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ABSTRACT. — The Newtonian potential of a Euclidean ball B of R” centered at x( is propor-
tional, outside B, to the Newtonian potential of a mass concentrated at x,. Vice-versa, as proved
by Aharonov, Schiffer and Zalcman, if D is a bounded open set in R”, containing x,, whose
Newtonian potential is proportional, outside D, to the one of a mass concentrated at xo, then D
is a Euclidean ball with center xj. In this paper we generalize this last result to more general mea-
sures and domains.
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1. INTRODUCTION

The Newtonian potential of a Euclidean ball B of R” centered at x( is propor-
tional, outside B, to the Newtonian potential of a mass concentrated at xy. Vice-
versa, if D is a bounded, open set in R”, containing x(, having Newtonian poten-
tial proportional, outside D, to the one of a mass concentrated at xy, then D is a
Euclidean ball with center xy. The first statement simply follows from the Gauss
Mean Value property for the harmonic functions applied to the family of maps

Bay—T(y—x)eR, x¢B,

where I' is the Newtonian kernel; i.e., the fundamental solution of the Laplace
operator in R”. The second assertion is a theorem by Aharonov, Schiffer and
Zalcman [2].

Generalization of these two problems to more general sets and measures are
the problem (P) and its inverse (IP), described below.

(P) Let Q C R", n >3, be a bounded open set and let xy € Q. Does it exist a
non-negative Radon measure g, u(Q¢) = 0, such that

(1.1) Iux)=T(xo—x) VxeQ?

Here I',, denotes the Newtonian potential of y; i.e.,

LR = 0,50, D)= [ T 9du(y).
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We will say that (Q, u, xo) is a T-triple if Q is a bounded open subset of R”,
Xo € Q, u is a non-negative Radon measure, x(Q¢) = 0, and (1.1) holds. Thus, (P)
can be rephrased as follows: does it exist x4 such that (Q, u, xy) is a -triple? Of
course, a trivial solution is u = J,,, the Dirac measure at xo. Not trivial solutions
of (P) are basically given by the volume densities with the mean value property for
harmonic functions constructed by Hansen-Netuka [9] and Aikawa [3], [4].

An inverse of (P) is

(IP) Let (Q, u,xo) and (D, v, xq) be I'-triples, with u (Q D) =v.(Qn D). Isit
true that Q = D and p =1?

In Section 2 we give an answer to this question, by using a variant of the
notion of I'-triple: we say that (Q,u,xo) is a strong T-triple if (Q,pu, xo) is a
I-triple,

(1.2) Iux) <T(xo—x) VxeQ,
and

'), is a real continuous function in R".

Our answer to question (IP) is the following theorem, the main result of this
paper.

THEOREM 1.1. Let Q and D be open bounded sets in R" containing xo. Assume
that

Then D =Q andv = u

The proof relies on the comparison between the potentials I', and I', and it is
based on the weak and strong maximum principles for subharmonic functions.

We will exhibit examples to show that in Theorem 1.1 neither (iii) nor (iv)
can be removed, see Examples 2.1 and 2.2. Moreover, the hypothesis that
(Q, 11, xp) 1s a strong I'-triple cannot be weakened by assuming that (Q, u, xo) is
simply a I'-triple, see Example 2.3.

We notice that strong I'-triples can be naturally defined on the Euclidean
balls; indeed, by the Gauss Mean Value Theorem and by the Poisson-Jensen
formula, it follows that

(1.3) (B,.(xo), mcLB,(xp), xo> is a strong I'-triple.

L
m(By(x0))
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In Section 3 we will show that strong I'-triples can be defined on every
bounded, smooth and strongly star-shaped domain. Indeed, let d be any smooth
homogeneous norm in R” and denote BY(xy) the d-balls of radius r centered at
Xo; 1.e.,

BY(x0) :=={y e R":d(y — xo) <1}

Notice that every d-ball BY(xq) is a smooth, strictly star-shaped domain with
respect to xo and, vice-versa, every smooth, strictly star-shaped domain is a
d-ball for a suitable homogeneous norm d.

