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Abstract. — Via a new approach, the dynamic of thermo-MHD flows in horizontal layers heated

from below, in the Boussinesq scheme, is investigated. Denoting by m0, E, Pr, Pm and RC the

thermal conduction solution, the L2-energy of the nonlinear perturbations to m0, the Prandtl num-
ber, the magnetic Prandtl number and the steady convection onset critical value of the Rayleigh

number R2, first of all we obtain, for any initial data, the ultimately boundedness of E, via the exis-
tence of L2-absorbing sets. Successively we introduce a new approach for the E-longtime behaviour

associated to the R2-increasing. This new approach is based on an L2-energy linearization principle

and on a new way of analyzing and using the linear stability. As concerns the linearization principle,

denoting by E the L2-energy of the linear perturbations to m0, it is shown that: ‘‘
� dE

dt

�
ðt¼0Þ

< 0

for any initial data, implies
dE

dt
< 0, Et a Rþ’’.

In order to obtain
� dE

dt

�
ðt¼0Þ

< 0 for any initial data, denoting by Ln the linear operator governing

the nth-Fourier component of perturbations, we introduce the characteristic values Ijn, ð j ¼ 1; 2; 3Þ
of Ln via the Ln-entries and obtain the equation l3 � I1nl

2 þ I2nl� I3n ¼ 0, governing the Ln-
eigenvalues. To this equation we apply the Hurwitz’s Criterion guaranteeing that all the eigen-

values have negative real part. As matter of fact, the Hurwitz’s Criterion, applied for each n a N,

allows to obtain conditions necessary and su‰cient for being
� dE

dt

�
ðt¼0Þ

< 0 for any initial data.

Following this new approach, we show that the unconditional nonlinear asymptotic stability of m0,

with respect to the L2-energy norm, is guaranteed by the linear stability and obtain – among other

things – two conditions, in a very simple closed forms, guaranteeing the onset of oscillatory convec-
tion (overstability laws).

All the results, first obtained for the free-free boundary case, are successively generalized to the
rigid-rigid, rigid-free and free-rigid boundary cases.
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1. Introduction

This paper is devoted to the dynamic of thermo-MHD flows in horizontal layers,
heated from below, filled by an electrically conducting fluid under the action of
a constant vertical magnetic field H. These flows – for their importance in
Geophysics, Astrophysics and industrial applications – have attracted in the
past as nowadays, the attention of many researchers (see [1]–[16] and the refer-
ences therein).

Denoting by m0, E, Pr, Pm and RC the thermal conduction solution, the
L2-energy of the nonlinear perturbations to m0, the Prandtl number, the magnetic
Prandtl number and the critical value of the Rayleigh number for the onset of
steady convection, our aim is to show that, for any initial data, the following
properties hold.

Proposition 1.1. The thermo-MHD flows in horizontal layers heated from
below are ultimately bounded:

lim
t!l

EaEl < l:

Proposition 1.2. The conditions guaranteeing the linear stability of m0 guaran-
tee the unconditional nonlinear asymptotic stability with respect to the L2-energy
norm.

Proposition 1.3 (First Overstability Law). Let Pr < Pm. Then

RC >
27

4
p4 1þ Pm

Pm � Pr

;ð1:1Þ
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guarantees the onset of oscillatory convection for R2 a ½RC ;RC ½ with

RC ¼ 27

4
p4
�
1þ 1

Pm

�
þ Pr

Pm

RC :ð1:2Þ

Proposition 1.4 (Second Overstability Law). Let Pr < Pm. Then

Pr < 1� 1

p2ðp2 þQ2Þ

� �
Pm;ð1:3Þ

guarantees oscillatory convection.

Property 1.1 is expected and is obtained by looking for L2-absorbing sets
(Section 3). Properties 1.2–1.4 – as far as we know – are new in the existing
literature.

As concerns property 1.2, we recall that the onset of convection in the case at
stake is named Magnetic Bénard Problem (MBP). The most important phenom-
enon in the MBP linear theory is the strong inhibiting e¤ect of the magnetic field
on the onset of convection. This e¤ect – obtained theoretically in [15], [1], [2]
and described extensively in [3], has been confirmed by the experiments [1], [9].
During the years, many e¤orts have been done in order to recover this e¤ect
in the nonlinear MHD theory (see [5]–[8], [10]–[14], [16]). This goal has been
reached partially in 1988 in [13] and totally in 2003 in [16]. But it is to remark
that both the partial and the total coincidence require a very big price. As matter
of fact, both hold under very severe restrictions on the initial data (conditional
nonlinear asymptotic stability). In Table 1 the restrictions on the radius re of the
basin of attraction found in [13], in the case of mercury, are recalled. The results
of [13] and [16] – although of notable theoretical interest – appear weak from the
applications point of view. In fact a stability condition holding only for initial
perturbations of the order 10�13 appears of very small practical interest.

Table 1. Values of the radius re of the basin of concentration given in [13] in the case
of mercury. Q2 is the Chandrasekhar number growing with H (see (2.2)2)

R2
C Q2 re R2

C Q2 re

625 0 10�16 1000 102 4� 10�12

625 50 9� 10�12 1000 103 2:7� 10�9

625 102 8� 10�11 1000 104 4� 10�7

625 103 2:1� 10�8 1000 105 2:9� 10�5

625 104 1:4� 10�6 5000 103 1:2� 10�12

625 105 3� 10�4 5000 104 3:2� 10�10

1000 50 3:2� 10�13 5000 105 5:6� 10�8
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In this paper we reconsider the MBP in the more general context of the non-
linear longtime behaviour of thermo-MHD flows. Denoting by RC the R2 critical
value for the onset of instability given by linear MHD stability of m0, our aim is
to show that (Property 1.2)

