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ABSTRACT. — It is known that, for any convex planar set Q, the first non-trivial Neumann eigen-
value x; (Q) of the Hermite operator is greater than or equal to 1. Under the additional assumption
that Q is contained in a strip, we show that g, (Q) = 1 if and only if Q is any strip. The study of the
equality case requires, among other things, an asymptotic analysis of the eigenvalues of the Hermite
operator in thin domains.
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1. INTRODUCTION

Let Q C R? be a convex domain and let us denote by y and dm, the standard
Gaussian function and measure in R? respectively, that is

x2+y2

5 ) and dm, = y(x, y)dxdy.

P(x,») = ew(—

In this paper we consider the following Neumann eigenvalue problem for the
Hermite operator

—div(yVu) = uyu  in Q,
1.1
(11) @ =0 on 0Q),

on
where n stands for the outward normal to 6Q. As usual, we understand (1 1)asa
spectral problem for the self-adjoint operator 7" in the Hllbert space L2 (Q) =
L*(Q,dm,) associated with the quadratic form [u] := |Vul|?, D(1) := (Q
Here || - || denotes the norm in L7(Q) and

1 . 2 2
H,(Q):={ue L (Q)[Vue L, (Q)}

is a weighted Sobolev space equipped with the norm /|| - ||* + ||V - ||>. Since the
embedding Hy1 (Q) — Lyz(Q) is compact (see e.g. [8], [14], [17]), the spectrum of T’
is purely discrete. We arrange the eigenvalues of 7" in a non-decreasing sequence
{1,(Q)},7% where each eigenvalue is repeated according to its multiplicity. The
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first eigenfunction of (1.1) is clearly a constant with eigenvalue y,(Q2) = 0 for any
Q. We shall be interested in the first non-trivial eigenvalue z,(Q) of (1.1), which
admits the following variational characterisation

(12) m(Q) = mln{%. eHyl(Q)\{O},/Qudmyzo}.

A classical Poincaré-Wirtinger type inequality which goes back to Hermite
(see for example [13, Chapter II, p. 91 ff]) states that

(1.3) m(R?) =1

and therefore

2
2
/R2 (u—/Rzudmy> dm, < /R2 \Vul* dm,, Yu e H)(R?).

If Q is any convex subset of R, it is possible to prove that

(1.4) 0 (Q) =1

using various different techniques. For instance, in [9], among other things, the
authors consider smooth densities of the type e~", with D>V > Id, which applies
to the Gaussian measure restricted to a convex set, by standard approximation
arguments. A different approach, from optimal transportation theory, is con-
tained in [11]. More recently, an improved inequality has been obtained for
bounded sets. In [5] (see also [2]) the authors prove that if Q is a bounded, convex
set then

(1.5) /11(9)2/11(—@’@>

where d(Q) is the diameter of Q and, here and throughout, 1, (a,b) will denote
the first nontrivial eigenvalue of the Sturm—Liouville problem

(')/]U) :lul iIl (Cl,b),
(16) { '(a) = o' (b) = 0,
with —o0 <a < b < 400 and
x2

7(x) = exp(—;).

Again, we understand (1.6) as a spectral problem for a self-adjoint operator with
compact resolvent in Lf ((a,b)). Tt is well known (see for instance [13, p. 328])
that

(1.7) w(a,b) =1 with g (a,b) =1 if and only if (a,b) = R
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An alternative way to gain (1.4) consists into passing to the limit in (1.5) as d(Q)
goes to infinity (see [6]).

Inequality (1.4) is sharp in the sense that equality sign holds when Q is any
two-dimensional strip (by a two-dimensional strip we mean, up to rotations and
translations, a set in the form R x I, where I is any open interval in R). It is
natural to ask if the strips are the unique domains for which the equality in (1.4)
is achieved.

We provide a partial answer to the uniqueness question via the following
theorem, which is the main result of this paper.

THEOREM 1.1. Let Q be a convex subset of Sy, ,, == {(x,y) € R* : y1 < y < 12}
for some y1,y2 € R, y1 < ya. If 1, (Q) = 1, then Q is a strip.

Inequality (1.5) is a Payne-Weinberger type inequality for the Hermite opera-
tor. We recall that the classical Payne-Weinberger inequality states that the first
nontrivial eigenvalue of the Neumann Laplacian in a bounded convex set €,
i (Q), satisfies the following bound

A
(1.8) W) = S

where 72/d(Q)? is the first nontrivial Neumann eigenvalue of the one-
dimensional Laplacian in (—d(Q)/2,d(Q)/2) (see [20]). The above estimate is
the best bound that can be given in terms of the diameter alone in the sense that
,ulA(Q)d(Q)2 tends to 7> for a parallepiped all but one of whose dimensions shrink
to zero (see [18, 22]).

