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Abstract. — In this note we prove an end-point regularity result on the L p integrability of the

second derivatives of solutions to non-divergence form uniformly elliptic equations whose second
derivatives are a priori only known to be integrable. The main assumption on the elliptic operator

is the Dini continuity of the coe‰cients. We provide a counterexample showing that the Dini
condition is somehow optimal. We also give a counterexample related to the BMO regularity of

second derivatives of solutions to elliptic equations. These results are analogous to corresponding
results for divergence form elliptic equations in [3, 15].
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1. Introduction

In this note we investigate some regularity issues for solutions to non-divergence
form elliptic equations whose second derivatives are locally integrable. Given
an open bounded domain W � Rn, we will assume that AðxÞ ¼ ðaijðxÞÞ is a real
symmetric matrix such that there is a l > 0 verifying

ljxj2 aAðxÞx � xa l�1jxj2; for any x a Rn; x a W:

Here we deal with solutions of operators of the form

Lu ¼ trðAD2uÞ ¼
Xn

i; j¼1

aijðxÞqiju;ð1:1Þ

where the entries of the matrix A are continuous functions in W.
We recall the reader the following regularity fact [13, Lemma 9.16]:

Lemma 1. Let p, q be such that 1 < p < q < l and f be in LqðWÞ. If u in
W

2;p
loc ðWÞ verifies Lu ¼ f in W, then u a W

2;q
loc ðWÞ.

1Presented by Prof. L. Ca¤arelli.



The previous result does not cover the case p ¼ 1 and, as far as we know, this
case has not been considered in the literature. It is the purpose of this note to deal
with it. We remark that Lemma 1 is true under the mere assumption of the
continuity of the coe‰cients. However, as we shall see, this mild assumption is
not enough in order to improve the integrability of the second derivatives of
W

2;1
loc solutions. On the contrary, a Dini-type condition on the coe‰cients is

su‰cient for this purpose and it is optimal. Here we will consider the following
Dini condition:

Definition 1. A function f : W � Rn ! R is Dini continuous in W if there is
continuous a non-decreasing function y : ½0;þlÞ ! ½0;þlÞ verifying

j f ðxÞ � f ðyÞja yðjx� yjÞ; for any x; y a W

and such that Z 1

0

yðtÞ
t

dt < þlð1:2Þ

and

yð2tÞa 2yðtÞ; for t a
�
0;
1

2

�
:ð1:3Þ

We will say that y is the Dini modulus of continuity of f .

Condition (1.3) is not restrictive. In fact, as we learnt from [1, Remark 1], any
modulus of continuity satisfying (1.2) can be dominated by

~yyðtÞ ¼ t sup
t A ½t;1�

yðtÞ
t

;

which is again a Dini modulus of continuity such that ~yyðtÞ=t is non-increasing.
The later implies (1.3) for ~yy.

Before stating our results we first briefly review the case of elliptic equations
in divergence form. In this situation, motivated by a question raised in [21] and
the results in [14], H. Brezis proved the following [3, Theorems 1 and 2].

Theorem 1. Let A be a uniformly elliptic matrix such that A is Dini continuous
in W. Let u in W 1;1ðWÞ solveZ

W

A‘u � ‘j dx ¼ 0; for any j in Cl
0 ðWÞ:

Then, for any 1 < p < l, u is in W
1;p
loc ðWÞ and

kukW 1; pðKÞ aCkukW 1; 1ðWÞð1:4Þ
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for any compact subset K � W, where C depends on n, p, K, the ellipticity constant,
W and the uniform modulus of continuity of the coe‰cients, but not on the Dini
modulus of continuity.

The independence of the constant in (1.4) with respect to the Dini modulus of
continuity by no means implies that this result is true when the coe‰cients are
merely continuous in W: a counterexample to such assertion is given in [15].

In the context of non-divergence form elliptic equations, the main result
proved in this note is the following.

Theorem 2. Assume that the coe‰cients of L are Dini continuous in W and let
u in W 2;1ðWÞ satisfy Lu ¼ f , a.e. in W with f in L pðWÞ, for some 1 < p < l.
Then u is in W

2;p
loc ðWÞ and

kukW 2; pðKÞ aC½kukW 2; 1ðWÞ þ k f kL pðWÞ�;

for any compact subset K � W, where C depends on n, p, K, l, W and the uniform
modulus of continuity of the coe‰cients, but not on the Dini modulus of continuity.

