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1. Introduction

We first recall the BBM formula due to J. Bourgain, H. Brezis, and P. Mironescu
[1], see also [3], (with a refinement by J. Davila [5]). Let db 1 be an integer.
Throughout this paper, ðrnÞ denotes a sequence of radial mollifiers in the sense
that

rn a L1
locð0;þlÞ; rn b 0;ð1:1Þ Z l

0

rnðrÞrd�1 dr ¼ 1 En;ð1:2Þ

and

lim
n!þl

Z l

d

rnðrÞrd�1 dr ¼ 0 Ed > 0:ð1:3Þ

Even though the next assumption is required only for a few results, it is conve-
nient to assume that

rnðrÞ ¼ 0 for all r > 1; n a N:ð1:4Þ

Set, for pb 1,

In;pðuÞ ¼
Z
Rd

Z
Rd

juðxÞ � uðyÞj p

jx� yj p rnðjx� yjÞ dx dyaþl; Eu a L1
locðRdÞ:ð1:5Þ



For u a L1
locðRdÞ, define, for p > 1,

IpðuÞ ¼
gd;p

Z
Rd

j‘uj p if ‘u a LpðRdÞ;

þl otherwise;

8<
:ð1:6Þ

and, for p ¼ 1,

I1ðuÞ ¼
gd;1

Z
Rd

j‘uj if ‘u is a finite measure;

þl otherwise;

8<
:ð1:7Þ

where, for any e a Sd�1 and pb 1,

gd;p ¼
Z
Sd�1

js � ej p ds:ð1:8Þ

In the case p ¼ 1, we have

gd;1 ¼
Z
Sd�1

js � ej ds ¼
2

d � 1
jSd�2j ¼ 2jBd�1j if db 3;

4 if d ¼ 2;

2 if d ¼ 1:

8>>><
>>>:

ð1:9Þ

The BBM formula asserts that, for pb 1,

lim
n!þl

In;pðuÞ ¼ IpðuÞ Eu a L1
locðRdÞ:ð1:10Þ

Applying (1.10) with p ¼ 1, u ¼ 1E (the characteristic function of a measurable
set E), and rnðrÞ ¼ Cdn

ðdþ1Þ=2re�nr2 , we obtain

lim
n!þl

nðdþ1Þ=2
Z
E c

Z
E

e�njx�yj2 dx dy ¼ Ad PerðEÞ:

By comparison the De Giorgi formula [6, 7] for the perimeter involves a deriva-
tive and asserts that

lim
n!þl

Z
Rd

j‘WnðxÞj dx ¼ Bd PerðEÞ;

where

WnðxÞ ¼ nd=2

Z
E

e�njx�yj2 dy;

and Ad , Bd , and Cd are positive constants depending only on d.
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Define, for pb 1, n a N, and u a L1
locðRdÞ,

Dn;pðuÞðxÞ :¼
Z
Rd

juðxÞ � uðyÞj p

jx� yj p rnðjx� yjÞ dy for a:e: x a Rd :ð1:11Þ

Note that, see [1],

Z
Rd

Dn;pðuÞðxÞ dxaCp;d

Z
Rd

j‘uj pðxÞ dx for n a N;

and hence

Dn;pðxÞ < þl for a:e: x a Rdð1:12Þ

if p > 1 and ‘u a LpðRdÞ or p ¼ 1 and ‘u is a finite measure. From the BBM
formula, we have, for pb 1,

lim
n!þl

Z
Rd

Dn;pðuÞðxÞ ¼ IpðuÞ for u a L1
locðRdÞ:ð1:13Þ

On the other hand, an easy computation (see [1, formula (6)]) gives, for pb 1,
u a C1

c ðRdÞ, and x a Rd ,

lim
n!l

Dn;pðuÞðxÞ ¼ gd;pj‘uj
pðxÞ:

In this paper, we investigate the mode convergence of Dn;pðuÞ to gd;pj‘uj
p

as n ! þl for non smooth u. Our main results are the following

Theorem 1. Let db 1, pb 1, and u a W
1;p
loc ðRdÞ. Then

lim
n!þl

Z
Rd

juðxþ hÞ � uðxÞ � ‘uðxÞ � hj p

jhj p rnðjhjÞ dh ¼ 0 for a:e: x a Rd :ð1:14Þ

Consequently,

lim
n!þl

Dn;pðuÞðxÞ ¼ gd;pj‘uj
pðxÞ for a:e: x a Rd :ð1:15Þ

Remark 1. When rnðrÞ ¼ de�d
n 1ð0; enÞ for a sequence of ðenÞ ! 0þ, assertion

(1.14) is part of the classical Lp-di¤erentiability theory of Calderón-Zygmund;
the same comment applies to assertion (1.18) below. Theorem 1 is due to
D. Spector [11, Theorem 1.7] under the additional assumption that rn is non-
increasing for every n. His argument is much more complicated than ours
(in addition he relies on the Lp�

-di¤erentiability of W 1;p functions, see e.g.,
[8, Theorem 2 on page 262]).

