Rend. Lincei Mat. Appl. 27 (2016), 497-514
DOI 10.4171/RLM/745

Calculus of Variations — Gaussian-type isoperimetric inequalities in RCD(K, )
probability spaces for positive K, by LuiGl AMBROSIO and ANDREA MONDINO,
communicated on 10 June 2016.

This paper is dedicated to the memory of Professor Ennio De Giorgi.

ABSTRACT. — In this paper we adapt the well-estabilished I'-calculus techniques to the context
of RCD(K, o) spaces, proving Bobkov’s local isoperimetric inequality [12], [13] and, when K
is positive, the Gaussian isoperimetric inequality in this class of spaces. The proof relies on the
measure-valued I', operator introduced by Savaré in [22].
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1. INTRODUCTION

The goal of the paper is to extend to RCD(K, c0) spaces, a class of non-smooth
“Riemannian” and possibly infinite-dimensional metric measure spaces with
lower Ricci curvature bounds, the Lévy—Gromov Gaussian isoperimetric in-
equality. Our proof is strongly inspired by the arguments of Bakry—Ledoux [12]
(see also the recent monograph [10]), where the authors gave a proof of such
an inequality for infinite dimensional diffusion operators via I'-calculus. This
calculus, also according to the presentation in [10], relies on the assumption of
the existence of a dense algebra of functions stable under the I' operator, an
assumption that seems to be problematic in the category of RCD(K, oo) spaces.
Savaré realized in [22] that, by looking at the iterated I' operator I'; as a
measure-valued operator, the assumption on the algebra can be relaxed, and
that most techniques of I'-calculus still apply (heuristically, because the nega-
tive part of the tensor I'; is still absolutely continuous w.r.t. m); this point of
view has also been exploited in [19] for the development of Hessian estimates
and a full theory of covariant derivatives. In this paper we follow the same
line of thought to prove Bobkov’s inequality and the Lévy—Gromov Gaussian
isoperimetric inequality in sharp form. On the technical side, while the com-
putations are essentially the same (see in particular Chapter 8.5.2 of [10]), we
have tried to emphasize the technical issues arising from the not-so-smooth con-
text of RCD(K, c0) spaces, in particular the lack of smoothness of the function

\/ T%(g) + c,(t)T'(g) appearing in the proof of Bobkov’s inequality.
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One of the motivations for writing this note comes from [6], where the isoperi-
metric result of this paper is used to prove new compactness results in variable
Sobolev spaces H'"”?(X,d;, m;) relative to RCD(K, o0) metric measure structures
(X,d;,m;), in the whole range of exponents p € [1,00) (p =1 corresponds to
BV(X7 di7 ml))

Let us mention that the isoperimetric inequality for Gaussian measures is
originally due to C. Borell [14] and V. Sudakov—B. Cirel’son [25]. The functional
form of the Gaussian isoperimetric inequality presented in Theorem 4.1 was in-
troduced by S. Bobkov [13] who established it first on the two-point space and
then in the limit for the Gaussian measure by the central limit Theorem. On the
basis of the Bobkov inequality, the local inequalities of Theorem 3.1 were estab-
lished by D. Bakry and M. Ledoux [12] in the context of smooth infinite dimen-
sional spaces with lower Ricci curvature bounds. Theorem 4.2 may be considered
as the non-smooth, infinite-dimensional extension of a celebrated result of P. Lévy
and M. Gromov [20] comparing the isoperimetric profile of a Riemannian mani-
fold with a strictly positive lower bound on the Ricci curvature to that of the
sphere with the same (constant) curvature and dimension. Let us mention that
the dimensional Lévy—Gromov inequality has been recently extended to non-
smooth spaces with lower Ricci curvature bounds in [15].

2. PRELIMINARIES

Throughout the paper (X,d, m) will be a metric measure space, m.m.s. for short,
i.e. (X,d) is a complete and separable metric space and m is a nonnegative Borel
measure. Even if some of the statements of this paper hold in case m is a sigma
finite measure, for simplicity we will always assume m(X) = 1 and supp(m) = X.
We shall denote by LIP(X) the space of Lipschitz functions, by 2(X) the space of
Borel probability measures on the complete and separable metric space (X,d).
We also denote by

Pr(X) = {,u eZ2(X): / d? (o, x) du(x) < oo for some (and hence all) x, € X}.
X

the subspace consisting of all the probability measures with finite second mo-
ment. The relative entropy functional Ent,, : 25(X) — (—o0, co] with respect to
a probability measure m is defined by

2.1) Enty(z) := /Xflogfdm if u=fm
o0 otherwise.

