
Rend. Lincei Mat. Appl. 27 (2016), 497–514
DOI 10.4171/RLM/745

Calculus of Variations — Gaussian-type isoperimetric inequalities in RCDðK ;lÞ
probability spaces for positive K , by Luigi Ambrosio and Andrea Mondino,
communicated on 10 June 2016.

This paper is dedicated to the memory of Professor Ennio De Giorgi.

Abstract. — In this paper we adapt the well-estabilished G-calculus techniques to the context

of RCDðK ;lÞ spaces, proving Bobkov’s local isoperimetric inequality [12], [13] and, when K

is positive, the Gaussian isoperimetric inequality in this class of spaces. The proof relies on the

measure-valued G2 operator introduced by Savaré in [22].
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1. Introduction

The goal of the paper is to extend to RCDðK ;lÞ spaces, a class of non-smooth
‘‘Riemannian’’ and possibly infinite-dimensional metric measure spaces with
lower Ricci curvature bounds, the Lévy–Gromov Gaussian isoperimetric in-
equality. Our proof is strongly inspired by the arguments of Bakry–Ledoux [12]
(see also the recent monograph [10]), where the authors gave a proof of such
an inequality for infinite dimensional di¤usion operators via G-calculus. This
calculus, also according to the presentation in [10], relies on the assumption of
the existence of a dense algebra of functions stable under the G operator, an
assumption that seems to be problematic in the category of RCDðK ;lÞ spaces.
Savaré realized in [22] that, by looking at the iterated G operator G2 as a
measure-valued operator, the assumption on the algebra can be relaxed, and
that most techniques of G-calculus still apply (heuristically, because the nega-
tive part of the tensor G2 is still absolutely continuous w.r.t. m); this point of
view has also been exploited in [19] for the development of Hessian estimates
and a full theory of covariant derivatives. In this paper we follow the same
line of thought to prove Bobkov’s inequality and the Lévy–Gromov Gaussian
isoperimetric inequality in sharp form. On the technical side, while the com-
putations are essentially the same (see in particular Chapter 8.5.2 of [10]), we
have tried to emphasize the technical issues arising from the not-so-smooth con-
text of RCDðK ;lÞ spaces, in particular the lack of smoothness of the functionffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I 2ðgÞ þ caðtÞGðgÞ

q
appearing in the proof of Bobkov’s inequality.



One of the motivations for writing this note comes from [6], where the isoperi-
metric result of this paper is used to prove new compactness results in variable
Sobolev spaces H 1;pðX ; di;miÞ relative to RCDðK ;lÞ metric measure structures
ðX ; di;miÞ, in the whole range of exponents p a ½1;lÞ ( p ¼ 1 corresponds to
BVðX ; di;miÞ).

Let us mention that the isoperimetric inequality for Gaussian measures is
originally due to C. Borell [14] and V. Sudakov–B. Cirel’son [25]. The functional
form of the Gaussian isoperimetric inequality presented in Theorem 4.1 was in-
troduced by S. Bobkov [13] who established it first on the two-point space and
then in the limit for the Gaussian measure by the central limit Theorem. On the
basis of the Bobkov inequality, the local inequalities of Theorem 3.1 were estab-
lished by D. Bakry and M. Ledoux [12] in the context of smooth infinite dimen-
sional spaces with lower Ricci curvature bounds. Theorem 4.2 may be considered
as the non-smooth, infinite-dimensional extension of a celebrated result of P. Lévy
and M. Gromov [20] comparing the isoperimetric profile of a Riemannian mani-
fold with a strictly positive lower bound on the Ricci curvature to that of the
sphere with the same (constant) curvature and dimension. Let us mention that
the dimensional Lévy–Gromov inequality has been recently extended to non-
smooth spaces with lower Ricci curvature bounds in [15].

2. Preliminaries

Throughout the paper ðX ; d;mÞ will be a metric measure space, m.m.s. for short,
i.e. ðX ; dÞ is a complete and separable metric space and m is a nonnegative Borel
measure. Even if some of the statements of this paper hold in case m is a sigma
finite measure, for simplicity we will always assume mðXÞ ¼ 1 and suppðmÞ ¼ X .
We shall denote by LIPðX Þ the space of Lipschitz functions, by PðX Þ the space of
Borel probability measures on the complete and separable metric space ðX ; dÞ.
We also denote by

P2ðXÞ :¼ m a PðXÞ :
Z
X

d2ðx0; xÞ dmðxÞ<l for some ðand hence allÞ x0 a X

� �
:

the subspace consisting of all the probability measures with finite second mo-
ment. The relative entropy functional Entm : P2ðXÞ ! ð�l;l� with respect to
a probability measure m is defined by

EntmðmÞ :¼

Z
X

f log f dm if m ¼ fm;

l otherwise:

8<
:ð2:1Þ

Note that, by Jensen’s inequality, this functional is nonnegative.
A curve g : ½0; 1� ! X is a geodesic if

dðgs; gtÞ ¼ jt� sjdðg0; g1Þ Es; t a ½0; 1�:ð2:2Þ

We will denote by GeoðX Þ the space of all constant speed geodesics g : ½0; 1� ! X ,
namely g a GeoðXÞ if (2.2) holds.
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2.1. Lower Ricci curvature bounds

In the sequel we briefly recall those basic definitions and properties of spaces with
lower Ricci curvature bounds that we will need later on.