We now turn to the L1-convergence of Dn;p.
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Proposition 1. Let db 1, pb 1, and u a L1
locðRdÞ with ‘u a LpðRdÞ. Then

lim
n!þl

Z
Rd

Z
Rd

juðxþ hÞ � uðxÞ � ‘uðxÞ � hj p

jhj p rnðjhjÞ dh dx ¼ 0:ð1:16Þ

Consequently,

lim
n!þl

Dn;pðuÞ ¼ gd;pj‘uj
p

in L1ðRdÞ:ð1:17Þ

Remark 2. Assertion (1.17) was proved in [1].

Theorem 1 (resp. Proposition 1) is established in Section 2 (resp. Section 3)
where we also present some variants, generalizations, and pathologies related to
these results.

The case p ¼ 1 and u a BVlocðRdÞ is more delicate. In this case instead of
Theorem 1, we have

Theorem 2. Let db 1 and u a BVlocðRdÞ. Then

lim
n!þl

Z
Rd

juðxþ hÞ � uðxÞ � ‘acuðxÞ � hj
jhj rnðjhjÞ dh ¼ 0 for a:e: x a Rd :ð1:18Þ

Consequently,

lim
n!þl

Dn;1ðuÞðxÞ ¼ gd;1j‘acujðxÞ for a:e: x a Rd :ð1:19Þ

Here and in what follows, for u a BVlocðRdÞ, we denote ‘acu and ‘su the
absolutely continuous part and the singular part of ‘u.

Remark 3. A version of Proposition 1 for u a BVðRdÞ has been established by
A. Ponce and D. Spector [9, Proposition 2.1]. Here is their result: Let db 1, and
u a BVðRdÞ. Then

lim
n!þl

Z
Rd

juðxþ hÞ � uðxÞ � ‘acuðxÞ � hj
jhj rnðjhjÞ dh

¼ gd;1j‘suj in the sense of measures:

Theorem 2 is established in Section 4. In the last section, we present miscel-
laneous facts related to the above results.

2. Convergence almost everywhere in the Sobolev case

We will use the following elementary lemma (see [4, Lemma 1]):
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Lemma 1. Let db 1, r > 0, x a Rd , and f a L1
locðRdÞ. We have

Z
Sd�1

Z r

0

j f ðxþ ssÞj ds dsaCdrMð f ÞðxÞ;ð2:1Þ

for some positive constant Cd depending only on d.

Here Mð f Þ denotes the maximal function of f . We now give the

Proof of Theorem 1. We first present the proof for u a W 1;pðRdÞ. We claim
that, for all u a W 1;pðRdÞ,

Dn;pðuÞðxÞaCMðj‘uj pÞðxÞ for a:e: x a Rd :ð2:2Þ

Here and in what follows, C denotes a positive constant depending only on d.
We have, for a.e. x a Rd , s a Sd�1, and r > 0,

uðxþ rsÞ � uðxÞ ¼
Z r

0

‘uðxþ ssÞ � s ds:

Using polar coordinates, Hölder’s inequality, and Fubini’s theorem, we obtain,
for a.e. x a Rd ,

Z
Rd

juðxþ hÞ � uðxÞj p

jhj p rnðjhjÞ dh

a

Z l

0

rnðrÞrd�1 1

r

Z
Sd�1

Z r

0

j‘uðxþ ssÞ � sj p ds ds dr

¼
Z l

0

rnðrÞrd�1 1

r

Z
Bðx; rÞ

j‘uðyÞj pjyj1�d
dy dr:

Applying Lemma 1, we obtain (2.2).
The proof of (1.14) now goes as follows. Set

WðuÞ :¼ x a Rd ; lim sup
n!þl

Z
Rd

juðxþ hÞ � uðxÞ � ‘uðxÞ � hj p

jhj p rnðjhjÞ dh > 0

� �
:

Note that if u a C1
c ðRdÞ then (1.14) holds for all x a Rd . This implies

jWðvÞj ¼ 0 for all v a C1
c ðRdÞ:

It follows that

WðuÞ ¼ Wðu� vÞ for all v a C1
c ðRdÞ:ð2:3Þ

Recall that, see e.g., [12, Theorem 1 on page 5], for f a L1ðRdÞ, we have

jfx a Rd ;Mð f ÞðxÞ > egja C

e

Z
Rd

j f j:ð2:4Þ
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Using (2.2) and (2.4), we obtain

x a Rd

Z
Rd

jðu� vÞðxþ hÞ� ðu� vÞðxÞ�‘ðu� vÞðxÞ � hj p

jhj p rnðjhjÞ dh> e

� �����
����ð2:5Þ

a
C

e

Z
Rd

j‘ðu� vÞðxÞj p dx for all e > 0:

Combining (2.3) and (2.5) yields (1.14). Assertion (1.15) follows from (1.14) by
the triangle inequality after noting that, for every V a Rd ,

Z
Rd

jV � hj p

jhj p rnðjhjÞ dh ¼
Z l

0

Z
Sd�1

jV � sj prnðrÞrd�1 ds dr ¼ gd;pjV j p:

We now turn to the proof in the case u a W
1;p
loc ðRdÞ. Given R > 1, let

j a C1
c ðRdÞ be such that j ¼ 1 in Bð0; 2RÞ. We have ju a W 1;pðRdÞ. Applying

the above result to ju, we obtain

lim
n!þl

Dn;pðjuÞðxÞ ¼ gd;pj‘ðjuÞj
pðxÞ for a:e: x a Bð0;RÞ:

Since Dn;pðuÞðxÞ ¼ Dn;pðjuÞðxÞ for x a BR by (1.4) and jðxÞuðxÞ ¼ uðxÞ in BR, it
follows that

lim
n!þl

Dn;pðuÞðxÞ ¼ gd;pj‘ðuÞj
pðxÞ for a:e: x a Bð0;RÞ:

Since R > 1 is arbitrary, the conclusion follows. r

Here is a natural question related to Theorem 1. Suppose for example that
u a W 1;1ðRdÞ and u has compact support. Is it true that for every 1 < p < þl,

lim
n!þl

Dn;pðuÞðxÞ ¼ gd;pj‘uj
pðxÞ for a:e: x a Rd?

Surprisingly, the answer is delicate and some pathologies may occur as seen in
our next result.

Theorem 3. Let db 1 and u a W
1;1
loc ðR

dÞ. We have

1. If d ¼ 1, then, for p > 1,

lim
n!þl

Dn;pðuÞðxÞ ¼ g1;pju 0j pðxÞ for a:e: x a R:ð2:6Þ

2. If db 2, pa d=ðd � 1Þ, and rn is non-increasing, then

lim
n!þl

Dn;pðuÞðxÞ ¼ gd;pj‘uj
pðxÞ for a:e: x a Rd :ð2:7Þ
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3. If db 2 and p > 1, then

lim inf
n!þl

Dn;pðuÞðxÞb gd;pj‘uj
pðxÞ for a:e: x a Rd :ð2:8Þ

Moreover, strict inequality in (2.8) can occur:

4. If db 2, there exist u a W 1;1ðRdÞ with compact support, a set A � Rd of
positive measure, and a sequence of non-increasing functions ðrnÞ such that,
for every n a N,

Dn;pðuÞðxÞ ¼ þl for a:e: x a A; for all p > d=ðd � 1Þ:ð2:9Þ

Note that there is no contradiction between (1.12) and (2.9); the u which we
construct here does not satisfy the condition ‘u a LpðRdÞ.

Remark 4. Statement (2.7) is due to D. Spector [11, Theorem 1.7]. In fact, he

proves a more general result: if u a W 1;qðRdÞ (db 2) with 1a q < d, pa q� ¼
qd=ðd � qÞ, and rn is non-increasing then (2.7) holds.

Remark 5. We do not know whether (2.7) holds without the additional as-
sumption that rn is non-increasing.

Proof. As in the proof of Theorem 1, one may assume that u a W 1;1ðRdÞ. We
first prove (2.6). Since, for a.e. x a R and r > 0,

juðxþ rÞ � uðxÞja
Z xþr

x

ju 0ðsÞj ds;

we have

Dn;pðuÞ1=pðxÞaCMðu 0ÞðxÞ:

Assertion (2.6) now follows as in the proof of Theorem 1 by noting that, for
u a C1

c ðRÞ,

lim
n!þl

Dn;pðuÞðxÞ ¼ g1;pju 0j pðxÞ for x a Rd :

We next turn to the proof of (2.8). Using polar coordinates, we have, for a.e.
x a Rd ,