R2 < RC ) nonlinear unconditional asymptotic stability of m0:ð1:4Þ

This property is obtained via a new version of an L2-Energy Linearization

Principle (Section 4) obtained by showing that
dE

dt
< 0, Et a Rþ is implied

by
� dE

dt

�
ðt¼0Þ

< 0, for any initial data, E being the L2-energy of the linear

perturbations to m0. Based on the linearization principle, a new approach to
the linear stability is introduced (Sections 5–6). Denoting by Ln the linear
operator governing the n-th Fourier component of the linear perturbations to
m0, to the spectral equation

l3 � I1nl
2 þ I2nl� I3n ¼ 0;

of Ln – Iin, ði ¼ 1; 2; 3Þ, being the characteristic values of Ln written via the Ln

entries (Appendix 1.1) – the Hurwitz’s Criterion (Appendix 1.2), guaranteeing
that all the eigenvalues have negative real part, is hence applied in order to
guarantee the consistency of the linearization principle (Section 6) and hence the
consistency of property 1.2. The steady and oscillatory bifurcating critical values
of R2 are obtained in Sections 7–8. The Oscillatory Bifurcation Law (Property
1.2), given in Section 9, appears to be new and is a remarkable consequence of
the introduced new approach to the linear stability. All the results are – in a first
step – obtained for the free-free boundary conditions. Successively, in Section 10,
rigid-rigid, free-rigid and rigid-free boundaries are considered. In the subsequent
Section 11, the obtained results are summarized and perspectives of new works
are considered. The paper ends with the Appendix (Section 12) where the Ln

characteristic in terms of the Ln entries are obtained (Subsection 12.1) while in
the subsection 12.2 the Hurwitz’s Criterion is recalled. Finally the subsection
12.3 is devoted to the properties 1.2–1.4 for the classical Bénard problem in
rotating layers.

2. Preliminaries

Let L be an infinite horizontal layer of a homogeneous, viscous, electrically
conducting fluid, permeated by an imposed uniform magnetic field H normal
to the layer, under the action of a vertical gravity field g ¼ �gk, and in which
a constant adverse temperature gradient b > 0 is maintained. Let d > 0, Wd ¼
R2 � ð0; dÞ and Oxyz be a Cartesian frame of reference with unit vectors
i; j; k respectively. We assume that the fluid is confined between the planes z ¼ 0
and z ¼ d, with assigned temperatures ~TTðx; y; 0Þ ¼ ~TT0; ~TTðx; y; dÞ ¼ �bd þ ~TT0.
Here we consider the rest state m0 ¼ ð~vv; ~HH; ~TT ; ~ppÞ ¼ ð0;Hk;�bzþ ~TT0; ~ppÞ (thermal
conduction), which is a solution of the Oberbeck-Boussinesq approximation
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of the stationary non-isothermal equations of hydromagnetics (with appropriate
boundary conditions, see [3] Chapter 4).

The (non-dimensional) equations for a perturbation ðu; h; y; p1Þ to m0 are:

ut þ u � ‘u� Pmh � ‘h ¼ �‘p1 þ Rykþ DuþQhz;

‘ � u ¼ 0;

Pmðht þ u � ‘h� h � ‘uÞ ¼ Quz þ Dh;

‘ � h ¼ 0;

Prðyt þ u � ‘yÞ ¼ Rwþ Dy:

8>>>>><
>>>>>:

ð2:1Þ

in W1 � ð0;lÞ, W1 ¼ R2 � ð0; 1Þ.
In (2.1) the symbols are standard: u ¼ ðu; v;wÞ, h ¼ ðh1; h2; h3Þ, y and p1 are

the perturbations of the velocity, magnetic, temperature and pressure (incorpo-
rating the magnetic pressure) fields, respectively. The subscripts z and t denote
partial derivatives, ‘ is the ‘‘nabla’’ operator and D is the Laplacian. The non-
dimensional parameters R2, Q2, Pr and Pm are the Rayleigh, Chandrasekhar,
Prandtl and magnetic Prandtl numbers. They are given by

R2 ¼ gbad 4

nk
; Q2 ¼ mH 2d 2

4prnm
; Pr ¼

n

k
; Pm ¼ n

h
;ð2:2Þ

where the constants g; a; r; m; h; k and n are the gravitational acceleration, the
coe‰cient of volume expansion, the density, the magnetic permeability, the resis-
tivity, the thermal di¤usivity and the kinematic viscosity coe‰cients.

To the system (2.1) we add the admissible initial conditions

uðx; 0Þ ¼ u0ðxÞ; hðx; 0Þ ¼ h0ðxÞ; yðx; 0Þ ¼ y0ðxÞ;ð2:3Þ

where x ¼ ðx; y; zÞ a W1, y0, u0, h0 are assigned initial fields with u0, h0 divergence-
free. As concerns the boundaries, we shall assume that they are stress-free and
electrically non-conducting, therefore, to the system (2.1)–(2.2), we add the fol-
lowing boundary conditions (see [3])

yðx; y; z; tÞ ¼ 0;

wðx; y; z; tÞ ¼ uzðx; y; z; tÞ ¼ vzðx; y; z; tÞ ¼ 0;

h1ðx; y; z; tÞ ¼ h2ðx; y; z; tÞ ¼ hzðx; y; z; tÞ ¼ 0;

8><
>:ð2:4Þ

ðx; yÞ a R2, t > 0 and z ¼ 0, z ¼ 1.
We assume that:

i) the perturbations ð‘p; u; v;w; y; h1; h2; hÞ are periodic in the x and y directions
of periods 2p=ax, 2p=ay, respectively;

ii) W ¼ ½0; 2p=ax� � ½0; 2p=ay� � ½0; 1� is the periodicity cell;
iii) u; v;w; y; h1; h2; h are such that together with all their first derivatives and

second spatial derivatives are square integrable in W, Et a Rþ and can be
expanded in a Fourier series uniformly convergent in W.
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Let us denote by AðWÞ the set of functions C such that:

1) C : ðx; tÞ a W� Rþ ! Cðx; tÞ a R, C a W 2;2ðWÞ, Et a Rþ, C is periodic in

the x and y directions of period
2p

ax
,
2p

ay
respectively;

2) C, together with all the first derivatives and second spatial derivatives, can be
expanded in a Fourier series absolutely uniformly convergent in W, Et a Rþ;

3) ðCÞz¼0 ¼ ðCÞz¼1 ¼ 0

and by BðWÞ the set of the functions j verifying 1)–2) and

1) 0
qj

qz

� �
z¼0

¼ qj

qz

� �
z¼1

¼ 0.