For m0; m1 a P2ðXÞ the quadratic transportation distance W2ðm0; m1Þ is defined
by

W 2
2 ðm0; m1Þ ¼ inf

g

Z
X

d2ðx; yÞ dgðx; yÞ;ð2:3Þ

where the infimum is taken over all g a PðX � X Þ with m0 and m1 as the first
and the second marginal. It turns out that any geodesic ðmtÞ a GeoðP2ðXÞÞ can
be lifted to a measure p a PðGeoðX ÞÞ, in such a way that ðetÞap ¼ mt for all
t a ½0; 1�.

We turn to the formulation of the CDðK ;lÞ condition, coming from the
seminal works of Lott–Villani [21] and Sturm [23].

Definition 2.1 (CDðK ;lÞ condition). Given K a R, we say that a m.m.s.
ðX ; d;mÞ is a CDðK ;lÞ-space if for any two measures m0; m1 a DðEntmÞ there
exists a geodesic ðmtÞ a GeoðP2ðX ÞÞ which satisfies the convexity inequality

EntmðmtÞa ð1� tÞEntmðm0Þ þ tEntmðm1Þð2:4Þ

� K

2
tð1� tÞW 2

2 ðm0; m1Þ; for all t a ½0; 1�:

Notice that the above-mentioned lifting property shows that the CDðK ;lÞ
condition implies that the class GeoðX Þ is su‰ciently rich to provide p a
PðGeoðXÞÞ connecting any two measures with finite entropy. Using this, one
can prove that X ¼ suppm is length, i.e. dðx; yÞ is the infimum of the length of
the curves connecting x to y for all x; y a suppm.

Two crucial properties of the CDðK ;lÞ-condition are the consistency with the
smooth counterpart and the stability under convergence. More precisely, it was
shown both in [21] and [23] that a smooth Riemannian manifold satisfies the
CDðK ;lÞ-condition if and only if it has Ricci curvature bounded below by K .
Regarding the stability, it was proved by Lott–Villani [21] that the CDðK ;lÞ-
condition is stable under pointed measured Gromov-Hausdor¤ convergence of
proper pointed metric measure spaces; Sturm [23] instead introduced a new dis-
tance, denoted with D, between normalized metric measure spaces and proved
the stability of the CDðK ;lÞ-condition under such a convergence. The stability
in the general case of non-proper and non-normalized spaces was established in
[18] where a new notion of convergence, called pointed measured Gromov con-
vergence, was introduced (let us mention that such a convergence coincides with
the measured Gromov Hausdor¤ one in case of uniformly doubling spaces and
with the D-convergence in case of normalized spaces) and the stability of the
CDðK ;lÞ-condition under such a convergence was established.
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2.2. The Cheeger energy, its gradient flow and the RCDðK ;lÞ-condition

First of all recall that the metric slope of a Lipschitz function f a LIPðX Þ is
defined by

lip f ðxÞ :¼ lim sup
y!x

j f ðxÞ � f ðyÞj
dðx; yÞð2:5Þ

(with the convention lip f ðxÞ ¼ 0 if x is an isolated point). The Cheeger energy
(introduced in [16] and further studied in [3]) is defined as the L2-lower semicon-

tinuous envelope of the functional f 7! 1
2

Z
X

lip2 f dm, i.e.:

Chmð f Þ :¼ inf lim inf
n!l

1

2

Z
X

lip2 fn dm : fn a LIPðX Þ; fn ! f in L2ðX ;mÞ
� �

:ð2:6Þ

If Chmð f Þ < l it was proved in [16, 3] that the set

Gð f Þ :¼ fg a L2ðX ;mÞ : b fn a LIPðX Þ; fn ! f ; lip fn * hb g in L2ðX ;mÞg

is closed and convex, therefore it admits a unique element of minimal norm called
minimal weak upper gradient and denoted by jDf jw. The Cheeger energy can be
then represented by integration as

Chmð f Þ :¼
1

2

Z
X

jDf j2w dm:

It is not di‰cult to see that Chm is a 2-homogeneous, lower semi-continuous, con-
vex functional on L2ðX ;mÞ, whose proper domain DðChmÞ :¼ f f a L2ðX ;mÞ :
Chmð f Þ < lg is a dense linear subspace of L2ðX ;mÞ. It then admits an
L2-gradient flow which is a continuous semigroup of contractions ðHtÞtb0 in
L2ðX ;mÞ, whose continuous trajectories t 7! Ht f , for f a L2ðX ;mÞ, are locally
Lipschitz curves from ð0;lÞ with values into L2ðX ;mÞ. We can now define the
RCDðK ;lÞ-condition introduced in [4] (see also [1] for the present simplified
axiomatization and for the generalization to s-finite reference measures).

Definition 2.2 (RCDðK ;lÞ-space). Let ðX ; d;mÞ be a probability metric
measure space. We say that ðX ; d;mÞ is an RCDðK ;lÞ-space if it satisfies the
CDðK;lÞ-condition, and moreover Cheeger’s energy is quadratic, i.e. it satisfies
the parallelogram identity

Chmð f þ gÞ þ Chmð f � gÞ ¼ 2Chmð f Þ þ 2ChmðgÞ; Ef ; g a DðChmÞ:ð2:7Þ

If ðX ; d;mÞ is an RCDðK ;lÞ-space then the Cheeger energy induces the
Dirichlet form Eð f Þ :¼ 2Chmð f Þ which is strongly local and admits the Carré du
Champ

Gð f Þ :¼ jDf j2w; for every f a DðChmÞ:ð2:8Þ
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Moreover the sub-di¤erential qChm is single-valued and coincides with the linear
generator D of the heat flow semi-group ðHtÞtb0 defined above.