Dn;pðuÞðxÞ ¼
Z l

0

Z
Sd�1

Z 1

0

‘uðxþ tr sÞ � s dt
����

����
p

rnðrÞrd�1 ds drð2:10Þ

b

Z
Sd�1

Z l

0

Z 1

0

‘uðxþ tr sÞ � srnðrÞrd�1 dt dr

����
����
p

ds:
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We claim that, for a.e. s a Sd�1 and for a.e. x a Rd ,

lim
n!þl

Z l

0

Z 1

0

‘uðxþ tr sÞ � srnðrÞrd�1 dt dr ¼ ‘uðxÞ � s:ð2:11Þ

Assuming this and applying Fatou’s lemma, we derive from (2.10) and (2.11)
that, for a.e. x a Rd ,

lim inf
n!þl

Dn;pðuÞðxÞb gp;d j‘uj
pðxÞ;

which is (2.8). To complete the proof of (2.8), it remains to prove (2.11). For

v a W 1;1ðRdÞ, x a Rd , and s a Sd�1, set

Mð‘v; s; xÞ ¼ sup
r>0

Z r

0

j‘vðxþ ssÞ � sj ds:ð2:12Þ

Given v a W 1;1ðRdÞ and s a Sd�1, we claim that for all e > 0, there exists a
positive constant C independent of v, e, and s such that

jfx a Rd ;Mð‘v; s; xÞ > egja C

e

Z
Rd

j‘vðyÞj dy:ð2:13Þ

Using Fubini’s theorem, we derive from (2.13) that

jfðx; sÞ a Rd � Sd�1;Mð‘v; s; xÞ > egja C

e

Z
Rd

j‘vðyÞj dy:ð2:14Þ

Using (2.14), one can now obtain assertion (2.11) as in the proof of Theorem 1 by
noting that for all u a C1

c ðRdÞ,

lim
n!þl

Z l

0

Z 1

0

‘uðxþ tr sÞ � srnðrÞrd�1 dt dr ¼ ‘uðxÞ � s for all x a Rd :

We next establish (2.13). For simplicity of notation, we assume that s ¼ ed :¼
ð0; . . . ; 0; 1Þ. We have, by Fubini’s theorem,

jfx a Rd ;Mð‘v; ed ; xÞ > egj ¼
Z
Rd�1

Z
R

1fx ARd ;Mð‘v; ed ;xÞ>eg dxd dx
0:ð2:15Þ

It follows from the theory of maximal functions (see (2.4)) that

Z
Rd�1

Z
R

1fx ARd ;Mð‘v; ed ;xÞ>eg dxd dx
0
a

C

e

Z
Rd�1

Z
R

jqxd vðx 0; xdÞj dxd dx 0:ð2:16Þ

522 h. brezis and h.-m. nguyen



Combining (2.15) and (2.16) yields

jfx a Rd ;Mð‘v; ed ; xÞ > egja C

e

Z
Rd

j‘vðxÞj dx;

which is (2.13). The proof of (2.8) is complete.
We finally establish (2.9). Let ðdnÞ be a positive sequence converging to 0 such

that dn < 1=2 for all n, and define

rnðtÞ ¼ dnt
dn�11ð0;1ÞðtÞ:ð2:17Þ

Set uðxÞ ¼ jðxÞjxjð1�dÞ ln�2jxj for some j a C1
c ðRdÞ such that jðxÞ ¼ 1 for

jxj < 2. It is clear that u a W 1;1ðRdÞ and for x a Rd with 1=4 < jxj < 1=2,

Z
jyj<1=8

juðxÞ � uðyÞj p dy ¼ þl

since p > d=ðd � 1Þ and rnðjy� xjÞb dnð1=8Þdn�1 for jyj < 1=8 and 1=4 < jxj <
1=2. It follows that, for 1=4 < jxj < 1=2,

Dn;pðuÞðxÞ ¼ þl En:

The proof is complete. r

3. Convergence in norm

We present two proofs of Proposition 1.

First proof of Proposition 1 via Theorem 1. By Theorem 1, we have

lim
n!þl

Dn;pðuÞðxÞ ¼ gd;pj‘uðxÞj
p for a:e: x a Rd :ð3:1Þ

On the other hand, by the BBM formula,

lim
n!þl

Z
Rd

Dn;pðuÞðxÞ dx ¼ gd;p

Z
Rd

j‘uðxÞj p dx:ð3:2Þ

Recall that (see e.g., [2, page 113]) if fnðxÞ ! f ðxÞ for a.e. x a Rd , and
k fnkL1ðRdÞ ! k f kL1ðRdÞ, then fn ! f in L1ðRdÞ. We deduce from (3.1) and (3.2)
that

Dn;pðuÞ ! gd;pj‘uj
p in L1ðRdÞ as n ! þl: r

Direct proof of Proposition 1. We have, see [1],

Z
Rd

Z
Rd

juðxþ hÞ � uðxÞ � ‘uðxÞ � hj p

jhj p rnðjhjÞ dh dxaCp;d

Z
Rd

j‘uðxÞj p
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and, for v a C1
c ðRdÞ,

lim
n!þl

Dn;pðvÞðxÞ ¼ gd;pj‘vðxÞj
p in L1ðRdÞ as n ! þl:

The conclusion now follows by a standard approximation argument. r

4. Convergence almost everywhere in the BV case

Let db 1, m be a Radon measure defined on Rd , and 0 < Raþl. Denote

MRðmÞðxÞ ¼ sup
0<saR

jmjðBðx; sÞÞ
jBðx; sÞj and MðmÞðxÞ ¼ MlðmÞðxÞ:

We begin this section with

Lemma 2. Let db 1, m be a positive Radon measure defined in Rd , and let
ðwkÞkb1 be a sequence of mollifier such that supp wk � Bð0; 1=kÞ and 0a wk a

Ckd for some positive constant C depending only on d. Set mk ¼ m � wk. We have,
for x a Rd and for r > 0,

1

r

Z
Bðx; rÞ

jy� xj1�d
dmðyÞaCMrðmÞðxÞð4:1Þ

and, for every k,

1

r

Z
Bðx; rÞ

jy� xj1�d
dmkðyÞaCMðmÞðxÞ;ð4:2Þ

for some positive constant C depending only on d.

Proof. Without loss of generality, one may assume that x ¼ 0. We have

1

r

Z
Bð0; rÞ

jyj1�d
dmðyÞ ¼ 1

r

Xl
m¼0

Z
Bð0;2�mrÞnBð0;2�ðmþ1ÞrÞ

jyj1�d
dmðyÞ

a
C

r

Xl
m¼0

2�mð1�dÞr1�d

Z
Bð0;2�mrÞnBð0;2�ðmþ1ÞrÞ

dmðyÞ

a
C

r

Xl
m¼0

2�mrMrðmÞð0Þ ¼ CMrðmÞð0Þ;

which is (4.1).
We next prove (4.2). As above, we obtain

1

r

Z
Bð0; rÞ

jyj1�d
dmkðyÞa

C

r

Xl
m¼0

2�mð1�dÞr1�d

Z
Bð0;2�mrÞnBð0;2�ðmþ1ÞrÞ

dmkðyÞ:ð4:3Þ
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We claim that
Z
Bð0;2�mrÞnBð0;2�ðmþ1ÞrÞ

dmkðyÞaC2�mdrdMðmÞð0Þ:ð4:4Þ

Combining (4.3) and (4.4) yields (4.2)
It remains to prove (4.3). We haveZ

Bð0;2�mrÞnBð0;2�ðmþ1ÞrÞ
dmkðyÞa

Z
Bð0;2�mrÞnBð0;2�ðmþ2ÞrÞ

dmkðyÞð4:5Þ

¼ sup
j ACcðBð0;2�mrÞnBð0;2�ðmþ2ÞrÞÞ; jjja1

Z
Rd

j dmk:

We have
Z
Rd

j dmk ¼
Z
Rd

Z
Rd

jðzÞwkðz� yÞ dz dmðyÞð4:6Þ

If 2�mr < 1=k, we have, for j a CcðBð0; 2�mrÞnBð0; 2�ðmþ2ÞrÞÞ with jjja 1,Z
Rd

Z
Rd

jðzÞwkðz� yÞ dz dmðyÞð4:7Þ

a

Z
jyj<2=k

sup
y

Z
Rd

jjðzÞjwkðz� yÞ dz dmðyÞ

aCð2�mrÞdkd

Z
jyj<2=k

dmðyÞaC2�mdrdMðmÞð0Þ:

Here we use the fact that supp wk � Bð0; 1=kÞ and 0a wk aCkd . Similarly, if

1=k < 2�mr, we have, for j a CcðBð0; 2�mrÞnBð0; 2�ðmþ2ÞrÞÞ with jjja 1,Z
Rd

Z
Rd

jðzÞwkðz� yÞ dz dmðyÞ dyð4:8Þ

a

Z
jyj<2�mþ2r

sup
y

Z
Rd

jjðzÞjwkðz� yÞ dz dmðyÞ

a

Z
jyj<2�mþ2r

dmðyÞaC2�mdrdMðmÞð0Þ:

Combining (4.5), (4.6), (4.7), and (4.8), we obtain (4.4). The proof is complete.
r

We recall that (see, e.g., [8])

lim
r!0

j‘sujðBðx; rÞÞ
jBðx; rÞj ¼ 0 for a:e: x a Rd :ð4:9Þ
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As a consequence of (4.9), one obtains