Define

P;:0BY(0) = R, Py= —%—G,
Vv

where G is the Green function of B{(0) with pole at the origin and v is the out-
ward normal to B¢(0); moreover we let

ma(y) = VAP35 ). v #0.

The following result holds.

THEOREM 1.2. Let BY(xy) be a d-ball in R" and define

wal0) = L e B )\ ()

Let u, be the measure
(1.4) 1, = wymLBY (xo).
If o> n— 2, then (B%(x0), 1, Xo) is a strong T-triple.

Moreover, if o > 0, then u, is a measure with the mean value property for non-
negative harmonic functions; i.e.,

(1.5) uxo) = | o (), Ve H B0, w0

Notice that if d is the Euclidean norm then

o 1

my(y) = ! and wy(y) =

- o n—o ;
now, nw,r* |y — Xo

thus, if « =n, u, = muLB,(xg). Therefore (1.3) and the classical Gauss

I
m(Br<X0)) . . .
Mean Value Theorem for harmonic functions are particular cases of Theorem
1.2.
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Theorem 1.1, together with Theorem 1.2, gives the following d-spherical sym-
metry result.

THEOREM 1.3. Let D C R" be an open bounded set and xy € D.
Assume that for o >n—2 and ¢ > 0

(1.6) F(xo—x):c/l)r(y—x)%dy, Vx ¢ D.

1 1
- my(y—xp) _ pd i — (%)=
Then ¢ = (/Dw‘(y—xo))"’ &y ) and D = By (xo) with r = ;)"

Note that if « =n and d is the Euclidean norm, then Theorem 1.3 is
Aharonov-Schiffer-Zaleman’s Theorem in [2] quoted above. Actually, in the
particular case of the Euclidean norm, in [2, Sect. 5] it is proved an analogous
of Theorem 1.3 with more general radial densities.

From Theorem 1.3 we immediately obtain the following harmonic character-
ization of the d-balls.

COROLLARY 1.4. Let D C R" be an open bounded set and xy € D.
Assume that for o >n—2 and ¢ > 0

(1.7) u(xo) = c/[)u(y)mdy, Yu e #(B%(xo)), u = 0.

-1 1
Then ¢ = (/I)Wdy) and D = B (xo) with r = (%)

Indeed, if x ¢ D, the function y — I'(y — x) is non-negative and harmonic in
D; therefore (1.7) implies (1.6). In the case « = n and d the Euclidean norm, this
corollary gives a harmonic characterization of the Euclidean ball, a problem with
a very long history, see Epstein [6], Epstein-Schiffer [7], Kuran [11].

We now describe the organization of our paper. Section 2 is devoted to the
proof of Theorem 1.1 and to exhibit Examples 2.1-2.3. In Section 3 we prove
Theorems 1.2 and 1.3.

All our results are based on general facts and tools in potential theory; there-
fore their generalization to general elliptic, parabolic and sub-elliptic settings
seems possible. We plan to investigate this issue in forthcoming papers.

We note that the Aharonov-Schiffer-Zaleman’s Theorem in [2] has been yet
generalized to particular sub-elliptic settings in [12] and [1].

2. PROOF OoF THEOREM 1.1

Aim of this section is to prove Theorem 1.1. To this end, we recall that the sup-
port of a measure u can be defined as follows:

suppu = {x € R": (4 open set, x € A) = u(A4) > 0}.
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Proor OoF THEOREM 1.1. We split the proof in several steps.

Step 1. We claim that I', < T, in R".
We first prove that I’y < T, in R"\D.
By (i) and (ii) we have that

(2.1) Iy(x)=T,(x)=T(xo—x) Yxe(DuQ)"
Since (D, v, xy) is a ['-triple and (€, i, x¢) is a strong I'-triple, then
Iux) <T(xo—x)=T,(x) VxeR"\D.

