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Abstract. — In this note we survey and compare the monotonicity formulas recently discovered

by the authors in [1] and [2] in the context of classical potential theory and in the study of static
metrics, respectively. In both cases we discuss the most significant implications of the monotonicity

formulas in terms of sharp analytic and geometric inequalities. In particular, we derive the
classical Willmore inequality for smooth compact hypersurfaces embedded in Euclidean space and

the Riemannian Penrose inequality for static Black Holes with connected horizon.
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1. Introduction

In this paper, we consider two elliptic boundary value problems in exterior
domains. The first one comes form classical potential theory, whereas the other
arises in the study of static vacuum Einstein metrics with horizons in general
relativity. In both cases we introduce some relevant integral quantities defined
on the level sets of the solutions, and we prove that they are monotone along
the flow of the level sets. As a consequence of this fact, we derive sharp analytic
and geometric inequalities, whose equality cases are characterized in terms of the
rotational symmetry of the solutions or, equivalently, in terms of the spherical
symmetry of the boundary. For the complete proofs of the statements, we refer
the reader to [1], [2] and [3].

1.1. Electrostatic potentials: setting of the problem, basic properties
of the solutions and statement of the main result

We consider the electrostatic potential due to a charged body, modeled by a
bounded domain W with smooth boundary. The potential is defined as the solu-
tion u of the following problem in the exterior domain

1This paper is related to a talk given by L. Mazzieri at ‘‘XXVI Convegno Nazionale di Calcolo
delle Variazioni’’ which took place in Levico Terme on January 18–22, 2016.



Du ¼ 0 in RnnW;

u ¼ 0 on qW;

uðxÞ ! 1 as jxj ! l:

8><
>:ð1:1Þ

It is worth pointing out that the most common convention for the formulation for
this problem would be the one in which u ¼ 1 at qW and u ! 0 at infinity. The
reason for adopting a di¤erent convention lies in the fact that we want to stress
the analogies between this problem and problem (1.7) below. Throughout the
paper we assume that qW is a regular level set of u. We also observe that by the
strong maximum principle, the solution u to (1.1) takes values in ½0; 1Þ.

To fix the notation, we recall that the electrostatic capacity of the charged
body W is defined as

CapðWÞ ¼ inf
1

ðn� 2ÞjSn�1j

Z
Rn

jDwj2 dm
����w a Cl

c ðRnÞ;wC 1 in W

( )
:

In terms of the potential u, it can be computed, for every t a ½0; 1Þ, as

CapðWÞ ¼ 1

ðn� 2ÞjSn�1j

Z
qW

jDuj ds ¼ 1

ðn� 2ÞjSn�1j

Z
fu¼tg

jDuj ds;ð1:2Þ

where the last equality is an easy consequence of the Divergence Theorem. On
the other hand, the capacity of W can be used to describe the asymptotic expan-
sion of u at infinity (see [15])

u ¼ 1� CapðWÞjxj2�n þ o2ðjxj2�nÞ; as jxj ! þl;ð1:3Þ

where the shorthand notation o2ðjxj2�nÞ means that the reminder together with its
first and second derivatives are infinitesimal if compared to jxj2�n, jxj1�n, and
jxj�n, respectively. It is worth noticing that the model solutions to problem (1.1)
are the ones where the remainder terms in the above expansion are identically

equal to zero. In this case, W is a ball of radius ½CapðWÞ�1=ðn�2Þ.
In contrast with the already observed constancy of the function

t 7!
Z
fu¼tg

jDuj ds, we introduce, for pb 0, the functions

Up : ½0; 1Þ ! R; given by t 7! UpðtÞ ¼
CapðWÞ
1� t

� �ð p�1Þðn�1Þ
ðn�2Þ

Z
fu¼tg

jDuj p ds:ð1:4Þ

Using expansion (1.3), one can easily compute the limit

lim
t!1�

UpðtÞ ¼ CapðWÞ½ �pðn� 2Þ pjSn�1j;ð1:5Þ

that yields a natural extension of the functions t 7! UpðtÞ to the compact interval
½0; 1�.
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Before proceeding, it is worth noticing that the functions t 7! UpðtÞ are well
defined, since the integrands are globally bounded and the level sets of u have
finite hypersurface area. This follows from the results in [11] combined with the
properness of u. Moreover, it is not di‰cult to check that they are constant if the
potential u is rotationally symmetric. The content of our main result is that in
general these functions are non increasing and as soon as they have a critical
point they are constant, with the corresponding potential u rotationally sym-
metric and qW isometric to a ðn� 1Þ-dimensional sphere of constant curvature.