Similarly to the case of divergence form elliptic equations, the Dini condition
on A is the optimal to derive such a result. Here we give a counterexample
inspired by [8, Section 3], showing that Theorem 2 is false when the coe‰cients
of L are not Dini continuous.

Theorem 3. There is an operator L with continuous coe‰cients in B1, which are
not Dini continuous at x ¼ 0, and a solution u in W 2;1ðB1ÞBW

1;1
0 ðB1Þ of Lu ¼ 0

such that u is not in W 2;pðB1
2
Þ, for any p > 1.

Concerning the other end-point in the scale of Lp spaces, we recall that the
singular integrals theory [23, Chapter IV] allows to prove that weak solutions
[13, Chapter 8] to Du ¼ f in B2 have generalized second order derivatives in
BMOðB1Þ when f a LlðB2Þ. Moreover, the Laplace operator can be perturbed
in order to obtain similar results for elliptic operators (1.1) with Dini continuous
coe‰cients [7] or with A verifying

jAðxÞ � AðyÞjaC=½1þ jlogjx� yj j�;ð1:5Þ

for some C > 0 su‰ciently small [5, Theorem A, ii and Corollary 4.1].
As far as we know, there are no counterexamples in the literature showing

that mere continuity of the coe‰cients is not enough to prove that the second
derivatives of solutions of elliptic equations do not belong to BMO in general.
The next counterexample, which is a modification of [15, Proposition 1.6], fills
this gap.

Theorem 4. There exists an operator L with continuous coe‰cients in B1, which
are not Dini continuous at x ¼ 0, and a solution u in W 2;pðB1ÞBW

1;p
0 ðB1Þ of

Lu ¼ 0, 1 < p < l, such that D2u is not in BMOðB1
2
Þ.
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The counterexample in Theorem 4 is sharp because its coe‰cient matrix A
verifies (1.5) for x, y in B1, for some fixed C > 0.

The main ingredients in the proof of Theorem 2 are the Sobolev inequality
and the boundedness of solutions to equations involving the formal adjoint
operator L� given by

L�v ¼
Xn

i; j¼1

qijðaijvÞ:

In order to make sense of the solutions associated to the operator L� when the
coe‰cients of L are only continuous we must consider distributional or weak
solutions to the adjoint equation. For our purposes, we need to deal with bound-
ary value problems of the form

L�w ¼ div2 Fþ h; in W;

w ¼ cþ Fn�n
An�n ; on qW;

(
ð1:6Þ

where F ¼ ðjklÞnk; l¼1, div
2 F ¼

P
k; l¼1 qklj

kl , with

F in LpðWÞ; h in LpðWÞ; c in LpðqW; dsÞ; 1 < p < l:ð1:7Þ

Definition 2. Let W � Rn be a bounded C1;1 domain with unit exterior
normal vector n ¼ ðn1; . . . ; nnÞ, F, c and h verify (1.7), let L be as in (1.1),
1 < p < l and 1

p
þ 1

p 0 ¼ 1. We say that w in LpðWÞ is an adjoint solution of
(1.6) if w satisfiesZ

W

wLu dy ¼
Z
W

trðFD2uÞ dyþ
Z
W

hu dyþ
Z
qW

cA‘u � n dsðyÞ;ð1:8Þ

for any u in W 2;p 0 ðWÞBW
1;p 0

0 ðWÞ.

Later we shall explain why this definition makes sense. At first, the boundary
conditions in (1.6) may look strange. However, if we formally multiply (1.6) by a
test function u in ClðWÞ with u ¼ 0 on qW, assume that w is in ClðWÞ and inte-
grate by parts, taking into account that ‘u ¼ ð‘u � nÞn on qW, we arrive at (1.8).

We will also consider local adjoint solutions of

L�w ¼ div2 Fþ h in W;

i.e., solutions which do not satisfy any specified boundary condition. Such local
solutions are those in L

p
locðWÞ that verify (1.8), when u is in W

2;p 0

0 ðWÞ; thus, the
boundary integrals in (1.8) are omitted.