Estimate (1.4) is sharp, not only asymptotically, since the equality sign is
achieved when Q is any strip S. Indeed, it is straightforward to verify that
1, (S) = (R) =1 for any strip S. Hence the question faced in Theorem 1.1
appears quite natural.

The paper is organised as follows. Section 2 contains the proof of Theorem
1.1. The latter consists in various steps. We firstly deduce from (1.4) that any
optimal set must be unbounded; then we show that it is possible to split an
optimal set Q getting two sets that are still optimal and have Gaussian area
m, () /2. Repeating this procedure we obtain a sequence of thinner and thinner,
optimal sets Q; and we finally prove that there exists @ € R such that z,(€)
converges as k — +oo to p(a,+o0), which is strictly greater than 1 unless
a = —oo. This circumstance implies that Q contains a straight line, and hence
Q is a strip.

The convergence of z,(Qy) to 1 (a,+0oo) follows by a more general result
established in Section 3, where we actually prove a convergence of all eigen-
values of T in thin domains to eigenvalues of a one-dimensional problem
(see Theorem 3.1). We also establish certain convergence of eigenfunctions. We
believe that the convergence results are of independent interest, since our method
of proof differs from known techniques in the case of the Neumann Laplacian in
thin domains [3, 4, 19, 21].
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For optimisation results related to the present work, we refer the interested
reader to [7, 15, 17, 10, 12].

2. PROOF OF THEOREM 1.1

The main ingredient in our proof of Theorem 1.1 is the following lemma, which
tells us that cutting the optimiser of (1.4) in two convex, unbounded sets with
equal Gaussian area, we again get two optimisers.

LEMMA 2.1. Let Q be a convex subset of Sy, ,, with 1, (Q) = 1 and suppose that
Q is not a strip. Let y € (y1, y2) be such that the straight line {y = ¥} divides Q
into two convex subsets with equal Gaussian area m,(Q). Then

wm(Qo{y <y} = Qn{y>7y} =1

PROOF. Let u be an eigenfunction of (1.1) corresponding to z,(Q). By (1.2), we

know that / udm, = 0 and
Q

B fQ|Vu|2dmy

1=
Jou? dm,

For each « € [0,27] there is a unique straight line r, orthogonal to (cos«,sin o)
such that it divides Q into two convex sets Q.. Q with equal Gaussian measure.

Let I(a) := / udm,. Since (o)) = —I (o + ), by continuity there is & such that
Q/

I(5) = 0. Now we claim that ry is parallel to the x-axis. Note firstly that Q;
and Q[ are obviously convex and by (1.5), (1.7) and (1.4) we have

(2.1) m(QY) =1, 1(Qf) =1.
Moreover, it is immediate to verify that

fQ’_ |V1/l|2 dm}r + f 1 |VU|2 dmy
I = (Q) = :
e Jo u? dmy + [o, u* dm,

fQ; \Vu|? dm, fQ;’ Vul* dm,

2 J 2 )
s u?dm, s u?dm
fQi y ny. y

> min

with equality holding if and only if

fQi \Vu|? dm, B fﬂ;f Vul* dm,

fQ;_ u?* dm, a fQ;_/ u? dm,
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Without loss of generality we can assume that
2 2 2
fQ;_ |Vu|~ dm, fQ;, \Vu|~ dm, fQ;_ |Vu|~ dm,

e Jo urdmy, 7 Jorutdm, (0 [o u?dm,

Finally, (2.1) ensures that

(2.2) 1=u,(Q) = /v‘l(Q;z) = /v‘l(Qg)-

Now we want to show that both Q) and Q are unbounded, and hence r; is
parallel to the x-axis. Suppose by contradiction that, for instance, Q] is bounded.
In such a case (1.5) yields

!/ o
ﬂl(Q&)Zﬂl( ) )
Taking into account (2.2) and (1.7), we get that

ne d(;lé) 7d(§22é)) _1

that is d(Q%) = +oo, which is a contradiction. O

Proor or THEOREM 1.1. By contradiction, let us assume that Q C S, ,, is a
convex domain different from a strip and g, (Q) = 1. Let us denote

Q={(x,y) eR’: y1 <y <y, p(y) < x},

where p is a convex, non-trivial function. From (1.5) and (1.7) it follows that Q is
necessarily unbounded. By employing a separation of variables, we also deduce
from (1.5) and (1.7) that Q cannot be a semi-strip. Finally, we may assume that
inf{x: 3y € [y1, 1), (x,») € Q} is finite (otherwise, we would have the finite
supremum, which can be transferred to our situation by a reflection of the coor-
dinate system).

