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Partial Differential Equations — Some remarks on the L? regularity of second
derivatives of solutions to non-divergence elliptic equations and the Dini condition,
by Luis EscAURIAZA and SANTIAGO MONTANER, communicated on November
11, 2016.1

ABSTRACT. — In this note we prove an end-point regularity result on the L7 integrability of the
second derivatives of solutions to non-divergence form uniformly elliptic equations whose second
derivatives are a priori only known to be integrable. The main assumption on the elliptic operator
is the Dini continuity of the coefficients. We provide a counterexample showing that the Dini
condition is somehow optimal. We also give a counterexample related to the BMO regularity of
second derivatives of solutions to elliptic equations. These results are analogous to corresponding
results for divergence form elliptic equations in [3, 15].
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1. INTRODUCTION

In this note we investigate some regularity issues for solutions to non-divergence
form elliptic equations whose second derivatives are locally integrable. Given
an open bounded domain Q C R”, we will assume that 4(x) = (a;(x)) is a real
symmetric matrix such that there is a 4 > 0 verifying

/1|f|2 <AXx)E-E< },_1|f\2, for any £ € R", x € Q.

Here we deal with solutions of operators of the form

(1.1) Lu = tr(AD*u) = zn: a;;(x)0gu,

ij=1

where the entries of the matrix A are continuous functions in Q.
We recall the reader the following regularity fact [13, Lemma 9.16]:

LEMMA 1. Let p, q be such that 1 < p < q < oo and f be in L1(Q). If u in
W2 (Q) verifies Pu = f in Q, then u e W2I(Q).
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The previous result does not cover the case p = 1 and, as far as we know, this
case has not been considered in the literature. It is the purpose of this note to deal
with it. We remark that Lemma 1 is true under the mere assumption of the
continuity of the coefficients. However, as we shall see, this mild assumption is
not enough in order to improve the integrability of the second derivatives of
Wli’cl solutions. On the contrary, a Dini-type condition on the coefficients is
sufficient for this purpose and it is optimal. Here we will consider the following

Dini condition:

DEFINITION 1. A function f:Q C R" — R is Dini continuous in Q if there is
continuous a non-decreasing function 6 : [0, +o0) — [0, 4+00) verifying

|f(x) = f(») < 0(]x — y[), foranyx,yeQ

and such that

(1.2) /Olﬁdz < 4o
and
(1.3) 0(21) < 20(1), forte (o%)

We will say that 0 is the Dini modulus of continuity of f.

Condition (1.3) is not restrictive. In fact, as we learnt from [1, Remark 1], any
modulus of continuity satisfying (1.2) can be dominated by

reln1] T

which is again a Dini modulus of continuity such that 6(¢)/¢ is non-increasing.
The later implies (1.3) for 6.

Before stating our results we first briefly review the case of elliptic equations
in divergence form. In this situation, motivated by a question raised in [21] and
the results in [14], H. Brezis proved the following [3, Theorems 1 and 2].

THEOREM 1. Let A be a uniformly elliptic matrix such that A is Dini continuous
in Q. Let uin W1(Q) solve

/ AVu-Vodx =0, forany ¢ in C°(Q).
Q

Then, for any 1 < p < o0, u is in WIL’CP(Q) and

(1.4) ull vy < Clluell i g
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for any compact subset K C Q, where C depends on n, p, K, the ellipticity constant,
Q and the uniform modulus of continuity of the coefficients, but not on the Dini
modulus of continuity.

The independence of the constant in (1.4) with respect to the Dini modulus of
continuity by no means implies that this result is true when the coefficients are
merely continuous in Q: a counterexample to such assertion is given in [15].

In the context of non-divergence form elliptic equations, the main result
proved in this note is the following.

THEOREM 2. Assume that the coefficients of ¥ are Dini continuous in Q and let
u in W1 Q) satisfy Lu=f, a.e in Q with f in L(Q), for some 1 < p < 0.
Then u is in W,2!'(Q) and

ull oy < Clllullwzai@) + 11l Lr@)s

for any compact subset K C Q, where C depends on n, p, K, 1, Q and the uniform
modulus of continuity of the coefficients, but not on the Dini modulus of continuity.