This kind of adjoint solutions have been already studied in the literature. For
instance, in [22, 2, 12, 11, 9, 19] solutions of (1.6) with F ¼ 0 are studied under
low regularity assumptions on either the coe‰cients of L or the boundary of the
domain. Moreover, when the data and the boundary of the domain involved in
(1.6) are smooth, the weak formulation (1.8) can be recasted in such a way that
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the regularity theory in [18] or [20] can be used to prove that w is smooth and
solves (1.6) in a classical sense.

For our purposes we need to prove the existence and uniqueness of such
adjoint solutions.

Lemma 2. Let 1 < p < l and assume that (1.7) holds. Then, there exists a
unique adjoint solution w in L pðWÞ of (1.6). Moreover, the following estimate holds

kwkL pðWÞ aC½kFkL pðWÞ þ khkL pðWÞ þ kckL pðqWÞ�;ð1:9Þ

where C depends on W, p, n, l and the continuity of A.

This result follows from the so-called transposition or duality method [18, 20],
which relies on the existence and uniqueness of W 2;p 0

BW
1;p 0

0 ðWÞ solutions to
Lu ¼ f .

Finally, the proof of Theorem 2 requires the boundedness of certain adjoint
solutions to problems of the form (1.6) with F ¼ 0. It is at this point where the
Dini continuity of the coe‰cients plays a role. However, and similarly to what it
was done in [3], we only employ the boundedness of these adjoint solutions in a
qualitative form, that is, we do not need an specific estimate of the boundedness
of those adjoint solutions.

In order to prove the boundedness of the specific adjoint solutions, we employ
a perturbative technique based on ideas first established in [4, 6] and used in [17]
to prove the continuity of the gradient of solutions to divergence-form second
order elliptic systems with Dini continuous coe‰cients. Accordingly, we do not
only prove that those adjoint solutions are bounded but also their continuity.

Lemma 3. Let z a Cl
0 ðB3Þ, 1 < p < l and assume that the elliptic operator L

has Dini continuous coe‰cients in B4. Then, if v in L pðB4Þ satisfiesZ
B4

vLu dx ¼
Z
B4

zu dx; for any u a W 2;p 0 ðB4ÞBW
1;p 0

0 ðB4Þ;

v is continuous in B3.

The paper is organized as follows: in Section 2 we give the counterexamples
stated in Theorems 3 and 4; in Section 3 we prove Lemma 2 using the duality
method; in Section 4 we prove that certain adjoint solutions are continuous and
in Section 5 we prove Theorem 2.

2. Counterexamples

In this section we give two counterexamples. Both of them arise as solutions of
uniformly elliptic operators of the form

Lau ¼ tr
�
I þ aðrÞ x

r
n

x

r

�
D2u

� �
;ð2:1Þ
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where ðxn xÞij ¼ xixj, r ¼ jxj, with a is a continuous radial function in B1,
að0Þ ¼ 0.

Proof of Theorem 3. If we look for a radial solution u of (2.1), we find that
u must satisfy

Lau ¼ ðaðrÞ þ 1Þu 00 þ n� 1

r
u 0 ¼ 0:ð2:2Þ

We choose

uðrÞ ¼
Z 1

r

t1�n
�
log

R

t

��g

dt; g > 1;

with R > 1 to be chosen. Then

u 0ðrÞ ¼ �r1�n
�
log

R

r

��g

u 00ðrÞ ¼ r�n
�
log

R

r

��g

n� 1� g
�
log

R

r

��1
� �

:

Hence, u a W 2;1ðB1ÞBW
1;1
0 ðB1Þ but D2u B LpðB1Þ for any p > 1, when g > 1

and R > 1. Solving (2.2) for a we obtain

aðrÞ ¼ g

ðn� 1Þ log R
r
� g

;

which ensures the uniform ellipticity and the continuity of the coe‰cients of
La over B1, when R is su‰ciently large. However, a is not Dini continuous at
x ¼ 0. r

Proof of Theorem 4. Let j a C2ðð0; 1�Þ, a a Cð½0; 1�Þ and define

uðxÞ ¼ x1x2jðrÞ:

A computation shows that

Lau ¼ x1x2

r2
½ðnþ 3Þrj 0 þ r2j 00 þ að2jþ 4rj 0 þ r2j 00Þ�:

Choosing jðrÞ ¼
�
log R

r

�2
for some R > 1 yields

Lau ¼ x1x2

r2
1þ a� ð2þ nþ 3aÞ logR

r
þ a

�
log

R

r

�2� �
;
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which is identically zero in B1ð0Þ provided that

aðrÞ ¼
ð2þ nÞ log R

r
� 1�

log R
r

�2 � 3 log R
r
þ 1

;

and R > 1 is taken large enough in order to ensure the uniform ellipticity and the
continuity of the coe‰cients of La in B1. A computation shows that

q12ub
1

2

�
log

R

r

�2
on B1;

when R > 1 is large enough. Moreover, for any c a R there is e ¼ eðcÞ such that�
log R

r

�2
b 4jcj in Be. ThusZ
B1

2

eNjq12u�cj dxb

Z
Be

e
N
4 ð logR

r
Þ2 dx ¼ þl; for any N > 0; c a R:

By the John-Nirenberg inequality [16], q12u cannot belong to BMOðB1Þ. r

3. Existence of adjoint solutions

We recall the following well known existence result for the Dirichlet problem for
non-divergence form elliptic equations [13, Theorem 9.15, Lemma 9.17].

Lemma 4. Let W � Rn be a C1;1 domain, f be in L pðWÞ and 1 < p < l. Then,
there exists a unique u a W 2;pðWÞBW

1;p
0 ðWÞ such that Lu ¼ f a.e. in W. More-

over, there is a constant C > 0 depending on W, p, n, l and the modulus of con-
tinuity of A such that

kukW 2; pðWÞ aCk f kL pðWÞ:ð3:1Þ

An easy consequence of Lemma 4 is the existence and uniqueness of adjoint
solutions to (1.6) stated in Lemma 2.

Proof of Lemma 2. We construct the solution by means of tranposition. If p 0

is the conjugate exponent of p, we define the functional T : Lp 0 ðWÞ ! R by

Tð f Þ ¼
Z
W

trðFD2uÞ dxþ
Z
W

hu dxþ
Z
qW

cA‘u � n ds;ð3:2Þ

where u in W 2;p 0 ðWÞBW
1;p 0

0 ðWÞ verifies Lu ¼ f , a.e. in W. Combining (3.1), the
trace inequality [10, §5.5, Theorem 1], (3.2) and Hölder’s inequality, it is straight-
forward to check that

jTð f ÞjaCk f kL p 0 ðWÞ½kFkL pðWÞ þ khkL pðWÞ þ kckL pðqWÞ�;
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where C ¼ CðA;W; p; nÞ. Hence T is a bounded functional on Lp 0 ðWÞ and by the
Riesz representation Theorem, there is a unique w in LpðWÞ such that

Tð f Þ ¼
Z
W

wf dx; for any f a Lp 0 ðWÞ:ð3:3Þ

Moreover,

kwkL pðWÞ aC½kFkL pðWÞ þ khkL pðWÞ þ kckL pðqWÞ�:

Now, combining (3.2) and (3.3), it is clear that w is the unique adjoint solution
to (1.6). r

4. Proof of Lemma 3

For the proof of Lemma 3 we need first the following Lemma.

Lemma 5. Let F a LpðB1Þ, h a LlðB1Þ, w a LpðB1Þ, 1 < p < l and L be an
operator like (1.1) with continuous coe‰cients and Að0Þ ¼ I , the identity matrix.
Then, if

L�w ¼ div2 Fþ h; in B1;

there exists a harmonic function h in B3
4
such that

khkL pðB3
4
Þ aMkwkL pðB1Þ;

kw� hkL pðB3
4
Þ aM½kFkL pðB1Þ þ kA� IkLlðB1ÞkwkL pðB1Þ þ khkLlðB1Þ�;

ð4:1Þ

where M depends on p, n, l and the modulus of continuity of A.