The RCDðK ;lÞ-condition was introduced in order to single out in a more
precise way, compared to the CD theory, non-smooth ‘‘Riemannian’’ structures;
indeed, while on the one hand it is possible to give examples of smooth Finsler
manifolds satisfying the CDðK ;lÞ-condition, on the other hand it is not di‰cult
to see that if a Finsler manifold satisfies (2.7) then it is actually Riemannian.
Let us finally mention that the stability of the RCDðK ;lÞ condition was proved
in [4] for normalized metric measure spaces with respect to the D-convergence of
Sturm, and the general case of pointed-Gromov convergence of spaces endowed
with s-finite reference measures was settled in [18].

2.3. The BEðK ;lÞ-condition and its self-improvement

We set by definition V :¼ DðChmÞ and we endow such space with the norm

k f kV :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k f k2L2ðX ;mÞ þ 2Chmð f Þ

q
:

If ðX ; d;mÞ is an RCDðK ;lÞ-space then V is a Hilbert space, while it is not di‰-
cult to see that in a general m.m.s. V is a Banach space (indeed (2.7) is equivalent
to require that V is Hilbert). Moreover, still under the RCDðK;lÞ assumption,
the very construction of Chm and the fact that Chm is quadratic imply that
LIPðXÞBLlðX ;mÞ is dense in V ([4, Proposition 4.10]).

The Laplace operator, introduced above as the infinitesimal generator of the
Heat semi-group, can be defined also via integration by parts as the operator
�D : V ! V 0 given by

Z
X

ð�D f Þgdm :¼
Z
X

Gð f ; gÞ dm; Ef ; g a V;ð2:9Þ

and it is an unbounded self-adjoint non-negative operator with domain DðDÞ.
Let us also introduce the functional spaces

DVðDÞ ¼ f f a V : Df a Vgð2:10Þ

and

DLlðDÞ ¼ f f a VBLlðX ;mÞ : Df a LlðX ;mÞg:ð2:11Þ

If ðX ; d;mÞ is an RCDðK ;lÞ-space, the multilinear form G2 : DVðDÞ �DVðDÞ �
DLlðDÞ ! R is defined by

G2½ f ; g; j� :¼
1

2

Z
X

½Gð f ; gÞDj� ðGð f ;DgÞ þ Gðg;D f ÞÞj� dm:
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When f ¼ g we set

G2½ f ; j� :¼ G2½ f ; f ; j� :¼
Z
X

� 1

2
Gð f ÞDj� Gð f ;DgÞj

�
dm;

so that

G2½ f ; g; j� ¼
1

4
G2½ f þ g; j� � 1

4
G2½ f � g; j�:

The G2 operator provides a weak version of the Bakry–Émery condition [11] (see
also [9] and the recent monograph [10]). More precisely it was proved in [4] (see
also [1] for the s-finite case) that RCDðK ;lÞ implies the Bakry–Émery condition
BEðK ;lÞ:

Theorem 2.3. Let ðX ; d;mÞ be an RCDðK ;lÞ-space, then BEðK ;lÞ-condition
holds, i.e.

G2½ f ; j�bK

Z
X

Gð f Þj dm; for every ð f ; jÞ a DVðDÞ �DLlðDÞ;ð2:12Þ

jb 0 m-a:e::

Under natural regularity assumptions on the distance canonically associated
to the Dirichlet form it is also to prove the converse implication, i.e. from
BEðK ;lÞ to RCDðK ;lÞ, see [5] (see also [17] and [8] for the dimensional case).

A crucial property of the BEðK ;lÞ condition that will be used later in the
paper, is the self-improvement established by Savaré [22, §3] in the present setting.

Theorem 2.4. Let ðX ; d;mÞ be an RCDðK ;lÞ-space.

(1) For every f a DVðDÞB LIPðX Þ we have Gð f Þ a V with

ChmðGð f ÞÞa�
Z
X

ð2KGð f Þ2 þ 2Gð f ÞGð f ;D f ÞÞ dm:ð2:13Þ

(2) DVðDÞB LIPðX Þ is an algebra (i.e. closed w.r.t. pointwise multiplication) and,
more generally, if f ¼ ð fiÞni¼1 a ðDVðDÞB LIPðX ÞÞn then Fð f Þ a DVðDÞB
LIPðXÞ for every smooth function F : Rn ! R with Fð0Þ ¼ 0.

(3) If f a DVðDÞB LIPðXÞ, then the linear functional

j a LIPðX ÞBLlðX ;mÞ 7! �
Z
X

Gðj;Gð f ÞÞ dm

can be represented by a signed Borel measure D?Gð f Þ which can be extended
to a unique element in V 0 (by integration of the Chm-quasicontinuous represen-
tative) and, by defining

G?
2;K ½ f � :¼

1

2
D?Gð f Þ � ðGð f ;Df Þ þ KGð f ÞÞm;ð2:14Þ
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the measure G?
2;K ½ f � is nonnegative and satisfies

G?
2;K ½ f �ðXÞa

Z
X

ððDf Þ2 � KGð f ÞÞ dm:ð2:15Þ

(4) There exists a continuous, symmetric and bilinear map

g2;K : ðDVðDÞB LIPðXÞÞ2 ! L1ðX ;mÞ

such that for every f a DVðDÞB LIPðX Þ one has

G?
2;K ½ f � ¼ g2;K ½ f ; f �mþ G?

2;K ½ f �; with G?
2;K ½ f �b 0; G?