Repeating the procedure described in the above lemma, since at any step we
are dividing into two convex subsets with equal Gaussian area, we can obtain a
sequence of unbounded convex domains

(2.3) Q. ={(x,») e R*: yo < y < dy, p(¥) < x}
={(x,y) e Q:yo <y <di}
such that

Q) =1, e :=d,—yo——0.

—+00

Here the point y( is chosen in such a way that p’(y) # 0, which is always
possible because the situation of semi-strips has been excluded. Without loss of
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generality (reflecting again the coordinate system if necessary), we may in fact
assume

(2.4) p'(30) >0,

so that p is increasing on [y, dx| whenever k is sufficiently large. Applying now a
more general convergence result for eigenvalues in thin Neumann domains that
we shall establish in the following section (Theorem 3.1), we have

LEMMA 2.2. lim 1;(Q,,) = 1, (p~ (), +0).

k— o0

Since g, (€., ) equals 1 for every k, we conclude that

1 (p~" (30), +o0) = L.

However, from (1.7), we then deduce that p~!(yg) = —co, which contradicts
our assumptions from the beginning of the proof. In other words, Q contains a
straight line and the theorem immediately follows. |

It thus remains to establish Lemma 2.2.

3. EIGENVALUE ASYMPTOTICS IN THIN STRIPS

In this section we establish Lemma 2.2 as a consequence of a general result about
convergence of all eigenvalues of T in thin domains of the type (2.3).

3.1. The geometric setting. Let f :]0,+00)— [0,400) be a concave non-
decreasing continuous non-trivial function such that f(0) = 0 (the case f(0) > 0
is actually much easier to deal with). Given a positive number ¢ < sup f, we put

Se(x) :== min{e, f(x)}
and define an unbounded domain

Q. :={(x,y)eR*:0<x,0<y< fi(x)}
Clearly, (2.3) can be cast into this form after identifying /' = p~! in a small neigh-
bourhood of zero and a translation. However, keeping in mind that the problem
(1.1) is not translation-invariant, we accordingly change the definition of the
Gaussian weight throughout this section

(xo+x)2+(yo+y>2)_

y(x, p) = eXp(— 7

Here y¢ is primarily thought as the point from (2.3) and xj is then such that
(x0, yo) € Q. For the results established in this section, however, xy and y, can
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be thought as arbitrary real numbers. For our method to work, it is only impor-
tant to assume (2.4), which accordingly transfers to

(3.1) £1(0) < +o0.

3.2. The analytic setting and main result. Keeping the translation we have made
in mind, instead of (1.1) we equivalently consider the eigenvalue problem

—div(yVu) = ygyu  in Q,,
(3.2) @ =0 on 0Q,.

on
We understand (3.2) as a spectral problem for the self-adjoint operator 7, in the
Hilbert space L (€,) associated with the quadratic form ;[u] := ||Vu|| 2, D(1,) =
H)(Q;). Here || - ||, denotes the norm in L7(€,). We arrange the eigenvalues of 7,
in a non-decreasing sequence {u,(Q;)},.n Where each eigenvalue is repeated
according to its multiplicity. In this paper we adopt the convention 0 € N. We
are interested in the behaviour of the spectrum as ¢ — 0, particularly g, (€2,)
because of Lemma 2.2.

It is expectable that the eigenvalues will be determined in the limit ¢ — 0 by

the one-dimensional problem

—(pou’) = vyou in (0, 400),
(3.3) {u,(o‘)) o, 0

where

2 2
() = 3(x.0) = exp(~ LI
Again, we understand (3.3) as a spectral problem for the self-adjoint operator
Ty in the Hilbert space Lf,o((O, +00)) associated with the quadratic form #,[u] :=
|Vul|§, D(20) == H},ln((O, +00)), where || - ||, denotes the norm in Lyzo((O, +00)). As
above, we arrange the eigenvalues of 7j in a non-decreasing sequence {v,},
where each eigenvalue is repeated according to its multiplicity. By construction,
for each n € N, v, coincides with the eigenvalue y,,(xo, +o0) defined in (1.6).
In this section we prove the following convergence result.

THEOREM 3.1. Let f:[0,400) — [0,+00) be a concave non-decreasing continu-
ous non-trivial function such that f(0) = 0. Assume in addition (3.1). Then

VneN, u,(Q) —
E—
We shall also establish certain convergence of eigenfunctions of 7, to eigen-
functions of Tj.
Clearly, Lemma 2.2 is the case n = 1 of this general theorem.
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The rest of this section is devoted to a proof of Theorem 3.1.

