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ABSTRACT. — In this paper, we revise the BBM formula due to J. Bourgain, H. Brezis, and
P. Mironescu in [1].
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1. INTRODUCTION

We first recall the BBM formula due to J. Bourgain, H. Brezis, and P. Mironescu
[1], see also [3], (with a refinement by J. Davila [5]). Let 4 > 1 be an integer.
Throughout this paper, (p,) denotes a sequence of radial mollifiers in the sense
that

(1.1) Pu € Lioe(0,+0), p, 20,
(1.2) /Oxpn(r)rd_1 dr=1 Vn,

and

(1.3) nkrllm : ) P,V dr =0 5> 0.

Even though the next assumption is required only for a few results, it is conve-
nient to assume that

(1.4) pu(r)=0 forallr>1,neN.

Set, for p > 1,

(1.5) I ,(u ()" L o (|x — y))dxdy < +0, Vue L} (RY).
R JRY y|]7 o¢
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1
Foruel,,

(RY), define, for p > 1,

ydm/Rd \Vu|? if Vu e LP(RY),

400 otherwise,

(1.6) I, (u) =

and, for p =1,

Vu| if Vu is a finite measure,
(17) Il(u) — yd,l /R" ‘ |
400 otherwise,

where, for any e € S9! and p > 1,

_ ColP
(1.8) yd“,,—/gd] lo-el” da.
In the case p = 1, we have

2

1.9 :/ o-eldo = d—1
(1.9) Vd,1 §d4| | 4 it d -2,

2 if d=1.

S92 =2|B"Y ifd =3,

The BBM formula asserts that, for p > 1,

(1.10) lim 1, ,(u) = I,(u) Yue L) (RY).

n—-—+oo
Applying (1.10) with p = 1, u = 1 (the characteristic function of a measurable

set E), and p, (r) = Cyn@tD/2pe=  we obtain

lim n(d“)/z/ /e”'“‘yzdxdy:AdPer(E).
< JE

n—-+0o0

By comparison the De Giorgi formula [6, 7] for the perimeter involves a deriva-
tive and asserts that

n—+aoo

lim / VW, (x)| dx = B, Per(E),
Rd
where

W,(x) = n? / eI’ dy,
E

and 4,4, B;, and C; are positive constants depending only on d.
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Define, for p > 1, ne N, and u € L} (RY),

loc

(111 Do) = [ POZHONT o ay forae x e RY.

R4 |X—J’|p

Note that, see [1],

/Rd D, p(u)(x) dx < C”‘d/Rd [Vu|?(x)dx forne N,

and hence
(1.12) D, ,(x) < +oo forae. xeR?

if p>1and Vu e L?(R?) or p=1 and Vu is a finite measure. From the BBM
formula, we have, for p > 1,

(1.13) lim [ D,,u)(x)=1(u) foruelL] (R?).

n—-+4oo Rd

On the other hand, an easy computation (see [1, formula (6)]) gives, for p > 1,
ue CH(R?), and x € RY,

lim D, ,(u)(x) = yd’p|Vu|p(x).

n—oo

In this paper, we investigate the mode convergence of D, ,(u) to y, ,|Vu|”
as n — +oo for non smooth u. Our main results are the following

THEOREM 1. Letd > 1, p > 1, and u € W)"(RY). Then

lu(x + h) — u(x) — Vu(x) - h|”

- _ - d
(1.14) ngr+nw » e po(|A))dh =0  fora.e. x € R".
Consequently,
(1.15) lim D, ,(u)(x) =y, ,|Vul"(x) forae. xe R

n—+oo

REMARK 1. When p,(r) = de,; "1, for a sequence of (g,) — 0., assertion
(1.14) is part of the classical L”-differentiability theory of Calderon-Zygmund,
the same comment applies to assertion (1.18) below. Theorem 1 is due to
D. Spector [11, Theorem 1.7] under the additional assumption that p, is non-
increasing for every n. His argument is much more complicated than ours
(in addition he relies on the L” -differentiability of W!” functions, see e.g.,
[8, Theorem 2 on page 262]).

