
Rend. Lincei Mat. Appl. 27 (2016), 431–442
DOI 10.4171/RLM/742

Partial Di¤erential Equations — On an inverse problem in potential theory,
by Giovanni Cupini and Ermanno Lanconelli, communicated on 10 June
2016.

Abstract. — The Newtonian potential of a Euclidean ball B of Rn centered at x0 is propor-

tional, outside B, to the Newtonian potential of a mass concentrated at x0. Vice-versa, as proved
by Aharonov, Schi¤er and Zalcman, if D is a bounded open set in Rn, containing x0, whose

Newtonian potential is proportional, outside D, to the one of a mass concentrated at x0, then D

is a Euclidean ball with center x0. In this paper we generalize this last result to more general mea-

sures and domains.
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1. Introduction

The Newtonian potential of a Euclidean ball B of Rn centered at x0 is propor-
tional, outside B, to the Newtonian potential of a mass concentrated at x0. Vice-
versa, if D is a bounded, open set in Rn, containing x0, having Newtonian poten-
tial proportional, outside D, to the one of a mass concentrated at x0, then D is a
Euclidean ball with center x0. The first statement simply follows from the Gauss
Mean Value property for the harmonic functions applied to the family of maps

B C y 7! Gðy� xÞ a R; x B B;

where G is the Newtonian kernel; i.e., the fundamental solution of the Laplace
operator in Rn. The second assertion is a theorem by Aharonov, Schi¤er and
Zalcman [2].

Generalization of these two problems to more general sets and measures are
the problem (P) and its inverse (IP), described below.

(P) Let W � Rn, nb 3, be a bounded open set and let x0 a W. Does it exist a
non-negative Radon measure m, mðWcÞ ¼ 0, such that

GmðxÞ ¼ Gðx0 � xÞ Ex a Wc?ð1:1Þ

Here Gm denotes the Newtonian potential of m; i.e.,

Gm : R
n ! ½0;l�; GmðxÞ :¼

Z
Rn

Gðy� xÞ dmðyÞ:



We will say that ðW; m; x0Þ is a G-triple if W is a bounded open subset of Rn,
x0 a W, m is a non-negative Radon measure, mðWcÞ ¼ 0, and (1.1) holds. Thus, (P)
can be rephrased as follows: does it exist m such that ðW; m; x0Þ is a G-triple? Of
course, a trivial solution is m ¼ dx0 , the Dirac measure at x0. Not trivial solutions
of (P) are basically given by the volume densities with the mean value property for
harmonic functions constructed by Hansen-Netuka [9] and Aikawa [3], [4].

An inverse of (P) is:

(IP) Let ðW; m; x0Þ and ðD; n; x0Þ be G-triples, with m
O
ðWBDÞ ¼ n

O
ðWBDÞ. Is it

true that W ¼ D and m ¼ n?

In Section 2 we give an answer to this question, by using a variant of the
notion of G-triple: we say that ðW; m; x0Þ is a strong G-triple if ðW; m; x0Þ is a
G-triple,

GmðxÞ < Gðx0 � xÞ Ex a W;ð1:2Þ

and

Gm is a real continuous function in Rn:

Our answer to question (IP) is the following theorem, the main result of this
paper.

Theorem 1.1. Let W and D be open bounded sets in Rn containing x0. Assume
that

(i) ðW; m; x0Þ is a strong G-triple,
(ii) ðD; n; x0Þ is a G-triple,
(iii) m

O
ðWBDÞ ¼ n

O
ðWBDÞ,

(iv) qD � supp n,
(v) W is a solid set.

Then D ¼ W and n ¼ m.

The proof relies on the comparison between the potentials Gm and Gn and it is
based on the weak and strong maximum principles for subharmonic functions.

We will exhibit examples to show that in Theorem 1.1 neither (iii) nor (iv)
can be removed, see Examples 2.1 and 2.2. Moreover, the hypothesis that
ðW; m; x0Þ is a strong G-triple cannot be weakened by assuming that ðW; m; x0Þ is
simply a G-triple, see Example 2.3.