3.3. From the moving to a fixed domain. Our main strategy is to map Q, into a
fixed strip Q. We introduce a refined mapping in order to effectively deal with the
singular situation f(0) = 0.

Let

a, .= inf £ ({e}).

By the definition of f., and since f is non-decreasing, a. — 0 as ¢ — 0 and
fo(x) = ¢ for all x > a,. If £(0) > 0, then there exists g > 0 such that @, = 0 for
all ¢ < g. On the other hand, if f(0) =0, then a, > 0 for all ¢ > 0. The trouble-
some situation is the latter, to which we have restricted from the beginning. In
this case, we introduce an auxiliary function

a.s +a; if s e [—1,0),
ge(s) :== .
s+a, if s€[0,400).

Since we are interested in the limit ¢ — 0, we may henceforth assume
(3.4) e<1l and a <1.
Define e-independent sets
Q_:=(-1,0)x(0,1), Q. :=(0,400) x (0,1), Q:=(-1,+0) x (0,1).
The mapping
(3.5) 00— 0, {(5,0) = Li(s.) = (9u(5), fi(gu(5)0)}

represents a C%!-diffeomorphism between Q and Q, (f is differentiable almost
everywhere, as it is supposed to be concave). In this way, we obtain a convenient
parametrisation of Q, via the coordinates (s, 7) € Q whose Jacobian is

(3.6) Jo(s, 1) = g,(5) f2(9e(s))-

Note that the Jacobian is independent of ¢ and singular at s = —1. Now we recon-
sider (3.2) in Q. With the notation

2 2
05.0) 2= (70 Z)(s, ) = exp L0 ELH I E SOy

introduce the unitary transform

U, : Lf(QC) — Lijg/g(Q) Aur Veuo L.

Here, in addition to the change of variables (3.5), we also make an irrelevant
scaling transform (so that the renormalised Jacobian j./e is 1 in Q,). The
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operators H, := U, T, U;l and T, are isospectral. By definition, H, is associated
with the quadratic form A.[y] := tg[U;llp], D(h,) := U,D(t,).

ProproSITION 3.1. Assume (3.1). Then

o S0 (0)? ,ﬁ
( gs fg Je Ilp) (ﬂ R gg)z‘| Vede deZ

(3.8)  D(h) C H' ,(Q).

Vedel€

CHRNAUEY

Here we have started to simplify the notation by suppressing arguments of the
functions.

Proor. The space &, := COI(IRZ) I Q. is a core of £,. The transformed space
7 := U,Z, is a subset of CJ(R 2) 1 Q consisting of Lipschitz continuous functions
on Q which belong to C1/(Q ) ® C 1(Q+) (we do not have C! globally, because
g. and f, are not smooth). For any yy € &, it is easy to check (3.7); this formula
extends to all yy from the domain

D(hc) _ 9\\%7 || . |h£ — haH + || . ||2,
where || - || denotes the norm of Ly i /s(Q) Let y € 2. Using elementary esti-
mates, we easily check
(3.9) B W] < hfy]

where

M::a/ﬁ(a;‘f)z 'fg 92 ds dr

o 2 @0)?  fio
+(1—m||fa||oc>/g(ﬁog€)2yggc del

with any 0 € (0,1). Note that f is bounded under the assumption (3.1) and the
concavity. For any ¢ > 0, we can choose ¢ so small that /_ [\] is composed of
a sum of two non-negative terms (0 can be made independent of ¢ if we restrict
the latter to a fixed bounded interval, say (0, 1], see (3.4), because ||/ .-, ) =
/{22 ((0,1)> but this assumption is not needed for the property we are provmg)
Using that g, is bounded for any fixed ¢ and the estimate f; o g, <e, we thus
deduce from (3.9) that there is a positive constant ¢, s (again, this constant can
be made independent of ¢ if ¢ < 1) such that

chHlp”Hl ) <y

h,*

This proves (3.8) because & is dense in Hy1 e

(Q). O
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3.4. The eigenvalue equation. Recall that we denote the elgenvalues of T,
(and hence H,) by u,(Q,) with ne N (= {0,1,...}). The (n+1)™ eigenvalue
can be characterised by the Rayleigh-Ritz variational formula

hs
(3.10) 1,(Q) = inf sup ’ N/]
dlmﬁ,,—i‘H'l Ve,
2,CD(h,)

PROPOSITION 3.2. For any n € N, there exists a positive constant C, such that
foralle <1,

ﬂn(Qe) < Cu.