We now turn to the L'-convergence of D,, ,.
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PROPOSITION 1. Letd > 1, p>1,andu € L), (R?) with Vu € L?(R?). Then

loc

(1.16)  lim /Rd/Rd|“(x+h)_“(X|>_V“(x)'h|ppn(|h|)dhdx—o.

n—-—+oo |h r

Consequently,

(1.17) lim D, ,(u) =y,,|Vul” in L'(R?).

n—+oo
REMARK 2. Assertion (1.17) was proved in [1].

Theorem 1 (resp. Proposition 1) is established in Section 2 (resp. Section 3)
where we also present some variants, generalizations, and pathologies related to
these results.

The case p=1 and u € BV,UC(IRd) is more delicate. In this case instead of
Theorem 1, we have

THEOREM 2. Letd >1andu e BV/M(R"). Then

lu(x +h) — u(x) — V*u(x) - h|

(1.18)  lim pu(lB)dh =0 forae. xe R’
n—-+o0 R4 |h|
Consequently,
(1.19) liI}_l Dy 1 (u)(x) = y41|V“ul(x) for ae. x e R?.
n——+00 ’

Here and in what follows, for u € BV/(,(,([R{‘]), we denote V¥“u and V*u the
absolutely continuous part and the singular part of Vu.

REMARK 3. A version of Proposition 1 for u € BV (R“) has been established by
A. Ponce and D. Spector [9, Proposition 2.1]. Here is their result: Let d > 1, and
u € BV(RY). Then

f— —_— ac .
lim |u(x + h) —u(x) — V*“u(x) - hl
n—+0 [pd |h|

pu(|h) dh
= 74.1|V’u| in the sense of measures.

Theorem 2 is established in Section 4. In the last section, we present miscel-
laneous facts related to the above results.

2. CONVERGENCE ALMOST EVERYWHERE IN THE SOBOLEV CASE

We will use the following elementary lemma (see [4, Lemma 1]):
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LEMMA 1. Letd>1,r>0,xe R and f € L} (Rd). We have

loc

(2.1) (édhAWfofhmﬂ&das(bMﬂfxm,

for some positive constant C, depending only on d.
Here M (f) denotes the maximal function of /. We now give the

PrROOF OF THEOREM 1. We first present the proof for u € W7 (R?). We claim
that, for all u e W' 2(RY),

(2.2) D, p(u)(x) < CM(|Vu|?)(x) forae. x e R

Here and in what follows, C denotes a positive constant depending only on d.
We have, for a.e. x € R?, 6 € SY"!, and r > 0,

u(x+ro) —u(x) = /0' Vu(x + so) - o ds.

Using polar coordinates, Holder’s inequality, and Fubini’s theorem, we obtain,
fora.e. x € RY,

julx +h) — u(x)]
RY |h|?

§/ pn(r)rdll/ /|Vu(x+sa)~a|pdsdadr
0 rJs*tJo

p
pu(|h) dh

@© 1 _
- / pu(ryr1) / V()| 1y dy db.
0 T JB(x,r)

Applying Lemma 1, we obtain (2.2).
The proof of (1.14) now goes as follows. Set

_ _ o
Q(u) := {x € [Rid; lim sup |u(x +h) M(X)p Vu(x) - h|
s Jud 0

pu(lhl) dh > 0}.

