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Abstract. — We introduce a notion of state-constraint viscosity solutions for one dimensional

‘‘junction’’-type problems for Hamilton–Jacobi equations with non convex coercive Hamiltonians
and study its well-posedness and stability properties. We show that viscosity approximations either

select the state-constraint solution or have a unique limit, and we introduce another type of
approximation by fattening the domain. We also make connections with existing results for convex

equations and discuss extensions to time and/or multi-dimensional problems.
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1. The problem and the notion of solution

We introduce a notion of state-constraint viscosity solutions for one dimensional
junction-type problems for non convex Hamilton–Jacobi equations and study
its well-posedness (comparison principle and existence). We also investigate
the stability properties of small di¤usion approximations satisfying a Kircho¤
property at the junction. We show that such approximations either converge to
the state-constraint solution or have a unique limit. We also introduce a new
type of approximations by ‘‘fattening’’ the junction, which, under some assump-
tions on the behavior of the Hamiltonian’s at the junction, also yield the state-
constraint solution. In addition we present a new and very simple proof for the
uniqueness solution of the junction solutions introduced for quasi-convex prob-
lems by Imbert and Monneau [5]. Finally, we discuss extensions to time depen-
dent and/or multi-dimensional problems.

For simplicity and due to the space limitation we concentrate here on one-
dimensional time independent problems. Our results, however, extend with some
additional technicalities, to time dependent as well as multi-dimensional ‘‘strati-
fied’’ problems. Proofs as well extensions to multi-dimensional problems will
appear in [9].

We emphasize that our results do not require any convexity conditions on the
Hamiltonians contrary to all the previous literature that is based on the control
theoretical interpretation of the problem and, hence, require convexity. Among
the long list of references on this topic with convex Hamiltonians, in addition to
[5], we refer to Barles, Briani and Chasseigne [1, 2], Barles and Chasseigne [3],
Bressan and Hong [4] and Imbert and Nguen [6].



We consider a K-junction problem in the domain I :¼
SK

i¼1 Ii with junc-
tion f0g, where, for i ¼ 1; . . . ;K , Ii :¼ ð�ai; 0Þ and ai a ½�l; 0Þ. We work
with functions u a CðI ;RÞ and, for x ¼ ðx1; . . . ; xKÞ a I , we write uiðxiÞ ¼
uð0; . . . ; xi; . . . ; 0Þ. When possible, to simplify the writing, we drop the subscript
on ui and simply write uðxiÞ. We also use the notation uxi and uxixi for the first
and second derivatives of ui in xi. Finally, to avoid unnecessarily long state-
ments, we do not repeat, unless needed, that i ¼ 1; . . . ;K .

For the Hamiltonians Hi a CðR� I ;RÞ we assume that, for each i,

Hi is coercive; that is Hiðpi; xiÞ ! l as jpij ! l uniformly on I i:ð1Þ

Next we present the definitions of the state-constraint sub- and super-solutions.

Definition 1.1. (i) u a CðI ;RÞ is a state-constraint sub-solution to the junction
problem if

ui þHiðuxi ; xiÞa 0 in Ii for each i:ð2Þ

(ii) u a CðI ;RÞ is a state-constraint super-solution to the junction problem if

ui þHiðuxi ; xiÞb 0 in Ii for each i;ð3Þ

and

uð0Þ þ max
1aiaK

Hiðuxi ; 0Þb 0:ð4Þ

(iii) u a CðI ;RÞ is a solution if it is both sub- and super-solution.

The super-solution inequality at the junction is interpreted in the viscosity sense,
that is if, for f a C1ðIÞBC0;1ðI Þ, u� f has a (strict local) minimum at x ¼ 0,
then uð0Þ þ max

1aiaK
Hiðfxið0Þ; 0Þb 0.

We remark that, for the sake of brevity, we are not precise about the
boundary conditions at the end points ai, which may be of any kind (Dirichlet,
Neumann or state-constraint) that yields comparison for solutions in each Ii.

We also note that, without much di‰culty, it is possible to study more than
one junctions, since, as it will become apparent from the proofs below, the ‘‘influ-
ence’’ of the each junction is ‘‘local’’.

Finally, we denote by usc; i a CðI iÞ the unique constraint-solution to
wþHiðwxi ; xiÞ ¼ 0 on I i.

2. The main results

We begin with the well-posedness of the state-constraint solution of the junction
problem.
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Theorem 2.1. Assume (1).