PROOF. Assuming ¢ < 1, we have the following two-sided &- and z-independent
bound

(3-11) 7-(8) < 7.(8,0) < 7.(5)

valid for every (s,7) € Q with

2 2
y_(s) = exp(— (|xo] + s+ 1)2—|— (Jyol + 1) )

Y

2
V+(S) — exp(_ <—|X0| +‘;> _2|y0|)

Using in addition that g/ = 1 and f; 0 g, = ¢ in Q,, we obviously have

he| fg (Os) V+()d5dt
Vi e C57((0, ® {1}, < — .
VGO @ . i ST TR

It then follows from (3.10) that the inequality of the proposition holds with the
numbers

+oo / 2
d
C, = p 1Lnf | sup 4 (s)2y+(s) S,
L”C”C‘,‘L((O”* ))l//eL fo W(s) y_(s)ds

which are actually eigenvalues of the one-dimensional operator —y~1d,y. d; in
Lf, ((0,+00)), subject to Dirichlet boundary conditions. O

Let us now fix n e N and abbreviate the (n+ l)th eigenvalue of H, by
U, = 1, (). We denote an eigenfunction corresponding to x, by ¥, and nor-
malise it to 1 in L}Z,jg/g(Q), ie.,

(3.12) ]l =1

for every admissible ¢ > 0.
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The weak formulation of the eigenvalue equation H.\, = ), reads

(3.13) Vp € D(he), Do, ¥h,) = 14,(9, ),

where (-,-) stands for the inner product in L2 e .(Q) and Ag(-,-) denotes the
sesquilinear form corresponding to /.[-], that is V¢ € D(h,)

s [ (G

@) @) 1 fiog
T hog o;ogs)]

/lpg 1.d ’f‘” gﬁdsdz

3.5. What happens in Q. Using |t| < 1, we easily verify

(3.15) V(s,1) € Qp, 7(8,0) = p(5)00(s),

where the function

Edsdt

a§+2x0 a, + &>+ 2|yole
p(8) :== exp(— ol 7 3ol )exp(—ags)

is converging pointwise to 1 as ¢ — 0.
Choosing ¢ =, as a test function in (3.13) and using (3.15) together with
Proposition 3.2 and (3.12), we obtain

0
(3.16) /Q(axl//é.)ngyodsdl‘—l—/g ( ‘/’) poyodsdt < bW, = |, lI* < C.

Here and in the sequel, we denote by C a generic constant which is independent
of ¢ and may change its value from line to line. Writing

(3.17) Yo(s, 1) = @,(s) +1,(s, ),
where
1
(3.18) / n(s,0)di =0 forae. s e (0,400),
0

we deduce from the second term on the left hand side of (3.16)

(3.19) 712/ n2p.yedsdt < / (8m,)°p,yodsdt < Ce?.
Q. Q.
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Differentiating (3.18) with respect to s, we may write

/ (Os¥,) pyyo dsdt = / 0l p o dsdi + / (0s11,)*psyo ds dt
Q.

+ Q,

and putting this decomposition into (3.16), we get from the first term on the left
hand side

+o0 5 +oo )
(3.20) /0 9, peyods < C, /O (0s1,) " perods < C.

At the same time, from (3.12) using (3.15), we obtain
(3.21) / 02p,y ds dt +/ n2p.yy ds dt = / Wipodsdr < |W,|° =1,
Q. Q. Q.

where the first equality employs (3.18). Consequently,

+o0
(3.22) / 02p,y0ds < 1.
0

Finally, employing the first inequality from (3.20) and (3.22), we get

+0o0
(3.23) | s < c

From (3.22) and (3.23), we see that {,/p,9.},.o is a bounded family in
Hylo((O,+oo)) and therefore precompact in the weak topology of this space.
Let ¢, be a weak limit point, i.e. for a decreasing sequence of positive numbers
{&};cn such that g — 0 as i — +o0,

(3.24) VPaly > 90 in Hy ((0,+00)).
. 1 . . 2
Since H, ((0,+c0)) is compactly embedded in L; ((0,+c0)), we may assume
S . 2
(325) vV pe,-gog,- m Do m L70<(0, +OO))

3.6. What happens in Q_. Here y, can be estimated from below just by an
e-independent positive number, e.g.,

(Jxol + 1)* + |yo| + 1)2).

(3.26) Vis,0) € Q. y,(s,0) = exp(_ 2

On the other hand, we need a lower bound to f,. Employing that f is concave
and non-decreasing, we can use

(3.27) Vs e (—1,0), fi(g:(s)) =e(s+1).

