration variables if they are clear from the context. We denote by C
a general constant whose actual value may vary from line to line.
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2. BLOW-UP RESULTS

In this section we show that for suitably small values of |y| and ¢ the blow-up
analysis for problem (1.1) is similar to the blow-up analysis for the standard
mean field equation (1.7). We first exclude the existence of boundary blow-up
points. Then, we prove a mass quantization property.

More precisely, let (u,, 4,) be a solution sequence for (1.1) with 4, — 49 > 0.
We define

Sy = {x0 € Q: Ix, — xo such that u,(x,) — +oo}
and we set ¥ = %, U ..

2.1. Boundary blow-up exclusion

In the case where y > 0 the boundary blow-up is readily excluded in view of the
moving plane argument in [9], p. 223. Therefore, throughout this subsection, we
consider the “asymmetric sinh-case” of (1.1), namely

e” efly‘“ .
2.1) —Au = l(—fg i aly| 7&2 e—lylu) in Q
u=20 on 0Q.

We make the following assumption:
4
(2.2) M1 +aly)) < ﬁ

In this subsection we show the following.

ProrosiTION 2.1. Let (uy,Ay) be a solution sequence for problem (2.1) with
Jn — Ao = 0 and assume that Ay satisfies (2.2). Then, & 0 0Q = 0.

We first reduce problem (2.1) to a mean field type problem with smooth
weight function. Let G = G(x, y) be the Green’s function defined for x,y € Q
by

—-AG(-,y) =0, InQ
G(,y)=0 on 0Q.

Letu:=u, —u_, where

u
l/l+ - G * A‘ ¢
Jae"
=yl
u_ = Gx* oy ¢
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We observe that

h(x)e”+

fQ x)ets
up =0 on 0Q,

—Au, = in Q

where h(x) = e satisfies ||h||cl~7~(ﬁ) < C, h=1 on 0Q. In fact, we have

eIl
—Au_ = io‘|y|m in Q

u =0 on 09,

ol

V|f

that if u satisfies:

where Ao

- is L9-bounded for some ¢ > 1. To see this fact, recall from [2]

{—Au:f in Q
u=>~0 on 0Q),

for some f e L'(Q), then for any small 6 > 0 we have

an-o) \ 4
(2.3) /exp{”f”L] |u|}£ 5 (diam Q).

Hence, by elliptic estimates, [[u_||;.q) < C. Now we write the equation for u_ in
the form

ol Iyl

Jq e

u_- =20 on 0Q

(2.4) —Au_ = Jaly| in Q

and we observe that since u; > 0 we have e "+ < 1. Hence, the right hand side
in (2.4) is L~ (Q)-bounded. It follows that [[u_|| 2, q) < C for every p € (1, +0).
In particular, [ju_[;1.g < C

PROOF OF PROPOSITION 2.1. We adapt an argument of [9] p. 223 to our case.
Let xo € 0Q and let D, be a closed disc touching Q only at xg. For convenience
we assume D, = D(0,r) and xo = (r,0). Then, the inversion mapping x — y =
r2x/|x|* fixes the boundary of D, and maps Q to a region y(Q) contained inside
D,. Setting v(y) = u™(x), recalling that

2 4

(25) D‘C:r_<_y12+y% —22)71)%)’ DTDx:r—[,
ot 2 i » o
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where I denotes the identity mapping, we obtain the following equation for v:

4
Av —|—p|r7h(x(y))e” —0 inyQ).
y

CLAIM. For every xq € 0Q there exist r(xp) > 0, 5(xo) > 0 and &'(xp) > 0 such
that the function

H(y) h(x(y))

v
is decreasing in y;-direction in the set
{50 <ol < rtan)n > 0.3l 970 p < 5(@D),
1 +0(xo)
provided that r < r(xo).