Theorem 1.1 (Monotonicity-Rigidity Theorem for Electrostatic Potentials).
Let u be a solution to problem (1.1) and let Up : ½0; 1Þ ! R be the function defined
in (1.4). Then, the following properties hold true.

(i) For every pb 1, the function Up is continuous.
(ii) For every pb 2� 1=ðn� 1Þ, the function Up is di¤erentiable and the derivative

satisfies for every t a ½0; 1Þ the inequality

U 0
pðtÞ ¼ �ðp� 1Þ CapðWÞ

1� t

� �ð p�1Þðn�1Þ
ðn�2Þ

ð1:6Þ

�
Z
fu¼tg

jDuj p�1 H�
� n� 1

n� 2

�
jD logð1� uÞj

� �
dsa 0;

where H is the mean curvature of the level set fu ¼ tg. Moreover, if there exists
t a ð0; 1� such that U 0

pðtÞ ¼ 0, then u is rotationally symmetric.

It is worth pointing out that here and throughout the paper the mean curva-
ture H of the level sets of u is computed with respect to the exterior unit normal
vector n ¼ Du=jDuj. We also notice that under the hypothesis of the above theo-
rem, formula (1.6) implies the non existence of minimal level sets of u and in
particular the non existence of smooth minimal compact hypersurfaces in Rn.
Further comments on the above statement will be given in Section 2 below, where
the main consequences will also be discussed.

We conclude this section by noticing that the threshold value p ¼
2� 1=ðn� 1Þ, that shows up at point (ii) of the above theorem, is closely related
to the method employed for proving the monotonicity statement. More precisely,
going through the argument presented in [1], it is not hard to realize that the
reason for such a threshold comes from the use of a refined version of the Kato
inequality, available for harmonic functions. It would be interesting to see if
besides this technical reason there is also a physical motivation of this fact.

1.2. Static vacuum Einstein metrics: setting of the problem, basic properties
of the solutions and statement of the main result

We consider an asymptotically flat n-dimensional Riemannian manifold ðM; gÞ,
nb 3, with one end and with a nonempty, smooth, connected, compact boundary
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qM. We assume that there exists a function v a ClðMÞ such that the triple
ðM; g; vÞ satisfies the system

vRic ¼ D2v in M;

Dv ¼ 0 in M;

v ¼ 0 on qM;

vðxÞ ! 1 as jxj ! þl;

8>>><
>>>:

ð1:7Þ

where Ric, D, and D represent the Ricci tensor, the Levi–Civita connection, and
the Laplace–Beltrami operator of the metric g, respectively. To clarify the mean-
ing of the last condition in (1.7) we refer the reader to the precise definition of
asymptotically flat Riemannian manifold, which is given a few lines below. Here
we just observe that, outside a given compact set, our manifold is di¤eomorphic
to the exterior of a ball in Rn. Such a di¤eomoerphism naturally induces coor-
dinates ðx1; . . . ; xnÞ and consequently their Euclidean norm jxj. Hence, the last
condition in (1.7) really means that the function v is approaching the value 1 at
infinity.

In the rest of the paper the metric g and the function v will be referred to
as static (vacuum Einstein) metric and static potential, respectively, whereas the
triple ðM; g; vÞ will be called a static solution. A classical computation shows
that if ðM; g; vÞ satisfies (1.7), then the Lorentzian metric g ¼ �v2 dtn dtþ g
satisfies the vacuum Einstein equations

Ricg ¼ 0 in R� ðMnqMÞ:

To complete the picture, we observe that, as a consequence of the system (1.7),
the scalar curvature R of g is identically equal to zero. Moreover, the boundary
qM is a totally geodesic hypersurface embedded in M, and the function jDvj is
constant on qM. It is also worth noticing that, since v is a non constant harmonic
function in M and the boundary qM is assumed to be regular, the Hopf Lemma
implies that jDvj > 0 on qM and the Strong Maximun Principle implies that v
takes values in ½0; 1Þ.

To further specify our assumptions, we recall from [7] that a solution ðM; g; vÞ
to (1.7) is said to be asymptotically flat if there exists a compact set K � M and a
di¤eomorphism x ¼ ðx1; . . . ; xnÞ : MnK ! RnnB such that the metric g and the
static potential v satisfy the following asymptotic expansions.