Proof of Lemma 5. We first prove Lemma 5 assuming that the coe‰cients of
L and data are smooth in B1. However, the constants in the estimate will only
depend on p, l, n and the modulus of continuity of A. Under these assumptions,
the regularity theory [20, 18], implies that w is smooth in B1. By Fubini’s theo-
rem, there is 3

4 a ta 1 such that

kwkL pðqBtÞ a 4�
1
pkwkL pðB1Þ:ð4:2Þ

Using Lemma 2 we can find a function h such that

D�h ¼ 0; in Bt;

h ¼ w; on qBt;

�

in the sense of (1.6). Of course, h is harmonic in the interior of Bt. Moreover, the
estimate provided by Lemma 2 together with (4.2) imply

khkL pðBtÞ aMkwkL pðqBtÞ aM4�
1
pkwkL pðB1Þ;ð4:3Þ
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with M ¼ Mðp; nÞ. Then w� h satisfiesZ
Bt

ðw� hÞLu dx ¼
Z
Bt

tr½hðI � AÞD2u� dxþ
Z
Bt

tr½FD2u� dxð4:4Þ

þ
Z
Bt

hu dxþ
Z
qBt

wðA� IÞ‘u � n ds

¼
Z
Bt

tr½hðI � AÞD2u� dxþ
Z
Bt

tr½FD2u� dx

þ
Z
Bt

hu dxþ
Z
qBt

w
ðA� IÞn � n

An � n A‘u � n ds

for any u a W 2;p 0 ðBtÞBW
1;p 0

0 ðBtÞ. Therefore, w� h is an adjoint solution to a
problem which falls into the conditions of Lemma 2 and we can apply (1.9) to
the equation (4.4) to get that

kw� hkL pðBtÞ aM½kA� IkLlðBtÞkhkL pðBtÞ þ kFkL pðBtÞ

þ kA� IkLlðBtÞkwkL pðqBtÞ þ khkL pðBtÞ�;

which together with (4.3) imply the desired estimate. Finally, an approximation
argument allows us to derive the same estimate under the more general condi-
tions mentioned above. r

The perturbative technique used in the proof of Lemma 3 is based on the local
smallness of certain quantities. We may assume that Að0Þ ¼ I and that y is a
Dini modulus of continuity for A on B4. For this reason, if v and z verify the
conditions in Lemma 3, it is handy to define for 0 < t, da 1,

oðtÞ ¼ t2 þ yðtÞ; d ¼ M�1d
n
p

oðdÞ
1þ kvkL pðB1Þ þ kzkLlðB1Þ

;

where M is the constant in (4.1), and to consider the rescaled functions

vdðxÞ ¼ dvðdxÞ; zdðxÞ ¼ dd2zðdxÞ:ð4:5Þ

From (1.3)

oð4tÞa 16oðtÞ; for ta 1=4ð4:6Þ

and the dilation and rescaling yield

kvdkL pðB1Þ aM�1oðdÞ; kzdkLlðB1Þ aM�1d2oðdÞ:ð4:7Þ

Also,

L�
d vd ¼ zd; in B1; with Ldu ¼ trðAðdxÞD2uÞ:ð4:8Þ
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Next, we show by induction that there are C > 0, 0 < da 1 and harmonic func-
tions hk in 4�kB3

4
, kb 0, such that

C�1khkkL pð4�kB3
4
Þ þ v�

Xk
j¼0

hj

�����
�����
L pð4�kB1

4
Þ

a 4�k n
poð4�kdÞ;

khkkLlð4�kB1
2
Þ þ 4�kk‘hkkLlð4�kB1

2
Þ aCoð4�kdÞ;

ð4:9Þ

where C depends on n, p, l and the modulus of continuity of A.
When k ¼ 0, (4.7), (4.8) and Lemma 5 applied to vd show that there is a

harmonic function h0 in B3
4
such that

kh0kL pðB3
4
Þ aMkvdkL pðB1Þ aoðdÞ;

kvd � h0kL pðB3
4
Þ aM½yðdÞkvdkL pðB1Þ þ kzdkLlðB1Þ�aoðdÞ2:

By regularity of harmonic functions [10, §2.2.3c]

kh0kLlðB1
2
Þ þ k‘h0kLlðB1

2
Þ aCðn; pÞkh0kL pðB3

4
Þ aCðn; pÞoðdÞ:

Thus, (4.9) holds for k ¼ 0, when C and d satisfy

C�1 þ oðdÞa 1 and CbCðn; pÞ:ð4:10Þ

Now, assume that (4.9) holds up to some kb 0 and define

Akþ1ðxÞ ¼ Að4�k�1dxÞ; Lkþ1u ¼ trðAkþ1ðxÞD2uÞ

Gkþ1ðxÞ ¼ ðI � Akþ1ðxÞÞ
Xk
j¼0

hjð4�k�1xÞ:

Then, Wkþ1ðxÞ ¼ vdð4�k�1xÞ �
Pk

j¼0 hjð4�k�1xÞ solves

L�
kþ1Wkþ1ðxÞ ¼ div2 Gkþ1 þ 4�2k�2zdð4�k�1xÞ; in B1:ð4:11Þ

Using the induction hypothesis (4.9) and (4.6), one finds that Gkþ1 satisfies

kGkþ1kL pðB1Þ a jB1j
1
pyð4�k�1dÞ

Xk
j¼0

khjð4�k�1�ÞkLlðB1Þð4:12Þ

a 32CjB1j
1
p

Z d

0

oðtÞ
t

dt

� �
yð4�k�1dÞ:

Besides, the inequality in the first line of (4.9) gives

kWkþ1kL pðB1Þ a 4
n
poð4�kdÞ:ð4:13Þ
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From (4.6), (4.11), (4.12) and (4.13), apply Lemma 5 to Wkþ1 to find that with
the same M, there is a harmonic function ~hhkþ1 in B3

4
such that

k~hhkþ1kL pðB3
4
Þ a 42þ

n
pMoð4�k�1dÞ:ð4:14Þ

and

kWkþ1 � ~hhkþ1kL pðB3
4
Þ aM 32 jB1j

1
pC

Z d

0

oðtÞ
t

dtþ oðdÞ
� �

oð4�k�1dÞ:

From standard interior estimates for harmonic functions and (4.14)

k~hhkþ1kLlðB1
2
Þ þ k‘~hhkþ1kLlðB1

2
Þ aCðn; pÞ42þ n

pMoð4�k�1dÞ:

Setting, hkþ1ðxÞ ¼ ~hhkþ1ð4kþ1xÞ, the last three formulae and (4.10) show that the
induction hypothesis holds when C ¼ 2Cðn; pÞ½42þ n

pM þ 1� and d is determined
by the condition

2M 32 jB1j
1
pC

Z d

0

oðtÞ
t

dtþ oðdÞ
� �

a 1:

On the other hand, for jxja 4�k�1

Xk
j¼0

hjðxÞ �
Xl
j¼0

hjð0Þ
					

					a
Xl
j¼kþ1

jhjð0Þj þ 4�k�1
Xk

j¼0

k‘hjkLlð4�kB1
4
Þð4:15Þ

a 16C
�Z 4�kd

0

oðtÞ
t

dtþ 4�k�1d

Z d

4�k�1d

oðtÞ
t2

dt
�

Therefore, (4.9) together with (4.15) and (4.6) imply

Z
4�k�1B1

vdðxÞ �
Xl
j¼0

hjð0Þ
					

					dxð4:16Þ

a 44C

Z 4�k�1d

0

oðtÞ
t

dtþ 4�k�1d

Z d

4�k�1d

oðtÞ
t2

dtþ oð4�k�1dÞ
" #

;

when kb 0. Using Fubini’s theorem it is easy to check that t

Z 1

t

oðsÞ
s2

ds is a Dini
modulus of continuity, one can verify that

sðtÞ ¼
Z t

0

oðsÞ
s

dsþ t

Z 1

t

oðsÞ
s2

dsþ oðtÞ
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is non-decreasing and derive that limt!0þ sðtÞ ! 0. Hence, from (4.16) and (4.5),
we have proved that there are C > 0, depending on l, n and the Dini modulus of
continuity of A, and a number að0Þ such that

Z
Br

jvðxÞ � að0Þj dxaCsðrÞ½kvkL pðB1Þ þ kzkLlðB1Þ�; when 0 < ra 1:ð4:17Þ

Since v a LpðB4Þ is an adjoint solution in B4, we can repeat the proof of (4.17) in
balls of radius 1 centered at any point x in B3. We note that the constant C and
the modulus of continuity s in (4.16) do not depend on the center of the ball,
hence, for each x in B3, we find a number aðxÞ such thatZ