We notice that strong G-triples can be naturally defined on the Euclidean
balls; indeed, by the Gauss Mean Value Theorem and by the Poisson-Jensen
formula, it follows that

�
Brðx0Þ;

1

mðBrðx0ÞÞ
m
O
Brðx0Þ; x0

�
is a strong G-triple:ð1:3Þ
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In Section 3 we will show that strong G-triples can be defined on every
bounded, smooth and strongly star-shaped domain. Indeed, let d be any smooth
homogeneous norm in Rn and denote Bd

r ðx0Þ the d-balls of radius r centered at
x0; i.e.,

Bd
r ðx0Þ :¼ fy a Rn : dðy� x0Þ < rg:

Notice that every d-ball Bd
r ðx0Þ is a smooth, strictly star-shaped domain with

respect to x0 and, vice-versa, every smooth, strictly star-shaped domain is a
d-ball for a suitable homogeneous norm d.

Define

Pd : qBd
1 ð0Þ ! R; Pd ¼ � qG

qn
;

where G is the Green function of Bd
1 ð0Þ with pole at the origin and n is the out-

ward normal to Bd
1 ð0Þ; moreover we let

mdðyÞ :¼ j‘dðyÞjPd

� y

dðyÞ

�
; yA 0:

The following result holds.

Theorem 1.2. Let Bd
r ðx0Þ be a d-ball in Rn and define

waðyÞ :¼
a

ra
mdðy� x0Þ

ðdðy� x0ÞÞn�a ; y a Bd
r ðx0Þnfx0g:

Let ma be the measure

ma :¼ wamO
Bd
r ðx0Þ:ð1:4Þ

If a > n� 2, then ðBd
r ðx0Þ; ma; x0Þ is a strong G-triple.

Moreover, if a > 0, then ma is a measure with the mean value property for non-
negative harmonic functions; i.e.,

uðx0Þ ¼
Z
Bd
r ðx0Þ

uðyÞ dmaðyÞ; Eu a HðBd
r ðx0ÞÞ; ub 0:ð1:5Þ

Notice that if d is the Euclidean norm then

mdðyÞ ¼
1

non

and waðyÞ ¼
a

nonra
1

jy� x0jn�a ;

thus, if a ¼ n, mn ¼ 1
mðBrðx0ÞÞmO

Brðx0Þ. Therefore (1.3) and the classical Gauss

Mean Value Theorem for harmonic functions are particular cases of Theorem
1.2.
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Theorem 1.1, together with Theorem 1.2, gives the following d-spherical sym-
metry result.

Theorem 1.3. Let D � Rn be an open bounded set and x0 a D.
Assume that for a > n� 2 and c > 0

Gðx0 � xÞ ¼ c

Z
D

Gðy� xÞ mdðy� x0Þ
ðdðy� x0ÞÞn�a dy; Ex B D:ð1:6Þ

Then c ¼
�Z

D

mdðy�x0Þ
ðdðy�x0ÞÞn�a dy

��1

and D ¼ Bd
r ðx0Þ with r ¼

�
a
c

�1
a.

Note that if a ¼ n and d is the Euclidean norm, then Theorem 1.3 is
Aharonov-Schi¤er-Zalcman’s Theorem in [2] quoted above. Actually, in the
particular case of the Euclidean norm, in [2, Sect. 5] it is proved an analogous
of Theorem 1.3 with more general radial densities.

From Theorem 1.3 we immediately obtain the following harmonic character-
ization of the d-balls.

Corollary 1.4. Let D � Rn be an open bounded set and x0 a D.
Assume that for a > n� 2 and c > 0

uðx0Þ ¼ c

Z
D

uðyÞ mdðy� x0Þ
ðdðy� x0ÞÞn�a dy; Eu a HðBd

r ðx0ÞÞ; ub 0:ð1:7Þ

Then c ¼
�Z

D

mdðy�x0Þ
ðdðy�x0ÞÞn�a dy

��1

and D ¼ Bd
r ðx0Þ with r ¼

�
a
c

�1
a.

Indeed, if x B D, the function y 7! Gðy� xÞ is non-negative and harmonic in
D; therefore (1.7) implies (1.6). In the case a ¼ n and d the Euclidean norm, this
corollary gives a harmonic characterization of the Euclidean ball, a problem with
a very long history, see Epstein [6], Epstein-Schi¤er [7], Kuran [11].