(i) In the coordinates induced by the di¤eomorphism x the metric g can be
expressed in MnK as

g ¼ gab dx
a n dxb;

and the components satisfy the decay conditions

gab ¼ dab þ hab; with hab ¼ o2ðjxj
2�n
2 Þ; as jxj ! þl;ð1:8Þ

for every a; b a f1; . . . ; ng.
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(ii) In the same coordinates, the static potential v can be written as

v ¼ 1�mjxj2�n þ o2ðjxj2�nÞ; as jxj ! þl;ð1:9Þ

for some positive real number m > 0.

Without entering into the details, it is worth mentioning that expansion (1.9) in
(ii), which represents the counterpart of (1.3) in this relativistic context, can be
deduced from (i) using Dv ¼ 0. Moreover, we recall (see for instance [7] and
[16]) that the coe‰cient m that shows up in expansion (1.9) coincides with the
ADM mass mADMðM; gÞ of the asymptotically flat manifold ðM; gÞ and can be
computed in terms of v as

m ¼ mADMðM; gÞ ¼ 1

ðn� 2ÞjSn�1j

Z
qM

jDvj dsð1:10Þ

¼ 1

ðn� 2ÞjSn�1j

Z
fv¼tg

jDvj ds;

where the last equality is an easy consequence of the Divergence Theorem.
By far, the most important solution to system (1.7) obeying the above decay

conditions is the so called Schwarzschild solution. To describe it, we consider, for
a fixed m > 0, the manifold with boundary M given by the exterior domain
Rnnfjxj < ð2mÞ1=ðn�2Þg in the n-dimensional Euclidean space, so that qM ¼
fjxj ¼ ð2mÞ1=ðn�2Þg. The static metric g and the static potential v corresponding to
the Schwarzschild solution are then given by

g ¼ djxjn djxj
ð1� 2mjxj2�nÞ

þ jxj2gSn�1 and v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2mjxj2�n

q
;ð1:11Þ

respectively. In dimension n ¼ 3, it is known by the work of Israel [14], Robinson
[17], and Bunting and Masood-Ul-Alam [7] (where the boundary of M is a priori
allowed to have several connected components) that (1.11) is the only static solu-
tion which is asymptotically flat with ADM mass equal to m > 0. This is the
content of the so called Black Hole Uniqueness Theorem (see [10, 12, 18] for a
comprehensive description of the subject). As a byproduct of our analysis, we
will recover this result (see Theorem 2.11 below) and we will discuss some geo-
metric conditions under which the same statement holds true in every dimension
(see Theorem 2.12 below).

In analogy with the case of the electrostatic potentials, we introduce, for
pb 0, the functions

Vp : ½0; 1Þ ! R; given by t 7! VpðtÞ ¼
2m

1� t2

� �ð p�1Þðn�1Þ
ðn�2Þ

Z
fv¼tg

jDvj p ds;ð1:12Þ
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where ðM; g; vÞ is a static solution. Using expansion (1.9), one can easily compute
the limit

lim
t!1�

VpðtÞ ¼ mpðn� 2Þ pjSn�1j;ð1:13Þ

that yields a natural extension of the functions t 7! VpðtÞ to the compact interval
½0; 1�. Again, it is easy to check that these functions are constant if computed on
a Schwarzschild solution. More in general, they are non increasing and the
monotonicity is strict unless both the static metric g and the static potential v
are rotationally symmetric. This is the content of the following theorem.

Theorem 1.2 (Monotonicity-Rigidity Theorem for Static Metrics). Let ðM; g; vÞ
be an asymptotically flat solution to problem (1.7) with ADM mass equal to m > 0
and let Vp : ½0; 1Þ ! R be the function defined in (1.12). Then, the following pro-
perties hold true.

(i) For every pb 1, the function Vp is continuous.
(ii) For every pb 2� 1=ðn� 1Þ, the function Vp is di¤erentiable and the deriva-

tive satisfies for every t a ½0; 1Þ the inequality

V 0
pðtÞ ¼ �ðp� 1Þ 2m

1� t2

� �ð p�1Þðn�1Þ
ðn�2Þ

ð1:14Þ

�
Z
fv¼tg

jDvj p�1 H�
� n� 1

n� 2

�
jD logð1� v2Þj

� �
dsa 0;

where H is the mean curvature of the level set fv ¼ tg, computed with respect
to the normal Dv=jDvj. Moreover, if there exists t a ð0; 1Þ such that V 0

pðtÞ ¼ 0,
then ðM; g; vÞ is isometric to a Schwarzschild solution with ADM mass equal
to m > 0.