Note that if u € C!(R“) then (1.14) holds for all x € R?. This implies

|Q(v)] =0 forallve C!(RY).
It follows that

(2.3) Q(u) = Q(u—v) forallve CHRY).
Recall that, see e.g., [12, Theorem 1 on page 5], for f € L'(R?), we have

. C
2.4 e REMUND > el < [ 111
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Using (2.2) and (2.4), we obtain

(2.5) {xe[Rid ) (“_”)(”h)_(”_|Zf,(,x)_v(”_”)(x)’h ﬂn(lhl)dh>g}
< < |V(u —v)(x)|”dx forall e > 0.
& R4

Combining (2.3) and (2.5) yields (1.14). Assertion (1.15) follows from (1.14) by
the triangle inequality after noting that, for every V € R,

|V'h|p . P d—1 b4
RdWﬂnﬂhDdh: 0 it |VO'| pn(r)r dadr:yd,1)|V| :

We now turn to the proof in the case u e Wll’,” (RY). Given R > 1, let

g € C!(R?) be such that ¢ = 1 in B(0,2R). We haveoc(pu e Whr(RY). Applying
the above result to gu, we obtain

lim D, ,(pu)(x) = 7,4,|V(pu)|”(x) fora.e. x € B(0,R).

n—+aoo

Since D, ,(u)(x) = D, ,(pu)(x) for x € Bg by (1.4) and ¢(x)u(x) = u(x) in Bg, it
follows that

lim D, ,(u)(x) = 7,,IV(u)|"(x) forae. xe B(0,R).

n—-+00
Since R > 1 is arbitrary, the conclusion follows. |

Here is a natural question related to Theorem 1. Suppose for example that
u e WHI(R?) and u has compact support. Is it true that for every 1 < p < +o,

lim D, ,(u)(x) = 7,,|Vu|"(x) forae. xe R7?

n—-+oo

Surprisingly, the answer is delicate and some pathologies may occur as seen in
our next result.

THEOREM 3. Letd > 1 and u € W' (RY). We have

loc

1. If d =1, then, for p > 1,

(2.6) lim Dy, ,(u)(x) =7, ,u'|"(x) forae xeR.

n—-+00
2. Ifd =2, p<d/(d—1),and p, is non-increasing, then

(2.7) lim D, ,(u)(x) =y, ,|Vul"(x) forae. xe RY.

n——+oo
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3. Ifd =2 and p > 1, then

(2.8) liminf D, ,(u)(x) > y,,|Vu|”(x) fora.e. x e R

n—-+0o0

Moreover, strict inequality in (2.8) can occur:

4. If d > 2, there exist ue WHY(R?) with compact support, a set A C R? of
positive measure, and a sequence of non-increasing functions (p,) such that,
for every n € N,

(2.9) D, ,(u)(x) =+ forae xe A, forallp>dj/d-—1).

Note that there is no contradiction between (1.12) and (2.9); the u which we
construct here does not satisfy the condition Vu € L?(RY).

REMARK 4. Statement (2.7) is due to D. Spector [11, Theorem 1.7]. In fact, he
proves a more general result: if u e W 4(R?) (d >2) with 1 <g<d, p<q* =
qd/(d — q), and p, is non-increasing then (2.7) holds.

REMARK 5. We do not know whether (2.7) holds without the additional as-
sumption that p, is non-increasing.

PROOF. As in the proof of Theorem 1, one may assume that u € W!(RY). We
first prove (2.6). Since, for a.e. x € Rand r > 0,

e+ —u) < [ W)l
we have
Dy ()7 (x) < CM(u)(x).

Assertion (2.6) now follows as in the proof of Theorem 1 by noting that, for
ue CHR),

: B d
nEToc Dy p(u)(x) =y ,lu'|’(x) for x € R®.

We next turn to the proof of (2.8). Using polar coordinates, we have, for a.e.
X € IRd,

210) D= [ [

2 /
Sd—l

1 P
/ Vu(x +tro)-adt| p,(r)ri~"dodr
0

P
do.