2;K ½ f � ? m:ð2:16Þ

Setting g2;K ½ f � :¼ g2;K ½ f ; f �b 0, one has for every f a DVðDÞB LIPðX Þ

GðGð f ÞÞa 4g2;K ½ f �Gð f Þ m-a:e: in X :ð2:17Þ

Notice that the measures G?
2;K ½ f �, K a R, just di¤er by a multiple of Gð f Þm,

so the (non-negative) singular part in the Lebesgue decomposition (2.16) is inde-
pendent of K . For more results about functional inequalities and regularity in
BEðK ;lÞ-spaces the interested reader is referred to [5] and [7].

2.4. Improved regularity of the heat flow in RCDðK ;lÞ-spaces

In RCDðK ;lÞ-spaces the heat flow Ht can be viewed in two conceptually di¤er-
ent, but consistent, ways: the first one, as in the theory of Dirichlet form and in
the more general theory of gradient flows of lower semicontinuous functionals in
Hilbert spaces, is based on Ht as the L2ðX ;mÞ gradient flow of Chm; the second
way looks at Ht as the gradient flow Ht of the Shannon entropy functional in
the Wasserstein space. It has been proved in full generality in [3] that the two
points of view coincide in the common domain of probability densities in
L1ðX ;mÞ. In addition, using this identification, in [4] several regularity properties
of Ht, besides self-adjointness, Markov, mass-preserving, have been deduced.
We recall some of them. When f a LlðX ;mÞ, for all t > 0 the function Ht f has
a continuous representative, denoted by ~HHt f , which is defined as follows (see
Theorem 6.1 in [4])

~HHt f :¼
Z
X

f dHtðdxÞ:ð2:18Þ

Moreover, for each f a LlðX ;mÞ the map ðt; xÞ 7! ~HHt f ðxÞ belongs to
Cbðð0;lÞ � XÞ. Finally, for all f a LlðX ;mÞ with Gð f Þ a LlðX ;mÞ the
classical Bakry–Émery gradient estimate holds even in the pointwise form
(see Theorem 6.2 in [4])

lip ~HHt f a e�2Kt~HHtðGð f ÞÞ in X ¼ suppm; for all t > 0;ð2:19Þ
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while if we drop the boundedness assumption on Gð f Þ one has (with Lip denoting
the global Lipschitz constant)

Lipð~HHt f Þa
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2I2KðtÞ
p k f kLlðX ;mÞ with I2KðtÞ ¼

e2Kt � 1

2K
:ð2:20Þ

For functions f a V, instead, one has the traditional form of G-calculus

GðHt f Þa e�2KtHtðGð f ÞÞ m-a:e:; for all tb 0:ð2:21Þ

From now on, when f a LlðX ;mÞ, we will always choose ~HHt f as representative
of Ht f and we will simply write Ht f .

An immediate consequence of (2.19), (2.21) and of the length property of
X ¼ suppm is that the Dirichlet form induced by Chm is irreducible, i.e.
Chmð f Þ ¼ 0 implies that f is equivalent to a constant (this holds because all
functions ~HHt f , t > 0, have null slope in X and therefore are m-equivalent to
a constant). Then, since irreducibility implies ergodicity (see for instance [10,
Section 3.8]) we get

lim
t!þl

Ht f ¼
Z
X

f dm in L2ðX ;mÞ; for all f a L2ðX ;mÞ:ð2:22Þ

The following lemma will be useful in the proof of the Bobkov inequality.

Lemma 2.5. Let ðX ; d;mÞ be an RCDðK ;lÞ probability space. Then, for every
fixed f a L2ðX ;mÞ, the map Hð�Þ f : ð0;T � ! V is locally Lipschitz, continuous up
to t ¼ 0 if f a V, with also t 7! GðHt f Þ locally Lipschitz in ð0;T � as a L1ðX ;mÞ-
valued map, and

lim
s!t

GðHs f Þ � GðHt f Þ
s� t

¼ GðDHt f ; f Þ in L1ðX ;mÞ for L1-a:e: t > 0:ð2:23Þ

Moreover, if f a LlðX ;mÞ, then for every t > 0 we have H t f a DVðDÞB LIPðXÞ.

Proof. The proof of the continuity of Ht f and the D-regularity of Ht f follow
immediately by the regularization estimates provided by the theory of gradient
flows in Hilbert spaces (see for instance [2]), namely

ChmðHt f Þa inf
g AV

kg� f k2L2ðX ;mÞ
2t

;

kDHt f k22 a inf
g ADðDÞ

kg� f k2L2ðX ;mÞ
t2

;

using also the semigroup property and the commutation Ht � D ¼ D � Ht for t> 0.
Formula (2.23) is a simple consequence of GðHs f Þ � GðHt f Þ ¼ GðHs f � Ht f ;
Hs f þ Ht f Þ and of the di¤erentiability of t 7! Ht f as a V-valued map.

Finally, if f a LlðX ;mÞ the Lipschitz regularity of Ht f follows directly from
(2.20). r
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Thanks to Lemma 2.5 we will be able to apply Theorem 2.4 to Ht f for
f a LlðX ;mÞ, t > 0.

2.5. The Gaussian isoperimetric profile

Let HðrÞ :¼ 1ffiffiffiffi
2p

p
Z r

�l
e�x2=2 dx, r a R, be the distribution function of the standard

Gaussian measure on the real line and set h :¼ H 0 to be its density with respect to
the Lebesgue measure L1. Then

I :¼ h �H�1 : ½0; 1� ! 0;
1ffiffiffiffiffi
2p

p
� �

ð2:24Þ

defines the Gaussian isoperimetric profile (in any dimension). Note that the func-
tion I is concave, continuous, symmetric with respect to 1=2, it satisfies I ð0Þ ¼
I ð1Þ ¼ 0 and the fundamental di¤erential equation II 00 ¼ �1.