(iii) For every pb 2� 1=ðn� 1Þ, V 0
pð0Þ ¼ 0 and V 00

p ð0Þ ¼ limt!0þ V
0
pðtÞ=t satisfies

the inequality

V 00
p ð0Þ ¼ �

� p� 1

2

�
ð2mÞ

ð p�1Þðn�1Þ
ðn�2Þð1:15Þ

�
Z
qM

jDvj p�2 RqM � 4
� n� 1

n� 2

�
jDvj2

� �
dsa 0;

where RqM is the scalar curvature of the metric gqM induced by g on qM.
Moreover, if V 00

p ð0Þ ¼ 0, then ðM; g; vÞ is isometric to a Schwarzschild solution
with ADM mass equal to m > 0.

Remark 1. We point out that points (ii) and (iii) above are proven only for
pb 3 in the reference [2]. However, a straightforward adaptation of the argu-
ments presented in [1] yields the desired conclusion.
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Some comments are in order about the analogies and the di¤erences between
point (ii) in Theorem 1.1 and points (ii) and (iii) in Theorem 1.2. As already
observed, the monotonicity formula in Theorem 1.1 implies at once the non
existence of compact minimal hypersurfaces sitting inside the Euclidean space.
In contrast with this, we have that the boundary of a static solution ðM; g; vÞ is
always totally geodesic. In particular, the condition V 0

pð0Þ ¼ 0 is always fulfilled
and does not force any rigidity. For these reasons, the relevant condition at qM
becomes V 00

p ð0Þ ¼ 0, as described in point (iii) of the above statement. According
to formulæ (1.6) and (1.15), it will become extremely evident in the next section
the perfect parallelism between the roles played by

H

n� 1
on qW and

RqM

ðn� 1Þðn� 2Þ on qM

in the setting of problem (1.1) and problem (1.7), respectively. Here we just
observe that for rotationally symmetric solutions both quantities are constant
and coincide with ½CapðWÞ��1=ðn�2Þ and ð2mÞ�1=ðn�2Þ, respectively.

2. Consequences of the Monotonicity-Rigidity Theorems

In this section we discuss the most relevant consequences of Theorem 1.1 and
Theorem 1.2, emphasizing the analogies and the di¤erences between the two
cases. A first bunch of corollaries is deduced by exploiting the local features of
the monotonicity, namely the sign of the derivative of Up and Vp, whereas the
most geometric conclusions will follow from the global aspects of the monoto-
nicity, namely the comparison between the values of Up and Vp at the boundaries
and at infinity. In the latter case, we will take advantage of formulæ (1.5) and
(1.13).

2.1. Consequences of the local aspects of the monotonicity

We start with a couple of integral inequalities, which follows directly from for-
mulæ (1.6), (1.14) and (1.15). The equality case characterizes the rotationally
symmetric solutions.

For the electrostatic potential we have:

Theorem 2.1. Let u be a solution to problem (1.1). Then, for every
pb 2� 1=ðn� 1Þ and every t a ½0; 1Þ, the inequality

Z
fu¼tg

D logð1� uÞ
n� 2

����
����
p

dsa

Z
fu¼tg

D logð1� uÞ
n� 2

����
����
p�1

H

n� 1
dsð2:1Þ

holds true, where H is the mean curvature of the level set fu ¼ tg. Moreover, the
equality is fulfilled for some t0 a ½0; 1Þ if and only if u is rotationally symmetric.
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To emphasize the analogy with the subsequent Theorem 2.3, we observe that
for t ¼ 0 the above inequality reduces to

Z
qW

Du

n� 2

����
����
p

dsa

Z
qW

Du

n� 2

����
����
p�1

H

n� 1
ds;ð2:2Þ

where H is the mean curvature of qW.
For the static metrics we have:

Theorem 2.2. Let ðM; g; vÞ be an asymptotically flat solution to problem (1.7)
with ADM mass equal to m > 0. Then, for every pb 2� 1=ðn� 1Þ and every
t a ½0; 1Þ, the inequality

Z
fv¼tg

D logð1� v2Þ
n� 2

����
����
p

dsa

Z
fv¼tg

D logð1� v2Þ
n� 2

����
����
p�1

H

n� 1
dsð2:3Þ

holds true, where H is the mean curvature of the level set fv ¼ tg. Moreover, the
equality is fulfilled for some t0 a ð0; 1Þ if and only if ðM; g; vÞ is isometric to a
Schwarzschild solution with ADM mass equal to m > 0.