0 1
/ / Vu(x + tro) - ap,(r)r® ! dt dr
o Jo
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We claim that, for a.e. ¢ € SY~! and for a.e. x € R?,

0 1
(2.11) lim / / Vu(x + tro) - ap,(r)r* dtdr = Vu(x) - o.
o Jo

n—-+aoo

Assuming this and applying Fatou’s lemma, we derive from (2.10) and (2.11)
that, for a.e. x € RY,

liminf D, (1) (x) > 7, 4Vul” ()

n—-+0oo

which is (2.8). To complete the proof of (2.8), it remains to prove (2.11). For
ve WH(RY), xeRY, and o € S set

(2.12) M(Vv,0,x) = sup][ |Vu(x + so) - a| ds.
r>0 J0

Given v e WH(R?) and 0 € S?!, we claim that for all & > 0, there exists a
positive constant C independent of v, ¢, and ¢ such that

C
(2.13) {x e RY; M(Vv,0,x) > ¢}| < ;/ |Vo(p)| dy.
Rd
Using Fubini’s theorem, we derive from (2.13) that
d ., cd-1 ¢
(2.14) H{(x,0) e R x S, M(Vv,0,x) > ¢e}| < Z/ |Vo(p)| dy.
Rd

Using (2.14), one can now obtain assertion (2.11) as in the proof of Theorem 1 by
noting that for all u e C!(R?),

n—+aoo

o0 1
lim / / Vu(x + tro) - ap,(r)r® ' dtdr = Vu(x) - ¢ for all x e RY.
o Jo

We next establish (2.13). For simplicity of notation, we assume that g = ¢, :=
(0,...,0,1). We have, by Fubini’s theorem,

(2'15) |{x € Rd; M(Vv,ed,x) > 6}| = /R"” /[Rﬂ{xeR‘[;M(Vv,ed-,xbe} dxq dx'.

It follows from the theory of maximal functions (see (2.4)) that

C
(216) /1 1 / ﬂ{xeR‘/;M(Vv,ed.,x)>e} dxd dx/ < _/ / |axdl)(x”xd)|d)€d dx/.
R JR ¢ JrRT IR
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Combining (2.15) and (2.16) yields
[{x e RY; M(Vu,eq,x) > e}| < E/ |Vo(x)| dx;
& R4

which is (2.13). The proof of (2.8) is complete.
We finally establish (2.9). Let (J,) be a positive sequence converging to 0 such
that 6, < 1/2 for all n, and define

(2.17) Pult) = 8, Mg 1(0).
Set u(x) = (p(x)|x|(1_d) In~?|x| for some ¢ e C!(R?) such that ¢(x) =1 for
x| < 2. Ttis clear that u € W1 (R?) and for x € R? with 1/4 < |x| < 1/2,

/ u(x) — u(y)|” dy = +0
Iyl<1/8

since p > d/(d — 1) and p,(|y — x|) > 6,(1/8)° " for |y| < 1/8 and 1/4 < |x| <
1/2. 1t follows that, for 1/4 < |x| < 1/2,

D, ,(u)(x) =40 Vn.

The proof is complete. O

3. CONVERGENCE IN NORM
We present two proofs of Proposition 1.
FIRST PROOF OF PROPOSITION 1 VIA THEOREM 1. By Theorem 1, we have

(3.1) lim D, ,(u)(x) =y, ,|Vu(x)|” forae. xe R

n—-+4oo

On the other hand, by the BBM formula,

(3.2) lim Dy p(u)(x)dx =y, /Rd |Vu(x)|? dx.

n—+0 Jpd

Recall that (see e.g., [2, page 113]) if f,(x) — f(x) for ae. xe R and
| fall 1wy = /11 ey, then f — f in L'(RY). We deduce from (3.1) and (3.2)
that

Dy p(t) = 74,|Vu|” in L'(RY) asn — +oo. 0
DIRECT PROOF OF PROPOSITION 1. We have, see [1],

u(x +h) —u(x) — Vu(x) - h|?
/Rd Rdl( ) |(h|)” (x) - A pn(|h|)dhdxsCp,d/WIVu(x)lp
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and, for v e CH(RY),
lim D, ,(v)(x) = y,,|Vo(x)|” in L'(R?) as n — +o0.

n—+oo

The conclusion now follows by a standard approximation argument. O

4. CONVERGENCE ALMOST EVERYWHERE IN THE BV CASE

Let d > 1, u be a Radon measure defined on R?, and 0 < R < +o0. Denote

Mp(p)(x) = sup ul(B(x, 5)) and

o<s<r |B(x,5)| M(p)(x) = Mo, (p)(x).