Recall also that g, = a, on (—1,0).
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Choosing ¢ =y, as a test function in (3.13) and using (3.26) and (3.27), we
obtain

(3.28) /Q 7 (53‘”8 Ji°9: % 0, arls + 1) dsdr

as fsos
(0
+/ oo o) a,(s+1)dsdt < C.

Assume (3.1). Using elementary estimates as in the proof of Proposition 3.1, this
inequality implies

(329) o / (as%)zag(s—i—l)dsdt
Q N 4

o 112 (atlpa)z
+(1_1_5||f8|m)/gWag(s+1)dsdtsc

with any J € (0, 1). We can choose ¢ (independent of ¢ due to (3.4)) so small that
the left hand side of (3.29) is composed of a sum of two non-negative terms.
Using in addition f; o g, < ¢, we thus deduce from (3.29)

1

as Jo_

(05,)% (s + l)dsdH—%/Q(6,wg)z(s+l)dsdts C.

Moreover, it follows from (3.1) and the convexity bound

(3.30) Vs >0, f(s)<f'(0)s

that

(3.31) e < f'(0)a,.

Hence

(3.32) / IV, *(s + 1) dsdr < Ca,.
Q-

Now we write (¢, is constant!)

(3.33) V(s 1) = @, + (s, 0),
where
(3.34) / n.(s,8)(s+ 1)dsdt =0

We state the following explicit result (although positivity of the minimum would
be sufficient for our purposes).
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LeEMMA 3.1. Writing w(s, t) := s+ 1, we have

{fg}QW’? ue Hll(Q—)\{O},/Q nw = 0} a2

PrROOF. The minimum equals the first non-trivial eigenvalue u,; of the operator
—w~ldiv(wV) in L2(€Q_), subject to Neumann boundary conditions. By separa-
tion of variables, y; coincides with the minimum between the first non-trivial
eigenvalue of the operator — (s + 1) ' d,((s + 1)d;) in L((0, 1), (s + 1) ds), subject
to Neumann boundary conditions, and the first non-trivial eigenvalue of the
Laplacian —a? in L?((0, 1), dt), subject to Neumann boundary conditions. (We
remark that the former operator is the radial component of the Laplacian in
the unit disk centred at (—1,0).) By solving these one-dimensional eigenvalue
problems explicitly in terms of special functions, we know that the first non-trivial
eigenvalues are given by j12.1 and 72, respectively. Here jj | ~3.83 is the first
positive zero of the Bessel function J; (see [1, Sec. 9]). Since, ji.1 > 7, we get the
desired claim. |

With help of this lemma, we deduce from (3.32)

(3.35) n2/ n2(s+ ) dsdt < / V.12 (s + 1) dsdr < Ca,.
o) o

At the same time, from (3.12) using (3.26) and (3.27), we obtain

(3.36) / (pfag(s+1)dsdl+/ nfag(s+1)dsdt:/ Yla,(s+1)dsdt < C,
o o

where the first equality employs (3.34). Consequently, recalling that ¢, is con-
stant,

(3.37) pla, < C onQ .

3.7. The limiting eigenvalue equation in Q.. Now we consider (3.13) for the
sequence {¢};.n and a test function ¢(s, ) = p(s), where ¢ € C;°(R) is such
that ¢’ = 0 on [—1,0], and take the limit i — +o0.

We shall need a lower bound analogous to the upper bound (3.31). From the
fundamental theorem of calculus, we deduce

(3.38) Wemm,ﬂnz@mﬁf)

(0,a,)

Note that the infimum cannot be zero unless f is trivial (we assume from the
beginning ¢ < sup f and that f is non-decreasing) and that it converges to
f'(0) > 0 as ¢ — 0. Consequently, for all sufficiently small ¢, we have

(3.39) eZ%f%@%.
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At the same time, in analogy with (3.15), we have

(340) V(S, t) € Q+> ys(sv l) < Ca/’s(s)yo(s)v

where

2|xo0|a; + &2 + 2| yole
C = exp( 2 )

is converging to 1 as ¢ — 0.
We first look at the right hand side of (3.13). Using the decompositions (3.17)
and (3.33), we have

Je0ge

&

Je0ge

&

ds dt

(p,¥,) = /Q PP, as dsdt + /Q D1

+ / 09,7, dsdt + / on,y, dsdr.
Qi Q.