In particular, the above inequality holds on dD.
Let us prove that I', < T, in D.
By (iil) and g = 0 in Q¢ we get that, in a distributional sense,

AT,—T,)>0 inD.

By [5, Theorem 8.2.11], I'y — I', is a subharmonic function in D.
Since I', is lower semicontinuous and, by assumption (i), I', is continuous,
then

limsup (I'y = T'y)(y) < Tu(x) —T'(x) <0 VxedD.

y=x

By the maximum principle for subharmonic functions (see [5, Theorem 8.2.19
(ii)]) we get I’y < T, in D. This concludes the proof of the claim. In particular,
we have proved that I', <T', on 0Q.

STEP 2. Let us prove that dD\Q is empty.

By contradiction, assume that there exists x € 0D\Q. Then there exists
r > 0 such that B,(x) C R"\Q. By definition of -triple £ =0 in Q°¢; therefore
u(By(x)) = 0. By assumption (iv) we get

(2.2) v(B,(x)) > 0.
On the other hand, in a distributional sense,
(2.3) AT, —T,)=v=>0 in B (x);

ie., I'y — T, is a subharmonic function in B,(x).

By what previously proved in Step 1, I', — I, < 0 in B,(x). Moreover, since
dD\Q C (Qu D), by (2.1) we have that T',(x) — I',(x) = 0. Therefore, by the
strong maximum principle for subharmonic functions (see in [5, Theorem 8.2.19
(1)]), ', = I'y = 0 in B,(x). This implies A(I', — I',) = 0 in B,(x), that is, by (2.3),
v(B,(x)) = 0. This is in contradiction with (2.2).
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STEP 3. In this step we prove that D C Q.
We have

RO = (DU DNQ = (D\Q) U (0D\Q) U (D¢ A Q°) = (D\Q) U (DU Q)°.

By the boundedness of Q and D, (Du Q) is not empty. Moreover, D\Q and
(DU Q)° are open, disjoint sets. The set R"\Q is connected by (v), then D\Q
must be empty. Therefore D C Q. By (v) we have that int Q = Q, thus we obtain
D C Q.

STEP 4. In this step we prove that Q C D.
We argue by contradiction; i.e., we assume that there exists x € Q\ D. By Steps
land 3, T, <T, and D C Q. Therefore, by (i), (iii) and (ii), we have

I(xo - x) > Ty(x) = /D Ty — x)du(y) + /Q L0 9duty)

> [ Ty=x)dv(y) = Tu() = T — )

This is an absurd.
We have so proved that D = Q and, consequently, that u = v. O

Let us now exhibit examples to show that neither (iii) nor (iv) can be removed
in Theorem 1.1.

EXAMPLE 2.1. Assumption (iii) in Theorem 1.1 cannot be removed.
For instance, if Q is the ball B,(xy) and D is the ball B,/(xy), with r # r', and

— 1 o 1
H= m(B,(x0)) m'—Br(x0> and v = mmLBrr(Xo) then

UL (Qn D) #v(Qn D).

It is easy to prove that all the other assumptions of the theorem are satisfied.

Indeed, (Q, ut, x0) and (D,v,xy) are strong T-triples (see (1.3)), suppv = D, and
Q is a solid set.

EXAMPLE 2.2. Assumption (iv) in Theorem 1.1 cannot be removed.

Indeed, consider Q = B,(xy), D = Bg(xp), with 0 <r < R Define u=v=
mnﬂ_Br(Xo)‘ By (1.3), (Q,u,xo) is a strong T-triple. Moreover, for every
xe D CQf

1

Mo =) = () = s | T ()

_/ T(y - x)dv(y) = Th(x),
Br(xp)

which implies that (D,v,x) is a T-triple. Of course supp(v) = B.(xy), therefore
0D < supp(v).
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In the next example we show that in (i) of Theorem 1.1 the assumption that
the T-triple (Q, x, x¢) is strong cannot be removed.

ExaMPLE 2.3. Assumption (i) in Theorem 1.1 cannot be weakened asking
(Q, 1, x0) be a T-triple.