Similarly to the case of divergence form elliptic equations, the Dini condition
on A is the optimal to derive such a result. Here we give a counterexample
inspired by [8, Section 3], showing that Theorem 2 is false when the coefficients
of # are not Dini continuous.

THEOREM 3. There is an operator & with continuous coefficients in By, which are
not Dini continuous at x = 0, and a solution u in W>'(By) n Wy (B1) of Lu=0
such that u is not in WZ’”(B%),for any p > 1.

Concerning the other end-point in the scale of L” spaces, we recall that the
singular integrals theory [23, Chapter 1V] allows to prove that weak solutions
[13, Chapter 8] to Au = f in B, have generalized second order derivatives in
BMO(B;) when f € L*(B,). Moreover, the Laplace operator can be perturbed
in order to obtain similar results for elliptic operators (1.1) with Dini continuous
coeflicients [7] or with A verifying

(1.5) [A(x) = A(y)| < C/[1 + [log|]x — y| ],

for some C > 0 sufficiently small [5, Theorem A, ii and Corollary 4.1].

As far as we know, there are no counterexamples in the literature showing
that mere continuity of the coefficients is not enough to prove that the second
derivatives of solutions of elliptic equations do not belong to BMO in general.
The next counterexample, which is a modification of [15, Proposition 1.6], fills
this gap.

THEOREM 4. There exists an operator & with continuous coefficients in By, which
are not Dini continuous at x =0, and a solution u in W*?(Bj) N WOI’I’(BI) of
PLu=0,1< p< oo, such that D*u is not in BMO(B%).
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The counterexample in Theorem 4 is sharp because its coefficient matrix A
verifies (1.5) for x, y in By, for some fixed C > 0.

The main ingredients in the proof of Theorem 2 are the Sobolev inequality
and the boundedness of solutions to equations involving the formal adjoint
operator #* given by

L= Z 0;(a"v).
ij=1

In order to make sense of the solutions associated to the operator .#* when the
coefficients of ¥ are only continuous we must consider distributional or weak
solutions to the adjoint equation. For our purposes, we need to deal with bound-
ary value problems of the form

* 0 q: 2 .
(1.6) {3 w=div-®+y, inQ,

w:lp—k%, on 0Q),

where @ = (p) |, div’® =37, || due", with
(1.7) ®in L7(Q), ninL?(Q), yinLP(0Q,do), 1< p< .

DEFINITION 2. Let Q C R” be a bounded C!'! domain with unit exterior

normal vector v = (vi,...,v,), ®, ¥ and 5 verify (1.7), let £ be as in (1.1),

l<p<ooand L4+ =1 We say that w in L?(Q) is an adjoint solution of
. D

(1.6) if w satisfies

(1.8) /1v$udy:/tr((DDzu)dy—i—/nudy—l—/ WAVu -vdao(y),
Q Q Q Q

for any u in W22 (Q) N Wol’”/(Q).

Later we shall explain why this definition makes sense. At first, the boundary
conditions in (1.6) may look strange. However, if we formally multiply (1.6) by a
test function u in C*(Q) with u = 0 on 0Q, assume that w is in C*(Q) and inte-
grate by parts, taking into account that Vu = (Vu - v)v on 0Q, we arrive at (1.8).

We will also consider local adjoint solutions of

FLw=div’®+y inQ,

i.e., solutions which do not satisfy any specified boundary condition. Such local
solutions are those in L (Q) that verify (1.8), when u is in WO2 7 (Q); thus, the
boundary integrals in (1.8) are omitted.

This kind of adjoint solutions have been already studied in the literature. For
instance, in [22, 2, 12, 11, 9, 19] solutions of (1.6) with ® = 0 are studied under
low regularity assumptions on either the coefficients of .# or the boundary of the
domain. Moreover, when the data and the boundary of the domain involved in
(1.6) are smooth, the weak formulation (1.8) can be recasted in such a way that
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the regularity theory in [18] or [20] can be used to prove that w is smooth and
solves (1.6) in a classical sense.