Since the sequence fsin npzgn AN, is a complete orthogonal system for L2ð0; 1Þ
under the boundary conditions ½C�z¼0 ¼ ½C�z¼1 ¼ 0, by virtue of periodicity, it
turns out that EC a AðWÞ, there exists a sequence f ~CCnðx; y; tÞg such that

C ¼
Xl
n¼1

~CCn sin npz;
qC

qt
¼

Xl
n¼1

q ~CCn

qt
sin npz;

D1C ¼ �a2C; DC ¼ �
Xl
n¼1

xn ~CCn sin npz;

8>>>><
>>>>:

ð2:5Þ

with D1 ¼ q2=qx2 þ q2=qy2 and

xn ¼ a2 þ n2p2; a2 ¼ a2x þ a2y ;ð2:6Þ

the series appearing in (2.5) being absolutely uniformly convergent in W.
Analogously, since the sequence fcos npzgn AN, is a complete orthogonal system

for L2ð0; 1Þ under the boundary conditions
qj

qz

� �
z¼0

¼ qj

qz

� �
z¼1

¼ 0, by virtue

of periodicity, it turns out that Ej a BðWÞ, there exists a sequence f~jjnðx; y; tÞg
such that

j ¼
Xl
n¼1

~jjn cos npz;
qj

qt
¼

Xl
n¼1

q~jjn
qt

cos npz;

D1j ¼ �a2j; Dj ¼ �
Xl
n¼1

xn ~jjn cos npz:

8>>>><
>>>>:

ð2:7Þ

Remark 2.1. We remark that uniqueness, existence and regularity theorems
for the solutions of (2.1), (2.3)–(2.4) in L2-subspaces can be found in [17], in the
absence of thermal field, and in the absence of magnetic field. Existence theorems
– in the presence of Hall and ion-slip e¤ects – can be found in [20]. In [22] and
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references therein, uniqueness, existence and regularity properties of Boussinesq
systems can be found.

3. L2
-absorbing sets

We denote by k � k and 3� ; �4 respectively the norm and the scalar product in
L2ðWÞ and introduce the L2-energy of the perturbation field

E ¼ 1

2
ðkuk2 þ Pmkhk2 þ Prkyk2Þ:ð3:1Þ

In view of (2.4) and ‘ � u ¼ ‘ � h ¼ 0, one easily obtains

3u � ‘u; u4 ¼ � 1

2
3u;‘ � u4 ¼ 0; 3u � ‘h; h4 ¼ � 1

2
3h2;‘ � u4 ¼ 0;

3h � ‘h; u4þ 3h � ‘u; h4 ¼ �ðh � uÞ‘ � h ¼ 0;

3hz; u4þ 3uz; h4 ¼ 0:

8>>><
>>>:

ð3:2Þ

Therefore, setting

Q�ðu; h; yÞ ¼ 2R3w; y4þ 3u;Du4þ 3h;Dh4þ 3y;Dy4;ð3:3Þ

by virtue of (2.1) and (3.2) one easily obtains that the time derivative
dE

dt
of

E along the solution of (2.1), (2.3)–(2.4), is given by

dE

dt
¼ Q�ðu; h; yÞ:ð3:4Þ

In view of

23w; y4 < ekuk2 þ 1

e
kyk2; e ¼ positive constant;

3u;Du4 ¼ �k‘uk2; 3h;Dh4 ¼ �k‘hk2; 3y;Dy4 ¼ �k‘yk2

8<
:ð3:5Þ

and the Poincaré inequality

k‘f k2 b p2k f k2;ð3:6Þ

it follows that

dE

dt
<

R

e
kyk2 � p2½ð1þ ReÞkuk2 þ khk2 þ kyk2�:ð3:7Þ

On choosing e ¼ 1

2R
one obtains

dE

dt
< 2R2kyk2 � p2

� 1

2
kuk2 þ khk2 þ kyk2

�
a 2R2kyk2 � kp2E;ð3:8Þ

27dynamic of thermo-MHD flows via a new approach



with

k < 2min
� 1

Pm

;
1

Pr

�
:ð3:9Þ

Let

2R2kyk2 < a ¼ const > 0ð3:10Þ

and set

b ¼ kp2;ð3:11Þ

then (3.8) becomes

dE

dt
< a� bEð3:12Þ

and via a standard procedure it follows that the following theorem holds.

Theorem 3.1. The ball of radius

E < ð1þ hÞ b
a
;ð3:13Þ

centered at the origin of the L2-phase space, for any h > 0 is an L2-absorbing set.

Proof. It remains to show that there exist positive constants such that (3.10)
holds. As matter of fact, in [17] it is shown that

y ¼ ~yyþ y

with

�1a ~yya 1

and

kyka fkðy� 1Þþk þ kðyþ 1Þ�kgt¼0e
�p2t:

4. Energy Linearization Principle

To (2.1), (2.3)–(2.4), we associate the linear system

ûut ¼ RŷykþQĥhz þ Dûu;

‘ � ûu ¼ 0;

Pmĥht ¼ Qûuz þ Dĥh;

‘ � ĥh ¼ 0;

Prŷyt ¼ Rŵwþ Dŷy;

8>>>>><
>>>>>:

ð4:1Þ
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under the initial boundary conditions

ûuðx; 0Þ ¼ ûu0ðxÞ; ĥhðx; 0Þ ¼ ĥh0ðxÞ; ŷyðx; 0Þ ¼ ŷy0;

‘ � ûu0 ¼ 0; ‘ � ĥh0 ¼ 0

�
ð4:2Þ

ŷyðx; y; z; tÞ ¼ 0;

ŵwðx; y; z; tÞ ¼ ûuzðx; y; z; tÞ ¼ v̂vzðx; y; z; tÞ ¼ 0;

ĥh1ðx; y; z; tÞ ¼ ĥh2ðx; y; z; tÞ ¼ ĥhzðx; y; z; tÞ ¼ 0;

8><
>:ð4:3Þ

ðx; yÞ a R2, t > 0 and z ¼ 0, z ¼ 1.
Denoting by

ÊE ¼ 1

2
ðkûuk2 þ Pmkĥhk2 þ Prkŷyk2Þ;ð4:4Þ

the L2ðWÞ-energy of the solutions of (4.1)–(4.3) and by
dÊE

dt
the time derivative

of ÊE along the solution of (4.1)–(4.3), it follows that

dÊE

dt
¼ Q̂Q�ðûu; ĥh; ŷyÞ;ð4:5Þ

with

Q̂Q�ðûu; ĥh; ŷyÞ ¼ 2R3ŵw; ŷy4þ 3ûu;Dûu4þ 3ĥh;Dĥh4:ð4:6Þ

The following theorem holds (linearization principle).