3. Local Bobkov inequality in RCDðK ;lÞ-spaces, K a R

The goal of this section is to prove the following result.

Theorem 3.1 (Local Bobkov Inequality). Let ðX ; d;mÞ be an RCDðK ;lÞ prob-
ability space for some K a R. Then, for every f a LIPðX Þ with values in ½0; 1�,
every ab 0 and every tb 0, it holds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I 2ðHt f Þ þ aGðHt f Þ

q
a ðHtÞð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I 2ð f Þ þ caðtÞGð f Þ

q
Þ; m-a:e:;ð3:1Þ

where, for tb 0, we have set

caðtÞ :¼
1� e�2Kt

K
þ ae�2Kt; if KA 0; caðtÞ :¼ 2tþ a; if K ¼ 0:ð3:2Þ

In the next lemma we isolate a key computation for proving Theorem 3.1.

Lemma 3.2. Let ðX ; d;mÞ be an RCDðK ;lÞ probability space for some K a R.
Let Cðt; u; vÞ : R3 ! R be a function of class C4 with qvCb 0, fix T > 0,
f a LIPðX ÞBLlðX ;mÞ, j a LlðX ;mÞ with jb 0 m-a.e., and set

FðtÞ :¼
Z
X

HtðCðt;HT�tð f Þ;GðHT�tð f ÞÞÞj dm; Et a ½0;T �:ð3:3Þ

Then F is continuous in ½0;T �, locally Lipschitz in ð0;TÞ, and for L1-a.e.
t0 a ð0;TÞ it holds

d

dtjt¼t0

FðtÞb
Z
X

zHt0j dm;ð3:4Þ
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where, denoting g :¼ HT�t0 f and writing simply C in place of Cðt0; g;GðgÞÞ, we
have set

z :¼ qtCþ q2uCGðgÞ þ 2quqvCGðg;GðgÞÞ þ q2vCGðGðgÞÞð3:5Þ
þ 2KqvCGðgÞ þ 2qvCg2;K ½g�:

Proof.

Step 1. F : ½0;T � ! R is locally Lipschitz in ð0;TÞ, continuous up to t ¼ 0;T ,
and Leibniz rule.

To this aim recall that, in virtue of Lemma 2.5, for every fixed f a L2ðX ;mÞ
the heat flow Hð�Þ f : ð0;T � ! V is locally Lipschitz. Moreover, since by assump-
tion f a LIPðX ÞBLlðX ;mÞ, on the one hand by maximum principle it holds
kHt f kLlðX ;mÞ a k f kLlðX ;mÞ and on the other hand, in virtue of (2.21), it holds

Ht f a LIPðX Þ with uniform Lipschitz bounds for t a ½0;T �. It follows that, for a
fixed f a LIPðXÞBLlðX ;mÞ, the pair ðHT�t f ;GðHT�t f ÞÞ is essentially bounded
with values in R2 for t a ½0;T �. Therefore C is Lipschitz on the range of
ðt;HT�t f ;GðHT�t f ÞÞ for t a ½0;T �, and thus

½0;TÞ C t 7! GðtÞ :¼ Cðt;HT�t f ;GðHT�t f ÞÞ
a L1ðX ;mÞ is locally Lipschitz in ½0;TÞ;

taking the local Lipschitz property of t 7! GðHt f Þ as a L1ðX ;mÞ-valued map into
account. In addition, (2.23) and a standard chain rule provide the existence for
L1-a.e. t0 a ð0;TÞ of the strong L1ðX ;mÞ derivative of G, given by

G 0ðt0Þ ¼ qtC� quCDg� 2qvCGðg;DgÞ;ð3:6Þ

with g ¼ HT�t0 f and C ¼ Cðt0; g;GgÞ. Notice also that, by gradient contractivity,
kGkLlðX ;mÞ is bounded in ½0;T �, hence G is continuous in ð0;T � as a L2ðX ;mÞ-

valued map. Using that Ht is self-adjoint, we can write FðtÞ ¼
Z
X

GðtÞHtj dm,
and writing

FðtÞ �Fðt0Þ ¼
Z
X

ðGðtÞ � Gðt0ÞÞHt0j dmþ
Z
X

ðHtj� Ht0jÞGðtÞ dm

we can use the L2ðX ;mÞ continuity of G to obtain the Leibniz rule

F 0ðt0Þ ¼
Z
X

ðqtC� quCDg� 2qvCGðg;DgÞÞHt0j dmþ
Z
X

Gðt0ÞDHt0j dmð3:7Þ

for L1-a.e. t0 a ð0;TÞ. This proves also the local Lipschitz property of F
in ð0;TÞ. Continuity up to t ¼ 0;T follows by (2.21) and the assumption
f a LIPðXÞ.
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Step 2. An intermediate approximation.
In this intermediate step, for t a ð0;TÞ fixed, first we compute by chain rule the

laplacian of Cðt; g;HeðGðgÞÞÞ and then show that DCðt; g;HeðGðgÞÞÞ admits an ex-
plicit (weak) limit as e # 0 which formally can be considered as D�Cðt; g;GðgÞÞ;
the expression of the (weak) limit will be then used in Step 3.

Occasionally we shall use the notation C� for Cðt; g;HeðGðgÞÞÞ, C for
Cðt; g;GðgÞÞ and analogous ones for Cu, Cv and for second order partial
derivatives.