BrðxÞ
jvðxÞ � aðxÞj dxaCsðrÞ½kvkL pðB4Þ þ kzkLlðB4Þ�; when 0 < ra 1:

By Lebesgue’s di¤erentiation theorem, u and a are equal a.e. in B3. Now, if x
and y are in B3 and

r
2 a jx� yja r, we have

juðxÞ � uðyÞja
Z
BrðxÞ

juðxÞ � uðxÞj dxþ
Z
BrðxÞ

juðxÞ � uðyÞj dx

k

Z
BrðxÞ

juðxÞ � uðxÞj dxþ
Z
BrðyÞ

juðxÞ � uðyÞj dx

k sð2rÞ½kvkL pðB4Þ þ kzkLlðB4Þ�; when 0 < ra 1=2:

which proves Lemma 3.

5. Proof of Theorem 2

It su‰ces to show that if u in W 2;1ðB4Þ verifies Lu ¼ f , with f in LpðB4Þ,
1 < p < l, then u a W 2;qðB1Þ, for some q > 1. Let then h be a function in
Cl

0 ðB2Þ with h ¼ 1 in B1 and 0a ha 1. Set q ¼ min



n
n�1 ; p

�
and let j be in

Cl
0 ðB3Þ with kjkLq 0 ðB3Þ a 1. We shall show that

Z
B4

qklðuhÞj dx
				

				aC½k f kL pðB4Þ þ kukW 2; 1ðB4Þ�;ð5:1Þ

where C only depends on q, p, l, n and the uniform modulus of continuity of the
coe‰cients A, but not on the Dini modulus of continuity of A.

Let ue in ClðB4Þ be a sequence of functions converging to u in W 2;1
loc ðB4Þ as

e ! 0, then for any j in Cl
0 ðB3Þ we haveZ

B4

qklðuhÞj dx ¼ lim
e!0

Z
B4

qklðuehÞj dx:
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By Lemma 2 with W ¼ B4 and p ¼ q 0, for k; l a f1; . . . ; ng, there is a unique
weak adjoint solution v in Lq 0 ðB4Þ to

L�v ¼ qklj; on B4;

v ¼ 0; on qB4:

�

That is, a function v in Lq 0 ðB4Þ such thatZ
B4

vLwdy ¼
Z
B4

jqklw dy;

for any w in W 2;qðB4ÞBW
1;q
0 ðB4Þ and

kvkLq 0 ðB4Þ aCkjkLq 0 ðB3Þ aC:ð5:2Þ

Observe that ueh is in W 2;qðB4ÞBW
1;q
0 ðB4Þ, for any e > 0. Thus,Z

B4

qklðuehÞj dx ¼
Z
B4

vLðuehÞ dx:ð5:3Þ

Now, we want to take limits in (5.3) as e ! 0. A priori, we only know that
qklu is in L1ðB4Þ, so we can just assert that LðuehÞ ! LðuhÞ in L1ðB4Þ as
e ! 0. However, in order to take the limit as e ! 0 inside of the integral in the
right-hand side of (5.3) and because of the support properties of the functions
involved, we only need to know that v is bounded in B3, which indeed is the
case because of Lemma 3, with z ¼ qklj. Hence, we obtainZ

B4

qklðuhÞj dx ¼
Z
B4

vLðuhÞ dx ¼
Z
B4

vhLu dxþ
Z
B4

vuLh dx

þ 2

Z
B4

vA‘u � ‘h dxx J1 þ J2 þ J3:

Now, Hölder’s inequality, Sobolev’s inequality and (5.2) yield

jJ1ja kvkLq 0 ðB4ÞkLukLqðB4Þ aCk f kL pðB4Þ;

jJ2jaMkvkLq 0 ðB4ÞkukLqðB4Þ aCkukW 1; 1ðB4Þ;

jJ3jaMkvkLq 0 ðB4Þk‘ukLqðB4Þ aCkukW 2; 1ðB4Þ;

which implies (5.1), and by density and duality

kqklðuhÞkLqðB3Þ aC½k f kL pðB4Þ þ kukW 2; 1ðB4Þ�:

Therefore, u is in W 2;qðB1Þ and

kukW 2; qðB1Þ aC½k f kL pðB4Þ þ kukW 2; 1ðB4Þ�;

which is the desired estimate.
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