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Number Theory — On the analytic bijections of the rationals in ½0; 1�, by Davide

Lombardo, communicated on November 11, 2016.1

Abstract. — We carry out an arithmetical study of analytic functions f : ½0; 1� ! ½0; 1� that by
restriction induce a bijection QB ½0; 1� ! QB ½0; 1�. The existence of such functions shows that,
unless f ðxÞ has some additional property of an algebraic nature, very little can be said about the

distribution of rational points on its graph. Some more refined questions involving heights are also
explored.
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1. Introduction

The problem of constructing and studying transcendental analytic functions
which assume algebraic values at many algebraic points has a long history. In
1886 Weierstrass gave an example (published in [Wei23]) of an entire transcen-
dental function f that maps the set of algebraic numbers into itself, and that fur-
thermore satisfies f ðQÞ � Q. Various other constructions followed, for example
that of van der Poorten [vdP68], who has shown that there exist transcendental
analytic functions that, together will all their derivatives, map every number field
to itself.

Following in this long tradition, in a recent conversation Umberto Zannier,
with an eye to arithmetical applications, asked whether there exist transcendental
functions f : ½0; 1� ! ½0; 1� that induce bijections of QB ½0; 1� with itself. This
is indeed an interesting question, because it helps shed light on the kind of
hypotheses necessary on a function f ðxÞ in order to study the distribution of
rational points on its graph. As it turns out, the answer is a‰rmative: transcen-
dental, analytic functions that induce bijections of QB ½0; 1� with itself do exist.
In particular, if gðxÞ is a general analytic function, satisfying no particular
algebraic property, then very little information on the distribution of rational
points on the graph of g can be obtained besides that a¤orded by the theorems
of Bombieri-Pila [BP89], Pila [Pil91], and Pila-Wilkie [PW06], which was the
original motivation of Zannier’s question. One should contrast this fact with the
much tamer behaviour exhibited by algebraic functions:
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Lemma 1. Suppose f : ½0; 1� ! ½0; 1� is algebraic and induces a bijection of
QB ½0; 1� with itself: then f ðxÞ is a linear fractional transformation (that is, a
rational function of degree one) with rational coe‰cients. More precisely, there

exists a a Q such that either f ðxÞ ¼ x
axþð1�aÞx or f ðxÞ ¼ ða�1Þðx�1Þ

axþð1�aÞ .

Proof. Since f ðxÞ is algebraic, there exists a polynomial pðx; yÞ a Q½x; y�
such that pðx; f ðxÞÞ is identically zero. Suppose first that degy pðx; yÞb 2.
By Hilbert’s irreducibility theorem, we can find a rational number x0 a ½0; 1�
such that pðx0; yÞ a Q½y� is irreducible of degreeb 2: but this implies that
f ðx0Þ, which by definition is a root of the equation pðx0; yÞ ¼ 0, is not a ra-
tional number, contradiction. Conversely, suppose that degx pðx; yÞb 2. Then
by Hilbert irreducibility again there exists y0 a QB ½0; 1� such that pðx; y0Þ is
irreducible of degree at least 2: but this implies that the inverse image of y0 via
f is not rational, contradiction. So pðx; yÞ is linear in x and y, hence f ðxÞ is
a linear fractional transformation. One checks easily that the only linear frac-
tional transformations that induce bijections of QB ½0; 1� are those given in the
statement. r

Notice that this lemma – which is well-known to experts – gives an easy crite-
rion to show that the functions we construct are transcendental (see for example
remark 4). While investigating Zannier’s question, I found out that the exis-
tence of functions as those studied in this paper had already been established
by Franklin [Fra25], but his construction was somewhat indirect and his point of
view mostly analytical, which makes his approach not especially well-suited to
study arithmetical questions.