For our purposes we need to prove the existence and uniqueness of such
adjoint solutions.

LEMMA 2. Let 1 < p < oo and assume that (1.7) holds. Then, there exists a
unique adjoint solution w in L?(Q) of (1.6). Moreover, the following estimate holds

(1.9) IWllLo@) < ClIRl L) + 17llr@) + Wl Lrea):
where C depends on Q, p, n, A and the continuity of A.

This result follows from the so-called transposition or duallty method [18, 20],
which relies on the existence and uniqueness of W' W (Q) solutions to
Lu=f.

Finally, the proof of Theorem 2 requires the boundedness of certain adjoint
solutions to problems of the form (1.6) with ® = 0. It is at this point where the
Dini continuity of the coefficients plays a role. However, and similarly to what it
was done in [3], we only employ the boundedness of these adjoint solutions in a
qualitative form, that is, we do not need an specific estimate of the boundedness
of those adjoint solutions.

In order to prove the boundedness of the specific adjoint solutions, we employ
a perturbative technique based on ideas first established in [4, 6] and used in [17]
to prove the continuity of the gradient of solutions to divergence-form second
order elliptic systems with Dini continuous coefficients. Accordingly, we do not
only prove that those adjoint solutions are bounded but also their continuity.

LEMMA 3. Let { € C{°(B3), 1 < p < oo and assume that the elliptic operator &
has Dini continuous coefficients in Bs. Then, if v in L?(By) satisfies

/ vLudx = | Cudx, foranyue W>P(By) N Wol’p/(B4),
B By

v is continuous in Bs.

The paper is organized as follows: in Section 2 we give the counterexamples
stated in Theorems 3 and 4; in Section 3 we prove Lemma 2 using the duality
method; in Section 4 we prove that certain adjoint solutions are continuous and
in Section 5 we prove Theorem 2.

2. COUNTEREXAMPLES

In this section we give two counterexamples. Both of them arise as solutions of
uniformly elliptic operators of the form

2.1) %u—tr[(l—l—a(r);@)—:)Dzu},
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where (x ® x); = x;x;, r=[x|, with o is a continuous radial function in B,
a(0) = 0. ‘

PrOOF OF THEOREM 3. If we look for a radial solution u of (2.1), we find that
u must satisfy

—1
(2.2) L = (or) + D" + =i = 0.

We choose

1
R —
u(r):/ zl‘”(log7> “dt, > 1,

with R > 1 to be chosen. Then
RN\~
/ _ _d-n ot
u'(r)=—r <logr>

u"(ry=r" (logg)iy {n —-1- y(logé)l} .

Hence, u € W>'(B)) n W, ' (By) but D*u ¢ L?(By) for any p > 1, when y > 1
and R > 1. Solving (2.2) for « we obtain

B V4
«(r) = (n—1)log® -’

which ensures the uniform ellipticity and the continuity of the coefficients of
%, over B;, when R is sufficiently large. However, o is not Dini continuous at
x=0. O
PROOF OF THEOREM 4. Let ¢ € C?((0,1]), @ € C(]0,1]) and define

u(x) = x1x20(r).

A computation shows that

X1X
Lu = % [(n+3)rg' + 29" + a(2p + 4rg’ + 1r*9"))].

Choosing ¢(r) = (logé)2 for some R > 1 yields

_X])C2 R R\2
’%”_VT 1+a—(2+n+3a)10g7+a(10g7) ],
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which is identically zero in B;(0) provided that

(24 n)log®—1
(log®)* —3log® 41’

and R > 1 is taken large enough in order to ensure the uniform ellipticity and the
continuity of the coefficients of %, in B;. A computation shows that

Opu > = 3 (log )2 on By,

when R >1is large enough. Moreover, for any ¢ € R there is ¢ = ¢(c) such that
(log® ) > 4|c| in B,. Thus

/ eNonu=d gy > / R +o0, forany N >0,ceR.
B B,
2

By the John-Nirenberg inequality [16], d;,u cannot belong to BMO(B;). O

3. EXISTENCE OF ADJOINT SOLUTIONS

We recall the following well known existence result for the Dirichlet problem for
non-divergence form elliptic equations [13, Theorem 9.15, Lemma 9.17].