Mðj‘sujÞðxÞ < þl for a:e: x a Rd :ð4:10Þ

We now present the

Proof of Theorem 2. As in the proof of Theorem 1, one may assume that
u a BVðRdÞ. Let ðwkÞkb1 be a sequence of smooth mollifiers such that supp wk �
Bð0; 1=kÞ and 0a wk aCkd . Here and in what follows, C denotes a positive
constant depending only on d. Set, for k a Nþ,

uk ¼ u � wk; V s
k ¼ ‘su � wk; and V ac

k ¼ ‘acu � wk:

We have

Z
Rd

jukðxþ hÞ � ukðxÞ � V ac
k ðxÞ � hj

jhj rnðjhjÞ dhð4:11Þ

¼
Z l

0

rd�1rnðrÞ
Z
Sd�1

jukðxþ rsÞ � ukðxÞ � rV ac
k ðxÞ � sj

r
ds dr:

Since

ukðxþ rsÞ � ukðxÞ � rV ac
k ðxÞ � s ¼

Z r

0

‘ukðxþ ssÞ � s ds� rV ac
k ðxÞ � s

and

‘ukðxÞ ¼ V s
k ðxÞ þ V ac

k ðxÞ;

it follows from (4.11) that

Z
Rd

jukðxþ hÞ � ukðxÞ � V ac
k ðxÞ � hj

jhj rnðjhjÞ dhð4:12Þ

a

Z l

0

rd�1rnðrÞ
1

r
dr

Z
Sd�1

Z r

0

jV s
k ðxþ ssÞj ds ds

þ
Z l

0

rd�1rnðrÞ
1

r
dr

Z
Sd�1

Z r

0

jV ac
k ðxþ ssÞ � V ac

k ðxÞj ds ds:

We claim that, for a.e. x a Rd ,

lim
k!þl

Z
Rd

jukðxþ hÞ � ukðxÞ � V ac
k ðxÞ � hj

jhj rnðjhjÞ dhð4:13Þ

¼
Z
Rd

juðxþ hÞ � uðxÞ � ‘acuðxÞ � hj
jhj rnðjhjÞ dh;
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lim
k!þl

Z l

0

rd�1rnðrÞ
1

r
dr

Z
Sd�1

Z r

0

jV s
k ðxþ ssÞj ds dsð4:14Þ

¼
Z l

0

rd�1rnðrÞ
1

r
dr

Z
Bðx; rÞ

j‘suðyÞj jy� xj1�d
dy;

and

lim
k!þl

Z l

0

rd�1rnðrÞ
1

r
dr

Z
Sd�1

Z r

0

jV ac
k ðxþ ssÞ � V ac

k ðxÞj ds dsð4:15Þ

¼
Z l

0

rd�1rnðrÞ
1

r
dr

Z
Sd�1

Z r

0

j‘acuðxþ ssÞ � ‘acuðxÞj ds ds:

Assuming these claims, we continue the proof. Combining (4.12), (4.13), (4.14),
and (4.15) yields, for a.e. x a Rd ,

Z
Rd

juðxþ hÞ � uðxÞ � ‘acuðxÞ � hj
jhj rnðjhjÞ dhð4:16Þ

a

Z l

0

rd�1rnðrÞ
1

r
dr

Z
Bðx; rÞ

j‘suðyÞj jy� xj1�d
dy

þ
Z l

0

rd�1rnðrÞ
1

r
dr

Z
Sd�1

Z r

0

j‘acuðxþ ssÞ � ‘acuðxÞj ds ds:

Hence it su‰ces to prove that, for a.e. x a Rd ,

lim
n!þl

Z l

0

rd�1rnðrÞ
1

r
dr

Z
Bðx; rÞ

j‘suðyÞj jy� xj1�d
dy ¼ 0ð4:17Þ

and

lim
n!þl

Z l

0

rd�1rnðrÞ
1

r
dr

Z
Sd�1

Z r

0

j‘acuðxþ ssÞ � ‘acuðxÞj ds ds ¼ 0:ð4:18Þ

Note that assertion (4.18) holds for every x a Rd if u a C1
c ðRdÞ and, by Lemma 2,

Z l

0

rd�1rnðrÞ
1

r
dr

Z
Sd�1

Z r

0

j‘acuðxþ ssÞ � ‘acuðxÞj ds dsaCMðj‘acujÞðxÞ:

As in the proof of Theorem 1, we have, for a.e. x a Rd ,

lim
n!þl

Z l

0

rd�1rnðrÞ
1

r
dr

Z
Sd�1

Z r

0

j‘acuðxþ ssÞ � ‘acuðxÞj ds ds ¼ 0;

which is (4.18).
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We next establish (4.17). By Lemma 2, we have