(i) If v; u a CðI Þ are respectively sub- and super-constraint solutions to the junc-
tion problem, then va u on I.

(ii) There exists a unique state-constraint solution ûu of the junction problem.
(iii) ûuð0Þ ¼ min

1aiaK
usc; ið0Þ.

Since it is classical in the theory of viscosity solutions that the comparison princi-
ple yields via Perron’s existence method, here we will not discuss this any further.

The second result is about the stability properties of ‘‘viscous’’ approximations
to the junction problem. We begin with the formulation and the well-posedness of
solutions to second-order uniformly elliptic equations on junctions satisfying a
possibly nonlinear Neumann (Kircho¤-type) condition.

We assume that the functions Fi :¼ F ðXi; pi; ui; xiÞ and G :¼ Gðp1; . . . ; pK ; uÞ
are continuous and, uniformly with respect to all the other arguments,

Fi is strictly decreasing in Xi; nonincreasing in ui; and coercive in pi;

G is strictly increasing with respect to the pi’s and nonincreasing with

respect to u;

8<
:ð5Þ

and consider the problem

Fiðuxixi ; uxi ; xi; ui; xiÞ ¼ 0 in Ii for each i;

Gðux1 ; . . . ; uxK ; uÞ ¼ 0 at x ¼ 0:

�
ð6Þ

Theorem 2.2. Assume (5). Then (6) has a unique solution ûu a C2ðIÞBC1;1ðI Þ.

The meaning of the Neumann condition at the junction is that G quantifies the
‘‘amount’’ of the di¤usion that goes into each direction as well as stays at 0.

We consider next, for each e > 0, the problem

�eue
xixi

þ ue
i þHiðue

xi
; xiÞ ¼ 0 in Ii;PK

i¼1 u
e
xi
¼ 0 at x ¼ 0;

(
ð7Þ

which, in view of Theorem 2.2, has a unique solution ue a C2ðIÞBC1;1ðI Þ,
that, in addition, is bounded in C0;1ðI Þ with a bound independent of the e;
the uniform in e bound is an easy consequence of the assumed coercivity of
the Hamiltonian’s.

We remark that the particular choice of the Neumann condition plays no role
in the sequel and results similar to the ones stated below will also hold true for
other, even nonlinear, conditions at the junction.

We are interested in the behavior, as e ! 0, of the ue’s and, in particular, in the
existence of a unique limit and its relationship to the constraint solution of the
first-order junction problem.
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Theorem 2.3. Assume (1). Then u :¼ lim
e!0

ue exists and either u ¼ ûu or uð0Þ <
ûuð0Þ, uxið0�Þ exists for all i’s and

PK
i¼1 uxið0�Þ ¼ 0.

A consequence of Theorem 2.3 is that, in principle, the junction problem has a
unique state-constraint solution and a possible continuum of solutions obtained
as limits of problems like (7) with other type of possibly degenerate second order
terms and di¤erent Neumann conditions.

Under some additional assumptions it is possible to show that we always have
ûu ¼ lim

e!0
ue. Indeed suppose that, for each i,

Hi has no flat parts and finitely many minima at p0i;1 a � � �a p0i;Ki
;ð8Þ

note that the assumption that Hi has no flat parts can be easily removed by a
density argument, while, at the expense of some technicalities, it is not necessary
to assume that there are only finitely minima.

Theorem 2.4. Assume (1), (8) and
PK

i¼1 p
0
i;Ki

a 0. Then ûu ¼ lim
e!0

ue.

A particular case that (8) holds is when the Hi’s are quasi-convex and coer-
cive. Then, for each i, there exists single minimum point at p0i , and the condition
above reduces to

PK
i¼1 p

0
i a 0. On the other hand, if

PK
i¼1 p

0
i > 0, we have exam-

ples showing that ûu > lim
e!0

ue.

3. Sketch of proofs

The proof of Theorem 2.2 is standard so we omit it and we present the one of
Theorem 2.1.

Proof. It follows from (1) that v is Lipschitz continuous. In view of the com-
ments in the previous section about the boundary conditions at the ai’s, here we
assume that vð0Þ � uð0Þ ¼ maxI ðu� vÞ > 0 and we obtain a contradiction.