Note that, by Jensen’s inequality, this functional is nonnegative.
A curve y: [0,1] — X is a geodesic if

(2.2) d(75,70) = [t = sld(vo,71) Vs, 2 € [0, 1].

We will denote by Geo(X) the space of all constant speed geodesics y : [0, 1] — X,
namely y € Geo(X) if (2.2) holds.
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2.1. Lower Ricci curvature bounds

In the sequel we briefly recall those basic definitions and properties of spaces with
lower Ricci curvature bounds that we will need later on.
For uy, 1, € 2,(X) the quadratic transportation distance W>( 1, 14;) is defined

by
23 W3 0) = [ () dyl. ),

where the infimum is taken over all y € 2(X x X) with g, and y,; as the first
and the second marginal. It turns out that any geodesic (z,) € Geo(#»(X)) can
be lifted to a measure 7 € #(Geo(X)), in such a way that (e,),z = p, for all
te0,1].

We turn to the formulation of the CD(K, c0) condition, coming from the
seminal works of Lott—Villani [21] and Sturm [23].

DEFINITION 2.1 (CD(K, o) condition). Given K € R, we say that a m.m.s.
(X,d,m) is a CD(K, o0)-space if for any two measures yx,u, € D(Ent,,) there
exists a geodesic (1,) € Geo(Z2,(X)) which satisfies the convexity inequality

(2.4) Enty(#,) < (1 — 1) Entin(p) + ¢ Enty(247)

K
—51(1 — W3 (g, 1ty), forallze0,1].

Notice that the above-mentioned lifting property shows that the CD(K, o)
condition implies that the class Geo(X) is sufficiently rich to provide = €
2(Geo(X)) connecting any two measures with finite entropy. Using this, one
can prove that X = suppm is length, i.e. d(x, y) is the infimum of the length of
the curves connecting x to y for all x, y € supp .

Two crucial properties of the CD(K, oo)-condition are the consistency with the
smooth counterpart and the stability under convergence. More precisely, it was
shown both in [21] and [23] that a smooth Riemannian manifold satisfies the
CD(K, o0)-condition if and only if it has Ricci curvature bounded below by K.
Regarding the stability, it was proved by Lott—Villani [21] that the CD(K, o0)-
condition is stable under pointed measured Gromov-Hausdorff convergence of
proper pointed metric measure spaces; Sturm [23] instead introduced a new dis-
tance, denoted with [, between normalized metric measure spaces and proved
the stability of the CD(K, c0)-condition under such a convergence. The stability
in the general case of non-proper and non-normalized spaces was established in
[18] where a new notion of convergence, called pointed measured Gromov con-
vergence, was introduced (let us mention that such a convergence coincides with
the measured Gromov Hausdorff one in case of uniformly doubling spaces and
with the D-convergence in case of normalized spaces) and the stability of the
CD(K, c0)-condition under such a convergence was established.
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2.2. The Cheeger energy, its gradient flow and the RCD(K, co)-condition

First of all recall that the metric slope of a Lipschitz function f € LIP(X) is
defined by

e ) = SO
(2.5) lip f(x) .-llI;ljxp a0 )

(with the convention lip f(x) = 0 if x is an isolated point). The Cheeger energy
(introduced in [16] and further studied in [3]) is defined as the L>-lower semicon-

tinuous envelope of the functional f +— % / lip? fdm, ie.:
X

(2.6) Chw(f) ::inf{liminf%/ lip? f;, dm : f, e LIP(X), f;, — f in Lz(X,m)}.
X

If Chy, (f) < oo it was proved in [16, 3] that the set
G(f):={g € L*(X,m) : 3fy € LP(X), fy — [, lip f, = h = g in L*(X,m)}

is closed and convex, therefore it admits a unique element of minimal norm called
minimal weak upper gradient and denoted by |Df| . The Cheeger energy can be
then represented by integration as

w*

Ch(f) :=%/X|Df|idm-

It is not difficult to see that Ch,, is a 2-homogeneous, lower semi-continuous, con-
vex functional on L?(X,m), whose proper domain D(Ch,,) := {f € L*>(X,m) :
Chy(f) < o} is a dense linear subspace of L?*(X,m). It then admits an
L?-gradient flow which is a continuous semigroup of contractions (H,),., in
L?*(X,m), whose continuous trajectories ¢ — H,f, for f e L*(X,m), are locally
Lipschitz curves from (0, co) with values into L?(X,m). We can now define the
RCD(K, o0)-condition introduced in [4] (see also [1] for the present simplified
axiomatization and for the generalization to o-finite reference measures).