PrOOF OF CLAIM. In view of (2.5) we compute:
1 . 4y1
L6
|yl

Y1 4
|y

2
Oy h(x(y)) = o (D h(x(P)) (=1 + 33) + (nh(x(1))) (=21 32)}
and therefore

1
r_46)’1H(y)

;,2
- ﬁ {—4y1h(x(J/)) Al + D) + <6xzh<x<y>>><—2y1y2>1}

2

L {—yl [mx(y» + 2 o
|y |yl

r2 5 r2
+—13(0nh) + —5
|yl |yl

(%h)(—2y1yz)}~

We estimate, for |y| > r/(1 +9), |y2] <"

2
7
— (O )| < (1 +5>2||h||c1(ﬁ)r
|yl
}’2 2 2 "2
WJ’z(axlh) < (1+9) ||h||c1(ﬁ)(5 )
o 2 /
W(Oth)(—2y1yz) <2(1+9) Hh”cl(ﬁ)ré :
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By choosing r = r(xy) sufficiently small, we achieve

2

4h(x(y)) + W (Onh)y1 =2

Then, for 6" sufficiently small, we have

2 2 2

13 r 13
—y1 |4h(x(y)) +W(axl)yl +WJ’§(5xlh) +W(axzh)(—2y1yz)

< =201+ (14+0) Al ¢ (") + 21 +6) ] o1 30

’
<-—-=<0.
=75 <

Now the argument in [9] concludes the proof. O

2.2. Mass quantization

In view of Proposition 2.1 we have % n 0Q = (. Therefore, by local blow-up
results from [15, 23] we know that setting

u eyu

1y (dx) = iﬁdx, w(dx) = imdx
we have
Zml p(dx) +r1(x) dx
(2.6) e
Zm}  (dx) + r,(x) dx.
pes

LEMMA 2.1. At every fixed p € & we have the quadratic identity:

(2.7) 8(m1 (p) + om,y(p)) = (mi(p) + aym,(p))*.
PROOF. We recall from [15] that if (1, A;) is a solution sequence for (1.4) with
~ eyuk

er“kA Zrm »(dx) +71(x), o Zmy o (dx) +7,(x),

pes

where 6,(dx) denotes the Dirac mass centered at p € Q, then the following
relation holds:

8n(winy (p) + (1 = )iy (p)) = (v (p) + (1 = )yiny(p)),
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for every p € &. In view of (1.5) we have i (p) = m(p) and (1 — t)m,(p) =
om,(p). Hence, we derive the asserted identity. Alternatively, we may derive
identity (2.7) by applying the Pohozaev identity in a standard way. O

LEMMA 2.2. Let u, be a solution sequence for (1.1). For any y € [—1,1] we have

/ e > ¢y > 0.
Q

Proor. Ify > 0, we have u, > 0 in Q by the maximum principle and therefore

/e"/“n > Q| > 0.
Q

Therefore, we assume y < 0. We note that since ||u,,||W1 “(Q )< C for any

g €[1,2), there exists uj € W 7(Q) such that u, — uy weakly in W 1Q),
strongly in L?(Q) for any p > 1 and a.e. in Q. In view of Fatou’s lemma we
derive

Iiminf | ™ > /ey”" > 0. ]
Q Q

n— oo

PRrROPOSITION 2.2 (Mass quantization). Let (u,, 4,) be a solution sequence for
(1.1) with 4, — Ag. Assume that |y| < 1/2 and o € (0,0,), where o, is defined in
(1.8). Moreover, assume that

dr

2.8 < g < ——m——.
@8) "<+ o)

Then, we have m,(p) = 0 and consequently my(p) = 8xn, r = 0 and iy € 8nN.