In this note, on the other hand, we consider the problem from a more arith-
metical standpoint, and in particular we give a new, slightly simplified construc-
tion (section 2) which, being more explicit than Franklin’s, also allows us to treat
problems in the spirit of the Bombieri–Pila, Pila, and Pila–Wilkie counting theo-
rems. We show for example (section 3) that the functions produced from a further
refining of our construction satisfy an inequality of the form hð f ðxÞÞa bðhðxÞÞ
for all x a QB ½0; 1�, where by hðxÞ we mean the standard logarithmic height of
the rational number x and bðtÞ is a certain explicit bound function. We also prove
(section 4) that the graph of these bijections f ðxÞ can be made to contain ‘‘many’’
rational points of bounded height, in the sense of the Pila counting theorem. These
results can be compared with work of Surroca [Sur06] and Boxall-Jones [BJ15],
who prove upper bounds for the number of rational points of bounded height lying
on the graphs of transcendental functions ([Sur06] considers entire transcendental
functions that map every number field to itself, while [BJ15] deals with entire
functions of finite order and positive lower order). Finally, our explicit descrip-
tions also make it clear that, unlike what happens with – say – rational functions,
for the functions f ðxÞ we construct there are infinitely many rational numbers in
½0; 1� for which the height of f ðxÞ is dramatically smaller than the height of x. It
is this last phenomenon in particular that makes it impossible to gain more infor-
mation on the distribution of rationals points on the graph of f ðxÞ besides what
is already contained in the theorems of Bombieri, Pila, and Wilkie.
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2. The basic construction

We begin by describing the simplest version of our construction, which gives
a new proof of the existence of (many) functions of the kind considered in the
introduction:

Theorem 2. Let fgnðxÞgnb0 be any countable family of functions ½0; 1� ! ½0; 1�.
There exists a strictly increasing analytic function f : ½0; 1� ! ½0; 1� such that

1. f restricts to a bijection QB ½0; 1� ! QB ½0; 1�;
2. f is di¤erent from all the gnðxÞ.

In particular, since the set of all rational functions with rational coe‰cients is
countable, there exists such an analytic function that is not a rational function.

The idea is simple: we enumerate the rational numbers contained in the
interval ½0; 1� as x0; x1; . . . , and construct a sequence of (strictly increasing) poly-
nomials fnðxÞ such that fnðxiÞ is rational for all ia n=2 and xi is in the image of
fn for all ia n=2. We make this construction in such a way that fnþ1ðxiÞ ¼ fnðxiÞ
for all i ¼ 0; . . . ; bn=2c, which ensures that at least the first of these two properties
is preserved in the passage to the limit. Moreover, we can also make the second
property pass to the limit if we additionally require that (at least for n large
enough) the inverse image f �1

n ðxiÞ does not depend on n.
The proof we give below implements exactly this idea, up to a little bookkeep-

ing to keep track of precisely which rationals have already been considered.

Proof. Let fxngnb0, fyngnb0 be two (not necessarily distinct) enumerations
of the rationals in ½0; 1�, with x0 ¼ y0 ¼ 0, x1 ¼ y1 ¼ 1. We look for an f of the
form

f ðxÞ ¼
Xl
n¼1

pnðxÞ

where the pnðxÞ (for nb 1) are polynomials satisfying the following properties:

(a) supz AC; jzja2jpnðzÞja 4 � ð3=4Þn and supx A ½0;1�jp 0
nðxÞja 41�n;

(b) there is a bijective map

j : N ! N

n 7! jn

such that pnðxjmÞ ¼ 0 for all 0am < n.
(c) p1ðxÞ ¼ x and p2ðxÞ ¼ 0.

Property (a) ensures that f ðxÞ is an analytic function on ½0; 1�: indeed if
this property is satisfied then the series defining f ðxÞ converges uniformly on
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D2 :¼ fz a C; jzj < 2g, so f ðxÞ extends to a holomorphic function on all of D2

and in particular it is real analytic on ½0; 1�. Properties (a) and (c) also ensure
that f is strictly increasing on the interval ½0; 1�, because

f 0ðxÞ ¼
Xl
n¼1

p 0
nðxÞb p 0

1ðxÞ �
X
nb2

jp 0
nðxÞjb 1�

X
nb1

4�n > 0:ð1Þ

Notice that if the map n 7! jn is given, then in order to satisfy properties (a)
and (b) one can simply take

pnðxÞ ¼
en

n

Yn�1

k¼0

ðx� xjkÞð2Þ

if en is su‰ciently small; we shall then make this choice from the start, namely,
we set pnðxÞ to be the polynomial given by formula (2), and we shall choose
n 7! jn and en in what follows. By the triangular inequality, for all x a D2 we
have