DEFINITION 2.2 (RCD(K, c0)-space). Let (X,d,m) be a probability metric
measure space. We say that (X,d,m) is an RCD(K, co)-space if it satisfies the
CD(K, o0)-condition, and moreover Cheeger’s energy is quadratic, i.e. it satisfies
the parallelogram identity

(2-7> Chm(f + g) + Chm(f - g) = 2Chm(f) + ZChm(g)a vfa g€ D<Chm)-

If (X,d,m) is an RCD(K, oo)-space then the Cheeger energy induces the
Dirichlet form &(f’) := 2Chy,,(f) which is strongly local and admits the Carré du
Champ

(2.8) I(f):= |Df|2, forevery f € D(Ch,).



GAUSSIAN-TYPE ISOPERIMETRIC INEQUALITIES IN RCD(K, 00) PROBABILITY SPACES 501

Moreover the sub-differential dCh,, is single-valued and coincides with the linear
generator A of the heat flow semi-group (H,),. , defined above.

The RCD(K, o0)-condition was introduced in order to single out in a more
precise way, compared to the CD theory, non-smooth “Riemannian” structures;
indeed, while on the one hand it is possible to give examples of smooth Finsler
manifolds satisfying the CD(K, oo)-condition, on the other hand it is not difficult
to see that if a Finsler manifold satisfies (2.7) then it is actually Riemannian.
Let us finally mention that the stability of the RCD(K, o0) condition was proved
in [4] for normalized metric measure spaces with respect to the D-convergence of
Sturm, and the general case of pointed-Gromov convergence of spaces endowed
with o-finite reference measures was settled in [18].

2.3. The BE(K, o0)-condition and its self-improvement

We set by definition V := D(Ch,;) and we endow such space with the norm

171 += /I + 20 (1),

If (X, d, m) is an RCD(K, c0)-space then V is a Hilbert space, while it is not diffi-
cult to see that in a general m.m.s. V is a Banach space (indeed (2.7) is equivalent
to require that V is Hilbert). Moreover, still under the RCD(K, 00) assumption,
the very construction of Ch,, and the fact that Ch,, is quadratic imply that
LIP(X) n L™ (X, m) is dense in V ([4, Proposition 4.10]).

The Laplace operator, introduced above as the infinitesimal generator of the
Heat semi-group, can be defined also via integration by parts as the operator
—A:V — V' given by

(2.9) /X(Af)gdm ::/Xr(f,g)dm, Vf,geV,

and it is an unbounded self-adjoint non-negative operator with domain D(A).
Let us also introduce the functional spaces

(2.10) Dy(A) ={f e V:Af e V}
and
(2.11) Di»(A)={feVnL*(X,m): Af € L*(X,m)}.

If (X,d, m) is an RCD(K, o0)-space, the multilinear form I'; : Dy (A) X Dy (A) X
Dy~ (A) — R is defined by

Lolf.gi)i=5 [ [TU.0)80 ~ (T(F.89) + T(g. Af))o] dm.
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When f = g we set

Lolfip =Tl fiol = [ (570080 T Ag)o) dm,

so that

Lalf.g:0) = Dol +g:0) — 3 lf — 20

The T, operator provides a weak version of the Bakry—Emery condition [11] (see
also [9] and the recent monograph [10]). More precisely it was proved in [4] (see
also [1] for the o-finite case) that RCD(K, co) implies the Bakry—Emery condition
BE(K, o0):

THEOREM 2.3. Let (X,d, m) be an RCD(K, o0)-space, then BE(K, o0 )-condition
holds, i.e.

(2.12) Df5 0] > K/Xl“(f)(/)dm, for every (f,¢) € Dy(A) x D= (A),

p > 0m-a.e..

Under natural regularity assumptions on the distance canonically associated
to the Dirichlet form it is also to prove the converse implication, i.e. from
BE(K, o) to RCD(K, ), see [5] (see also [17] and [8] for the dimensional case).

A crucial property of the BE(K, c0) condition that will be used later in the
paper, is the self-improvement established by Savaré [22, §3] in the present setting.

THEOREM 2.4. Let (X,d,m) be an RCD(K, c0)-space.

(1) For every f € Dy(A) nLIP(X) we have T'(f) € V with

(213)  Chu(T(f) < - / (KT (f)> + 20(f)T(f.Af)) dm.

X

(2) Dy(A) NLIP(X) is an algebra (i.e. closed w.r.t. pointwise multiplication) and,
more generally, if f = (f;), € (Dy(A) nLIP(X))" then ®(f) e Dy(A)n
LIP(X) for every smooth function ® : R" — R with ®(0) = 0.