ProOF. Throughout this proof we omit the subscript #. Similarly as above,
in view of (2.3) with fzi(f ‘o yf ) £ 1l < A(1 + alpl), we have
Q

that [le”|,4q) is bounded if 1 < ¢ < 47z/[A|y|( + aly|)]. The existence of such
a g > 1 follows from (2.8). Moreover, since by assumption we have /1 > 8z, we
derive that necessarily

o
IP[(1+alyl)

This inequality holds in view of the assumption ¢ € (0,0,). Therefore we
have that 1 <4rn/[2]y[(1 +oly[)] and [[e™];,q) is bounded for some g > I.
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Hence, m,(p) = 0. Now (2.7) implies m;(p) = 8n. We decompose u = wi + ws,
with

eu
—Aw; =A—— InQ
Jae
wy =0 on 0Q,
and
e .
—Awy = ayl T in Q
w, =0 on 0Q.
Then, setting
e
f— i—
$=oy e

we have [|¢]|;4q) < C for some ¢ > 1 and therefore ||w|;q) < C. It follows
that e = he™ with h = e > eitfe™2 > ¢=C(Y) 5 0. Moreover,

1
w1 — G * (my(p)o, +11) :4logw+w+ G *r

with w smooth in the closure of a neighbourhood U of p. Therefore, by Fatou’s
lemma:

. . ; d
hmmf/e”z /hmlnfe“ZeC(’“)/ e? X = +00.
Q Q v |x—p

Hence r; = 0 since u is locally uniformly bounded in Q\.%.
Now, the first equation in (2.6) implies the mass quantization A € 8zN. O

3. PROOF OF THEOREM 1.1

In this section we prove Theorem 1.1 by suitably adapting a variational argument
due to [7]. The variational functional for Problem (1.1) is given by:

Ji(u)—%/ |Vu|2dx—/11n/e“dx—/laln/ey”dx.
Q Q Q

3.1. An improved Moser-Trudinger inequality

We observe that the standard well-known improved Moser-Trudinger inequality
[5] readily implies an improved inequality for J;. For any fixed ag,dy > 0 we
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consider the set
(1) diSt(Ql,Qz> > dj

Ay dy = UE Hol (Q):3Q,,Q < Qs.t. . fQ,- e"dx

i Joetdx

>ap,i=1,2

LemMma 3.1 (Improved Moser-Trudinger Inequality). The functional J, is
bounded from below on ., 4, if

167

N < ——.
(3.1) A<1+20y2

PRrOOF. Fore e (0,1) to be fixed later we decompose:

(3.2) Ji(u) = (1 —e){%/ﬂ|Vu|2dx— ; }“eln/geu}

e [1 5 Joy?
—<{= dx ——1 u
+y2 {2/Q|Vyu| X ; n/ge

= K'(u) + K7 (1)

In view of the Improved Moser-Trudinger inequality, the functional K! is
bounded below on .7, 4, if

()

< l6m.

(3.3)

1—e¢

On the other hand, the functional K7 is bounded below on H| (Q) if

2
(3.4) M; < 8.

Considering (3.3) and (3.4) we can take a suitable € € (0, 1) satisfying

A Aay?
1 —— >
€< T6n and € > o
if
Jay? A
S ' Ten
which is equivalent to (3.1). O

REMARK 3.1. Actually, we expect boundedness below of J; for all /1 € (8z, 167).
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LEMMA 3.2. For every 0 < |y| < 1/2 and for every 0 <a < (1 —2|y))/(2y?) =
a,, the functional J; is bounded below on H}(Q) if and only if /. < 8.

PrROOF. We rewrite

(3.5)  Ji(u) = J;(u /|Vu| dx—,lrln/ge dx — (1—1)111/9 T .

where:

and A=

€ (0,1].

g =

e

T

We use a result from [21] for the functionals of the form

:1/ |Vu2dx—i/ (log/e““dx)g’(doc),
2Ja I Q

u e H}(Q). Note that J; 7 is the Euler-Lagrange funtional for problem (1.2). In

view of Theorem 4 in [21] (see also [28]) we have that J is bounded below if
and only if A < A7 where

27 = 8minf %,l@r clynsupp? p,
([, x2(do))
I, =1[0,1], I_ = [-1,0) and 2 = 2, is defined by (1.3), i.e., Z,(do) = 0, (do) +

(1 —1)d,(do).
Assume y > 0. In this case, we have

L, it K = {1}
(fK a’@7<do{)>2 T — l+o . _
(t+y(1-1)) (I4ay) if K {y’ 1}
Hence, if 7 > 0 we have 11”7 = 0,

Analogously, for y < 0 we have

Z,(K) 1, if K={1}
I e
(Jx O"@y(d“))z 20— #’ if K={y}.
Hence, if y < 0 we have that 747 =87 if 0 < ¢ < g,. .