Qn�1
i¼0 jx� xija 3n, hence it is not hard to see that in order to satisfy

the inequalities in (a) it su‰ces to take en in the interval ½0; 41�n�.
We shall write fnðxÞ for the partial sums

Pn
m¼1 pmðxÞ. Our choices imply that

for all indices n a N we have f ðxjmÞ ¼ fnðxjmÞ for all nbm, since

f ðxmÞ � fnðxjmÞ ¼
X
k>n

pkðxjmÞ

and the pkðxjmÞ all vanish for k > nbm. Also notice that each function
x 7! fnðxÞ is obviously continuous, and it is bijective from ½0; 1� to itself: to see
this, observe that properties (b) and (c) together with our definition of pnðxÞ
imply fnð0Þ ¼ 0 and fnð1Þ ¼ 1 for all n, and furthermore by the same estimate
as in equation (1) we have f 0

n ðxÞ > 0 for all x a ð0; 1Þ. For later use, notice that
we also have

j f 0
n ðxÞja 1þ

X
nb1

4�n
a 2 Ex a ð0; 1Þ and Enb 1:ð3Þ

We shall now define the map n 7! jn and the parameters en recursively. We
take j0 ¼ 0, j1 ¼ 1 and e1 ¼ 1, e2 ¼ 0, so that f2ðxÞ ¼ f1ðxÞ ¼ p1ðxÞ ¼ x and
p2ðxÞ ¼ 0. Now assume that we have already defined jn and en for all nam
and set Jm :¼ f j0; . . . ; jmg. We shall show that we can construct emþ1 and jmþ1,
and that in fact one can take all the en to be rational numbers. Together
with the choices we have already made, this implies that our inductive con-
struction satisfies the following properties: for all j a Jm and all nbm we have
fnðxjÞ ¼ fmðxjÞ ¼ f ðxjÞ; moreover, fnðxÞ is a polynomial with rational coe‰-
cients, hence for all j a Jm we have f ðxjÞ ¼ fmðxjÞ a Q. We distinguish two
cases:
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1. Suppose that mþ 1 is odd. Let a ¼ minðNnJmÞ and set jmþ1 ¼ a. Notice that
the set f j0; j1; . . . ; jmg has cardinality mþ 1, hence aamþ 1. We have

f ðxjmþ1
Þ ¼ f ðxaÞ

¼
Xl
n¼1

pnðxaÞ ¼
X
nam

pnðxaÞ þ pmþ1ðxaÞ þ
X

n>mþ1

pnðxaÞ;

independently of the choice of the parameters en for n > mþ 1, our
construction ensures that pnðxaÞ ¼ 0 for all n > mþ 1b a, so we haveP

n>mþ1 pnðxaÞ ¼ 0 and

f ðxaÞ ¼ fmþ1ðxaÞ ¼
X
nam

pnðxaÞ þ
emþ1

mþ 1

Ym
k¼0

ðxa � xjkÞ;

what we require is that f ðxaÞ be a rational number, and that emþ1 be su‰-
ciently small and rational. Since rational numbers are dense in R, it is clear
that we can choose a rational number z a ½0; 1� that satisfies all of the fol-
lowing properties:

• z B f f ðxjÞ j j a Jmg;
• the quantity

ðmþ 1Þ �
�
z�

X
nam

pnðxaÞ
�
�
Ym
k¼0

ðxa � xjkÞ
�1

does not exceed 4�m;

• zA gm=2�1ðxaÞ (recall that fgngn AN is the given set of functions we wish to
avoid).

We set emþ1 :¼ ðmþ 1Þ �
�
z�

P
nam pnðxaÞ

�
�
Qm

k¼0ðxa � xjkÞ
�1, which is eas-

ily seen to be a rational number. By construction, this choice ensures that

f ðxaÞ ¼ fmþ1ðxaÞ ¼ z a QB ½0; 1�

and jemþ1ja 4�m; furthermore, it also ensures that f ðxÞA gm=2�1ðxÞ as func-
tions, since we have f ðxaÞ ¼ zA gm=2�1ðxaÞ, and this independently of the
choice of en for n > mþ 1.