(3) If f € Dy(A) NLIP(X), then the linear functional

¢ € LIP(X)n L (X, m) — —/ ['(p,T(f))dm
X
can be represented by a signed Borel measure A*T(f) which can be extended
to a unique element in \V' (by integration of the Chy,-quasicontinuous represen-
tative) and, by defining

(2.14) P 1] == 3 AT(F) — (C(F A7) + KT()m,
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the measure '3 | f] is nonnegative and satisfies

(.15) D510 < [ (677 = KT()
(4) There exists a continuous, symmetric and bilinear map
72k + (Dy(A) NLIP(X))* — L'(X,m)
such that for every f € Dy(A) nLIP(X) one has

(2.16) T35 ¢[f] = m kS fIm+Taglf], with Ty g[f] =0, Tyg[f] Lm.

Setting p, k[f] = 72.x[f> f]1 = 0, one has for every f € Dy(A) N LIP(X)

(2.17) C(T(f)) <4n[/IT(f) m-ae. inX.

Notice that the measures I'; x| f], K € R, just differ by a multiple of I"(f)m,
so the (non-negative) singular part in the Lebesgue decomposition (2.16) is inde-
pendent of K. For more results about functional inequalities and regularity in
BE(K, oo)-spaces the interested reader is referred to [5] and [7].

2.4. Improved regularity of the heat flow in RCD(K, co)-spaces

In RCD(K, co)-spaces the heat flow H, can be viewed in two conceptually differ-
ent, but consistent, ways: the first one, as in the theory of Dirichlet form and in
the more general theory of gradient flows of lower semicontinuous functionals in
Hilbert spaces, is based on H, as the L*(X,m) gradient flow of Ch,,; the second
way looks at H, as the gradient flow %, of the Shannon entropy functional in
the Wasserstein space. It has been proved in full generality in [3] that the two
points of view coincide in the common domain of probability densities in
L'(X,m). In addition, using this identification, in [4] several regularity properties
of H,, besides self-adjointness, Markov, mass-preserving, have been deduced.
We recall some of them. When f € L* (X, m), for all 7 > 0 the function H,f has
a continuous representative, denoted by H,f, which is defined as follows (see
Theorem 6.1 in [4])

(2.18) H f = /X S dH,(6y).

Moreover, for each f e L*(X,m) the map (zx)+ H,f(x) belongs to
Cp((0,0) x X). Finally, for all feL*(X,m) with I['(f) e L*(X,m) the
classical Bakry—Emery gradient estimate holds even in the pointwise form
(see Theorem 6.2 in [4])

(2.19) lipH, f < e *"H,(T(f)) in X = suppm, forall r > 0,
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while if we drop the boundedness assumption on I'(f) one has (with Lip denoting
the global Lipschitz constant)

2Kt_1

1
— f o (x With by (1) =
s ey with ) =5

For functions f € V, instead, one has the traditional form of I'-calculus

(2.20) Lip(H,f) <

(2.21) T(H.f) < e MH,(T(f)) m-ae., forall > 0.

From now on, when f € L*(X,m), we will always choose H, f as representative
of H;f and we will simply write H,f.

An immediate consequence of (2.19), (2.21) and of the length property of
X =suppm is that the Dirichlet form induced by Ch,, is irreducible, i.e.
Chn(f) =0 implies that f is equivalent to a constant (this holds because all
functions H,f, ¢ > 0, have null slope in X and therefore are m-equivalent to
a constant). Then, since irreducibility implies ergodicity (see for instance [10,
Section 3.8]) we get

(2.22) Jim H,f = / fdm in L*(X,m), forall f e L*(X,m).

The following lemma will be useful in the proof of the Bobkov inequality.

LEmMMA 2.5. Let (X,d,m) be an RCD(K, o) probability space. Then, for every
fixed f e L*(X,m), the map Hif : (0,T] — V is locally Lipschitz, continuous up
tot=0if f eV, with also t — T(H,f) locally Lipschitz in (0,T] as a L'(X,m)-
valued map, and

s—t S —1

=T(AH.f,f) in L'(X,m) for L' -a.e.t>0.

Moreover, if f € L*(X,m), then for every t > 0 we have H,f € Dy(A) nLIP(X).

PrROOF. The proof of the continuity of H,f and the A-regularity of H,f follow
immediately by the regularization estimates provided by the theory of gradient
flows in Hilbert spaces (see for instance [2]), namely

2
ch (H f) < inf Hg _f”LZ(XA,m)
m 13 — ge\/ 2t )

lg —inz(X m)
AH,f||} < inf — 20
ARz < inf 2

)

using also the semigroup property and the commutation H; o A = A o H, for ¢ > 0.
Formula (2.23) is a simple consequence of I'(Hyf) — I'(H,f) = I'(Hyf — H.f,
H,f + H,f) and of the differentiability of ¢ — H,f as a V-valued map.