Since we know that g :¼ HT�tð f Þ a LIPðX Þ, thus GðgÞ a LlðX ;mÞ and
HeðGðgÞÞ a LlðX ;mÞB LIPðX ÞBDðDÞ for all e > 0. Therefore, by standard
chain rule (see for instance [22, (2.4)]) we get that Cðt; g;HeðGðgÞÞÞ a LIPðX ÞB
DðDÞ with

DCe ¼ quCðt; g;HeðGðgÞÞÞDgþ q2uCðt; g;HeðGðgÞÞÞGðgÞð3:8Þ
þ 2quqvCðt; g;HeðGðgÞÞÞGðg;HeðGðgÞÞÞ
þ q2vCðt; g;HeðGðgÞÞÞGðHeðGðgÞÞÞ
þ qvCðt; g;HeðGðgÞÞÞDHeðGðgÞÞ:

We now pass to the limit as e # 0 in the last formula. To this aim observe that by
(2.17) we know that GðgÞ a V, so that HeðGðgÞÞ ! GðgÞ in V and therefore, since
C, qC, q2C are Lipschitz on the range of ðt; g;HeGðgÞÞ uniformly for e a ½0; 1� it
follows that

Cðt; g;HeðGðgÞÞÞ ! Cðt; g;GðgÞÞ; qCðt; g;HeðGðgÞÞÞ ! qCðt; g;GðgÞÞ;ð3:9Þ
q2Cðt; g;HeðGðgÞÞÞ ! q2Cðt; g;GðgÞÞ in V;

where for brevity we wrote qC, q2C in place of quC, qvC, q2uC, q2vC, quqvC.
Therefore the first two lines of (3.8) pass to the limit in L1ðX ;mÞ topology as
e # 0:

quCeDgþ q2uCeGðgÞ þ 2quqvCeGðg;HeðGðgÞÞÞ þ q2vCeGðHeðGðgÞÞÞð3:10Þ
! quCDgþ q2uCGðgÞ þ 2quqvCGðg;GðgÞÞ

þ q2vCGðGðgÞÞ in L1ðX ;mÞ:

Regarding the convergence of the last line of (3.8), observe that D?GðgÞ a V 0,
so that DHeGðgÞm ! D?GðgÞ weakly in V 0 topology as e # 0. Therefore, the com-
bination with (3.9) gives

3qvCe;DHeðGðgÞÞm4V;V 0 ! 3qvC;D?GðgÞ4V;V 0 :ð3:11Þ

Combining (3.8), (3.10) and (3.11) we conclude that for every j a LIPðXÞB
LlðX ;mÞ it holdsZ

X

jDCe dm !
Z
X

½quCDgþ q2uCGðgÞ þ 2quqvCGðg;GðgÞÞð3:12Þ

þ q2vCGðGðgÞÞ�j dmþ 3jqvC;D?GðgÞ4V;V 0 ; as e # 0:
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Step 3. Formula (3.4) holds.
Set

FeðtÞ :¼
Z
X

Cðt;HT�tð f Þ;HeðGðHT�t f ÞÞÞHtðjÞ dm:

By analogous arguments of Step 1, we get that Fe is locally Lipschitz on ð0;TÞ
with

F 0
eðt0Þ ¼

Z
X

½qtCðt0; g;HeðGðgÞÞÞ � quCðt0; g;HeðGðgÞÞÞDg�Ht0j dmð3:13Þ

� 2

Z
X

qvCðt0; g;HeðGðgÞÞÞHeðGðg;DgÞÞHt0j dm

þ
Z
X

Cðt0; g;HeðGðgÞÞÞDHt0j dm;

for L1-a.e. t0 a ð0;TÞ. Combining (3.7), (3.9) and (3.13) we infer that, given a
sequence en # 0 it holds

F 0
en
ðt0Þ ! F 0ðt0Þ; for L1-a:e: t0 a ð0;TÞ:ð3:14Þ

By Step 2 we know thatCðt; g;HeðGðgÞÞÞ a LIPðXÞBDðDÞ with DCðt; g;HeðGðgÞÞÞ
given by (3.8); therefore we can integrate by parts the laplacian in the last integral
in (3.13) and use (3.9), (3.12) in order to pass to the limit as en # 0:

F 0ðt0Þ ¼ lim
n!l

F 0
en
ðt0Þð3:15Þ

¼
Z
X

ðqtC� quCDg� 2qvCGðg;DgÞÞHt0j dm

þ
Z
X

ðquCDgþ q2uCGðgÞ þ 2quqvCGðg;GðgÞÞ

þ q2vCGðGðgÞÞÞHt0j dm

þ
Z
X

qvCHt0j dD
?GðgÞ; for L1-a:e: t0 a ð0;TÞ;

where in the first line we used (3.14) and we wrote simply C in place of
Cðt0; g;GðgÞÞ.

Recall that, thanks to Theorem 2.4,

1

2
D?GðgÞ ¼ ðGðg;DgÞ þ KGðgÞÞmþ G?

2;K ½g� þ g2;K ½g�m;

where G?
2;K ½g� is nonnegative and singular with respect to m and g2;K ½g�m is

the nonnegative absolutely continuous part. Since Ht0j is nonnegative by the
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minimum principle of the heat flow and qvCb 0 by assumption, neglecting the
contribution of the singular part the thesis follows. r

Proof of Theorem 3.1.

Step 1. It is enough to show the validity of (3.1) for every f a LIPðXÞ taking
values in ½e; 1� e�, for some e a ð0; 1=2Þ.