LEMMA 4. Let Q C R" be a C"! domazn fbein LP(Q) and 1 < p < co. Then,
there exists a unique u € W*P(Q) N W P(Q) such that $u = f a.e. in Q. More-
over, there is a constant C > 0 dependmg on Q, p, n, 2 and the modulus of con-
tinuity of A such that

(3.1) [ullw2r@) < Cll Lo

An easy consequence of Lemma 4 is the existence and uniqueness of adjoint
solutions to (1.6) stated in Lemma 2.

PrOOF OF LEMMA 2. We construct the solution by means of tranposition. If p’
is the conjugate exponent of p, we define the functional 7 : L?'(Q) — R by

(3.2) T(f):/Qtr((DDzu)dx—i—/Qnudx—i—/mszVwvda,

where u in W22 (Q) N WOI"’/(Q) verifies Zu = f, a.e. in Q. Combining (3.1), the
trace inequality [10, §5.5, Theorem 1], (3.2) and Holder’s inequality, it is straight-
forward to check that

[T < ClS Mz @ Pl o) + 171l o) + W] Lo
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where C = C(4,Q, p,n). Hence T is a bounded functional on L”'(Q) and by the
Riesz representation Theorem, there is a unique w in L?(Q) such that

(3.3) T(f) = / wfdx, forany f e L (Q).
Q
Moreover,

Wllzri) < CllPl o) + 11l @) + W llree)-

Now, combining (3.2) and (3.3), it is clear that w is the unique adjoint solution
to (1.6). O

4. PrROOF OF LEMMA 3
For the proof of Lemma 3 we need first the following Lemma.

LEMMA 5. Let ® € L?(By), € L*(By), we L?(By), 1 < p < o0 and & be an
operator like (1.1) with continuous coefficients and A(0) = I, the identity matrix.
Then, if

P*w=div’® +y, inB,

there exists a harmonic function h in B% such that

12l Lo my) < MWl Loes,):
(4.1) !
W = hllLr5,) < MI||®D|

3
3

o) T |4 - IHL%(BI)HWHLP(B]) + ||’7||Lcc(B])],

where M depends on p, n, A and the modulus of continuity of A.

PrOOF OF LEMMA 5. We first prove Lemma 5 assuming that the coefficients of
% and data are smooth in B;. However, the constants in the estimate will only
depend on p, A, n and the modulus of continuity of 4. Under these assumptions,
the regularity theory [20, 18], implies that w is smooth in B;. By Fubini’s theo-
rem, there is% <t < 1 such that

_1
(4.2) IWllo@sy < 47710l Loes,)-
Using Lemma 2 we can find a function / such that
A*h =0, in By,
h=w, on 0By,

in the sense of (1.6). Of course, /2 is harmonic in the interior of B,. Moreover, the
estimate provided by Lemma 2 together with (4.2) imply

_1
(4.3) 12l Lopy < MWl Lo,y < M4

WHLP(BI)’
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with M = M (p,n). Then w — h satisfies

(4.4) /B (w — h) Ludx — /B tr[h( — A)D%u] dx + / tr[® D] dx

B

+/ nudx—i—/ w(d—1)Vu-vdo
B, 2B,

- /B tr[h(1 — A)D*u] dx + / tr[®D*u] dx

B

A—-1I)v-
+/ nudx—i—/ wﬁAVu-vda
B, 0B, Av-vy

for any u € W>P'(B,) n WOI’I’/(B,). Therefore, w — h is an adjoint solution to a
problem which falls into the conditions of Lemma 2 and we can apply (1.9) to
the equation (4.4) to get that

W —="hll oy < MIIA =110l o) + 19l Lo sy
+ 14 - I”L‘T«(B,)HWHLI’([)B,) + ||77HLI’(B,)]7
which together with (4.3) imply the desired estimate. Finally, an approximation

argument allows us to derive the same estimate under the more general condi-
tions mentioned above. O