To conclude we adapt the argument introduced in Soner [10] to study
state-constraint problems and we consider, for each i, e > 0 and some d ¼ OðeÞ,
a maximum point ðxi; yiÞ a I i � I i (over I i � I i) of ðxi; yiÞ ! vðxiÞ � uðyiÞ�
1
2e ðxi � yi þ dÞ2.

It follows that, as e ! 0, xi; yi ! 0, and the role of the d above is to guarantee
that, for all i, xi < 0 even if yi ¼ 0.

If, for some j, yj < 0, we find, using the uniqueness arguments for state-
constraint viscosity solutions in I j , a contradiction to vð0Þ � uð0Þ > 0.

It follows that we must have yi ¼ 0 for all i ¼ 1; . . . ;K , that is, y ! vðyÞþ
1
2e

P
iðxi � yi þ dÞ2 has a minimum at 0. Since v is a super-solution, (4) yields

vð0Þ þ max
1aiaK

Hi

�
xiþd
e

; 0
�
b 0 and, hence, for some j, vjð0Þ þHj

� xjþd

e
; 0
�
b 0.

On the other hand, since xj < 0, we also have ujðxjÞ þHj

� xjþd

e
; xj

�
a 0.

Combining the last two inequalities we find, after letting e ! 0, that we must
have uð0Þ ¼ ujð0Þa vjð0Þ ¼ vð0Þ, which again contradicts the assumption.
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The existence of a unique solution ûu follows from the comparison and
Perron’s method.

For the third claim first we observe that, since ûu is a viscosity sub-solution
in each Ii, the comparison of state-constraint solutions yields that, for each i,
ûua usc; i on I i, and, hence, ûuð0Þa min

1aiaK
usc; ið0Þ.

For the equality, we need to show that, for some j, usc; jð0Þa ûuð0Þ. This fol-
lows by repeating the proof of the comparison above. r

To study the limiting behavior of the ue’s, we investigate in detail the properties
of solutions to the Dirichlet problem in each of the intervals Ii. For notational
simplicity we omit next the dependence on i and we consider, for each c a R,
the boundary value problem

uc þHðuc;x; xÞ ¼ 0 in I :¼ ð�a; 0Þ and uð0Þ ¼ c;ð9Þ

and we denote by usc the solution of the corresponding state constraint problem
in I . Note that, since the real issue is the behavior near 0, again we do not specify
any boundary condition at a, which can be either Dirichlet or Neumann or state
constrain so that (9) is well defined. Finally, as we already mentioned earlier, we
use (8) only to avoid technicalities.

Proposition 3.1. Assume that H satisfies (1) and (8). Then, for every

c < uscð0Þ, (9) has a unique solution uc a C0;1ðI Þ. Moreover, uc;xð0�Þ exists and
ucð0�Þ þHðuc;xð0�Þ; 0Þ ¼ 0. In addition, both ucð0�Þ and uc;xð0�Þ are nonde-
creasing in c, and uc;xð0�Þ belongs to the decreasing part of H except for finitely
many values of c.

Proof. The existence of solutions to (9) is immediate from Perron’s method,
since, for any l > 0, usc � l is a sub-solution, while the coercivity of the H easily
yields a super-solution. The Lipschitz continuity of the solution is an immediate
consequence of the coercivity of H. The existence of uc;xð0�Þ and the fact the
equation is satisfied at 0 follow either along the lines of Jensen and Souganidis
[7], which studied the detailed di¤erentiability properties of viscosity solutions in
one dimension, or a technical lemma stated without proof after the end of the
ongoing one. The claimed monotonicity of ucð0�Þ follows from the comparison
principle, while the monotonicity of uc;xð0�Þ is a consequence of the fact that,
for any cA c 0, the maximum of uc � uc 0 is attained at x ¼ 0. The last assertion
results from the nondecreasing properties of ucð0�Þ and uc;xð0�Þ and the fact
that ucð0�Þ þHðuc;xð0�Þ; 0Þ ¼ 0. r

The technical lemma that can be used in the above proof in place of [7] is stated
next without a proof.

Lemma 3.2. Assume that u a C0;1ðI Þ solves uþHðux; xÞa 0 (resp.

uþHðux; xÞb 0) in I and let p :¼ lim sup
x!0�

uðxÞ�uð0Þ
x

and p :¼ lim inf
x!0�

uðxÞ�uð0Þ
x

. Then

uð0Þ þHðp; 0Þa 0 (resp. uð0Þ þHðp; 0Þb 0.)
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We state next without a proof a well known fact which characterizes the
possible limits of the uniform in e Lipschitz continuous solutions ue to (7).