1

r

Z
Bðx; rÞ

j‘suðyÞj jy� xj1�d
dyaCMrðj‘sujÞðxÞ:

It follows from (4.9) that

lim
n!þl

Z l

0

rd�1rnðrÞ
1

r
dr

Z
Bðx; rÞ

j‘suðyÞj jy� xj1�d
dy ¼ 0 for a:e: x a Rd ;

which is (4.17).
It remains to prove claims (4.13), (4.14), and (4.15). We begin with claim

(4.13). We have

Z
Rd

jukðxþ hÞ � ukðxÞ � V ac
k ðxÞ � hj

jhj rnðjhjÞ dh

¼
Z l

0

rnðrÞrd�1 1

r
dr

Z
Sd�1

jukðxþ rsÞ � ukðxÞ � rV ac
k ðxÞ � sj ds:

Using Lemma 2, we derive from (4.12) that

1

r

Z
Sd�1

jukðxþ rsÞ � ukðxÞ � rV ac
k ðxÞ � sj dsaCMðj‘ujÞðxÞ:

Since for a.e. x a Rd ,

lim
k!þl

1

r

Z
Sd�1

jukðxþ rsÞ � ukðxÞ � rV ac
k ðxÞ � sj ds

¼ 1

r

Z
Sd�1

juðxþ rsÞ � uðxÞ � r‘acuðxÞ � sj ds for a:e: r > 0;

it follows from the dominated convergence theorem that, for a.e. x a Rd ,

lim
k!þl

Z
Rd

jukðxþ hÞ � ukðxÞ � V ac
k ðxÞ � hj

jhj rnðjhjÞ dh

¼
Z
Rd

juðxþ hÞ � uðxÞ � ‘acuðxÞ � hj
jhj rnðjhjÞ dh;

which is (4.13).
The proof of (4.15) follows similarly. We finally establish (4.14). Fix t > 0

(arbitrary). We have
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Z l

0

rd�1rnðrÞ
1

r
dr

Z
Sd�1

Z r

0

jV s
k ðxþ ssÞj ds dsð4:19Þ

¼
Z l

t

rd�1rnðrÞ
1

r
dr

Z
Bðx; rÞnBðx;tÞ

jV s
k ðyÞj jy� xj1�d

dy

þ
Z l

t

rd�1rnðrÞ
1

r
dr

Z
Bðx; tÞ

jV s
k ðyÞj jy� xj1�d

dy

þ
Z t

0

rd�1rnðrÞ
1

r
dr

Z
Bðx; rÞ

jV s
k ðyÞj jy� xj1�d

dy:

We have, for a.e. r > 0,

lim
k!þl

1

r

Z
Bðx; rÞnBðx; tÞ

jV s
k ðyÞj jy� xj1�d

dy ¼ 1

r

Z
Bðx; rÞnBðx; tÞ

j‘suðyÞj jy� xj1�d
dy

and, by Lemma 2,

1

r

Z
Bðx; rÞnBðx; tÞ

jV s
k ðyÞj jy� xj1�d

dyaCMðj‘ujÞðxÞ:

It follows from the dominated convergence theorem that

lim
k!þl

Z l

t

rd�1rnðrÞ
1

r
dr

Z
Bðx; rÞnBðx; tÞ

jV s
k ðyÞj jy� xj1�d

dyð4:20Þ

¼
Z l

t

rd�1rnðrÞ
1

r
dr

Z
Bðx; rÞnBðx; tÞ

j‘suðyÞj jy� xj1�d
dy:

On the other hand, by Lemma 2,

Z l

t

rd�1rnðrÞ
1

r
dr

Z
Bðx; tÞ

jV s
kuðyÞj jy� xj1�d

dyð4:21Þ

aCMðj‘ujÞðxÞ
Z l

t

rd�1rnðrÞt=r dr

and

Z t

0

rd�1rnðrÞ
1

r
dr

Z
Bðx; rÞ

jV s
k ðyÞj jy� xj1�d

dyð4:22Þ

aCMðj‘ujÞðxÞ
Z t

0

rd�1rnðrÞ dr:
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Since

lim
t!0

�Z l

t

rd�1rnðrÞt=r drþ
Z t

0

rd�1rnðrÞ dr
�
¼ 0;

we obtain (4.14) from (4.19), (4.20), (4.21), and (4.22). The proof is complete.
r

5. Miscellaneous results

5.1. On a characterization of W 1;1ðRdÞ

The following result deals with a ‘‘converse’’ of Proposition 1. It is due to
D. Spector in [10, Theorem 1.3] and [11, Theorem 1.4] in the case rnðrÞ ¼
de�d

n 1ð0; enÞ for a sequence of ðenÞ ! 0þ and to A. Ponce and D. Spector [9,
Remark 5] for a general sequence ðrnÞ. The proof we present here is more direct.