Theorem 4.1. Let

� dÊE

dt

�
ðt¼0Þ

< 0;ð4:7Þ

for arbitrary initial data (4.2). Then

dE

dt
< 0; Etb 0:ð4:8Þ

Proof. Let ðu; h; yÞ be a solution of (2.1), (2.3)–(2.4). Then, for any fixed t > 0
one has

‘ � uðx; tÞ ¼ ‘ � hðx; tÞ ¼ 0; Ex a Wð4:9Þ

and for x a W and z ¼ 0; 1 it follows that

yðx; tÞ ¼ 0;

wðx; tÞ ¼ uzðx; tÞ ¼ vzðx; tÞ ¼ 0;

h1ðx; tÞ ¼ h2ðx; tÞ ¼ hzðx; tÞ ¼ 0;

8><
>:ð4:10Þ
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½Q�ðu; h; yÞ�ðt¼tÞ ¼
3uðx; tÞ;Ryðx; tÞkþ Duðx; tÞ4

þ 3hðx; tÞ;Dhðx; tÞ4
þ 3yðx; tÞ;Rwðx; tÞ þ Dyðx; tÞ4:

8><
>:ð4:11Þ

But in view of (4.9)–(4.10), one can choose

ûuðx; 0Þ ¼ uðx; tÞ; ĥhðx; 0Þ ¼ hðx; tÞ; ŷyðx; 0Þ ¼ yðx; tÞð4:12Þ

and hence via (4.6) one has

½Q̂Q�ðûu; ĥh; ŷyÞ�ðt¼0Þ ¼ ½Q�ðu; h; yÞ�ðt¼tÞ; Et > 0:ð4:13Þ

Then (4.7) and (4.13) imply (4.8) Et > 0. In other word, (4.7), for any initial data,
implies the negative definiteness of Q̂Q�. Then (4.8), in view of (4.13), immediately
follows.

5. New approach to energy stability

A new approach to the nonlinear asymptotic unconditional energy stability –
guaranteed by linear stability – is implied by Theorem 4.1. The consistency of
(4.7) – for any initial data – requires that all the eigenvalues of (4.1)–(4.3) have
negative real part. As matter of fact, let fj�

ng, fjng and fjng be complex or-
thogonal sequences of functions verifying the boundary conditions of velocity,
magnetic and temperature fields respectively. Then any solution of (4.1)–(4.3) can
be written as Fourier series as follows

ûu ¼
Xl
n¼1

ûun; ĥh ¼
Xl
n¼1

ĥhn; ŷy ¼
Xl
n¼1

ŷyn;

ûun ¼ u
ð�Þ
n j�

n ; ĥhn ¼ hnjn; ŷyn ¼ ynjn:

8><
>:ð5:1Þ

Let ln ¼ an þ ibn be an eigenvalue associated to the nth-component ðûun; ĥhn; ŷynÞ
of the solution ðûu; ĥh; ŷyÞ of (4.1)–(4.3). Then

ûun

ĥhn

ŷyn

0
B@

1
CA¼ eðanþibnÞt

ûu
ð0Þ
n ðxÞ
ĥh
ð0Þ
n ðxÞ
ŷyð0Þn ðxÞ

0
BB@

1
CCAð5:2Þ

and, denoting by f ðcÞ the complex conjugate of f , it follows that

1

2

d

dt
ð3ûun; ûuðcÞn 4þ Pm3ĥhn; ĥh

ðcÞ
n 4þ Pr3ŷyn; ŷy

ðcÞ
n 4Þð5:3Þ

¼ ane
2antðkûuð0Þn k2 þ Pmkĥh

ð0Þ
n k2 þ Prkŷyð0Þn k2Þ
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with ðûuð0Þn ; ĥh
ð0Þ
n ; ŷyð0Þn Þ initial data. Therefore if and only if an < 0, En a N one has

� dÊEn

dt

�
ðt¼0Þ

< 0;ð5:4Þ

along the solutions ðûun; ĥhn; ŷynÞ of (4.1)–(4.3) for any initial data, and hence (4.13),
for any initial data, implies the following theorem.

Theorem 5.1. Conditions guaranteeing that all the eigenvalues of (4.1)–(4.2)
have negative real part, guarantee linear stability and nonlinear unconditional
asymptotic energy stability.

Remark 5.1. We remark that

1) the application to (4.1)–(4.3) of the Hurwitz’s Criterion guaranteeing matrix
eigenvalues have all real negative part [18], [19], appears to be the right
way for getting the optimum unconditional nonlinear asymptotic stability
threshold;

2) the strategy based on Theorem 5.1 is completely di¤erent from the traditional
one [4]–[14], [16]. As matter of fact in the traditional nonlinear stability
approach, it is request that Q� is negative definite in the class I of the
‘‘kinematically admissible perturbations’’ which is nothing else that the class
of initial data. For instance, setting

F ¼ 2R3w; y4

k‘uk2 þ k‘hk2 þ k‘yk2
;ð5:5Þ

one has

dE

dt
¼ ðF� 1Þðk‘uk2 þ k‘hk2 þ k‘yk2Þð5:6Þ

and hence introducing the variational problem

m ¼ max
I

F;ð5:7Þ

one has that

m < 1ð5:8Þ

guarantees Q� < 0 in I and hence Q̂Q� < 0.
In the new strategy it is request that (4.7) and hence Q̂Q� < 0, is verified in a

subspace of I. In fact to each initial data belonging to I, it is requested that
(4.7) holds only on the solution of (4.1)–(4.3);

3) since

u;
qh

qt

� �
þ h;

qu

qz

� �
¼ 0;ð5:9Þ
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on the numerator of F does not appear any stabilizing contribution of
the magnetic field (contribution found via (4.1)–(4.3)). Therefore in order to
obtain – in the old approach of nonlinear stability – this e¤ect, one has to
introduce Liapunov functions much more complicated than the natural one
given by E ([13], [16]);

4) we recall that the Energy Linearization Principle can be also obtained by the
auxiliary system method introduced in [21].