Let f a LIPðX Þ taking values in ½0; 1� and for every e a ð0; 1=2Þ define fe with
values in ½e; 1� e� by truncation as

fe :¼ maxðminð f ; 1� eÞ; eÞ:

In this first step we show that, assuming the validity of (3.1) for the truncated fe,
then we can pass into the limit and get the validity of (3.1) also for f . To this aim,
first observe that since the truncation satisfies Gð feÞaGð f Þ which is essentially
bounded by the assumption f a LIPðXÞ, and since I takes values into

�
0; 1ffiffiffiffi

2p
p

	
,

then there exists C > 0 depending on f but not on e such thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I 2ð feÞ þ caðtÞGð feÞ

q
aC m-a:e:; Ee a ð0; 1=2Þ:ð3:16Þ

Moreover it is readily seen that fe ! f in V-topology and then, since Htð�Þ is
continuous as map from V to V, also Ht fe ! Ht f in V-topology, as e ! 0. In
particular, for every fixed tb 0, there exists a sequence en # 0 such that

fen ! f ; Ht fen ! Ht f ; Gð fenÞ ! Gð f Þ; GðHt fenÞ ! GðHt f Þ; m-a:e:ð3:17Þ

as n ! l. We can then pass into the limit m-a.e. as n ! l in the left hand side
of (3.1). In order to pass into the limit m-a.e. also in the right hand side of (3.1)
observe that thanks to (3.16) and (3.17) we can apply the Dominated Conver-
gence Theorem to infer that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I 2ð fenÞ þ caðtÞGð fenÞ

q

!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I 2ð f Þ þ caðtÞGð f Þ

q
in L2ðX ;mÞ-strong topology; as n ! l:

Using again the continuity of the heat flow Htð�Þ as map from L2ðX ;mÞ to
L2ðX ;mÞ we conclude that, possibly along a subsequence, it holds

Htð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I 2ð fenÞ þ caðtÞGð fenÞ

q
Þ ! Htð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I 2ð f Þ þ caðtÞGð f Þ

q
Þ m-a:e: as n ! l:

Therefore we can pass into the limit m-a.e. also in the right hand side of (3.1) and
conclude that (3.1) holds also for f .

Step 2. Explicit computation of z.
Thanks to Step 1 we can assume f to take values into ½e; 1� e�, for some

e a ð0; 1=2Þ. Therefore by maximum principle also Ht f will take values into
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½e; 1� e�, and thus I ðHT�t f Þ will take values into
�
d; 1ffiffiffiffi

2p
p � d

	
for some d a

ð0; 1=2
ffiffiffiffiffi
2p

p
Þ depending on e. It follows that, in the range of ðt;HT�t f ;GðHT�t f ÞÞ,

the function

Cðt; u; vÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I 2ðuÞ þ caðtÞv

q
; ðt; u; vÞ a ð0;TÞ � d;

1ffiffiffiffiffi
2p

p � d

� �
� ½0;lÞð3:18Þ

is of class C4 and we can then apply Lemma 3.2. Writing I , I 0 in place of I ðuÞ,
I 0ðuÞ for brevity, it is immediate to check that

CqtC ¼ c 0a
2
v; CquC ¼ II 0; CqvC ¼ ca

2
;

and, by di¤erentiating once more and using that II 00 ¼ �1,

C3q2uC ¼ �I 2I 02 þC2ðI 02 � 1Þ; C3quqvC ¼ � ca

2
II 0; C3q2vC ¼ � c2a

4
:

Therefore, the corresponding function z defined in (3.5), satisfies m-a.e.

C3z ¼ C2 c
0
aðtÞ
2

GðgÞ �I 2ðgÞI 02ðgÞGðgÞ þC2ðI 02ðgÞ � 1ÞGðgÞ

� caðtÞI ðgÞI 0ðgÞGðg;GðgÞÞ � c2aðtÞ
4

GðGðgÞÞ

þ KC2caðtÞGðgÞ þC2caðtÞg2;K ½g�;

where we set g ¼ HT�t f and C ¼ Cðt; g;GðgÞÞ for brevity. Since C2ðt; u; vÞ ¼
I 2ðuÞ þ caðtÞv, it follows that the following equalities hold m-a.e.:

C3z ¼ ½I 2ðgÞ þ caðtÞGðgÞ�
c 0aðtÞ
2

GðgÞ �I 2ðgÞI 02ðgÞGðgÞ

þ ½I 2ðgÞ þ caðtÞGðgÞ�ðI 02ðgÞ � 1ÞGðgÞ � caðtÞI ðgÞI 0ðgÞGðg;GðgÞÞ

� c2aðtÞ
4

GðGðgÞÞ þ K ½I 2ðgÞ þ caðtÞGðgÞ�caðtÞGðgÞ

þ ½I 2ðgÞ þ caðtÞGðgÞ�caðtÞg2;K ½g�

¼ caðtÞG2ðgÞ
� c 0aðtÞ

2
� 1

�
þ c2aðtÞ � 1

4
GðGðgÞÞ þ GðgÞg2;K ½g�

� �

þI 2ðgÞGðgÞ
� c 0aðtÞ

2
� 1

�
� caðtÞI 0ðgÞI ðgÞGðg;GðgÞÞ þ caðtÞI 02ðgÞG2ðgÞ

þ K ½I 2ðgÞ þ caðtÞGðgÞ�caðtÞGðgÞ þI 2ðgÞcaðtÞg2;K ½g�:
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By the very definition (3.2) of caðtÞ, we have that
c 0aðtÞ
2 � 1 ¼ �KcaðtÞ so that the

above formula for z simplifies to

C3z ¼ c2aðtÞ � 1

4
GðGðgÞÞ þ GðgÞg2;K ½g�

� �
þ caðtÞ½�I 0ðgÞI ðgÞGðg;GðgÞÞð3:19Þ

þI 02ðgÞG2ðgÞ þI 2ðgÞg2;K ½g�� m-a:e::