Indeed, consider Q = Bgr(xo), D = B.(xg), with 0 <r < R Define n=v=
mnﬂ_Br(xo). By (1.3), (D,v,xq) is a strong T-triple and (Q,u, xo) is a
I-triple. Moreover, for every x € Q n D¢

I'(xo—x)=T,(x)= o) )/ —x)dm(y)

_ / T(y — x) du(y) = (),
Br(xp)

which implies that (Q, u, xo) is not a strong U-triple. All the other assumptions
(i1)—(v) hold true.

3. PrROOF oF THEOREMS 1.2 AND 1.3

In this section we will exhibit strong I'-triples on every d-ball
B,f’(xo) ={yeR":d(y—x) <r},

where d is any smooth homogeneous norm. Moreover, we will also prove the
d-spherical symmetry result Theorem 1.3.

In the following we call A-regular every bounded open set for which the
classical Dirichlet problem is solvable for any continuous boundary data.

To prove Theorem 1.2 we use an argument similar to the one in Aikawa’s
Theorem in [3].

Let Q be a connected bounded open subset of R”, n > 3, and assume that
there exists a family of open sets (€2;) 0 < T < oo, such that

(i) g: U0<t<T Q,,
i) QCQif0<r<t<T,
(iii) €, is connected and A-regular for a.e. t € |0, T7.

0<t<T>

Let x¢ be a fixed point in Q. For every non-negative and superharmonic func-
tion u in Q we define

(3.1) () (x0) = / u(y) du® ()

where ,u denotes the harmonic measure of Q; at xy.
The followmg result holds.



438 G. CUPINI AND E. LANCONELLI

LemMA 3.1. Let u be a superharmonic and non-negative function in .
Let ¢ : )0, T[ — |0, co[ be measurable and such that

T
(3.2) /0 p(t)dt=1.
Define
(3.3) M) i= [ plom ) dr.
Then
(a) u(xo) = M (u)(xo),
(b) u(xo) = M(u)(xo) if w is harmonic in Q.
(c) u(xo) > M(u)(xo) if u(xo) < oo and Au # 0 in Q.

Proor. If Q; is A-regular, we set

(3.4) u(10) (x0) = /Q Gor, (30, ¥) dva(y),

where Gg, (X9, ) stands for the Green function of €, with pole at xo, and v, is
the Riesz measure of u; 1.e.,

v, := —Au in the weak sense of distributions.

By Poisson-Jensen formula (see e.g. [10, Theorem 5.27], see also [5, Theorem

9.5.1]) and the assumptions on (€2;),_,.,, we have

(3.5) u(xo) = my(u)(xo) + n,(u)(xo) fora.e. tel0,T].
Since u is non-negative, then m,(u)(x9) > 0. Moreover, since Q, C Q. if ¢ <,

and v, > 0, the function ¢+ n,(u) is increasing and non-negative. By (3.5) and
(3.2) we get

(3.6) u(xo) = /0 (1) (xo) dt + /0 o(1)ma(a0) (xo) e
=: M (u)(xo) + N(u)(xo).

Since N (u)(xo) = 0 and (3.6) hold, then (a) follows.

If u is harmonic in Q then N(u)(xo) =0 and, by (3.6), (b) follows. More-
over, if Au # 0 in Q then v, # 0 in Q. Therefore, there exists #, > 0 such that
v, (€;,) > 0. On the other hand v,(Q,) > v,(Q,,) if t > ), and Gq,(x¢,-) > 0 since
Q, is connected. Then

n,(u)(xp) := /Q Go,(x0, y)dv,(y) >0 Vi > 1,
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so that
T
N () (o) 1= /0 o(0)n:(u)(x0) i > 0.

Using this information in (3.6) together with the assumption u(xy) € R, we imme-
diately get (c). O

With the lemma above we can prove Theorem 1.2.