We begin this section with

LEMMA 2. Let d > 1, u be a positive Radon measure defined in R?, and let
(Xi)k=1 be a sequence of mollifier such that suppy, C B(0,1/k) and 0 <y, <
Ck? for some positive constant C depending only on d. Set w, = u* y;. We have,
for x € RY and for r > 0,

1 -
(@1) P ) < cm
and, for every k,

1 _
42) P ) = ),

for some positive constant C depending only on d.

PrOOF. Without loss of generality, one may assume that x = 0. We have

1 / I-d 1< 1-d
- ' du(y) == / Iyl du(y)
"JB©,n T =0 J B0,277)\ B(0,2-(n+1)y)

Co (1-d),1—d
< — ) 27mimdplm
_rz r

m=0

/ du(y)
B(0,2-mr)\ B(0,2~(m+1)r)

IA

C o0

=327 M, (1)(0) = CM, (1) (0);
m=0

which is (4.1).
We next prove (4.2). As above, we obtain

1 . C& it
(4.3) ;/B(O ‘>|y|1 Y (y) < Y 27O iy ().

m=0

~/'B(07 2-mp)\B(0,2~(m+1)y)
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We claim that

(4.4) / iy (¥) < €27 M (1) 0).
(0 27”’7')\3(0 2 m+1 )

Combining (4.3) and (4.4) yields (4.2)
It remains to prove (4.3). We have

ws) [ C ) — e
B(0,2-my)\B(0,2~(m+1)r) B(0,2-my)\B(0,2~(m+2)r)

= sup / Py
pe Ce(B(0,27mr)\B(0,2=("2)r)); [p| <1

We have

(4.6) [odn= [ [ o d=du)

If 27" < 1/k, we have, for ¢ € Co(B(0,27"r)\B(0,2-("*2)r)) with |g| < 1,

wn [ ety dzduy)

< / sup | |o(2)|xx(z — y) dzdu(y)
ly|<2/k v JR?

< ")k / ) = €M () 0),

Here we use the fact that suppy, C B(0,1/k) and 0 < y, < Ck“. Similarly, if
1/k < 27"r, we have, for ¢ € C(B(0,27"r)\B(0,2-("+2)r)) with |p| < 1,

438) [, [ oot = ndedu s
= /;7|<2"H>Zr Sl;p /Rd |¢(Z> |Xk(z - y) dz dlu(y)

< / du(y) < €2 M (11)(0).
[yl<27mt2

Combining (4.5), (4.6), (4.7), and (4.8), we obtain (4.4). The proof is complete.
0

We recall that (see, e.g., [8])

(4.9) B |Vou|(B(x,r))

rlB’é Bx.r)| =0 forae. xeR%
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As a consequence of (4.9), one obtains
(4.10) M(|V¥u|)(x) < +o0 forae. x e R

We now present the
PrROOF OF THEOREM 2. As in the proof of Theorem 1, one may assume that
u e BV(RY). Let (y;)z~; be a sequence of smooth mollifiers such that supp z; C
B(0,1/k) and 0 <y, < Ck?. Here and in what follows, C denotes a positive

constant depending only on d. Set, for k € N,

ug=uxy, Vi=Vuxy, and V=V uxy.

We have
ue(x+h) —u(x) =V (x)-h
(411) Rd| k( ) ké|) k ( ) |pn(|h|)dh
:/ rlen(V)/ lx + ro) = ulx) = V() - dodr.
0 d-1 7
Since