2. Suppose that mþ 1 is even. Let b the least natural number such that yb does
not belong to the set f fmðxjÞ j j a Jmg: We want to choose jmþ1 and emþ1 in
such a way that f ðxjmþ1

Þ ¼ yb and emþ1 is again su‰ciently small and rational.
Consider the function

hm : x 7! yb � fmðxÞQm
k¼0ðx� xjkÞ

;
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as fmðxÞ : ½0; 1� ! ½0; 1� is a bijection, there exists a unique x a ½0; 1� such that
fmðxÞ ¼ yb. By assumption, we have x B fxj0 ; xj1 ; . . . ; xjmg, so the function hm
is continuous in a neighbourhood of x, since the denominator does not vanish
for x su‰ciently close to x. Because of the density of QB ½0; 1� in ½0; 1� and
of the fact that hmðxÞ is continuous in a neighbourhood of x and satisfies
hmðxÞ ¼ 0, there exists a rational number z a ½0; 1�nfxj0 ; xj1 ; . . . ; xjmg such
that jhmðzÞj < ðmþ 1Þ�14�m. We set jmþ1 to be the unique index such that
xjmþ1

¼ z; the construction ensures that jmþ1 B f j0; . . . ; jmg. Finally, we take
emþ1 :¼ ðmþ 1ÞhmðzÞ; which by construction satisfies jemþ1j < 4�m, and which
is a rational number since hmðxÞ is a rational function (with rational coe‰-
cients). We then have

f ðxjmþ1
Þ ¼ fmþ1ðzÞ ¼

X
namþ1

pnðzÞ

¼
X
nam

pnðzÞ þ
mþ 1

mþ 1
hmðzÞ �

Ym
k¼0

ðz� xjkÞ ¼ yb;

and this independently of the choice of en for n > mþ 1.

It is clear that we can carry out this construction for all m. We claim that the
resulting function f ðxÞ satisfies the properties given in the statement. Indeed:

• step (1) of the above procedure ensures that minðNnJ2kÞ is strictly increasing
as a function of k, hence that

S
mb0 Jm ¼ N. As we have already seen, f ðxjÞ

is rational whenever j a Jm for some m, hence f ðxjÞ a QB ½0; 1� for all j aS
mb0 Jm ¼ N. Since fxj j j a Ng ¼ QB ½0; 1�, this implies that f ðQB ½0; 1�Þ �

QB ½0; 1�.
• when applying step (1) of the above procedure for m ¼ 2k, kb 1, we make
certain that f ðxÞA gk�1ðxÞ. Since k � 1 ranges over all the natural numbers,
this implies that f ðxÞA gkðxÞ for all k.

• finally, step (2) ensures that the quantity

minfb j Ej a J2k we have ybA f2kðxjÞg

is strictly increasing as a function of k, hence for all b a N there exists an
m a N large enough that yb ¼ fmðxjÞ for some j a Jm. As we have already
seen, this implies f ðxjÞ ¼ fmðxjÞ ¼ yb, so yb a f ðQB ½0; 1�Þ. Since this holds
for all b and we have fyb j b a Ng ¼ QB ½0; 1� by construction, this implies
that f ðQB ½0; 1�Þ is onto QB ½0; 1� as claimed. r

Remark 3. It is not hard to realize that, since we can choose a countable
number of parameters en, and for each we have countably many choices, the
set of functions f satisfying the conclusion of the theorem has the cardinality of
the continuum. This gives a di¤erent (and perhaps more natural) proof of the
fact that we can avoid any given set of functions, as long as it is countable. The
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presentation we have decided to give, on the other hand, has the advantage of
making clear that the whole procedure is completely constructive.

Remark 4. As it was already true of Franklin’s method [Fra25], a slight
modification of the proof of theorem 2 shows the following stronger result: given
e > 0 and a strictly increasing analytic function g : ½0; 1� ! ½0; 1� with gð0Þ ¼ 0
and gð1Þ ¼ 1, there exists an analytic function f : ½0; 1� ! ½0; 1� that induces
a bijection of QB ½0; 1� and such that k f � gkl < e, where k � kl denotes the
supremum (or uniform) norm. The modifications one needs to make to the pre-
vious argument are minimal: we simply start with f0ðxÞ ¼ gðxÞ, and at each step
we choose en to be a real number smaller than 4�ne.