Estimating y, < 1 and using (3.30) and (3.39), we get

' / m%%wds dt
Q_

&

a2 ,
< L5 [ ol 1dsar

< 2a8/ lo| |m.](s + 1) dsdt,
Q

where the right hand side tends to zero as ¢ — 0 due to the Schwarz inequality
and (3.35). At the same time, recalling that ¢, is constant in Q_,

'/ q)(pgyé.aafg 9% ds di
Q.

&

a?
< Er0) [ lollols+ 1)dsar

<2alp| [ lolis + 1) dsa,
Q_

where the right hand side tends to zero as ¢ — 0 due to (3.37). Using (3.40), we

also get
< ca/ |01 7.0 ds di < Ca\// %7 dsdt\// 12 psy0 ds dt,
Q. Q. Q,

' / on.y, dsdt
o,

where the right hand side tends to zero as ¢ — 0 due to (3.19). Finally, we write

Ve,
\ pe; Y0

/ PPV, dsdt:/ Wﬂg,-\//’_a,.VodeZJr/ ¢€0s,-\//7_a,»1’0< —1)dsdt-
Q. Q. Q,
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Here the first term on the right hand side converges to / PPy dsdt as i — 400
Q

due to (3.24), while the second term vanishes in the limit because of

l)dsdt

‘/ cole\/p—L,Vo(\/_O

\// (- dsdz\// 03P,y ds di
Q. Y0

Indeed the second term on the right hand side is bounded by (3.21), while first
term tends to zero as i — +oo by the dominated convergence theorem. Summing

up,

+o0
(3.41) lim (p,y,) = /O ovato ds.

I——+o00

Employing that the test function ¢ is constant on [—1,0] and the decomposi-
tion (3.17), we have

he(p, ) = / 0 gy, dsdt —I—/ ¢’ 0m,y, dsdt.
Q, Q.

Here the first term on the right hand side can be treated in the same way as above
with the conclusion

“+o0
/ 9'o.y, dsdt — / 0'pyyodsdt = / 9'y70 ds,
Q. ' I—+00 Q. 0

while we integrate by parts to handle the second term,

/ @' 0sn,y, dsdt = —/ 0"y, dsdt — / @'n.0sy, dsdt.
Q. Q. Q.

Notice that the boundary terms vanish because ¢ has a compact support in R and
¢'(0) = 0. As above, the first term on the right hand side vanishes as ¢ — 0 due
o (3.19). Similarly, using dyy,(s, t) = —7,(s, ) (xo + s + a) for all (s,7) € Q. and
(3.40), we have

/ 9’1057, dsdt] < c, / 0] [1:|p2y0 (X0 + 5 + a;) ds dt
Q. Q.

< c\// w’zyo(xwwag)zdsdl\// npsyodsdt,
Q. Q.
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where the right hand side tends to zero as ¢ — 0 due to (3.19). Summing up,
+0o0
(342) hm hc,-(%%‘) = / ¢/¢6y0 ds.
i—-+00 ! 0

Since the set of functions ¢ € C°(R) satisfying ¢’(0) = 0 is a core for the form
domain of the operator 7)), we conclude from (3.42) and (3.41) that ¢, belongs to
D(7)) and solves the one-dimensional problems

Topo = Ky 9o, 1o = li_mfup Heys
I——+00

(3.43) -
Togy = sy, 4y <= limint g,

If gy #0 on (0,+00), then x; must coincide with some eigenvalues of 7j. It
remains to check that indeed ¢, # 0 on (0, +c0).

3.8. The limiting problem in Q_: a crucial step. Define
Q' :=(-1/2,0) x (0,1), Q) :=(0,1/2) x (0,1), Q":=(-1/2,1/2) x (0,1).

From (3.32) and (3.36), we respectively have

(3.44) / vy, 2 dsdr < 2Ca,, / w2dsdr < 2€.
Q' Q dg

At the same time, denoting m := min ;5 7, and assuming ¢ < 1, from (3.16)

and (3.21), we respectively get

C 1
3.45 / vy, dsdt < ——— 2dsdt < ————.
(3.45) Q;| Vil mop,(1/2) Q;w mop,(1/2)

Consequently, y, € H'(Q') for any ¢ <1 (although, in principle, ||i/,]| (@)
might not be uniformly bounded in &).