LeMMA 3.3. Let 0 < |y| < 1/2 and let 0 < ¢ < g, where g, is defined in (1.8).
Then, we have 8nt < A, , < 161, where A, , is defined in (1.9).
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PrROOE. The upper bound is clear. Therefore, we only prove the lower bound
Jy.¢ > 8m. We readily check that

167 1
—_ if ly if —
1+2ay2>8n if and only 1 0<2y2
and
4n . . 1 —2|y| 1
——————>8xn ifandonlyif o<g, = < —.
7[(1 + aly]) T2 T 2y?
The claim follows. O

For every u € H}(Q) we consider the measure:

eu

= M (Q
luu er“dxdxe %( )

and the corresponding “‘center of mass’”:
X (u) = / xdu, € R>.
Q

LEMMA 3.4. Let / € (8x, 1+1§Zy2) and let {u,} = H}(Q) be a sequence such that

Ji(uy) — —o0 and X,(u,) — xo € R>. Then, xo € Q and

ty, — Oy, weakly* in €(Q)".

PrOOF. For every fixed r > 0 we denote by 2,(r) the concentration function of
Ly, 1.€.

) =sp [,
xeQ JB(x,r)nQ

For every n, there exists X, € Q such that

2002 = [ i,
B(x,,r/2)nQ

Upon taking a subsequence, we have that X, — Xy € Q.
Now, let us set

Q{l :B(Scn,r/2)m§2 and Qg :Q\B(}?n,}’),
so that

dist(Q, Q1) > r/2.
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Since J;(u,) — —oo and since 4 < 5 ﬁgﬁyz , in view of (3.2) necessarily we have
K'(u,) — —oo. Therefore, in view of the standard Improved Moser-Trudinger

inequality [5], we conclude that

min{ 1, (), 1,(@3)} — .

In particular, min{2,(r/2),1 — 2,(r)} < min(g,(Q7), 1,(Q5)) — 0.

On the other hand, for every fixed r > 0 let k, € N be such that Q is covered
by k. balls of radius /2. Then, 1 = ,(Q) < k,0,(r/2), so that Q,(r/2) > k! for
every n. We conclude that necessarily 2,(r) — 1 as n — oo. Since r > 0 is arbi-
trary, we derive in turn that 1 — 2,(r/2) = u,(Q\B(X,,r/2)) — 0 as n — oo. That

is, u, — Ox,. It follows that X, (u,) = / xdu, — X = xo € Q, as asserted. O
Q

At this point, in order to prove Theorem 1.1, we shall adapt a construc-
tion in [7]. Let 'y @ Q be a non-contractible curve which exists since Q is
non-simply connected. Let D = {(r,0) : 0 <r < 1,0 < 0 < 2z} be the unit disc.
Define

(i) lim sup J;(A(r,0)) = —o0
| =1 gelo,27)
Zs =4 he C(D, Hy () (ii) X,(h(r,0)) can be extended continuously to D
(iii) X,(h(1,-)) is one-to-one from 0D onto I';

LemMA 3.5. For every A € (8w, 167m) the set & is non-empty.