This also gives a di¤erent proof of the existence of transcendental functions
that induce bijections of QB ½0; 1� with itself. Indeed, we know from lemma 1
that the algebraic functions with this property are very sparse, so it’s easy to
see that we can choose a strictly increasing analytic function g : ½0; 1� ! ½0; 1�
which is far from all of them in the supremum norm and satisfies gð0Þ ¼ 0,
gð1Þ ¼ 1. We then use the argument just sketched to produce an analytic function
f ðxÞ inducing a bijection on QB ½0; 1� and very close to gðxÞ in the uniform
norm: provided that k f � gkl is small enough, f ðxÞ cannot be any of the func-
tions described in lemma 1, so it is a transcendental function with the property we
are interested in. The author is grateful to Umberto Zannier for this remark.

3. Height bounds

In the interest of clarity we now briefly discuss our conventions for the notion of
height of a rational number. For x a Q we write DðxÞ a N>0 (resp. NðxÞ a Z) for
the denominator (resp. numerator) of x when it is written in lowest terms. By the
height of x we mean its logarithmic height, namely

hðxÞ ¼ logmaxfjNðxÞj;DðxÞg;

we shall also use HðxÞ to denote maxfjNðxÞj;DðxÞg. Notice that if x is a rational
in the interval ½0; 1�, then hðxÞ ¼ logDðxÞ. The function D obviously satisfies the
following properties:

Dðx1 þ � � � þ xnÞa lcmfDðx1Þ; . . . ;DðxnÞg; Dðx1x2ÞaDðx1ÞDðx2Þ;

analogously, the function h satisfies (see for example [Wal00, Chapter 3])

hðx1 þ � � � þ xnÞa hðx1Þ þ � � � þ hðxnÞ þ ðn� 1Þ log 2;
hðx1x2Þa hðx1Þ þ hðx2Þ; hð1=xÞ ¼ hðxÞ:

We shall make free use of these properties without further comment.
We can now define the lexicographic ordering 0 on the rational numbers

in the interval ½0; 1� as follows: we say that q1 0 q2 if either Hðq1Þ < Hðq2Þ holds,
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or we have both Hðq1Þ ¼ Hðq2Þ and q1 < q2. It is easy to see that this is a well-
ordering of QB ½0; 1�. We can then define the lexicographic enumeration x0; x1; . . .
of the rationals in ½0; 1�: we set x0 ¼ 0 and, for nb 0,

xnþ1 ¼ min
0

ðQB ½0; 1�Þnfx0; . . . ; xng;

where by min0 we mean the minimum with respect to the lexicographic ordering.
It is easy to check that the following lemma holds.

Lemma 5. Let ðxnÞn AN be the lexicographic enumeration of the rationals in
the interval ½0; 1�. For all nb 2 we have HðxnÞb

ffiffiffiffiffi
2n

p
; equivalently, given

q a QB ð0; 1Þ, the unique index n for which q ¼ xn satisfies na
HðqÞ2

2 .

Remark 6. Asymptotically, these inequalities are not sharp: indeed, it is well-
known that limn!l

HðxnÞffiffi
n

p ¼ pffiffi
3

p . However, the only possible improvement lies in

the constant factor sitting in front of
ffiffiffi
n

p
(resp. of HðqÞ2), and not in the func-

tional form of the bound; since we are not interested in especially sharp results,
we chose to use the inequalities of lemma 5 because of their particularly simple
form.