Theorem 2.3. Let ðM; g; vÞ be an asymptotically flat solution to problem (1.7)
with ADM mass equal to m > 0. Then, for every pb 2� 1=ðn� 1Þ, it holds

Z
qM

2Dv

n� 2

����
����
p

dsa

Z
qM

2Dv

n� 2

����
����
p�2

RqM

ðn� 1Þðn� 2Þ ds;ð2:4Þ

where RqM denotes the scalar curvature of the metric induced by g on qM. More-
over, the equality holds if and only if ðM; g; vÞ is isometric to a Schwarzschild
solution with ADM mass equal to m > 0.

Applying the Hölder inequality to the right hand side of (2.2) and (2.4), we
obtain geometric upper bounds for the Lp-norm of the normal derivative of the
solutions at the boundary. Combining these facts with formulæ (1.2) and (1.10),
we easily deduce geometric upper bounds for both the electrostatic capacity and
the mass.

For the electrostatic potential we have:

Corollary 2.4. Let u be a solution to problem (1.1). Then, for every
pb 2� 1=ðn� 1Þ the inequality

qu

qn

����
����
L pðqWÞ

a ðn� 2Þ H

n� 1

����
����
L pðqWÞ

ð2:5Þ

holds true, where H is the mean curvature of qW and n is the unit normal vector
of qW pointing toward the interior of RnnW. Moreover, the equality is fulfilled if
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and only if u is rotationally symmetric. Finally, letting p ! þl in the previous
inequality, one has that

max
qW

qu

qn

����
����a ðn� 2Þ max

qW

H

n� 1

����
����:ð2:6Þ

Corollary 2.5. Let W � Rn, nb 3, be a bounded domain with smooth bound-
ary. Then, for every pb 2� 1=ðn� 1Þ, the inequality

CapðWÞa jqWj
jSn�1j

Z
qW

H

n� 1

����
����
p

ds

� 	1=p
ð2:7Þ

holds true, where H is the mean curvature of qW. Moreover, the equality is fulfilled
for some pb 2� 1=ðn� 1Þ if and only if W is a round ball. Finally, letting
p ! þl in the previous inequality, one has that

CapðWÞa jqWj
jSn�1j

max
qW

H

n� 1

����
����:ð2:8Þ

Moreover, the equality is fulfilled if and only if W is a round ball.

For the static metrics we have:

Corollary 2.6. Let ðM; g; vÞ be an asymptotically flat solution to problem
(1.7) with ADM mass equal to m > 0. Then, for every pb 2� 1=ðn� 1Þ, the
inequality

qv

qn

����
����
L pðqMÞ

a

� n� 2

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RqM

ðn� 1Þðn� 2Þ

����
����
L p=2ðqMÞ

s
ð2:9Þ

holds true, where RqM is the scalar curvature of the metric induced by g on qM.
Moreover, the equality holds if and only if ðM; g; vÞ is isometric to a Schwarzschild
solution with ADM mass equal to m > 0. Finally, letting p ! þl in the previous
inequality, one has that

max
qM

qv

qn

����
����a� n� 2

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max
qM

RqM

ðn� 1Þðn� 2Þ

����
����

s
:ð2:10Þ

Corollary 2.7. Let ðM; g; vÞ be an asymptotically flat solution to problem (1.7)
with ADM mass equal to m > 0. Then, for every pb 2� 1=ðn� 1Þ, the inequality

2ma
jqMj
jSn�1j

Z
qM

RqM

ðn� 1Þðn� 2Þ

����
����
p=2

ds

 !1=p
ð2:11Þ

holds true, where RqM is the scalar curvature of the metric induced by g on qM.
Moreover, the equality holds if and only if ðM; g; vÞ is isometric to a Schwarzschild
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solution with ADM mass equal to m > 0. Finally, letting p ! þl in the previous
inequality, one has that

2ma
jqMj
jSn�1j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max
qM

RqM

ðn� 1Þðn� 2Þ

����
����

s
:ð2:12Þ

Moreover, the equality is fulfilled if and only if ðM; g; vÞ is isometric to a Schwarzs-
child solution with ADM mass equal to m > 0.