Proposition 2. Let db 1 and u a L1ðRdÞ. Then u a W 1;1ðRdÞ if and only if

there exists U a ½L1ðRdÞ�d such that

lim
n!þl

Z
Rd

Z
Rd

juðxþ hÞ � uðxÞ �UðxÞ � hj
jhj rnðjhjÞ dh dx ¼ 0:ð5:1Þ

Proof. We already know that (5.1) holds for u a W 1;1ðRdÞ with ‘u ¼ U by
Proposition 1. It remains to prove that if (5.1) holds, then u a W 1;1ðRdÞ. Let
ðwkÞ be a sequence of standard mollifiers. Define

uk ¼ u � wk and Uk ¼ U � wk:

We have

Z
Rd

Z
Rd

jukðxþ hÞ � ukðxÞ �UkðxÞ � hj
jhj rnðjhjÞ dh dx

¼
Z
Rd

Z
Rd

����
Z
Rd

uðxþ h� yÞwkðyÞ dy�
Z
Rd

uðx� yÞwkðyÞ dy

�
Z
Rd

Uðx� yÞ � hwkðyÞ dy
���� jhj�1rnðjhjÞ dh dx:

This implies

Z
Rd

Z
Rd

jukðxþ hÞ � ukðxÞ �UkðxÞ � hj
jhj rnðjhjÞ dh dx

a

Z
Rd

Z
Rd

Z
Rd

juðxþ h� yÞ � uðx� yÞ �Uðx� yÞ � hj
jhj wkðyÞ dyrnðjhjÞ dh dx:
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A change of variables gives

Z
Rd

Z
Rd

jukðxþ hÞ � ukðxÞ �UkðxÞ � hj
jhj rnðjhjÞ dh dx

a

Z
Rd

Z
Rd

juðxþ hÞ � uðxÞ �UðxÞ � hj
jhj rnðjhjÞ dh dx:

We derive from (5.1) that, for k > 0,

lim
n!þl

Z
Rd

Z
Rd

jukðxþ hÞ � ukðxÞ �UkðxÞ � hj
jhj rnðjhjÞ dh dx ¼ 0:

Since uk is smooth, we obtain

Uk ¼ ‘uk:

As k ! þl, uk ! u and Uk ! U in L1ðRdÞ, so that u a W 1;1ðRdÞ and
‘u ¼ U . r

5.2. The bounded domain case

Most of the above results hold when Rd is replaced by a smooth bounded domain
W of Rd . Define, for pb 1, n a N, and u a L1

locðWÞ,

DW
n;pðuÞðxÞ :¼

Z
W

juðxÞ � uðyÞj p

jx� yj p rnðjx� yjÞ dy for a:e: x a W:ð5:2Þ

Here is a typical result:

Theorem 4. Let db 1, pb 1 and u a W 1;pðWÞ. Then

lim
n!þl

DW
n;pðuÞðxÞ ¼ gd;pj‘uj

pðxÞ for a:e: x a W:ð5:3Þ

Proof. Let ~uu be an extension of u to Rd such that ~uu a W 1;pðRdÞ. Let o �� W.
We have, for x a o,

DW
n;pðuÞðxÞ ¼ Dn;pð~uuÞðxÞ �

Z
RdnW

j~uuðxÞ � ~uuðyÞj
jx� yj rnðjx� yjÞ dy:ð5:4Þ

Applying Theorem 1 to ~uu, we have for a.e. x a o,

lim
n!þl

Dn;pð~uuÞðxÞ ¼ gd;pj‘~uuj
pðxÞ ¼ gd;pj‘uj

pðxÞ:ð5:5Þ
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Since o is arbitrary, it su‰ces to prove that for a.e. x a o,

lim
n!þl

Z
RdnW

j~uuðxÞ � ~uuðyÞj
jx� yj rnðjx� yjÞ dy ¼ 0:ð5:6Þ

Let j a C1ðRdÞ be such that j ¼ 1 in RdnW and j ¼ 0 in o. Applying Theorem 1
to j~uu, we obtain, for a.e. x a o,

lim
n!þl

Z
RdnW

j~uuðyÞj
jx� yj rnðjx� yjÞ dy ¼ 0:ð5:7Þ

On the other hand, for a.e. x a o,

lim
n!þl

Z
RdnW

j~uuðxÞj
jx� yj rnðjx� yjÞ dyð5:8Þ

¼ juðxÞj lim
n!þl

Z
RdnW

1

jx� yj rnðjx� yjÞ dy ¼ 0

Assertion (5.6) now follows from (5.7) and (5.8). r
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