6. Consistency of the new stability approach

In view of (4.1) it follows that

qûu

qt
¼ Q

qĥh1

qz
þ Dûu;

Pm

qĥh1

qt
¼ Q

qûu

qz
þ Dĥh1

8>>><
>>>:

ð6:1Þ

and hence (2.4) implies

1

2

d

dt
ðkûuk2 þ Pmkĥh1k2Þ ¼ �ðk‘ûuk2 þ k‘ĥh1k2Þ < 0ð6:2Þ

1

2

d

dt
ðkv̂vk2 þ Pmkĥh2k2Þ ¼ �ðk‘v̂vk2 þ k‘ĥh2k2Þ < 0ð6:3Þ

for any initial data. Therefore, setting

ÊE ¼ 1

2
ðkŵwk2 þ Pmkĥhk2 þ Prkŷyk2Þ;ð6:4Þ

it follows that (4.7) is implied by

� dÊE

dt

�
ðt¼0Þ

< 0ð6:5Þ

for any initial data. In view of (5.1), (6.5) is implied by

� dÊEn

dt

�
ðt¼0Þ

< 0ð6:6Þ

for any initial data, with

ÊEn ¼
1

2
ðkŵwnk2 þ Pmkĥhnk2 þ Prkŷynk2Þ;ð6:7Þ

dÊEn

dt
being the time derivative along the solutions of (4.1)–(4.3).
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The equations governing ðŵwn; ĥhn; ŷynÞ, disregarding the hats, are given by

q

qt
Dwn ¼ RD1yn þ DDwn þQD

qhn

qz
;

Pm

q

qt

� qhn

qz

�
¼ Q

q2wn

qz2
þ D

� qhn

qz

�
;

Pr

q

qt
yn ¼ Rwn þ Dyn

8>>>>>>><
>>>>>>>:

ð6:8Þ

with (6.8)1 third component of the double curl of (4.1)1 and (6.8)2 partial

derivative
q

qz
of the third component of (4.1)3, under the boundary conditions

wn ¼ yn ¼
qhn

qz
¼ 0; on z ¼ 0; 1:ð6:9Þ

Therefore, since hn a BðWÞ and wn, yn a AðWÞ, setting

wn ¼ ~wwnðx; y; tÞ sinðnpzÞ;
yn ¼ ~yynðx; y; tÞ sinðnpzÞ;
hn ¼ ~hhnðx; y; tÞ cosðnpzÞ;

8<
:ð6:10Þ

by virtue of (2.4)–(2.5), (6.8) can be written

q~wwn

qt
¼ �xn ~wwn �Qnp~hhn þ

Ra2

xn
~yyn;

q~hhn
qt

¼ npQ

Pm

~wwn �
xn
Pm

~hhn;

q~yyn
qt

¼ R

P2
~wwn �

xn
Pr

~yyn;

8>>>>>>><
>>>>>>>:

ð6:11Þ

i.e.

q

qt

~wwn

~yyn
~hhn

0
@

1
A¼ Ln

~wwn

~yyn
~hhn

0
@

1
A;ð6:12Þ

with

Ln ¼

�xn �Qnp
Ra2

xn
npQ

Pm

� xn
Pm

0

R

Pr

0 � xn
Pr

0
BBBBBBBB@

1
CCCCCCCCA
:ð6:13Þ
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The characteristic values (invariants) of (6.13) are

I1n ¼ �
�
1þ 1

Pr

þ 1

Pm

�
xn ¼ �ðPrPm þ Pr þ PmÞxn

PrPm

;

I2n ¼
1

Prxn

Pr

Pm

xnðx2n þQ2n2p2Þ þ
� 1

Pm

þ 1
�
x3n � R2a2

� �
;

I3n ¼
1

PrPm

½R2a2 � xnðx2n þQ2n2p2Þ�;

8>>>>>>><
>>>>>>>:

ð6:14Þ

associated to the spectral equation

l3 � I1nl
2 þ I2nl� I3n ¼ 0:ð6:15Þ

Then – in view of I1n < 0 – the Hurwitz’s Criterion guarantees that if and only if

I3n < 0; I2n > 0; I1nI2n < I3n; Eða2; nÞ a Rþ �N;ð6:16Þ

the eigenvalues have negative real part (see Appendix 1.2). On setting

RC2
¼ min

ða2;nÞ ARþ�N

Pr

Pm

xnðx2n þQ2n2p2Þ þ
� 1

Pm

þ 1
�
xn

a2
ð6:17Þ

¼ min
a2 ARþ

Pr

Pm

ða2 þ p2Þ½ða2 þ p2Þ2 þQ2p2� þ
� 1

Pm

þ 1
�
ða2 þ p2Þ

a2

RC3
¼ min

ða2;nÞ ARþ�N

xnðx2n þQ2n2p2Þ
a2

ð6:18Þ

¼ min
a2 ARþ

ða2 þ p2Þ½ða2 þ p2Þ2 þQ2p2�
a2

;

it follows that the request

R2 < minðRC2
;RC3

Þ;ð6:19Þ

is necessary for inhibiting the onset of convection. Further

R2 < RC3
, I3 < 0:ð6:20Þ

Then, setting Ii ¼ Ii1, ði ¼ 1; 2; 3Þ, convection occurs if

I2 < 0; or I1I2 > I3:ð6:21Þ

In view of (6.20) and I1 < 0 it follows that

I2 < 0 ) I1I2 > I3;ð6:22Þ
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i.e.

R2 < RC3
; R2 > RC2

;ð6:23Þ

imply onset of convection.

7. Onset of steady convection

The onset of convection is named steady only if the passage from the stability
to the instability happens through a steady solution and is characterized by the
existence of a zero eigenvalue. Since the existence of a zero eigenvalue is guar-
anteed if and only if I3n ¼ 0, it follows that the critical value RC of R2 for the
onset of steady convection is given by RC3

. The inequalities appearing in (6.16)
have a special meaning. As concerns (6.16)1, we remark that it is verified if and
only if

R2 < RC ¼ min
ða2;nÞ ARþ�N

xnðx2n þQ2n2p2Þ
a2

;

i.e. if and only if

R2 < Rc ¼ min
a2 ARþ

ða2 þ p2Þ½ða2 þ p2Þ2 þQ2p2�
a2

:ð7:1Þ

Taking into account that we have denoted by R2 and Q2 the non-dimensional
numbers denoted by R and Q in [3], we remark that RC3

agrees with the critical
value of steady convection given in formula ((163), page 170) of [1] where – in
table XLV – critical Rayleigh numbers and wave numbers for the onset of steady
convection, for growing Q2, are provided.