It follows that the boundary values /,(0—, ¢) and ,(0+, ¢) exist in the sense
of traces in Q' and Q/, respectively, and they must be equal as functions of
in L%((0,1)). Using the decompositions (3.17) and (3.33), we therefore have, for
almost every 7 € (0, 1),

[¢8(0_> - ¢s<0+)]2 = [’78(0—"_’ t) - 77&<0_7 t)]z < 2[’78(0+7 t)]z + 2[’7&(0_7 t)]z

1/2
= 2C/0 ([.(5, 00> + (05, (s, 1)]%) dis

0
L2c / (1,05, 01 + [0, (5,01 .
“1)2
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Here C is a positive constant coming from the Sobolev embedding theorem

H'((0,1/2)) — €°(]0,1/2]) apphed to s — 7,(0+,¢) for almost every 7 € (0, 1),
which is justified by 7, € H'(Q/) and Fubini’s theorem. Recall that ¢, is con-
stant on (—1,0) and ¢, € H'((0,1/2)) < C°([0, 1/2]); more specifically, the first
inequality of (3.20) and (3.22) respectively yield

1/2 » C 1/2 5 1
3.46 / ﬁs————,/ ds < —————.
(346 o S w12y Sy TS mep,(172)

Integrating with respect to ¢ above, we deduce

0.0-) = 0,04 <2€ | 2+ (0un)dsdi+2C [ 142 + @) dsch

Applying (3.19), the second inequality of (3.20) and (3.35), we may write
(347) [9.0-) g, (0H)" < C.

where C is a constant (different from the above) independent of ¢, provided that
(3.4) holds. Finally, applying (3.46) and the Sobolev embedding H'((0,1/2)) —
C°([0,1/2]), we deduce from (3.47) the following improvement upon (3.37)

(3.48) p>2<C onQ .

3.9. As ¢ — 0 only Q. matters: convergence of eigenvalues and eigenfunctions.
Estimate (3.48) provides a crucial information whose significance consists in that
what happens in Q_ is insignificant.

PROPOSITION 3.3. One has

¥l = N0l 2 (0, +00)-

PrROOF. We have

Wl = [ otna s+ [ gira L asar
Q Q

ﬁ%@ﬁm

+ / 2§03’7€,y£a8
Q

+/)¢%¢m+/ﬁﬁ%$m+/‘w%%ﬁm
Q. Q. Q.

The right hand side of the first line together with the mixed term on the second
line goes to zero as ¢ — 0. Indeed, recalling (3.30), (3.39) and y, < 1,

/‘ﬁh%ﬁ:%ﬁwgz%ﬁ/‘@+nﬁm_ﬁo
Q

&e—0
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due to (3.48);

/nfygagfaogadsdtshg/ nf(s+l)dS—()>0
Q- Q £—>

&

due to (3.35); and the mixed term goes to zero by the Schwarz inequality. Simi-
larly, recalling (3.40),

/ ’7327’3 dsdt < cg/ ’7.92/7370 dsdt — 0
Q. Q. e—0

due to (3.19); while the Schwarz inequality yields

32(:8\/ / nfpgyodsdt\/ / Pp;yodsdt — 0,
Q. : Q. . e—0

where the second square root is bounded in ¢ due to (3.22). Finally, we write

’ / 201,y dsdt

+

/ 0, dsdt = / 2P0 ds di + / 0 (7 — Pe70) dsdt
Q, Q, Q,

and observe that the first term on the right hand side tends to the desired result

poll72 ((0.+w)) @S i — oo by the strong convergence (3.25), while the second
7 100, .o .

term vanishes in the limit. In more detail,

‘/ %% (ys,- - ,Dg,yo) ds dt
Q,

yE,’
= ‘/ (029, — o+ 03) (2 — o) dsdi
Q, Pe.

&

< /Q 02 ps, — 05| (cav0 + 7o) dsdt

+/ (ﬂg<£— Vo)dela
Q, P

&i

where the first term after the inequality tends to zero as i — +oo by the strong
convergence again, while the second term vanishes by the dominated convergence
theorem. g

It follows from Proposition 3.3 that ¢, # 0, so that it is indeed an eigenfunc-
tion of Ty due to (3.43). In particular, 5 = 11 .

Now, let {, be a normalised eigenfunction corresponding to possibly another
eigenvalue g, := u,,(¢). Again, we use the decompositions (3.17) and (3.33) and
distinguish the individual components by hat. In the same way as we proved
Proposition 3.3, we can establish
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PROPOSITION 3.4. One has

(e ¥s) Py (20, 90) 12 (0, +o0)) -

If m # n, then (wgi,vﬁé,) =0 and thus (9o, %0)72 ((0,4-0)) = 0- Hence ¢, and
] 70 3

@, correspond to distinct eigenvalues of Ty. In particular, ¢, is an eigenfunction
corresponding to the (n + 1)th eigenvalue v, of Tj. Since we get this result for
any weak limit point of {¢,},.,, we have the convergence results actually in
& — 0 (no need to pass to subsequences).

This completes the proof of Theorem 3.1.
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