Lemma 3.3. Assume (1). Any subsequential limit u of the ue is a viscosity sub-
solution to

uþHiðuxi ; xiÞa 0 in Ii for each i;

min
PK

i¼1 uxi ; uð0Þ þ min
1aiaK

Hiðuxi ; 0Þ
� �

a 0 at x ¼ 0;

8><
>:ð10Þ

and a viscosity super-solution to

uþHiðuxi ; xiÞb 0 in Ii for each i;

max
PK

i¼1 uxi ; uð0Þ þ max
1aiaK

Hiðuxi ; 0Þ
� �

b 0 at x ¼ 0:

8><
>:ð11Þ

Recall that the inequalities at x ¼ 0 must be interpreted in the viscosity sense.
For example, if, for some f a C0;1ðI Þ, u� f has a maximum at 0, then

min
Pd

i¼1 fxið0�Þ; uð0Þ þ min
1aiaK

Hiðfxið0Þ; 0Þ
� �

a 0.

Proposition 3.4 below refines the behavior of any u satisfying (10) and (11).
The proof of Theorem 2.3 is then immediate.

Proposition 3.4. Assume (1) and (8).

(i) If u is continuous solution to (10) and (11) and uð0Þ < ûuð0Þ, thenPd
i¼1 uxið0�Þ ¼ 0.

(ii) The problem (10) and (11) has at most one solution on u a C0;1ðI Þ such that
uð0Þ < ûuð0Þ.

Proof. (i) Proposition 3.1 yields that, for each i, the uxið0�Þ’s exist and belong
to the decreasing part of the Hi and uð0Þ þHiðuxið0�Þ; 0Þ ¼ 0. It follows that
there exists some small l > 0 such that uð0Þ þHiðuxið0�Þ þ l; 0Þ < 0 and uð0Þþ
Hiðuxið0�Þ � l; 0Þ > 0.

Choose fe a C0;1ðI Þ such that fexið0
�Þ ¼ uxið0�Þe l. It follows that 0 is a

local max and min of u� f� and u� fþ respectively. Then (10) and (11) and
the choice of fe yield the inequalities

min
PK

i¼1 f
�
xi
ð0�Þ; uð0Þ þ min

1aiaK
Hiðf�

xi
ð0�Þ; 0Þ

� �

¼ min
PK

i¼1 uxið0�Þ � lK ; uð0Þ þ min
1aiaK

Hiðuxið0�Þ � l; 0Þ
� �

a 0;

8>>><
>>>:

and
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max
PK

i¼1 f
þ
xi
ð0�Þ; uð0Þ þ max

1aiaK
Hiðfþ

xi
ð0�Þ; 0Þ

� �

¼ max
PK

i¼1 uxið0�Þ þ lK ; uð0Þ þ max
1aiaK

Hiðuxið0�Þ þ l; 0Þ
� �

b 0:

8>>><
>>>:

It follows from the choice of l that
PK

i¼1 uxið0�Þ � la 0a
PK

i¼1 uxið0�Þ þ lK ,
and, hence, letting l ! 0 yields the claim.

(ii) If u, v are two continuous solutions to (10) and (11), the Kircho¤ condition
established above implies that, for some small d >, uðxÞ � vðxÞ � d

Pd
i¼1 xi can-

not have a maximum at 0. The claim then follows from standard viscosity
solutions arguments. r

Theorem 2.4 is now immediate from the first claim in Proposition 3.4.

4. Some observations

We present another way to approximate the constrained solution of the junction
based on ‘‘fattening’’ I . To simplify the notation we assume that K ¼ 2.

For e > 0, let Ie be an open neighborhood of I in R2 of size e, that is I � Ie
and diam Ie a e, consider the coercive Hamiltonian H : R2 � R2 ! R and the
state-constraint problem

ue þHðDue; xÞa 0 in Ie;

ue þHðDue; xÞb 0 on �IeIe;

�
ð12Þ

where Dv :¼ ðvx1 ; vx2Þ and x :¼ ðx1; x2Þ. The coercivity of H yields Lipschitz
bounds so that, along subsequences, ue ! u.