8. Onset of oscillatory bifurcation

Since the critical values RC2
and RC3

are obtained for n ¼ 1, (6.15) reduces to

l3 � I1l
2 þ I2l� I3 ¼ 0;ð8:1Þ

with Ij ¼ Ij1, ð j ¼ 1; 2; 3Þ. As concerns the onset of convection via oscillatory
state (Hopf bifurcation), denoting by îi the imaginary unit, an eigenvalue of type
l ¼ îim; with m real constant, is a root of (8.1) i¤

mðI2 � m2Þ ¼ 0; m2 ¼ I3

I1
;ð8:2Þ

i.e. m has to be solution of

I1I2 ¼ I3:ð8:3Þ
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Therefore only if the lowest positive root R2 ¼ RC of (8.3) verifies

RC < RC ;ð8:4Þ

oscillatory convection occurs.
In view of (6.14), (8.3) becomes

�
1þ 1

Pr

þ 1

Pm

� � Pr

Pm

þ 1

Pm

þ 1
� x31
a2

þ p2Q2 Pr

Pm

x1
a2

� R2

" #
ð8:5Þ

¼ 1

Pm

x31 þQ2p2x1
a2

� R2

" #
;

Since Pr bPm implies (Ea2)

�
1þ 1

Pr

þ 1

Pm

� � Pr

Pm

þ 1

Pm

þ 1
� x31
a2

þ p2Q2 Pr

Pm

x1
a2

� R2

" #
ð8:6Þ

>
�
1þ 1

Pr

þ 1

Pm

� x31 þQ2p2x1
a2

>
x31 þQ2p2x1

a2
;

one immediately recovers that the condition necessary for the onset of overstabil-
ity (see [3] page 183, (233)): overstability can occur only if Pr < Pm. Further the
following theorem holds.

Theorem 8.1. Let Pr < Pm. then overstable convection occurs if and only if

RC ¼ min
a2 ARþ

ðp2 þ a2Þ½Aðp2 þ a2Þ þ Bp2Q2�
a2

< RC ;ð8:7Þ

with

A ¼ ðPr þ Pm þ 1Þ � a

Pm � a
; B ¼ Pr � a

Pm � a
; a ¼ PmPr

PmPr þ Pr þ Pm

:ð8:8Þ

Proof. As matter of fact, in view of (8.5), (8.8) one easily obtains

R2 ¼ Ax31 þ Bp2Q2x1
a2

ð8:9Þ

and (8.7) immediately follows.

Remark 8.1. We remark that:

1) In view of

a < minð1;Pr;PmÞð8:10Þ
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and Pr < Pm it follows that

A > 0; 0 < B < 1:ð8:11Þ

Therefore the consistency of (8.7) is guaranteed for AU 1., i.e. by
Pr

Pm

f 1,
since

lim
Pr!0

B ¼ 0; lim
Pm!l

A ¼ 1:ð8:12Þ

2) On letting Q2 ! 0, one has

lim
Q2!0

RC ¼ A min
a2 ARþ

x31
a2

; A ¼ 1þ Pr þ 1

Pm � a
> 1;ð8:13Þ

as expected, since in the Hydrodynamic Bénard Problem the principle of
exchange of stability holds.

9. Oscillatory bifurcation laws

We remark that – in view of the analysis performed in Sections 7–8 – the new
approach introduced for the linear stability, based on the Huwitz’s Criterion
applied to (6.15) with the characteristic Iin written via the Ln entries, appears to
be less di‰cult than the traditional one, at least for the onset of oscillatory bifur-
cation (see [3], pp. 181–186). Further the conditions I2 > 0, I3 < 0, necessary for
inhibiting the onset of instability, in view of

I2 > 0; Ea2 a Rþ , R2 < RC2
;

I3 < 0; Ea2 a Rþ , R2 < RC3
;

RC ¼ RC3
;

8<
:ð9:1Þ

allow to obtain – in simple algebraic closed forms – conditions guaranteeing
oscillatory bifurcation (Properties 1.3–1.4 of Sect. 1).

Theorem 9.1. Let Pr < Pm. Then

RC >
27

4
p4 1þ Pm

Pm � Pr

;ð9:2Þ

guarantees the onset of oscillatory convection for R2 a �RC ;RC ½ with

RC ¼ Pr

Pm

RC þ 27

4
p4
�
1þ 1

Pm

�
:ð9:3Þ

Proof. On requiring

Pr

Pm

RC þ
� 1

Pm

þ 1
� 27

4
p4 < RC ;
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(9.2) immediately follows. But for any R2 such that:

Pr

Pm

RC þ
� 1

Pm

þ 1
� 27

4
p4 < R2 < RC ;

since (6.19) is violated and m0 is unstable and – in view of R2 < RC – the insta-
bility is of oscillatory type.

Theorem 9.2. Let Pr < Pm. Then

Pr <
�
1� 1

p2ðp2 þQ2Þ

�
Pm;ð9:4Þ

guarantees oscillatory convection.

Proof. In view of (6.17)–(6.18), it follows that

RC2
< RC3

;ð9:5Þ

is implied by

Pr

Pm

x1ðx21 þQ2p2Þ þ
� 1

Pm

þ 1
�
x1 < x1ðx21 þQ2p2Þ; Ea2 a Rþð9:6Þ

i.e. by

�
1� Pr

Pm

�
½ða2 þ p2Þ2 þQ2p2� > 1

Pm

þ 1; Ea2 a Rþð9:7Þ

and (9.4) immediately follows.

Remark 9.1. We remark that:

1) As far as we know, the laws (9.2), (9.3) and (9.4) appear to be new in the
existing literature. In view of similar di‰culties and treatments, traditionally
the onset of Hopf bifurcation in MBP is associated to the onset of bifurcation
in the rotating classical Bénard Problem. In appendix we show that a law
analogous to (9.2)–(9.3) holds also for the rotating classical Bénard Problem;

2) (9.3) gives an upper estimate of RC .