Remark 2. In both the inequalities (2.6) and (2.10) it would be interesting to
see if the equality case can be characterized in terms of the rotational symmetry
of the solution.

2.2. Consequences of the global aspects of the monotonicity

So far we have used the local feature of the monotonicity, namely the facts that
U 0

p a 0, V 0
p a 0 and V 00

p ð0Þa 0, to deduce a first group of corollaries of Theorems

1.1 and 1.2. To state further consequences, we now exploit the global feature of
the monotonicity, comparing our quantities on di¤erent level sets of the function
u or v. By keeping one of these level sets fixed and letting the other become larger
and larger, for every t a ½0; 1Þ and pb 2� 1=ðn� 1Þ, we have that

UpðtÞb lim
t!1�

UpðtÞ ¼ ½CapðWÞ� pðn� 2Þ pjSn�1j

and

VpðtÞb lim
t!1�

VpðtÞ ¼ mpðn� 2Þ pjSn�1j:

Setting t ¼ 0 and using (2.5) and (2.9) as well as the definitions of Up and Vp, we
get the following chains of sharp inequalities

jSn�1j
1
p½CapðWÞ�1�

ð p�1Þðn�1Þ
pðn�2Þ a

Du

n� 2

����
����
L pðqWÞ

a
H

n� 1

����
����
L pðqWÞ

ð2:13Þ

and

jSn�1j
1
pð2mÞ1�

ð p�1Þðn�1Þ
pðn�2Þ a

2Dv

n� 2

����
����
L pðqMÞ

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RqM

ðn� 1Þðn� 2Þ

����
����
L p=2ðqMÞ

s
ð2:14Þ

where the equalities are fulfilled if and only if the solutions are rotationally
symmetric. Setting p ¼ n� 1 in the above inequalities, the factors involving the
capacity of W and (twice) the mass of ðM; gÞ become 1 and we can deduce some
purely geometric consequences of our theory. In the case of the electrostatic
potentials, we re-obtain the well known Willmore inequality, together with the
corresponding rigidity statement (see [19], [9], and also [8, Theorem 3]).
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Corollary 2.8 (Willmore inequality). Let W � Rn, nb 3, be a bounded
domain with smooth boundary. Then, the inequality

jSn�1ja
Z
qW

H

n� 1

����
����
n�1

dsð2:15Þ

holds true, where H is the mean curvature of qW. Moreover, the equality is fulfilled
if and only if W is a round ball.

In the case of static metrics, we obtain the following Willmore-type inequality.

Corollary 2.9 (Willmore-type inequality). Let ðM; g; vÞ be an asymptotically
flat solution to problem (1.7) with ADM mass equal to m > 0. Then, for every
pb 2� 1=ðn� 1Þ, the inequality

jSn�1ja
Z
qM

RqM

ðn� 1Þðn� 2Þ

����
����
ðn�1Þ=2

dsð2:16Þ

holds true, where RqM is the scalar curvature of the metric induced by g on qM.
Moreover, the equality holds if and only if ðM; g; vÞ is isometric to a Schwarzschild
solution with ADM mass equal to m > 0.

2.3. On the classification of static vacuum Einstein metrics

We conclude this note with the description of further consequences of our analy-
sis in the setting of problem (1.7). Using (1.10), one can rewrite the first inequality
in (2.14) as R

qM
jDvj ds
R

qM
jDvj p ds

�1=p
" # pðn�2Þ

ð p�1Þðn�1Þ

a 2m
� jqMj
jSn�1j

��n�2
n�1
:

On the other hand, jDvj is constant on the boundary of M and thus the left hand
side is equal to 1. We have thus obtained the Riemannian Penrose Inequality for
static solution

1

2

� jqMj
jSn�1j

�n�2
n�1

amð2:17Þ

in every dimension. Such inequality is known to hold up to dimension n ¼ 7, in
the more general context of asymptotically flat manifolds with nonnegative scalar
curvature and compact (outward minimizing) minimal boundary. For a com-
prehensive discussion about the general Riemannian Penrose Inequality and its
generalizations up to dimension n ¼ 7 we refer the reader to [5, 6, 13] and the
references therein.