Finally, if f € L*(X,m) the Lipschitz regularity of H,f follows directly from
(2.20). O
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Thanks to Lemma 2.5 we will be able to apply Theorem 2.4 to H,f for
feLlL”(X,m),t>0.

2.5. The Gaussian isoperimetric profile

Let H(r) f’ / ¢ ¥ dx, r e R, be the distribution function of the standard
Gaussian measure; c;n the real line and set 4 := H' to be its density with respect to
the Lebesgue measure #'. Then

(2.24) TZ:=hoH':[0,1] — [0, \/Lz_yj

defines the Gaussian isoperimetric profile (in any dimension). Note that the func-
tion Z is concave, continuous, symmetric with respect to 1/2, it satisfies Z(0) =
Z(1) = 0 and the fundamental differential equation ZZ" = —1.

3. LocAL BOBKOV INEQUALITY IN RCD(K, o0)-SPACES, K € R
The goal of this section is to prove the following result.
THEOREM 3.1 (Local Bobkov Inequality). Let (X,d,m) be an RCD(K, o0) prob-

ability space for some K € R. Then, for every f € LIP(X) with values in [0, 1],
every a > 0 and every t > 0, it holds

(1) JTAHS) + oAl (HS) < H)G/Z2) + a)T(f), meae.,
where, for t > 0, we have set

1— e—2Kt
(3.2) (1) := —x t ae K i K#0; c,(t):=2t+a, if K=0.

In the next lemma we isolate a key computation for proving Theorem 3.1.
LemMMmaA 3.2, Let (X,d, m) be an RCD(K, o0) probability space for some K € R.

Let ¥(t,u,v) : R* = R be a function of class C* with 6,% >0, fix T >0,
felIP(X)nL*(X,m), p € L*(X,m) with ¢ > 0 m-a.e., and set

(3.3) D(1) := /XH,(‘P(z,HT_,(f),F(HT_t(f)))godm, Vi e [0, T).

Then ® is continuous in [0, T), locally Lipschitz in (0,T), and for ¥'-a.e.
to € (0, T) it holds

4 H
(3 ) d[‘t to /{ logﬂdm
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where, denoting g := Hr_,, f and writing simply ¥ in place of ¥(t0,9,1(g)), we
have set

(3.5) L= 0¥ + 02PI(g) +20,0,¥T (g, T(g)) + 2P (I'(g))
+2K0,'¥YT (g) + 20,7, k[g)-

PROOF.

STEP 1. @ :[0,7] — R is locally Lipschitz in (0, 7'), continuous up to t =0, T,
and Leibniz rule.

To this aim recall that, in virtue of Lemma 2.5, for every fixed f € L*(X,m)
the heat flow H(,)f": (0, T| — V is locally Lipschitz. Moreover, since by assump-
tion f € LIP(X)nL*(X,m), on the one hand by maximum principle it holds
IHef Nl 2 (xt, ) < 1l (x,m) and on the other hand, in virtue of (2.21), it holds
H,f € LIP(X) with uniform Lipschitz bounds for ¢ € [0, 7. It follows that, for a
fixed f € LIP(X) n L*(X,m), the pair (Hr_,f,T'(Hr_.f)) is essentially bounded
with values in R? for ¢ e [0,7]. Therefore W is Lipschitz on the range of
(t,Hr—.f ,T'(Hr_.f)) for t € [0, T], and thus

0,7) 31— G(1) :==¥(t,Hr— /', T(Hr—.f))
e L'(X,m) is locally Lipschitz in [0, T),
taking the local Lipschitz property of ¢ — I'(H,f) as a L'(X, m)-valued map into

account. In addition, (2.23) and a standard chain rule provide the existence for
Plae. ty e (0,T) of the strong L' (X, m) derivative of G, given by

(3.6) G'(t9) = 0,¥ — 0,¥Ag — 20,¥T (g,Ag),

with g = Hy_,, f and ¥ = ¥(1, g, 'g). Notice also that, by gradient contractivity,
|Gl = (x,m) is bounded in [0, T], hence G is continuous in (0, 7] as a L*(X, m)-

valued map. Using that H, is self-adjoint, we can write ®(¢) = / G(t)H,pdm,
and writing X

(1) — D(10) = /

(G(1) — Gl1o))Hypdm + / (Hp — Hyp)G(1) dm
X X

we can use the L?(X,m) continuity of G to obtain the Leibniz rule
(3.7) @'(1) = / (0¥ — 0,¥YAg — 20,¥T (g,Ag))H; 0 dm —l—/ G(10)AH,,p dm
b X

for %'-ae. ty e (0,T). This proves also the local Lipschitz property of ®
n (0,7). Continuity up to r=0,7 follows by (2.21) and the assumption
feLIP(X).
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STEP 2. An intermediate approximation.