PrOOF OF THEOREM 1.2. We let Q := BY(xo) and

Q :=B%x)) O0<t<r

Then (Q/),.,., satisfies conditions (i)—(iii) above. It is a standard fact that the
d
measure ,u(f 1o (see (3.1)) is such that
BY(0
g () = Paly) do(),
where
oG
PdaBld«))_)IRa Pd(y) :_E«)yy)

with G(0,-) the Green function of B{(0) with pole at 0, and v the outward
normal.

Then, since A is left translation invariant and homogeneous of degree two
w.r.t. the dilation y — Ay, one has

(i 1 Y — Xo
Al 0 () = = Pa (2= ) da().
For o > 0 the function
Py - ]O’F[H]O’OO[? ¢o:(t) =
is non-negative and measurable, and

/Orgpa(t)dt— 1.

Then, the operator M related to ¢,, see (3.3), takes the form

Mo =5 [ (G [ wp(P) o) e
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By the coarea formula, the right hand side is equal to

o \Vd(y — xo)| Y — Xo

— u - P, d

" J Bd(xy) Y (d(y —x0)) (d(y — Xp) )
_ ( ma(y — Xo)

= wy) =
" J Bd(xo) (d(y — x0))
Thus, keeping in mind the definition of x,, see (1.4), we have

o my(y — Xo)

M) = % / o ) ey = / )

By Lemma 3.1-(b), we obtain

(37) ) = M) = [ ), ()

for every u € #(B9(xo)), u > 0. We have so proved (1.5).
Using in (3.7) the family of functions

yi=uy(y) i =T(y—x), x¢B(x),

which are non-negative and harmonic in BY(x,), we get

B8 Tw-x= [ F0-9dn0) =Tul), Ve B

On the other hand, if x € BY(xo)\{xo} then
u, is superharmonic in Brd (x0), ux(xo) =T(xo—x) < oo and Auy = —0dy,

where 0, is the Dirac measure at {x}.
Then, by Lemma 3.1-(c)

(3.9) [(xo—x)>T,(x) Vxe BY(x0), x # Xo.

Moreover keeping in mind that T e L] (R") for every pe [l,n%[ while

2
(é) € Ll‘gc( ") for every q € [l,n x[ then the potential
"X / —x)du,(y) iscontinuous for every oo > n — 2,
d \0

see e.g. [8, Proposition 8. 8] In particular, (3.9) extends up to x = xy. Then, also
keeping in mind (3.8), (B%(xo), 1, Xo) is a strong [-triple if & > n — 2. O

We turn to prove Theorem 1.3, which is a consequence of Theorems 1.1
and 1.2.
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PrOOF OF THEOREM 1.3. Condition (1.6) is equivalent to say that (D, v,L D, xo)
is a ['-triple, with

~emg(y — xo)
PO =ty

Of course, supp(v,D) = D 2 dD. Moreover, from (1.6) we get

_ [T —x)  ma(y—xo)
1"/Dr<xo—x> @y )= TED

-1
Letting |x| go to infinity we obtain that ¢ = ( / Wd ) .
D

By Theorem 1.2 (BY(xy), 1, Xo) is a strong I'-triple for all & > n — 2.
1
Choosing r = (%)* we obtain v,L(BY(xo) N D) = p,(B%(xo) n D). Taking
also into account that BY(x,) is a solid set we have that all the assumptions of
Theorem 1.1 are satisfied with Q = BY(xy). Therefore, the conclusion follows.
O

ACKNOWLEDGMENTS. The first author has been supported by MIUR through the Project PRIN
(2011) “Calcolo delle Variazioni” and by the Gruppo Nazionale per ’Analisi Matematica, la
Probabilita e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica
(INdAM).

Basic NOTATION

m := Lebesgue measure in R”

B, (x) := Euclidean ball in R" with center xy and radius r
w, :=m(B;1(0))

Q= RN\Q

Q := closure of Q

int Q := interior of Q

Q solid set := Q¢ is connected and Q = intQ

A := Laplace operator

u: Q — Ris harmonic in Q := u is smooth and Au = 0 in Q
A (Q) := set of the harmonic functions in Q
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