ProOF. Let y,(0) :[0,27) — I'; be a parametrization of I'; and let &y > 0 be suf-
ficiently small so that B(y,(0),&) = Q. Let gy(x) =¢,'(x—7,(0)) so that
?o(B(,(0),8)) = B(0,1). We define “truncated Green’s function’”:

1
410g1— for X € B(0,1 —r)
—r

Vr(X) -
1
410gm for X € B(0,1)\B(0,1 —r)
and
0 for x € Q\B(y,(0),¢))
Uro(x) = { Vi(py(x)) for x € B(y,(0),¢).
We set

(3.6) h(r,0)(x) = v.0(x), xeQ.
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The function & defined in (3.6) satisfies 7 € &;. To see that / verifies the
(i)-condition it is sufficient to note that

/ e dx > |Q| — mey > 0.
Q

Then the claim follows by [7]. O
Define
(3.7) ¢;:= inf sup J(h(r,0)).

heZ; (r,0)eD

We shall prove that ¢, defines a critical value for J; using the Struwe Monot-
onicity Trick contained in [26], Proposition 4.1.
In view of Lemma 3.5, we have ¢; < +o0.

LEMMA 3.6. For any /. € (87,2,4), ¢; > —0.

PROOF. Denote by B a bounded component of R*\Q with at least an interior
point and such that I'; encloses B. By continuity and by the (iii)-property defining
2, we have x,(h(D)) > B for all h € Z;. By contradiction, assume that c; =

—c0. Then, there exists a sequence {/,} = &, such that sup, gcp Ji(ha(r,0)) —
—o0. Let xp be an interior point of B. For every n we take (r,,6,) € D such

O

that X,(h,(r4,0,)) = xo. In view of Lemma 3.4, it should be xj € BnQ=0,a
contradiction. O

At this point we set

(3.8) G(u) :ln/ e“dx+oln/ e’ dx
Q Q

so that our functional (3.5) takes the form

J(u) = %/g \Vul* = 2% (u).

LEmMA 3.7. For 8n < A1 < 4y < 167, we have 9, < Z,,.

PrOOF. 1t is sufficient to note that whenever J;(u) <0 it is %(u) > 0, with ¥
given by (3.8) and this implies that

S, () = Jp,(u) for8n < Ay <Ay < lér if Jy (u) <O0.

Hence, 2), < 2, for every 87 < /; < A, < 167. O
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LeEMMA 3.8. The function % : H} (Q) — R defined by (3.8) satisfies:

1) % e ©(H}(Q):R)

2) 4" is compact

3) (9" (u)p, ) = 0 for every u, ¢ € HL(Q), where {-,-> is the L*-inner product.
PRrOOF. For every u,p € H}(Q) we have:

_ Jq petdx an ype™ dx
N et dx e dx
Ja Ja

G'(u)p

and therefore the compactness of %’ follows by the compactness of the Moser-
Trudinger embedding. Moreover, for every u,¢ € H}(Q) we have, using the
Schwarz inequality,

(9" (u)p, p) :W {(/Qe“(/)zdx)</ge”dx) — (/Qe”q)dx)z]
+W [(/gle}'“gozdx)(/g)e?’”dx) - (/Qewgodx)z] > 0.

d

Now we are able to prove the following.

ProPOSITION 3.1. Let o >0 and assume that (1.8) holds. For almost every
/€ (8m,2y.4), ) > —0 given by (3.7) is a saddle-type critical value for J;.

ProOF OF PrROPOSITION 3.1. In view of Lemma 3.8, Lemma 3.5, Lemma 3.6
and Lemma 3.7, we may apply the well known Struwe’s monotonicity trick to
derive the existence of the desired critical value. See [7] or [26], Proposition 4.1
with # = H}(Q), V=D, A= —o0 and 7, = Z,. 0

ProOF OF THEOREM 1.1 (Completion by blow-up results). We fix 4y € (87,4, ).
In view of Proposition 3.1 there exists 4, — A9 such that problem (1.1) with
A=A, admits a solution u,. By the blow up analysis as stated in Proposition
2.2, we have the compactness of solution sequences. Therefore, up to sub-
sequences, we obtain that u, — u with u a solution to (1.1) with 1 = 4. O
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