10. Rigid-rigid, free-rigid, rigid-free boundary cases

The results obtained in the previous section are concerned with the free-free cases.
But one easily realizes that the procedure used continues to hold also in the rigid-
rigid, rigid-free and free-rigid boundary cases. For the sake of simplicity we refer
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to the rigid-rigid case. As matter of fact, in the rigid-rigid case, at the place of
(2.4) one has to add to the boundary conditions (2.4) the following ones

u ¼ v ¼ qw

qz
¼ 0; z ¼ 0; 1;ð10:1Þ

where
qw

qz
¼ 0 is implied by the request ‘ � u ¼ 0 also on the boundaries. It

follows that the basis fsin npzg does not allow to satisfy (10.1)3 and one has
to choose the basis f fng with fn solutions of the Sturm–Liouville type problem
([ ], pages 634–637)

d 4f

dz4
¼ a4f ; z a �0; 1½;

f ¼ df

dz
¼ 0; on z ¼ 0; 1:

8>>><
>>>:

ð10:2Þ

Then, either Section 3 and Section 4 – in which the Fourier expansion is not used
– continue to hold since (2.4) continues to hold. As concerns sections 5–9, all
the procedures continue to hold but one has to put fn at the place of sin npz and
hence f 0

n at the place of cos npz. In other words, (6.8) continues to hold and
its new conditions depending on the basis f fng will continue to guarantee the
unconditional nonlinear asymptotic stability of m0. In this way all the results of
linear stability of the rigid-rigid case found in [3] are recovered as results of
unconditional nonlinear asymptotic stability. This happens also for the other
boundary conditions (rigid-free and free-rigid).

11. Discussion and future work

1) The paper concerns the dynamic of thermal MHD flows in horizontal layers
heated from below and embedded in a constant transverse magnetic field;

2) the ultimately boundedness of the flows is guaranteed by the existence of
L2-absorbing sets;

3) an L2-Energy Linearization Principle is obtained;
4) as consequence of the Energy Linearization Principle, a new approach to lin-

ear stability of the thermal conduction solution m0 – based on the application
to the spectral equation of the Routh–Hurwitz conditions guaranteeing that
all eigenvalues have negative real part – is performed;

5) the relevant role played by the characteristic value of the linear operator at
stake, is put in evidence;

6) the conditions of linear stability of m0 are recovered as results guaranteeing
the unconditional nonlinear asymptotic stability for any type of boundary
conditions (free-free, free-rigid, rigid-free, rigid-rigid);

7) the steady and oscillatory Rayleigh critical values – in simple closed forms –
are provided;
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8) the overstability laws (Properties 1.3–1.4 of Sect. 2) (9.2)–(9.3) guaranteeing
the onset of oscillatory convection (Hopf bifurcation) are obtained;

9) as concerns the future work, we confine ourselves to mentioning the case of
thermo-MHD flows in rotating layers. In that case, to the right-hand side of
(10.1), will appear a term of kind Tu� k, T being a constant (depending on
the rotation about z). Since 3u; u� k4 ¼ 0; the Energy Linearization Principle
continues to hold and also the subsequent procedure for the linear stability.
But to (6.8) one has to add the equation governing the evolution of the third
component of the curl of (2.1), when (2.1) is written with the presence of
Tu� k. Taking into account also the results concerning the thermo flows
in rotating layers (see appendix), it appears that there exists the basis for
looking for the generalization of the results obtained in the present paper
to the thermo-MHD flows in rotating layers. In particular, to look for the
validity of overstability laws analogous to Properties 1.3–1.4.

12. Appendix

12.1. Characteristic values (invariants) of a quadratic matrix via
the matrix entries

For the sake of simplicity we confine ourselves to the quadratic matrix of order 3.
Let L ¼ kaihk ði; j ¼ 1; 2; 3Þ with real entries aij and let A;B;C be given by add-
ing respectively the principal minor of order 1,2,3

A ¼ a11 þ a22 þ a33;

B ¼ a11 a12

a21 a22

����
����þ a11 a13

a31 a33

����
����þ a22 a23

a32 a33

����
����;

C ¼ detL:

8>><
>>:ð12:1Þ

Then one easily verifies that the spectral equation of L is given by

a11 � l a12 a13

a21 a22 � l a23

a31 a32 a33 � l

������
������¼ �ðl3 � Al2 þ Bl� CÞ ¼ 0:ð12:2Þ

On the other hand, denoting by l1; l2; l3 the roots of (12.2) – eigenvalues of L –
one obtains

ðl� l1Þðl� l2Þðl� l3Þ ¼ l3 � ðl1 þ l2 þ l3Þl2ð12:3Þ
þ ðl1l2 þ l1l3 þ l2l3Þl� l1l2l3 ¼ 0:

Since the characteristic values of L are given by

I1 ¼ l1 þ l2 þ l3; I2 ¼ l1l2 þ l1l3 þ l2l3; I3 ¼ l1l2l3;ð12:4Þ
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it follows that

l3 � I1l
2 þ I2l� I3 ¼ 0ð12:5Þ

and (12.2) gives

I1 ¼ a11 þ a22 þ a33; I2 ¼
a11 a12

a21 a22

����
����þ a11 a13

a31 a33

����
����þ a22 a23

a32 a33

����
����;

I3 ¼ detLn:

8<
:ð12:6Þ

Analogously the spectral equation of a matrix of order n is

ln � I1l
n�1 þ I2l

n�2 þ � � � þ ð�1ÞnIn ¼ 0;ð12:7Þ

with Im, ðm ¼ 1; 2; . . . ; nÞ characteristic values of kaijk obtained by adding the
principal minors of order m of kaijk.

12.2. Hurwitz’s Criterion [18]–[19]

To the algebraic equation of n-th degree

a0l
n þ a1l

n�1 þ � � � þ an�1lþ an ¼ 0;ð12:8Þ

with a0; . . . ; an real numbers, one has to associate the matrix

a1 a3 a5 � � � 0

a0 a2 a6 � � � 0

0 a1 a3 � � � 0

� � � � � � � � � � � � � � �
0 0 0 � � � 0

0
BBBBB@

1
CCCCCAð12:9Þ

and its diagonal mnors

D1 ¼ a1; D2 ¼
a1 a3

a0 a2

����
����; . . . ;Dn ¼ anDn�1:ð12:10Þ

Without loss of generality we assume a0 > 0. Then the following properties hold:

1) a necessary condition for all roots of (12.8) have negative real part is that

ai > 0; Ei a f1; 2; . . . ; nÞ;ð12:11Þ

2) if one of the coe‰cient a1; . . . ; an is negative then some roots will have positive
real part;
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3) (Hurwitz’s Criterion) if and only if

Dn > 0; En;ð12:12Þ

all the roots have negative real part.

In view of (12.2), it immediately follows that in the case n ¼ 3 conditions

I1 < 0; I2 > 0; I3 < 0;ð12:13Þ

are necessary for the roots have negative real part and

I1 < 0; I3 < 0; I1I2 � I3 < 0;ð12:14Þ

are necessary and su‰cient.