We now describe the organization of our paper. Section 2 is devoted to the
proof of Theorem 1.1 and to exhibit Examples 2.1–2.3. In Section 3 we prove
Theorems 1.2 and 1.3.

All our results are based on general facts and tools in potential theory; there-
fore their generalization to general elliptic, parabolic and sub-elliptic settings
seems possible. We plan to investigate this issue in forthcoming papers.

We note that the Aharonov-Schi¤er-Zalcman’s Theorem in [2] has been yet
generalized to particular sub-elliptic settings in [12] and [1].

2. Proof of Theorem 1.1

Aim of this section is to prove Theorem 1.1. To this end, we recall that the sup-
port of a measure m can be defined as follows:

supp m :¼ fx a Rn : ðA open set; x a AÞ ) mðAÞ > 0g:
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Proof of Theorem 1.1. We split the proof in several steps.

Step 1. We claim that GmaGn in Rn.
We first prove that Gm aGn in RnnD.
By (i) and (ii) we have that

GmðxÞ ¼ GnðxÞ ¼ Gðx0 � xÞ Ex a ðDAWÞc:ð2:1Þ

Since ðD; n; x0Þ is a G-triple and ðW; m; x0Þ is a strong G-triple, then

GmðxÞaGðx0 � xÞ ¼ GnðxÞ Ex a RnnD:

In particular, the above inequality holds on qD.
Let us prove that GmaGn in D.
By (iii) and m ¼ 0 in Wc we get that, in a distributional sense,

DðGm � GnÞb 0 in D:

By [5, Theorem 8.2.11], Gm � Gn is a subharmonic function in D.
Since Gn is lower semicontinuous and, by assumption (i), Gm is continuous,

then

lim sup
y!x

ðGm � GnÞðyÞaGmðxÞ � GnðxÞa 0 Ex a qD:

By the maximum principle for subharmonic functions (see [5, Theorem 8.2.19
(ii)]) we get GmaGn in D. This concludes the proof of the claim. In particular,
we have proved that Gm aGn on qW.

Step 2. Let us prove that qDnW is empty.
By contradiction, assume that there exists x a qDnW. Then there exists

r > 0 such that BrðxÞ � RnnW. By definition of G-triple m ¼ 0 in Wc; therefore
mðBrðxÞÞ ¼ 0. By assumption (iv) we get

nðBrðxÞÞ > 0:ð2:2Þ

On the other hand, in a distributional sense,

DðGm � GnÞ ¼ nb 0 in BrðxÞ;ð2:3Þ

i.e., Gm � Gn is a subharmonic function in BrðxÞ.
By what previously proved in Step 1, Gm � Gn a 0 in BrðxÞ. Moreover, since

qDnW � ðWADÞc, by (2.1) we have that GmðxÞ � GnðxÞ ¼ 0. Therefore, by the
strong maximum principle for subharmonic functions (see in [5, Theorem 8.2.19
(i)]), Gm � Gn ¼ 0 in BrðxÞ. This implies DðGm � GnÞ ¼ 0 in BrðxÞ, that is, by (2.3),
nðBrðxÞÞ ¼ 0. This is in contradiction with (2.2).
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Step 3. In this step we prove that D � W.
We have

RnnW ¼ ðDADcÞnW ¼ ðDnWÞA ðqDnWÞA ðDcBWcÞ ¼ ðDnWÞA ðDAWÞc:

By the boundedness of W and D, ðDAWÞc is not empty. Moreover, DnW and
ðDAWÞc are open, disjoint sets. The set RnnW is connected by (v), then DnW
must be empty. Therefore D � W. By (v) we have that intW ¼ W, thus we obtain
D � W.

Step 4. In this step we prove that W � D.
We argue by contradiction; i.e., we assume that there exists x a WnD. By Steps

1 and 3, GmaGn and D � W. Therefore, by (i), (iii) and (ii), we have

Gðx0 � xÞ > GmðxÞ ¼
Z
D

Gðy� xÞ dmðyÞ þ
Z
WnD

Gðy� xÞ dmðyÞ

b

Z
D

Gðy� xÞ dnðyÞ ¼ GnðxÞ ¼ Gðx0 � xÞ:

This is an absurd.
We have so proved that D ¼ W and, consequently, that m ¼ n. r

Let us now exhibit examples to show that neither (iii) nor (iv) can be removed
in Theorem 1.1.