The perturbative technique used in the proof of Lemma 3 is based on the local
smallness of certain quantities. We may assume that 4(0) = I and that 0 is a
Dini modulus of continuity for 4 on B4. For this reason, if v and { verify the
conditions in Lemma 3, it is handy to define for 0 < ¢, 6 < 1,

@(9)
Vol oy + 1Sl Lo sy

o) =12 +0(), d=M"'or

where M is the constant in (4.1), and to consider the rescaled functions

(4.5) vs(x) = ov(x), C5(x) = 002 (0x).
From (1.3)
(4.6) w(4t) < 16w(t), fort<1/4

and the dilation and rescaling yield
(4.7) o5l risy < M7 0(8), NGl e sy < M5 0(0).
Also,

(4.8) Lvs =5, in By, with Zu = tr(A(0x)D*u).
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Next, we show by induction that there are C > 0, 0 < 0 < 1 and harmonic func-
tions Ay in 4‘kB%, k > 0, such that

k

> My

J=0

C_l ||hk||Lp(4—kB3) +||v— < 471{;_;60(4_](5),
3

(4.9) LP(4*’€B%)

ekl Lo (4-48,) + 47k||th||va(4kal) < Cw(47%9),
2 2
where C depends on n, p, A and the modulus of continuity of A.

When k=0, (4.7), (4.8) and Lemma 5 applied to vs show that there is a
harmonic function /g in B; such that

1ol o(gyy < M|vsll o5,y < @(9),

4;

105 = holl gy < MO 05l Loy + 1Esl (5] < 0(5)*.

4;

By regularity of harmonic functions [10, §2.2.3c]

3

1ol L (g,) + 1VAoll L3y < C(n, p)llholl Lo,y < Cln, p)er(6).
2

o=

Thus, (4.9) holds for k£ = 0, when C and ¢ satisfy
(4.10) C'+w0) <l and C=C(n,p).
Now, assume that (4.9) holds up to some k > 0 and define

Ak+1(x) = A(4_k_15x) Lru= tI‘(Ak+1(X)D2u)
Gry1(x) = (I — Agpa (x Zh 475 1x
— ae(d—k—1y) _ k (A—k—1
Then, Wii1(x) = 05(47%7'x) — > hi(47"7'x) solves

(4.11) Lra Wi (x) = div? Gy +47 272475 x),  in By

Using the induction hypothesis (4.9) and (4.6), one finds that Gy satisfies

k
1 _k— —k—
(4.12) Gkl Loy < 1BIPOET10) D 1147 )] e
=0

5
t
< {32C|Bl|fl} / @dz] 0(4+15).
0
Besides, the inequality in the first line of (4.9) gives

(4.13) Wil Los,) < 47 (4756).
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From (4.6), (4.11), (4.12) and (4.13), apply Lemma 5 to W, to find that with
the same M, there is a harmonic function /A in B% such that

(4.14) it || ogsy <47TT Mo (47715).

I

and

3

o
1 t
Wit = st ll oy <M[32|Bl|r‘zc / @mm(&)}w@—k—w).
0

From standard interior estimates for harmonic functions and (4.14)

||ilk+l||u B)) +|th+l||u ) < C(n, PA I Mo(419).

2 2
Setting, /i, 1(x) = A1 (4%71x), the last three formulae and (4.10) show that the
induction hypothesis holds when C = 2C(n, p)[4*"*M + 1] and J is determined
by the condition

o w(t)
o

oM {32 |Bl|%c/ dr + a)(&)} <1.
0

On the other hand, for |x| < 47*-!

k 0
(15) 1D hi(x) = 3 hi(0) < 3 IO+ 4TS Vbl
j= j=0 Jj=k+1 Jj=0
45
< 16c(/ ‘”()dz+4—k s (Z)dt)
0 4k1s 1
Therefore, (4.9) together with (4.15) and (4.6) imply
(4.16) ][ v5(x) = > hi(0)|dx
4-k=1p, =0
) 0
<4*C / wdwﬁ*l(s ﬂ;)dww(ﬂla)],
0 t 4-k-15 1