In this intermediate step, for z € (0, T') fixed, first we compute by chain rule the
laplacian of W(¢,g,H,(I'(g))) and then show that A¥(z, g, H.(I'(¢))) admits an ex-
plicit (weak) limit as ¢ | 0 which formally can be considered as A*W(z,g,T(g));
the expression of the (weak) limit will be then used in Step 3.

Occasionally we shall use the notation ¥, for ¥(¢,9,H.(I'(g9))), ¥ for
Y(t,9,T'(g)) and analogous ones for ¥,, ¥, and for second order partial
derivatives.

Since we know that g:=Hzy_,(f) € LIP(X), thus I'(g) € L*(X,m) and
H.(I'(g)) € L*(X,m) nLIP(X) nD(A) for all &> 0. Therefore, by standard
chain rule (see for instance [22, (2.4)]) we get that W(z,9,H.(T'(g))) € LIP(X) n
D(A) with

(3.8) AY, = 0,¥(t,9,H:(T(9)))Ag + 6;¥(t,9,H:(T'(9)T(9)
+20,0,¥(1,9,H.(T(9))) (9, H:(T'(9)))
+ 0, (1,9, H:(T(9)))T(He(T(9)))
+0,%(1,9,H(T(9))) AH(T(9)).

We now pass to the limit as ¢ | 0 in the last formula. To this aim observe that by
(2.17) we know that I'(g) € V, so that H.(T'(g)) — I'(g) in V and therefore, since
W, 0¥, 0*¥ are Lipschitz on the range of (7, g, H.I'(¢)) uniformly for ¢ € [0,1] it
follows that

(3.9) Y(1,9,H.(I(g))) — ¥(t,9,T(9)), 0¥(t,9,H:(T(9))) — d¥(t,9,T(9)),
0*W(1,9,H,(T(9))) — >¥(1,9,T(9)) inV,

where for brevity we wrote 0V, ’¥ in place of 0,¥, 0,¥, 65‘1’, 85‘1’, 0,0,Y.
Therefore the first two lines of (3.8) pass to the limit in L'(X, m) topology as
e | 0:

(3.10)  0,¥.Ag + O2¥,T(g) + 20,0, T(g. Ho(T(g))) + 07P.T(H,(T(g)))
— 0,¥Ag + 0;¥T(g) +20,0,¥T(¢9,T(9))
+ 02T (T(g)) in L'(X, m).

Regarding the convergence of the last line of (3.8), observe that A*T'(g) € V',
so that AH,I'(g)m — A*T'(g) weakly in V' topology as ¢ | 0. Therefore, the com-
bination with (3.9) gives

(3.11) {0,Ws, AH.(T(g))mDy o — <0, AT (g) Dy -

Combining (3.8), (3.10) and (3.11) we conclude that for every ¢ € LIP(X) N
L*(X,m) it holds

(3.12) / PAW, dm — / [0, ¥Ag + 2WT(g) + 20,0,¥T (¢, T(g))
X X

+ 65TF<F(Q))]¢dm +<pd, Y, A*r(g>>\/,\//7 ase | 0.
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SteEP 3. Formula (3.4) holds.
Set

O, (1) = /X Wt Hr (), Ho(T(Hrof ) () dn,

By analogous arguments of Step 1, we get that @, is locally Lipschitz on (0, T')
with

(3.13)  ®ln) = /X (0% (10, 9. Ho(T(9))) — 2% (10, 9. Ho(T(9)))Ag Hypp dim
) /X 00% (10, 9, He(T(9)))He(T (g, Ag) Hyyp dim

+ / ¥ (10, g, Hy(T(g))) AHy p dm,
X

for '-a.e. ty € (0,T). Combining (3.7), (3.9) and (3.13) we infer that, given a
sequence &, | 0 it holds

(3.14) @/ (o) — @'(t9), for L'-ae. 1y e (0,T).
By Step 2 we know that W(z,¢,H.(I'(g))) € LIP(X) n D(A) with A¥(¢,g,H.(T'(g)))

given by (3.8); therefore we can integrate by parts the laplacian in the last integral
in (3.13) and use (3.9), (3.12) in order to pass to the limit as ¢, | 0:

(315) (1) = lim ©, (1))
= [ @ - 0,9~ 20,970, Ag) H p
X

+ / (0, PAg + 0>¥T (g) + 20,0,¥T (9, T(9))
X

+ 0¥ (I (9)))Hyy @ dm

+/ 0, WH,,pdA*T(g), for Z'-ae. t) e (0,7),
X

where in the first line we used (3.14) and we wrote simply ¥ in place of

\P(t()? 9, r(g))
Recall that, thanks to Theorem 2.4,

SAT(g) = (N9, Ag) + KT(g))m + T3 ¢lg] + 72 lom.

where Fi xlg] is nonnegative and singular with respect to m and y, g[g]m is
the nonnegative absolutely continuous part. Since H, ¢ is nonnegative by the
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minimum principle of the heat flow and ¢, > 0 by assumption, neglecting the
contribution of the singular part the thesis follows. O

PrOOF OF THEOREM 3.1.