Example 2.1. Assumption (iii) in Theorem 1.1 cannot be removed.
For instance, if W is the ball Brðx0Þ and D is the ball Br 0 ðx0Þ, with rA r 0, and

m ¼ 1
mðBrðx0ÞÞ

m
O
Brðx0Þ and n ¼ 1

mðBr 0 ðx0ÞÞ
m
O
Br 0 ðx0Þ then

m
O
ðWBDÞA n

O
ðWBDÞ:

It is easy to prove that all the other assumptions of the theorem are satisfied.
Indeed, ðW; m; x0Þ and ðD; n; x0Þ are strong G-triples (see (1.3)), supp n ¼ D, and
W is a solid set.

Example 2.2. Assumption (iv) in Theorem 1.1 cannot be removed.
Indeed, consider W ¼ Brðx0Þ, D ¼ BRðx0Þ, with 0 < r < R. Define m ¼ n ¼
1

mðBrðx0ÞÞ
m
O
Brðx0Þ. By (1.3), ðW; m; x0Þ is a strong G-triple. Moreover, for every

x a Dc � Wc

Gðx0 � xÞ ¼ GmðxÞ ¼
1

mðBrðx0ÞÞ

Z
Brðx0Þ

Gðy� xÞ dmðyÞ

¼
Z
BRðx0Þ

Gðy� xÞ dnðyÞ ¼ GnðxÞ;

which implies that ðD; n; x0Þ is a G-triple. Of course suppðnÞ ¼ Brðx0Þ, therefore
qD 6� suppðnÞ.
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In the next example we show that in (i) of Theorem 1.1 the assumption that
the G-triple ðW; m; x0Þ is strong cannot be removed.

Example 2.3. Assumption (i) in Theorem 1.1 cannot be weakened asking
ðW; m; x0Þ be a G-triple.

Indeed, consider W ¼ BRðx0Þ, D ¼ Brðx0Þ, with 0 < r < R. Define m ¼ n ¼
1

mðBrðx0ÞÞmO
Brðx0Þ. By (1.3), ðD; n; x0Þ is a strong G-triple and ðW; m; x0Þ is a

G-triple. Moreover, for every x a WBDc

Gðx0 � xÞ ¼ GnðxÞ ¼
1

mðBrðx0ÞÞ

Z
Brðx0Þ

Gðy� xÞ dmðyÞ

¼
Z
BRðx0Þ

Gðy� xÞ dmðyÞ ¼ GmðxÞ;

which implies that ðW; m; x0Þ is not a strong G-triple. All the other assumptions
(ii)–(v) hold true.

3. Proof of Theorems 1.2 and 1.3

In this section we will exhibit strong G-triples on every d-ball

Bd
r ðx0Þ :¼ fy a Rn : dðy� x0Þ < rg;

where d is any smooth homogeneous norm. Moreover, we will also prove the
d-spherical symmetry result Theorem 1.3.

In the following we call D-regular every bounded open set for which the
classical Dirichlet problem is solvable for any continuous boundary data.

To prove Theorem 1.2 we use an argument similar to the one in Aikawa’s
Theorem in [3].

Let W be a connected bounded open subset of Rn, nb 3, and assume that
there exists a family of open sets ðWtÞ0<t<T , 0 < T al, such that

(i) W ¼
S

0<t<T Wt,
(ii) Wt � Wt if 0 < t < t < T ,
(iii) Wt is connected and D-regular for a.e. t a �0;T ½.