12.3. Two laws guaranteeing onset of oscillatory instability in rotating
classical Bénard Problem

The equations governing the perturbations to the thermal conduction in a layer
rotating about the axis z with uniform velocity o, are (in the free-free case)

P�1
r ut þ u � ‘u ¼ �‘pþ DuþTu� kþ Ryk;

‘ � u ¼ 0; in W

yt þ Pru � ‘y ¼ Rwþ Dy;

8><
>:ð12:15Þ

qu

qz
¼ qv

qz
¼ w ¼ y ¼ 0; on z ¼ 0; 1;ð12:16Þ

with

T2 ¼ 4o2d 4

n2
:ð12:17Þ

One easily verifies that, in view of 3u; u� k4 ¼ 0, the energy linearization prin-
ciple continues to hold and hence, linearizing (12.15) and taking the z compo-
nents of the curl and the double curl of (12.15), one obtains

P�1
r

qz

qt
¼ DzþT

qw

qz
;

P�1
r

qDw

qt
¼ DDw�T

qz

qz
þ RD1y;

qy

qt
¼ Rwþ Dy;

8>>>>>>><
>>>>>>>:

ð12:18Þ
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with z ¼ ðrot uÞ � k. Setting Z ¼ qz

qz
the Fourier components of the perturbations

have to verify the system [ ]

P�1
r

qDwn

qt
¼ DDwn �TZn þ RD1y;

P�1
r

qZn

qt
¼ DZn þT

q2wn

qz2
;

qyn

qt
¼ Dyn þ Rwn

8>>>>>>>><
>>>>>>>>:

ð12:19Þ

i.e. – in view of fn ¼ f nðx; y; tÞ sin npz, f a fwn;Zn; yng

q

qt

wn

Zn

yn

0
@

1
A¼ Ln

wn

Zn

yn

0
@

1
Að12:20Þ

with

Ln ¼
�Prxn PrT=xn a2PrR=xn

�PrTn2p2 �Prxn 0

R 0 �xn

0
B@

1
CA:ð12:21Þ

The invariants of (12.21) are

I1n ¼ �ð2Pr þ 1Þxn; I2n ¼
a2Pr

xn

ð2þ PrÞx3n þ PrT
2n2p2

a2
� R2

" #
;

I3n ¼ a2P2
r R2 � x3n þT2n2p2

a2

" #
8>>>>><
>>>>>:

ð12:22Þ

and the spectral equation is

l2 � I1nl
2 þ I2nl� I3n ¼ 0:ð12:23Þ

The critical value RC of R2 for the onset of steady convection is then

RC ¼ min
ða2;nÞ ARþ�N

ða2 þ n2p2Þ3 þT2n2p2

a2
;

i.e.

RC ¼ min
a2 ARþ

ða2 þ p2Þ3 þT2p2

a2
;ð12:24Þ
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while the critical value RC for the onset of oscillatory convection is the lowest
positive root of

I1I2 � I3 ¼ 0;ð12:25Þ

less than RC . In view of (12.22) for n ¼ 1, (12.25) becomes

ð2Pr þ 1Þ
Pr

R2 � ð2þ PrÞx31 þ PrT
2p2

a2

" #
¼ R2 � x31 þT2p2

a2

�
1þ 1

Pr

�
R2 ¼ 2Pr þ 1

Pr

ð2þ PrÞx31 þ PrT
2

a2
� x31 þT2p2

a2

¼ 2Pr þ 1

Pr

ð2þ PrÞx31
a2

þ ð2Pr þ 1ÞT2p2

a2
� x31 þT2p2

a2

¼

2Pr þ 1

Pr

ð2þ PrÞ � 1

� �
x31 þ ð2Pr þ 1� 1ÞT2p2

a2

¼

2

Pr

ð2Pr þ 1Þ þ 2Pr

� �
x31 þ 2PrT

2p2

a2

¼

2

Pr

ð2Pr þ 1Þx31 þ 2Prðx31 þT2p2Þ

a2

i.e.

ð1þ PrÞR2 ¼ 2
ð2Pr þ 1Þx31 þ P2

r ðx31 þT2p2Þ
a2

ð12:26Þ

and hence

RC ¼ 2

1þ Pr

min
a2 ARþ

ð2Pr þ 1Þx31 þ P2
r ðx31 þT2p2Þ

a2
:ð12:27Þ

In [3] the request

RC < RC ;ð12:28Þ

for the onset of overstability is deeply analyzed and in Table XI of page 120
values of RC guaranteeing the onset of overstability for Pr ¼ 0:025 and for
various values of T2 are printout1.

1We remark that the Taylor number T2 is denoted by T in [ ].

44 s. rionero



We now obtain two overstability laws analogous to (9.2), (9.4). Setting

RC2
¼ min

a2 ARþ

ð2þ PrÞx31 þ PrT
2p2

a2
;ð12:29Þ

it follows that I2 > 0 if and only if R2 < RC2
.

On the other hand

RC2
< Pr min

a2 ARþ

x31 þT2p2

a2
þ 2 min

a2 ARþ

x31
a2

¼ PrRC þ 27

2
p4;ð12:30Þ

therefore

PrRC þ 27

2
p4 < RC ;

gives the overstability law.

Theorem 12.1. Let Pr < 1. Then

RC >
27p4

2ð1� PrÞ
;ð12:31Þ

guarantees the onset of oscillatory convection for R2 a � ~RRC ;RC ½, with

~RRC ¼ PrRC þ 27p4

2
:ð12:32Þ

Theorem 12.2. Let Pr < 1. Then

ð1þ PrÞp3

1� Pr

< T2;ð12:33Þ

guarantees oscillatory convection.

Proof. Since RC3
is given by (12.24), RC2

< RC3
Eða2; nÞ a Rþ �N gives

ð2þ PrÞx31 þ PrT
2p2 < x31 þT2p2ð12:34Þ

and (12.33) immediately follows.

Remark 12.1. We remark that, since RC is an increasing function of T2,
also Pr given by (12.31) is an increasing function of T2. Therefore in view of
table VII of [3] where values of RC are printout for increasing values of the
Taylor number T2 (denoted by T in table VII of [3]) it easily follows that, since

RCðT2 ¼ 10Þ ¼ 6771� 102;
27p4

2RC

¼ 0:48;
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it follows that for any Pr < 0:52 overstability occurs. If Pr < 0:6 it follows that
since

RCðT2 ¼ 100Þ ¼ 0:396;
27p4

2RC

¼ 0:61;

overstability is guaranteed for T2
b 100.
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