In our context it is also possible to obtain an interesting upper bound for m.
To see this, it is su‰cient to observe that inequality (2.4), restricted to p ¼ 2 and
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coupled with Jensen inequality and with (1.10), yields

ð2mÞ2
� jSn�1j

jqMj

�
ðn� 1Þðn� 2ÞjSn�1ja

Z
qM

RqM ds:

Up to some algebraic manipulations, we have obtained the Reverse Riemannian
Penrose Inequality

ma
1

2

� jqMj
jSn�1j

�n�2
n�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� jqMj
jSn�1j

��n�3
n�1

R
qM

RqM ds

ðn� 1Þðn� 2ÞjSn�1j
:

s
ð2:18Þ

Combining (2.17) with (2.18) gives the following theorem.

Theorem 2.10 (Penrose Inequality and Reverse Penrose Inequality for static
metrics). Let ðM; g; vÞ be an asymptotically flat solution to problem (1.7) with
ADM mass equal to m > 0. Then, for every nb 3, the inequalities

1

2

� jqMj
jSn�1j

�n�2
n�1

ama
1

2

� jqMj
jSn�1j

�n�2
n�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� jqMj
jSn�1j

��n�3
n�1

R
qM

RqM ds

ðn� 1Þðn� 2ÞjSn�1j

s
ð2:19Þ

hold true. Moreover, the equality holds in either the first or in the second inequality
in the above formula if and only if the static solution ðM; g; vÞ is isometric to a
Schwarzschild solution with ADM mass equal to m > 0.

To describe some immediate consequences of the above theorem, we observe
that, in dimension n ¼ 3, the Gauss–Bonnet Formula givesZ

qM

RqM ds ¼ 4pwðqMÞa 8p;

where wðqMÞ is the Euler characteristic of qM. In particular, the term under
square root in (2.19) is always bounded above by 1. Hence, the equality holds
in (2.19) and we can recover the classical 3-dimensional Black Hole Uniqueness
Theorem.

Theorem 2.11 (Black Hole Uniqueness Theorem). Let ðM; g; vÞ be a
3-dimensional asymptotically flat solution to problem (1.7) with ADM mass equal
to m > 0. Then, ðM; g; vÞ is isometric to a Schwarzschild solution with ADM
mass equal to m > 0.

Now, going back to formula (2.19), it is important to notice that the term
under the square root is scaling invariant. In fact, it can be rewritten in terms of
the ðn� 1Þ-dimensional renormalized Einstein–Hilbert functional. We recall that
for a compact ðn� 1Þ-dimensional manifold S, this functional is defined as

g 7! ES
n�1ðgÞ ¼ jSj�

n�3
n�1

g

Z
S

Rg dsg;ð2:20Þ

where jSjg represents the ðn� 1Þ-dimensional volume of S computed with respect
to the metric g, whereas dsg and Rg are respectively the volume element and
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the scalar curvature of g. The minimizers of the renormalized Einstein–Hilbert
functional over a given conformal class are constant scalar curvature metrics
called Yamabe metrics. It follows from the celebrated works of Aubin and
Schoen on the resolution of the Yamabe problem that for every compact ðn� 1Þ-
dimensional manifold S, with nb 4, it holds

supfES
n�1ðgÞ j g is a Yamabe metric on SgaESn�1

n�1 ðgSn�1Þ:

In this setting, formula (2.19) can be rephrased as

1

2

� jqMj
jSn�1j

�n�2
n�1

ama
1

2

� jqMj
jSn�1j

�n�2
n�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EqM
n�1ðgqMÞ

ESn�1

n�1 ðgSn�1Þ

vuut :ð2:21Þ

This gives the following theorem, which shows how the rotational symmetry of
the static solution ðM; g; vÞ can be detected from the knowledge of the intrinsic
geometry of the boundary, in dimension nb 4.

Theorem 2.12. For every nb 4, let ðM; g; vÞ be a n-dimensional asymptotically
flat solution to problem (1.7) with ADM mass equal to m > 0. Then, we have

ESn�1

n�1 ðgSn�1ÞaEqM
n�1ðgqMÞ;ð2:22Þ

where gqM is the metric induced by g on qM. Moreover, the equality holds if and
only if ðM; g; vÞ is isometric to a Schwarzschild solution with ADM mass equal
to m > 0. In particular, if gqM is a Yamabe metric, then ðM; g; vÞ is rotationally
symmetric.

Added Note. A positive answer to the question raised in Remark 2 has been
recently given in [4] for both inequalities (2.6) and (2.10).
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