up(x +ro) —up(x) —rV(x) o = / Vur(x +s0) -ads —rV}!(x) - o
0

and
Vur(x) = Vi (x) + V{(x),
it follows from (4.11) that

| (x + h) — w(x) — ViE<(x) - A
R? |h|

S/ rdlpn(r)ldr/ /V,‘j(x—i—sa)|dsda
0 r st Jo

+/ rd‘lpn(r)ldr/ /'Vlfc(X+S0)—V1?“(X>|d5d“-
0 rJs®tJo

(4.12) pu(|h) dh

We claim that, for a.e. x € R,

) L et ) — ) — V()
' k—too R I
B lu(x+h) — u(x) — V*u(x) - h|
~ Jre |hl

pu(|h]) dh

pa(|h]) dh,
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o0

1 r
(4.14) lim ri=1p (r) —dr/ / |V (x +s0)|dsdo
o JstJo

0 B 1 s —
:/ r 1pn(r)—dr/ Veu(y)|ly = x" dy,
0 r B(x,r)

and

o]

(4.15) lim rdlpn(r)%dr/gdl/o |[Vi(x +so) — Vi(x)|dsdo

o0 1 r
:/ rpy(r) —dr / / Vu(x + s0) — Vu(x)| ds do.
0 r g(l—l 0

Assuming these claims, we continue the proof. Combining (4.12), (4.13), (4.14),
and (4.15) yields, for a.e. x € R,

ju(x + h) — u(x) = Vu(x) -
R |h|

© 1 _
< / P () / Vou(y)| Ly — x'~ dy
0 r B(x,r)

(4.16)

Pu(|h]) dh

+ / 1 p,(r) / / Vu(x + s0) — Vu(x)| ds do.
0 r s Jo

Hence it suffices to prove that, for a.e. x € R,

« 1
(4.17) lim rd'pn(r)—dr/ [Viu(p)| |y—x|17ddy:0
n—+w fo r B(x,r)
and
[e¢] 1 r
@18) tim [ () Lar / / Vu(x + 50) — Veu(x)| dsdo = 0,
n——+oo 0 r 5([—1 0

Note that assertion (4.18) holds for every x € R? if u € C!(R“) and, by Lemma 2,

/ rdlpn(r)%dr/ / |V“u(x + sa) — V*u(x)| dsdo < CM(|V*“ul)(x).
0 st Jo

As in the proof of Theorem 1, we have, for a.e. x € RY,
o0

| ! "
lim [ r (1) dr / / [V“u(x + ) = Vu(x)| dsdo = 0;
s Jo

n—+w Jo

which is (4.18).
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We next establish (4.17). By Lemma 2, we have

1 ~ . s
! / )l =y < MV ()

r

It follows from (4.9) that

0]

lim ri=1p (r) %dr/

IVu(y)| |y — x| “dy =0 forae. xeR’
n—+x Jo B(x,r)

which is (4.17).
It remains to prove claims (4.13), (4.14), and (4.15). We begin with claim
(4.13). We have

| (x + h) —ug(x) — Vi“(x) - hl
R4 |h|

pa(lh]) dh

= / p,(r)rd! —dr/ lur (x 4 ro) — ug(x) — rV(x) - 0| do.
0 §d—l

,
Using Lemma 2, we derive from (4.12) that

%/ . lug (x + ro) — up(x) — rV(x) - | do < CM(|Vul)(x).
.

Since for a.e. x € RY,

1
lim - — —rV¥(x)-old
Jim - lur (x + ro) — ur(x) — rV{(x) - o| do

1

= ;/d lu(x 4+ ro) — u(x) — rV*«u(x) - o|de fora.e.r>0,
gd-1

it follows from the dominated convergence theorem that, for a.e. x € R,

L et B) — ) — V()
k—+oo Jpd 4|
B lu(x +h) — u(x) — V*u(x) - h|
R |h|

P(|h) dh

pu(|1) dh;

which is (4.13).
The proof of (4.15) follows similarly. We finally establish (4.14). Fix 7 >0
(arbitrary). We have
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[e 0] 1 r
(4.19) ritp (r)=dr |V (x + s0)|dsdo
0 r st Jo
©o 1 s _
= [ e Vel Iy =" dy
T r B(x,r)\B(x,7)
©o 1 s _

e[ [ oy -x

T r B(x,7)

v 1 ) B
+/ e Ipn<r>—dr/ V) Ly — x1 " dy.
0 r B(x,r)