Step 3. Conclusion of the proof.
First of all observe that thanks to Lemma 2.5 we can apply Theorem 2.4

(which, let us stress, is implied by the curvature condition RCDðK;lÞ) to
g ¼ HT�t f and get

GðGðgÞÞa 4GðgÞg2;K ½g�; m-a:e::ð3:20Þ

Since C ¼ Cðt;HT�t f ;GðHT�t f ÞÞ > 0 as we are assuming f to take values into
½e; 1� e�, the combination of (3.4), (3.19) and (3.20) gives

d

dtjt¼t0

FðtÞb
Z
fGðgÞ>0g

caðtÞ
C3

�
I 2ðgÞGðGðgÞÞ

4GðgÞð3:21Þ

�I 0ðgÞI ðgÞGðg;GðgÞÞ þI 02ðgÞG2ðgÞ
�
Ht0j dm;

for all j a LlðX ;mÞ; with jb 0 m-a.e. in X . Notice that the restriction of the
region of integration to fGðgÞ > 0g is possible because the nonnegativity of
g2;K ½g� and GðGðgÞÞ ¼ 0 m-a.e. on fGðgÞ ¼ 0g imply that z is nonnegative m-a.e.
on fGðgÞ ¼ 0g.

Now observe that the right hand side of (3.21) is a quadratic form in I ðgÞ,
I 0ðgÞ which is positive definite since

GðGðgÞÞ
4GðgÞ b 0; GðgÞ2 b 0; and Gðg;GðgÞÞaG1=2ðgÞG1=2ðGðgÞÞ; m-a:e::

We conclude that for L1-a.e. t0 a ð0;TÞ it holds d
dtjt¼t0

FðtÞb 0. Since by Lemma

3.2 we know that F is continuous in ½0;T � and locally Lipschitz in ð0;TÞ, we can
integrate to get

0a

Z T

0

F 0ðtÞ dt ¼ FðTÞ �Fð0Þð3:22Þ

¼
Z
X

h
HT

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I 2ð f Þ þ caðTÞGð f Þ

q �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I 2ðHT f Þ þ aGðHT f Þ

q i
j dm;

for all j a LlðX ;mÞ; with jb 0 m-a.e., which completes the proof of Theorem
3.1. r
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4. Bobkov and Gaussian isoperimetric inequalities for RCDðK ;lÞ
probability spaces, K > 0

In this section we specialize the local Bobkov Inequalitiy (3.1) to the case K > 0,
and use it to prove the Gaussian Isoperimetric Inequality.

Theorem 4.1 (Bobkov Inequality). Let ðX ; d;mÞ be an RCDðK ;lÞ probability
space for some K > 0. Then, for every f a V with values in ½0; 1�, it holds

ffiffiffiffi
K

p
I
�Z

X

f dm
�
a

Z
X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KI 2ð f Þ þ Gð f Þ

q
dm:ð4:1Þ

Proof. Inequality (4.1) for f a LIPðXÞ taking values in ½0; 1� follows by the
combination of the ergodicity of the Heat flow and the local Bobkov inequality.
More precisely, set a ¼ 1=K (so that caðtÞ ¼ 1=K) and let t ! þl in

Z
X

I ðHt f Þ dma

Z
X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I 2ð f Þ þ 1

K
Gð f Þ

r
dm; m-a:e:;

derived from (3.1) dropping one nonnegative term and integrating both sides;
(4.1) follows then by applying the ergodicity property (2.22).

The validity of (4.1) for all f a V taking values in ½0; 1� follows by the density
of Lipschitz functions in V, see [4, Proposition 4.10]. r

Applying (4.1) to functions approximating the characteristic function of a
set E � X we get the desired Gaussian isoperimetric inequality. More precisely,
recall the standard definition of BVðX ; d;mÞ � L1ðX ;mÞ space and of total
variation jD f jðX Þ

jD f jðX Þ :¼ inf lim inf
n!l

Z
X

lip fn dm : fn a LIPðX Þ; lim
n!l

Z
X

j fn � f j dm ¼ 0

� �
;

we can pass to the limit in the inequality (derived from (4.1) from the subaddi-
tivity of the square root and the inequality

ffiffiffiffiffiffiffiffiffiffiffi
Gð f Þ

p
a lip f m-a.e.)

ffiffiffiffi
K

p
I
�Z

X

f dm
�
a

Z
X

ð
ffiffiffiffi
K

p
I ð f Þ þ lip f Þ dm

for all f a LIPðX Þ with values in ½0; 1� to get

ffiffiffiffi
K

p
I
�Z

X

f dm
�
a

ffiffiffiffi
K

p Z
X

I ð f Þ dmþ jD f jðXÞ Ef a BVðX ; d;mÞ:

In particular, by applying this to characteristic functions f ¼ wE , since I ð0Þ ¼
I ð1Þ ¼ 0, we obtain the Gaussian isoperimetric inequality with the perimeter
PðEÞ :¼ jDwE jðX Þ:
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Theorem 4.2. Let ðX ; d;mÞ be an RCDðK ;lÞ probability space for some K > 0.
Then, for every Borel subset E � X it holds

PðEÞb
ffiffiffiffi
K

p
I ðmðEÞÞ:ð4:2Þ
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