Let x0 be a fixed point in W. For every non-negative and superharmonic func-
tion u in W we define

mtðuÞðx0Þ :¼
Z
qWt

uðyÞ dmWt
x0
ðyÞð3:1Þ

where mWt
x0

denotes the harmonic measure of Wt at x0.
The following result holds.
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Lemma 3.1. Let u be a superharmonic and non-negative function in W.
Let j : �0;T ½ ! �0;l½ be measurable and such that

Z T

0

jðtÞ dt ¼ 1:ð3:2Þ

Define

MðuÞðx0Þ :¼
Z T

0

jðtÞmtðuÞðx0Þ dt:ð3:3Þ

Then

(a) uðx0ÞbMðuÞðx0Þ,
(b) uðx0Þ ¼ MðuÞðx0Þ if u is harmonic in W,
(c) uðx0Þ > MðuÞðx0Þ if uðx0Þ < l and DuA 0 in W.

Proof. If Wt is D-regular, we set

ntðuÞðx0Þ :¼
Z
Wt

GWt
ðx0; yÞ dnuðyÞ;ð3:4Þ

where GWt
ðx0; �Þ stands for the Green function of Wt with pole at x0, and nu is

the Riesz measure of u; i.e.,

nu :¼ �Du in the weak sense of distributions:

By Poisson-Jensen formula (see e.g. [10, Theorem 5.27], see also [5, Theorem
9.5.1]) and the assumptions on ðWtÞ0<t<T , we have

uðx0Þ ¼ mtðuÞðx0Þ þ ntðuÞðx0Þ for a:e: t a �0;T ½:ð3:5Þ

Since u is non-negative, then mtðuÞðx0Þb 0. Moreover, since Wt � Wt if ta t,
and nu b 0, the function t 7! ntðuÞ is increasing and non-negative. By (3.5) and
(3.2) we get

uðx0Þ ¼
Z T

0

jðtÞmtðuÞðx0Þ dtþ
Z T

0

jðtÞntðuÞðx0Þ dtð3:6Þ

¼: MðuÞðx0Þ þNðuÞðx0Þ:

Since NðuÞðx0Þb 0 and (3.6) hold, then (a) follows.
If u is harmonic in W then NðuÞðx0Þ ¼ 0 and, by (3.6), (b) follows. More-

over, if DuA 0 in W then nuA 0 in W. Therefore, there exists t0 > 0 such that
nuðWt0Þ > 0. On the other hand nuðWtÞb nuðWt0Þ if tb t0, and GWt

ðx0; �Þ > 0 since
Wt is connected. Then

ntðuÞðx0Þ :¼
Z
Wt

GWt
ðx0; yÞ dnuðyÞ > 0 Etb t0;
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so that

NðuÞðx0Þ :¼
Z T

0

jðtÞntðuÞðx0Þ dt > 0:

Using this information in (3.6) together with the assumption uðx0Þ a R, we imme-
diately get (c). r

With the lemma above we can prove Theorem 1.2.

Proof of Theorem 1.2. We let W :¼ Bd
r ðx0Þ and

Wt :¼ Bd
t ðx0Þ 0 < t < r:

Then ðWtÞ0<t<r satisfies conditions (i)–(iii) above. It is a standard fact that the

measure m
Bd
1
ð0Þ

0 (see (3.1)) is such that

dm
Bd
1
ð0Þ

0 ðyÞ :¼ PdðyÞ dsðyÞ;

where

Pd : qBd
1 ð0Þ ! R; PdðyÞ :¼ � qG

qn
ð0; yÞ

with Gð0; �Þ the Green function of Bd
1 ð0Þ with pole at 0, and n the outward

normal.
Then, since D is left translation invariant and homogeneous of degree two

w.r.t. the dilation y 7! ly, one has

dmBd
t ðx0Þ

x0
ðyÞ :¼ 1

tn�1
Pd

� y� x0

t

�
dsðyÞ:

For a > 0 the function

ja : �0; r½ ! �0;l½; jaðtÞ :¼
a

ra
ta�1

is non-negative and measurable, and

Z r

0

jaðtÞ dt ¼ 1:

Then, the operator M related to ja, see (3.3), takes the form

MðuÞðx0Þ ¼
a

ra

Z r

0

� 1

tn�a

Z
dðy�x0Þ¼t

uðyÞPd

� y� x0

t

�
dsðyÞ

�
dt:
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By the coarea formula, the right hand side is equal to

a

ra

Z
Bd
r ðx0Þ

uðyÞ j‘dðy� x0Þj
ðdðy� x0ÞÞn�a Pd

� y� x0

dðy� x0Þ

�
dy

¼ a

ra

Z
Bd
r ðx0Þ

uðyÞ mdðy� x0Þ
ðdðy� x0ÞÞn�a dy:

Thus, keeping in mind the definition of ma, see (1.4), we have

MðuÞðx0Þ ¼
a

ra

Z
Bd
r ðx0Þ

uðyÞ mdðy� x0Þ
ðdðy� x0ÞÞn�a dy ¼

Z
Bd
r ðx0Þ

uðyÞ dmaðyÞ:

By Lemma 3.1-(b), we obtain

uðx0Þ ¼ Muðx0Þ ¼
Z
Bd
r ðx0Þ

uðyÞ dmaðyÞð3:7Þ

for every u a HðBd
r ðx0ÞÞ, ub 0. We have so proved (1.5).

Using in (3.7) the family of functions

y 7! uxðyÞ :¼ Gðy� xÞ; x B Bd
r ðx0Þ;

which are non-negative and harmonic in Bd
r ðx0Þ, we get

Gðx0 � xÞ ¼
Z
Bd
r ðx0Þ

Gðy� xÞ dmaðyÞ ¼ GmaðxÞ; Ex B Bd
r ðx0Þ:ð3:8Þ

On the other hand, if x a Bd
r ðx0Þnfx0g then

ux is superharmonic in Bd
r ðx0Þ; uxðx0Þ ¼ Gðx0 � xÞ < l and Dux ¼ �dx;

where dx is the Dirac measure at fxg.
Then, by Lemma 3.1-(c)

Gðx0 � xÞ > GmaðxÞ Ex a Bd
r ðx0Þ; xAx0:ð3:9Þ

Moreover, keeping in mind that G a L
p
locðRnÞ for every p a

�
1; n

n�2

�
while�

1
d

�n�a
a L

q
locðRnÞ for every q a

�
1; n

n�a

�
, then the potential

Rn C x 7!
Z
Bd
r ðx0Þ

Gðy� xÞ dmaðyÞ is continuous for every a > n� 2;

see e.g. [8, Proposition 8.8]. In particular, (3.9) extends up to x ¼ x0. Then, also
keeping in mind (3.8), ðBd

r ðx0Þ; ma; x0Þ is a strong G-triple if a > n� 2. r

We turn to prove Theorem 1.3, which is a consequence of Theorems 1.1
and 1.2.
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Proof of Theorem 1.3. Condition (1.6) is equivalent to say that ðD; naOD; x0Þ
is a G-triple, with

dnaðyÞ :¼
cmdðy� x0Þ

ðdðy� x0ÞÞn�a dy:

Of course, suppðnaODÞ ¼ D � qD. Moreover, from (1.6) we get

1 ¼ c

Z
D

Gðy� xÞ
Gðx0 � xÞ �

mdðy� x0Þ
ðdðy� x0ÞÞn�a dy Ex B D:

Letting jxj go to infinity we obtain that c ¼
�Z

D

mdðy�x0Þ
ðdðy�x0ÞÞn�a dy

��1

.

By Theorem 1.2 ðBd
r ðx0Þ; ma; x0Þ is a strong G-triple for all a > n� 2.

Choosing r ¼
�
a
c

�1
a we obtain naOðBd

r ðx0ÞBDÞ ¼ maOðBd
r ðx0ÞBDÞ. Taking

also into account that Bd
r ðx0Þ is a solid set we have that all the assumptions of

Theorem 1.1 are satisfied with W ¼ Bd
r ðx0Þ. Therefore, the conclusion follows.

r
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Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica
(INdAM).

Basic Notation

m :¼ Lebesgue measure in Rn

Brðx0Þ :¼ Euclidean ball in Rn with center x0 and radius r
on :¼ mðB1ð0ÞÞ
Wc :¼ RnnW
W :¼ closure of W
intW :¼ interior of W
W solid set :¼ Wc is connected and W ¼ intW
D :¼ Laplace operator
u : W ! R is harmonic in W :¼ u is smooth and Du ¼ 0 in W
HðWÞ :¼ set of the harmonic functions in W
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