We have, for a.e. r > 0,

.1 s _ 1 s _
lim VRO =o'y = [ vy
k=+co T JB(x,r\B(x,7) ' J B(x,r)\B(x,7)

and, by Lemma 2,

1

L Oy -y < (V).
I J B(x,r)\B(x,7)

It follows from the dominated convergence theorem that

o0

. Lo . »
4200 tim [ () dr / V) 1y — X" dy
¥ B(x,r)\B(x,1)

k—+w Jo

o0 3 1 s _
_/ pd lpn(r)—d”/ IVou(y)| |y — x|~ dy.
. "B n\BExT)

On the other hand, by Lemma 2,
Fdn 1 5 1-d
(421) A [ V)=

< CM(|Vul)(x) /OC ri =ty (r)t/rdr

and

¢ 1 . .
(4.22) / P () S / Vi) Ly — <" dy
0 r B(x,r)

< CM(|Vu])(x)/0Trd1pn(r) dr.



530 H. BREZIS AND H.-M. NGUYEN

Since

lim(/ rd_lpn(r)r/rdr—l-/ rd_lpn(r)dr) =0,
T 0

7—0

we obtain (4.14) from (4.19), (4.20), (4.21), and (4.22). The proof is complete.
O

5. MISCELLANEOUS RESULTS
5.1. On a characterization of W1 (RY)

The following result deals with a “converse” of Proposition 1. It is due to
D. Spector in [10, Theorem 1.3] and [11, Theorem 1.4] in the case p,(r) =
de (0,6, for a sequence of (g,) — 0, and to A. Ponce and D. Spector [9,
Remark 5] for a general sequence (p,). The proof we present here is more direct.

PROPOSITION 2. Let d > 1 and u e L'(RY). Then ue W' (R?) if and only if
there exists U € [LY(R!))? such that

(5.1) lim lu(x +h) —u(x) — U(x) - A
' n=te Jrd JRd ||

p,(|h|) dhdx = 0.

PrOOF. We already know that (5.1) holds for u e W (RY) with Vu = U by
Proposition 1. It remains to prove that if (5.1) holds, then u e W!(RY). Let
(xx) be a sequence of standard mollifiers. Define

uy =uxy, and Up=Uxy,.
We have

/ luge (x + h) — ug(x) — Ui (x) .h|pn(|h|)dhdx
R(/ Rd

4]
- /I;d /Ra'

/Rd u(x+h = y)(y)dy - / u(x — y)yi(y) dy

Rd
[ U6 30 b)) .

This implies

I e (UL

u(x+h— y) —u(x— y) — Ulx— y) - h
St@ﬁédwd ]

1k (¥) dyp,(|h)) dh dx.
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A change of variables gives

wp(x+h) —up(x) — Up(x) - h
[, [ e D= e =B, ) anas

lu(x+h) —u(x) — U(x) - h|
< /Rd » ] pn(|h]) dh dx.

We derive from (5.1) that, for k > 0,

lim |t (x + h) — wy(x) — Up(x) - h
n—-+oo Rd Rd |h|

pullhl) didx = 0

Since uy, is smooth, we obtain

= Vuk.

As k — +oo, up —u and Uy — U in L'(R?), so that ue WH!'(R?) and
Vu="U. O

5.2. The bounded domain case

Most of the above results hold when R is replaced by a smooth bounded domain
Q of R?. Define, for p>1,ne N, and u € L} (Q),

(52) D2, (u / Jux

Here is a typical result:

y|p po(lx—y|)dy forae. xe Q.