STEP 1. It is enough to show the validity of (3.1) for every f € LIP(X) taking
values in [¢, 1 — ¢], for some ¢ € (0, 1/2).

Let f € LIP(X) taking values in [0, 1] and for every ¢ € (0,1/2) define £, with
values in [, 1 — ¢ by truncation as

Je = max(min(f,1 —¢),¢).

In this first step we show that, assuming the validity of (3.1) for the truncated f;,
then we can pass into the limit and get the validity of (3.1) also for f. To this aim,
first observe that since the truncation satisfies I'(f;) < I'(f) which is essentially
bounded by the assumption f € LIP(X), and since Z takes values into [O,\/Lz—n],
then there exists C > 0 depending on f but not on ¢ such that

(3.16) VI + a(T(f) < € meae., Ve e (0,1/2).

Moreover it is readily seen that f, — f in V-topology and then, since H,(:) is
continuous as map from V to V, also H,f, — H,f in V-topology, as ¢ — 0. In
particular, for every fixed ¢ > 0, there exists a sequence ¢, | 0 such that

(3.17)  fo, = fy Hife, = HS, T(f,) = T(f), T(HL,)— THS), m-ae.

as n — o0. We can then pass into the limit m-a.e. as n — oo in the left hand side
of (3.1). In order to pass into the limit m-a.e. also in the right hand side of (3.1)
observe that thanks to (3.16) and (3.17) we can apply the Dominated Conver-
gence Theorem to infer that

\/Zz(fgn) + ()T (f,)
T+ (OT(f)  in L2(X, m)-strong topology, as n — .

Using again the continuity of the heat flow H,(-) as map from L*(X,m) to
L?(X, m) we conclude that, possibly along a subsequence, it holds

H(y 2(5,) + (0T () = i T20) + e(OT(f)) meae. asn— co.

Therefore we can pass into the limit m-a.e. also in the right hand side of (3.1) and
conclude that (3.1) holds also for f.

STeEP 2. Explicit computation of (.
Thanks to Step 1 we can assume [ to take values into [¢,1 — ¢], for some
¢ € (0,1/2). Therefore by maximum principle also H,f will take values into
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[e,1 —¢], and thus Z(Hr_.f) will take values into [5,\/%—5] for some o €

(0,1/2v/27) depending on &. It follows that, in the range of (¢, Hr—.f,T'(Hr_.f)),
the function

1
3.18) W(t,u,v) = \/T*(u) + cx(D)v, (t,u,v) € (0,T) x [(5,—5] x [0, o0
()()()()()()\/2—”[)
is of class C* and we can then apply Lemma 3.2. Writing Z, Z' in place of Z(u),
T'(u) for brevity, it is immediate to check that

!/
Yo, — %v YO¥ =TT, Wo,¥ — %
and, by differentiating once more and using that ZZ" = —1,
2
PI2p = — 7277 L WH(T? - 1), ¥30,0,% = —%II’, P32y — —2—“.

Therefore, the corresponding function { defined in (3.5), satisfies m-a.e.

v = w2 r(g) - 2g)17(g)T () + ¥A(T7(g) - VT(g)

- &) Z(9)T'(9)T (g, T(g)) ~ %~ T(T(9))
+ KW2e, (0T (g) + ¥2ea(1)y kLo,

where we set g = Hy_,f and ¥ = ¥(z,9,T(g)) for brevity. Since W2(z,u,v) =
T%(u) + c,(t)v, it follows that the following equalities hold nt-a.e.:

¥ = [12(9) + 0T (0)] A2 T(g) - T()I0)T()

+[Z%(9) + c(OT (9T (g) — DIT(9) — ca(DZ(9)T'(9)T (9. T(9))
2

- q“T(I)F(F(g)) +K[I*(g) + ea()T(9)]ea(T (9)

+ [Z%(9) + ()T (9)]ea(1) 7 k1]

=) (50 < 1) + 0| - ;T + Dol

+I*(9)(9) (@ ~1) = &()T'(9)T(G)T(g:T(9)) + () T*(9)T*(g)

+ K[Z%(g) + co()T(9)]ea()T(g) + T(g9)ca(1) 72 x[9]-
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By the very definition (3.2) of ¢,(¢), we have that 6;2(1)
above formula for { simplifies to

— 1 = —Kc,(t) so that the

(3.19) W =c(1) —%F(F(g)) +T(9)72. kgl | + ex()[=T'(9)Z(9)T (9, T(9))

+I%(9T(g) + I*(9)ya klg]] m-ae..