Define

H1ðp1; x1Þ :¼ min
p2 AR

Hðp1; p2; x1; 0Þ and H2ðp2; x2Þ :¼ min
p1 AR

Hðp1; p2; 0; x2Þ:

Theorem 4.1. Any limit u of the solutions ue to (12) is a solution to
uþH1ðux1 ; x1Þ ¼ 0 in I1 and uþH2ðux2 ; x2Þ ¼ 0 in I2, and if, for some

f a C1ðR2Þ, u� f has local minimum at 0, then uþHðfx1ð0Þ; fx2ð0Þ; 0Þb 0.

Proof. The proof of the second claim is immediate. Here we concentrate on the
first part and, since the arguments are similar, we take i ¼ 1.

For some f a C1ðI1Þ, let x1 a I1 be a local minimum of uðx1; 0Þ � fðx1Þ. It
is immediate that, for all p2 a R, ueðx1; x2Þ � fðx1Þ � p2x2 has a minimum at
ðxe

1; x
e
2Þ and, as e ! 0, xe

1 ! x1 and xe
2 ! 0. It follows from (12) that uðx1; 0Þþ

Hðfðx1; p2; x1; 0Þb 0, and, since p2 is arbitrary, uðx1; 0Þ þH1ðfðx1; x1Þb 0.
The sub-solution property follows from the fact that ue þH1ðue

x1
; x1Þa ue þ

Hðue
x1
; ue

x1
; x1; 0Þ. r

The following proposition is a consequence of Theorem 4.1.
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Proposition 4.2. If Hðp1; p2; x1; x2Þ ¼ maxðH1ðp1; x1Þ;H2ðp2; x2ÞÞ, then the
lim
e!0

ue exists and is the state-constraint solution to the junction problem.

In general, however, it is not true that Hðp1; p2; x1; x2Þ ¼ maxðH1ðp1; x1Þ;
H2ðp2; x2ÞÞ. Indeed, if Hðp1; p2Þ ¼ p21 þ 10p22 , then H1ðp1Þ ¼ p21 and H2ðp2Þ ¼
10p22 and p21 þ 10p22 Amaxðp21 ; 10p22Þ.

Next we use the arguments of the proof of the uniqueness of the state-
constraint solutions to give a new and very simple proof of the comparison result
established in [5] for a notion of limited flux junction solutions, which are
‘‘parametrized’’ by their values at 0. As in the rest of this paper we concentrate
on the time-independent problem.

The notion of solution introduced in [5] requires the Hamiltonian’s to be, in
addition to coercive, quasiconvex and the condition at the junction involves the
nondecreasing part of the Hamiltonians. To simplify the presentation, here we
assume that each Hamiltonian Hi is convex and has no flat parts.

If p0i ¼ argminHi, [5] uses the auxiliary Hamiltonians H�
i ðpi; 0Þ :¼

H1ðp1; 0Þ if pi a p0i and H�
i ðpi; 0Þ :¼ Hiðp0i ; 0Þ if pi b p0i , to define, for any

A a R, the A-flux limiter HAðpÞ :¼ max
�
A; max

1aiaK
H�

i ðpi; 0Þ
�
.

The following definition was introduced in [5].

Definition 4.3. An A-flux limited sub (respectively super)-solution to junction
problem is a viscosity sub(respectively super)-solution, for each i, to uþHiðuxi ; xiÞ
in Ii and uþHAðux1 ; . . . ; uxK Þ at x ¼ 0.

We remark that, in addition to the severe restriction of convexity, the A-flux
limited solutions are classified essentially by their values at the origin and not
the Kircho¤-type Neumann solution we use here, which is more natural for the
interpretation of the solution.

Motivated by the control theoretic interpretation of the problem [5] con-
structed a rather elaborate test function to deal with the case that points coming
up in the uniqueness proof are at the origin.

Here we present a rather simple proof for this uniqueness. To simplify the
arguments we consider continuous solutions and prove the following.

Proposition 4.4. Let u, v be continuous A-flux limited sub- and super-solutions
respectively. Then ua v on I .

Proof. The first observation is that uð0Þa�A. Indeed, for e > 0 small, con-
sider a test function f a C1ðIÞBC0;1ðI Þ such that fiðxiÞ ¼ �xi=e. It is easy to
see that u� f attains a local maximum in a neighborhood of 0 at some point
X :¼ ðx1; . . . ; xKÞ. If X a Ii for some i, then uðX Þ þHið�1=e;X Þa 0, which is
not possible if e is su‰ciently small since Hi is coercive. Hence X ¼ 0 and the
definition yields uð0Þ þ Aa uð0Þ þHAðDfð0Þ; 0Þa 0.