THEOREM 4. Letd > 1, p > 1 and u € W' (Q). Then

(5.3) lim Dy () (x) = 74,|Vul"(x)  forae. x e Q.

n—-40o0

PROOF. Let i be an extension of u to R such that # € W'?(R?). Let w CC Q.
We have, for x € w,

54) D20 = Duylir) - [ Iy i)y

Applying Theorem 1 to u, we have for a.e. x € o,

(5.5) lim D, ,(@)(x) = 74 ,[Vatl” (x) = 74,,|Vul ” ().

n—+oo
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Since w is arbitrary, it suffices to prove that for a.e. x € w,

56 ]

L(Jx — »|)dy = 0.
L A R Pullx = yl) dy

Let 9 € C'(R?) be such that ¢ = 1 in R/\Q and ¢ = 0 in . Applying Theorem 1
to gu, we obtain, for a.e. x € w,

n—+o0

(57 im, [ ey =

On the other hand, for a.e. x € w,

(53) im [ O s ay

=t Jriyg |x = y|""

= |u(x)| lim —p,(|x—=y))dy =0
) Jim, [yl D
Assertion (5.6) now follows from (5.7) and (5.8). O

ACKNOWLEDGMENTS. Research partially supported by NSF grant DMS-1207793 and by ITN
“FIRST” of the European Commission, Grant Number PITN-GA-2009-238702.

REFERENCES

[1] J. BOURGAIN - H. BREzIS - P. MIRONESCU, Another look at Sobolev spaces, in
Optimal Control and Partial Differential Equations (J. L. Menaldi, E. Rofman and
A. Sulem, eds) a volume in honour of A. Bensoussan’s 60th birthday, IOS Press, 2001,
439-455.

[2] H. BRrEezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,
Universitext, Springer, 2010.

[3] H. BREzIS, How to recognize constant functions. Connections with Sobolev spaces,
Volume in honor of M. Vishik, Uspekhi Mat. Nauk 57 (2002), 59-74; English trans-
lation in Russian Math. Surveys 57 (2002), 693-708.

[4] H. Brezis - H.-M. NGUYEN, Two subtle convex nonlocal approximations of the
BV -norm, Nonlinear Anal. 137 (2016), 222-245.

[5] J. DAVILA, On an open question about functions of bounded variation, Calc. Var. Partial
Differential Equations 15 (2002), 519-527.

[6] E. DE GIORGI, Definizione ed espressione analitica del perimetro di un insieme, Atti
della Accademia Nazionale dei Lincei. Rendiconti. Classe di Scienze Fisiche, Matema-
tiche e Naturali 14 (1953), 390-393.

[7] E. DE GIORGI, Su una teoria generale della misura (r — 1)-dimensionale in uno spazio ad
r dimensioni, Annali di Matematica Pura ed Applicata 36 (1954), 191-213.

[8] L. C. EvaNns - R. F. GARIEPY, Measure theory and fine properties of functions,
Revised edition, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 2015.



THE BBM FORMULA REVISITED 533

[9] A. PONCE - D. SPECTOR, On formulae decoupling the total variation of BV functions,
preprint, March 2016.
[10] D. SPECTOR, LP-Taylor approximations characterize the Sobolev space W? C. R.
Math. Acad. Sci. Paris 353 (2015), 327-332.
[11] D. SPECTOR, On a generalization of LP-differentiability, preprint, Oct. 2015.
[12] E. STEIN, Singular integrals and differentiability properties of functions, Princeton
Mathematical Series, vol. 30, Princeton University Press, Princeton, 1970.

Received 25 April 2016,
and in revised form 6 June 2016.

Haim Brezis

Department of Mathematics

Rutgers University

Hill Center, Busch Campus

110 Frelinghuysen Road

Piscataway, NJ 08854, USA

and

Department of Mathematics

Technion, Israel Institute of Technology
32.000 Haifa, Israel

and

Laboratoire Jacques-Louis Lions UPMC
4 place Jussieu

75005 Paris, France
brezis@math.rutgers.edu

Hoai-Minh Nguyen

EPFL SB MATHAA CAMA
Station 8

CH-1015 Lausanne, Switzerland
hoai-minh.nguyen@epfl.ch






	mk1
	mk2
	mk3
	mk4
	mk5
	mk6
	mk7
	mk8
	mk10
	mk11
	mk12
	mk9
	mkEnd-page