STEP 3. Conclusion of the proof.

First of all observe that thanks to Lemma 2.5 we can apply Theorem 2.4
(which, let us stress, is implied by the curvature condition RCD(K, o)) to
g =Hr_,f and get

(3.20) [([(g)) < 4(g)72 xlg], m-ae..

Since ¥ = ¥(¢,Hr—.f, T(Hr—,f)) > 0 as we are assuming f to take values into
[e, 1 — ¢], the combination of (3.4), (3.19) and (3.20) gives

d ¢x(?) I'(I'(g))
(3:21) E\f:fo o) = /{F(g)>0}? {IZ(Q) 4I'(g)

—I'(9)Z(9)T(9,T(9)) + Z"*(9)T7(g) |[Hyp dm,

for all p € L™ (X, m), with ¢ > 0 m-a.e. in X. Notice that the restriction of the
region of integration to {I'(g) > 0} is possible because the nonnegativity of
72 xl9] and T'(I'(g)) = 0 m-a.e. on {I'(g) = 0} imply that { is nonnegative n-a.e.
on {I'(g) = 0}.

Now observe that the right hand side of (3.21) is a quadratic form in Z(g),
7'(g) which is positive definite since

M) _,

ar(g) = I'(g)>>0, and T(g,T(g)) <TY?*(g)TV*(I'(g)), m-ae..

We conclude that for £!-a.e. 1y € (0, T) it holds %t:to ®(¢) > 0. Since by Lemma

3.2 we know that @ is continuous in [0, 7] and locally Lipschitz in (0, '), we can
integrate to get

T
(322) 0< / @'(r)dt = D(T) — ®(0)
0

:/X[HT<\/IZ<f)+Cx(T)F(f>) —\/Iz(HTf)Hr(HTf)}wdm,

for all p € L*(X,m), with ¢ > 0 m-a.e., which completes the proof of Theorem
3.1. O
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4. BOBKOV AND GAUSSIAN ISOPERIMETRIC INEQUALITIES FOR RCD(K, «0)
PROBABILITY SPACES, K > 0

In this section we specialize the local Bobkov Inequalitiy (3.1) to the case K > 0,
and use it to prove the Gaussian Isoperimetric Inequality.

THEOREM 4.1 (Bobkov Inequality). Let (X,d, m) be an RCD(K, o) probability
space for some K > 0. Then, for every f € \V with values in [0, 1], it holds

(4.1) \/I_<I(/dem) < /X\/KIZ(f)JrF(f)dm

PROOF. Inequality (4.1) for f e LIP(X) taking values in [0,1] follows by the
combination of the ergodicity of the Heat flow and the local Bobkov inequality.
More precisely, set o = 1/K (so that ¢,(#) = 1/K) and let t — +o0 in

/ 1
/ H.f) dm</ T(f +KF f)dm, m-ae.,

derived from (3.1) dropping one nonnegative term and integrating both sides;
(4.1) follows then by applying the ergodicity property (2.22).

The validity of (4.1) for all f € V taking values in [0, 1] follows by the density
of Lipschitz functions in V, see [4, Proposition 4.10]. |

Applying (4.1) to functions approximating the characteristic function of a
set £ C X we get the desired Gaussian isoperimetric inequality. More precisely,
recall the standard definition of BV(X,d,m) C L'(X,m) space and of total
variation |[Df|(X)

IDf|(X) ::inf{liminf/lipfndm:fneLlP(X), lim/ |/ —fdm:O},
n—aoo X n—ow |y

we can pass to the limit in the inequality (derived from (4.1) from the subaddi-
tivity of the square root and the inequality /I'(f) < lip f m-a.e.)

\/EI( /X fdm) < /X (VKZ(f)+1ip f)dm
for all f e LIP(X) with values in [0, 1] to get
\/Ez(/ fdm) < \/E/ I(f) dm+ [Df|(X) ¥/ € BV(X,d,m).
X X

In particular, by applying this to characteristic functions f = y, since Z(0) =
Z(1) =0, we obtain the Gaussian isoperimetric inequality with the perimeter

P(E) = [Dyg|(X):
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THEOREM 4.2. Let (X,d, m) be an RCD(K, o0) probability space for some K > 0.
Then, for every Borel subset E C X it holds

(4.2) P(E) = VKI(m(E)).
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