For the comparison we follow the proof or Theorem 2.1 and recall that we
only need to consider the case that the maximum of the ‘‘doubled’’ function is
achieved for all i’s at some ðxi; 0Þ with xi < 0.
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The definition of the A-flux limited super-solution then yields vð0Þþ
HA

�
x1þd
e

; . . . ; xKþd
e

; 0
�
b 0.

If HA

�
x1þd
e

; . . . ; xKþd
e

; 0
�
¼ A, then vð0Þ þ Ab 0, that is vð0Þb�Ab uð0Þ,

and we may conclude.

If HA

�
x1þd
e

; . . . ; xKþd
e

; 0
�
¼ max

1aiaK
H�

i

�
x1þd
e

; . . . ; xKþd
e

; 0
�
, then

vð0Þ þ max
1aiad

Hi

� x1 þ d

e
; . . . ;

xd þ d

e
; 0
�

b vð0Þ þ max
1aiad

H�
i

� x1 þ d

e
; . . . ;

xK þ d

e
; 0
�
b 0;

and we may finish as in the proof of Theorem 2.1. r

We conclude with a proposition, which we state without a proof, that provides
information about the location of the possible elements of the superdi¤erential
at the junction of a sub-solution in I . An immediate consequence is that in the
quasi-convex studied in [5], there is no need to use in advance the decreasing
parts of the Hamiltonians in order to define the flux-limited solution at the
junction.

Proposition 4.5. Assume that u a CðI Þ solves uþHðux; xÞa 0 in I . Then

either u is the state-constraint solution in I or lim sup
x!0�

uðxÞ�uð0Þ
x

aP, where

P :¼ inffz a R : Hðz; 0ÞaHðp; 0Þ for all za pg:

5. Extensions

A first extension of our results is about time dependent junction problems.

Definition 5.1. (i) u a CðI � ½0;T �;RÞ is a state-constraint sub-solution to the
junction problem if

ui; t þHiðuxi ; xiÞa 0 in Ii � ð0;T � for each i:ð13Þ

(ii) u a CðI � ½0;T �;RÞ is a state-constraint super-solution if

ui; t þHiðuxi ; xiÞb 0 in Ii;�ð0;T � for each i; and

max
1aiaK

ðui; t þHiðuxi ; 0ÞÞb 0:

(
ð14Þ

(iii) u a CðI � ½0;T �;RÞ is a solution if it is both sub- and super-solution.

As for the time independent problems discussed earlier the super-solution in-
equality at the junction is interpreted in the viscosity sense, that is if, for
f a C1ðI � ð0;T �ÞBC0;1ðI � ½0;T �Þ, u� f has a (local) minimum at ð0; t0Þ with
t0 a ð0;T �, then max

1aiaK
½ftð0; t0Þ þHiðfxið0; t0Þ; 0Þ�b 0.
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The uniqueness of solutions as well the simple proof of the uniqueness of flux-
limited solutions to the time dependentent junction problem follow after some
easy modifications of the arguments presented in the previous sections. The con-
vergence of the Kircho¤ second-order approximations require some additional
arguments. The details are given in [9].

Other possible generalizations to the so-called ‘‘stratified’’ problems were dis-
cussed by the first author in [8] and will be also presented in [9].

The following example is a typical problem. Consider the domain S :¼
S1 AS2 with S1 :¼ ð�l; 0Þ � R� f0g and S2 :¼ f0g � f0g � ð�l; 0Þ and the
coercive nonlinearities F and H. The equation is:

F ðuz; zÞ þ u ¼ 0 in S2;

Hðux; uy; x; yÞ þ u ¼ 0 in S1;

Hðux; uy; x; yÞ þ ub 0 on qS1;

minðHðux; uy; x; yÞ þ u;F ðuz; zÞ þ uÞb 0 at f0g � f0g � f0g:

8>>><
>>>:

A more general multi-dimensional example, always for coercive nonlinearities,
in the domain S :¼ fðx; yÞ a RKþd : xi a 0g is

Hiðuxi ;Dyu; xi; yÞ þ ui ¼ 0 in ð�l; 0Þ � Rd ;

max
1aiaK

Hiðuxi ;Dyu; 0; yÞ þ ub 0 in f0g � Rd :

(
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