We can now prove the following strengthening of theorem 2:

Theorem 7. Let fgnðxÞgnb0 be any countable family of functions ½0; 1� ! ½0; 1�.
There exists a strictly increasing analytic function f : ½0; 1� ! ½0; 1� such that

1. f restricts to a bijection QB ½0; 1� ! QB ½0; 1�;
2. f is di¤erent from all the gnðxÞ;
3. hð f ðxÞÞaBðHðxÞ2Þ, where B : Nnf0g ! N is given by BðtÞ ¼ 4t � 48 t � GðtÞ:

Proof. We follow closely the proof of theorem 2 (keeping in particular all
the notation), and only point out the necessary adjustments to the argument.
Let

X ðnÞ ¼ 48 tGðtÞ; if tb 1

1; if t ¼ 0;

�

and notice that the function X ðnÞ satisfies the inequality

Xn�1

k¼0

X ðkÞaXðnÞ Enb 1;

we shall need this fact in what follows, and we will often use it in the equivalent
form

Pn
k¼0 X ðkÞa 2X ðnÞ. We take xn and yn to both be the lexicographic enu-

meration of the rationals; we shall endeavour to choose the sequences jn, en in
such a way that the following hold:
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1. h
� en

n

�
a nXðnÞ for all nb 1;

2. hðxjkÞaX ðnÞ for all 0a ka n.

Assuming now that we can indeed choose jn, en so as to satisfy 1 and 2 above,
for all x a QB ½0; 1� and for all nb 1 we have the following inequalities:

hð fnðxÞÞ ¼ logDð fnðxÞÞð4Þ

¼ logD
�Xn

m¼1

pmðxÞ
�

a log lcmfDðpmðxÞÞ jm ¼ 1; . . . ; ng

¼ log lcm D
� em

m

Ym�1

k¼0

ðx� xjkÞ
����m ¼ 1; . . . ; n

( )

a
Xn

m¼1

logD
� em

m

�
þ
Xn�1

k¼0

logDðx� xjkÞ

a
Xn

m¼1

h
� em

m

�
þ
Xn�1

k¼0

ðlogDðxÞ þ logDðxjkÞÞ

¼
Xn

m¼1

h
� em

m

�
þ
Xn�1

k¼0

ðhðxÞ þ hðxjkÞÞ

a
Xn

m¼1

mXðmÞ þ nhðxÞ þ
Xn�1

k¼0

XðkÞ

a n
Xn

m¼1

XðmÞ þ nhðxÞ þ
Xn�1

k¼0

XðkÞ

a nhðxÞ þ 3nXðnÞ:

In particular, if we evaluate fnðxÞ at x ¼ xjk with ka n we have hðxjkÞa
XðkÞaX ðnÞ; hence hð fnðxjkÞÞa 4nXðnÞ; since furthermore we have f ðxjkÞ ¼
fkðxjkÞ for all kb 1, we obtain for all kb 1 the inequality

hð f ðxjkÞÞ ¼ hð fkðxjkÞÞa 4kX ðkÞ:ð5Þ

Furthermore, we claim that, given x a QB ½0; 1�, the corresponding index k such
that x ¼ xjk satisfies kaHðxÞ2. We now prove this statement. Notice first that
this is obviously true for k ¼ 0; 1, so we can assume kb 2. Following the proce-
dure described in the proof of theorem 2, at every step such that mþ 1 is odd
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we let jmþ1 ¼ minNnJm; as we have j0 ¼ 0 and j1 ¼ 1, this implies that, for all
integers tb 0, at step mþ 1 ¼ 2tþ 1 we have jmþ1 b tþ 1, which means that all
the xn with na t are among the xjs for sa 2t. Hence, letting t be the index such
that x ¼ xt, the unique index k such that t ¼ jk satisfies

ka 2taHðxtÞ2 ¼ HðxÞ2;

where we have used lemma 5 (recall that we have assumed kb 2). From this fact
and equation (5) we then deduce the inequality

hð f ðxÞÞa 4HðxÞ2XðHðxÞ2Þ:

To establish the theorem, therefore, it su‰ces to show that it is possible to
choose the sequences jn and en so as to satisfy conditions 1 and 2 above. Again
we consider separately the case of mþ 1 being odd or even.