1
. .. . w(s) . .
when k > 0. Using Fubini’s theorem it is easy to check that ¢ / Lz)ds is a Dini
modulus of continuity, one can verify that 0 S

o(t) = /Ot@dw t/tl @dww(z)
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is non-decreasing and derive that lim, .o+ g(¢) — 0. Hence, from (4.16) and (4.5),
we have proved that there are C > 0, depending on /4, n and the Dini modulus of
continuity of A, and a number a(0) such that

Loy T epyl, when0<r <1

(4.17) /fB l0(x) — a(0)] dx < Ca(r)[|lo]

Since v € L?(By) is an adjoint solution in By, we can repeat the proof of (4.17) in
balls of radius 1 centered at any point X in B;. We note that the constant C and
the modulus of continuity ¢ in (4.16) do not depend on the center of the ball,
hence, for each X in Bj, we find a number «(X) such that

]ZB(_) [o(x) — a(x)|dx < Ca(r)[l[vll og,) + 1<l L~ (5], When O <r<T.
(X

By Lebesgue’s differentiation theorem, u and a are equal a.e. in B;. Now, if X
and y are in B3 and § < [X — J| < r, we have

)~ u(3)| < |

B,(%)

ww—www+f u(x) — u(7)|dx

Bi(%)

sﬁmwwwww+f ju(x) — u(7)| d

S a(2r)][lv|

Loy ¢l e gyl When 0 <r <1/2.

which proves Lemma 3.

5. PrRoOF OF THEOREM 2

It suffices to show that if u in W>!(By) verifies Lu = f, with f in L?(By),
1 < p< oo, then ue W?>4(By), for some ¢ > 1. Let then # be a function in
Cy(By) with y =1 in By and 0 < < 1. Set q:min{n’%l,p} and let ¢ be in
Cy° (B3) with [|g[| ;s (5, < 1. We shall show that

(5.1) Ot (un)p dx

By

< CllA gy + Nl s sy

where C only depends on ¢, p, 4, n and the uniform modulus of continuity of the
coefficients 4, but not on the Dini modulus of continuity of A.

Let u, in C*(B4) be a sequence of functions converging to u in Wli’cl (By) as
¢ — 0, then for any ¢ in Cj°(B3) we have

Ori(un)pdx = ling/ Okt (ust) dx.
&— B4

By
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By Lemma 2 with Q = B, and p = ¢/, for k,/ € {1,...,n}, there is a unique
weak adjoint solution v in L4’ (By) to
L= 5k1§0, on B4,
v=20, on 0By.

That is, a function v in L9 (By) such that

/v%wdy:/ @Ow dy,
By By

for any w in W24(By) n W, %(By) and

(5.2) ||U||L'I'(B4) = CH("HU’(B;) <C.
Observe that uz is in W>9(By) N WOI"’(B4), for any ¢ > 0. Thus,

(5.3) ak/(u,gn)godx:/ v (ugn) dx.

By By

Now, we want to take limits in (5.3) as ¢ — 0. A priori, we only know that
Owu is in L'(By), so we can just assert that Z(uz) — L(un) in L'(B,) as
& — 0. However, in order to take the limit as ¢ — 0 inside of the integral in the
right-hand side of (5.3) and because of the support properties of the functions
involved, we only need to know that v is bounded in B;, which indeed is the
case because of Lemma 3, with { = J;;¢. Hence, we obtain

Ot (un)p dx = /

By

0. (un) dx = /

By

mPudx + / sy dx

By By

~|—2/ vAVu - Vndx & Jy + J, + J3.
By

Now, Holder’s inequality, Sobolev’s inequality and (5.2) yield
Vil < lvllpo gy 1 Lull agsy < CNS N Loay:s
|J2| < M||v
|J3] < M||v

Lo gollll Lacay < Cllull g,

Lo 8 IVl Loy < Cllullp2 (s,
which implies (5.1), and by density and duality

(| O (um) | Li(By) = Clilf
Therefore, u is in W24(B;) and

Loyt lullpai sy

HuHWM(Bl) = C[||f||LI’(B4) + ||u||W2-1(B4)]7

which is the desired estimate.
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