• mþ 1 is odd. We have aamþ 1, hence

hðxjmþ1
Þ ¼ hðxaÞa hðxmþ1Þamþ 1aX ðmþ 1Þ:

We now need to choose z and emþ1, which are related by

z ¼
X
nam

pnðxaÞ þ
emþ1

mþ 1

Ym
k¼0

ðxa � xjkÞ;

in such a way that emþ1 does not exceed 4�m and the corresponding z does not
belong to the set

f f ðxjÞ j j a JmgA fgm=2�1ðxaÞg:

Since this set has cardinality mþ 2 and the map emþ1 7! z is injective, there
are at most mþ 2 values of emþ1 that we need to exclude. Hence there exists
an s a f0; . . . ;mþ 2g such that s

ðmþ2Þ4m a 4�m is an acceptable value of emþ1.
Finally, for the heights of xjmþ1

¼ xa and
emþ1

mþ1 we have the estimates

hðxaÞ ¼ logDðxaÞa log aa logðmþ 1ÞaX ðmþ 1Þ

and

h
� emþ1

mþ 1

�
¼ logD

� emþ1

mþ 1

�
¼ logððmþ 1Þðmþ 2ÞÞ þm log 4

a ðmþ 1ÞXðmþ 1Þ;

which finishes the inductive step in this case.
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• mþ 1 is even. Notice first that we have bamþ 1, hence hðybÞa logðmþ 1Þ.
Recall then that we defined emþ1 by the formula

emþ1 ¼ ðmþ 1Þ yb � fmðzÞQm
k¼0ðz� xjkÞ

;ð6Þ

where z is a rational number su‰ciently close to x (the only real number in
½0; 1� such that fmðxÞ ¼ yb). We now want to show that z can be chosen to be
of controlled height, and use this fact to also bound the height of emþ1.

Let a0 < a1 < � � � < am be the increasing reordering of the points
xj0 ; xj1 ; . . . ; xjm . There is a unique index t such that at < x < atþ1. For ease of
exposition, let us assume that atþ1 � xa x� at (that is, x lies to the right of
the midpoint of the segment ½at; atþ1�), the other case being perfectly symmetric.
We let M :¼ 2ðmþ 1Þ � expð13mXðmÞÞ � 4m and take z to be the maximum of
the set

fq a QB ½0; 1� jHðqÞaM; q < xg:

Notice that the distance between z and x is at most 1=M. We now estimate the
corresponding value of emþ1, studying separately numerator and denominator
of (6).

As for the former, we have already remarked that the derivative of fnðxÞ is
bounded in absolute value by 2 (see equation (3)); from Lagrange’s theorem we
then get

j fmðzÞ � ybj ¼ j fmðzÞ � fmðxÞj ¼ j f 0
mðxÞðz� xÞja 2jz� xja 2

M
;

where x is a suitable point between z and x.
Now consider the denominator of the right hand side of (6). Notice that for

k < t we have

jz� akj ¼ ðz� akþ1Þ þ ðakþ1 � akÞb akþ1 � ak

and since akþ1, ak are distinct we have

jz� akjb akþ1 � akð7Þ

b
1

Dðakþ1 � akÞ
¼ expð�logDðakþ1 � akÞÞ
b expð�logDðakþ1Þ � logDðakÞÞ
¼ expð�hðakþ1Þ � hðakÞÞ;

a similar argument works for k > tþ 1. Recalling that the ai, i ¼ 0; . . . ;m, are
a permutation of the xjk , k ¼ 0; . . . ;m, and that by the inductive assumption we
have HðxjkÞaX ðkÞ, we obtain
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1Q
kðz� xjkÞ

����
����a

Q
k<t expðhðakþ1Þ þ hðakÞÞ �

Q
k>tþ1 expðhðak�1Þ þ hðakÞÞ

jðz� atÞðz� atþ1Þj
ð8Þ

<
1

jðz� atÞðz� atþ1Þj
� exp

�
2
Xm
k¼0

XðkÞ
�

a
1

jðz� atÞðz� atþ1Þj
� expð4XðmÞÞ:

Thus we only need to estimate the distances jz� atj, jz� atþ1j.
– If jz� atj < jz� atþ1j, then z lies to the left of the midpoint of the segment

½at; atþ1� while x (by assumption) lies to the right of it; hence we have

at þ atþ1

2
� 1

M
a x� 1

M
a z <

at þ atþ1

2

and therefore

atþ1 � at

2
� 1

M
a z� at <

atþ1 � at

2
:

By the same argument as in equation (7), and since hðatÞ and hðatþ1Þ do not
exceed X ðmÞ, we then get

z� at b
atþ1 � at

2
� 1

M

b
1

2
expð�2X ðmÞÞ � 1

M

b
1

3
expð�2X ðmÞÞ:

Since atþ1 � zb z� at by assumption, we finally obtain

1Q
kðz� xjkÞ

����
����a expð4XðmÞÞ

jðz� atÞðz� atþ1Þj

a 9 expð4XðmÞ þ 4XðmÞÞ
¼ 9 expð8XðmÞÞ:

– If jz� atjb jz� atþ1j, then it su‰ces to give a lower bound for jz� atþ1j,
which we do as follows. By construction we have z < x < atþ1, so it su‰ces
to give a lower bound for atþ1 � x. We set qmðxÞ :¼ yb � fmðxÞ and observe
that using Lagrange’s theorem we have
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jqmðatþ1Þj ¼ jqmðatþ1Þ � qmðxÞjð9Þ
¼ jq 0

mðxÞðatþ1 � xÞj
¼ j f 0

mðxÞj � ðatþ1 � xÞ
a 2ðatþ1 � xÞ;

where x is a certain point in the interval ðx; atþ1Þ. Thus it su‰ces to give a
lower bound for jqmðatþ1Þj ¼ j fmðatþ1Þ � ybj: notice that this number is non-
zero (by assumption y does not belong to the set fmðJmÞ) and its height is at
most

logDðhðybÞÞ þ logDð fmðatþ1ÞÞ ¼ hðybÞ þ hð fmðatþ1ÞÞ
a logðmþ 1Þ þ 4mX ðmÞ;

where we have used inequality (5) and the fact that atþ1 is one of the mþ 1
numbers xj0 ; . . . ; xjm . Thus we have

jqmðatþ1Þjb expð�logðmþ 1Þ � 4mXðmÞÞ

¼ expð�4mX ðmÞÞ
mþ 1

;

we deduce from (9) that

z� at b atþ1 � zb atþ1 � xb
1

2ðmþ 1Þ expð�4mX ðmÞÞ;

and putting everything together we obtain

1Q
kðz� xjkÞ

����
����a expð4X ðmÞÞ

jðz� atÞðz� atþ1Þj

a 4ðmþ 1Þ2 � expð8mX ðmÞ þ 4X ðmÞÞ
a expð13mX ðmÞÞ:

Thus we see that in all cases the quantity
1Qm

k¼0ðz� xjkÞ

����
���� is bounded above by

expð13mX ðmÞÞÞ. Combining our bounds on the numerator and denominator of
the right hand side of (6), we see that our choice of z leads to a value of emþ1

that is bounded above by

emþ1 a ðmþ 1Þ yb � fmðzÞQm
k¼0ðz� xjkÞ

����
����

a
2ðmþ 1Þ expð13mX ðmÞÞ

M
¼ 4�m;
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and xjmþ1
:¼ z has height at most

logðMÞ ¼ logð2ðmþ 1Þ � expð13mX ðmÞÞ � 4mÞ
a 14mX ðmÞ < Xðmþ 1Þ:

Finally, the height of
emþ1

mþ 1
(that is, the logarithm of its denominator) is at

most

logDðyb � fmðzÞÞ þ log N
�Ym

k¼0

ðz� xjkÞ
������
�����

a hðybÞ þ hð fmðzÞÞ þ
Xm
k¼0

hðz� xjkÞ

a hðybÞ þmhðzÞ þ 3mX ðmÞ þ ðmþ 1Þ log 2

þ ðmþ 1ÞhðzÞ þ
Xm
k¼0

hðxjkÞ

a logðmþ 1Þ þ ð2mþ 1ÞhðzÞ þ 3mXðmÞ

þ ðmþ 1Þ log 2þ
Xm
k¼0

X ðkÞ

a logðmþ 1Þ þ ð2mþ 1ÞhðzÞ
þ ðmþ 1Þ log 2þ ð3mþ 2ÞX ðmÞ

a logðmþ 1Þ þ 14ð2mþ 1ÞmX ðmÞ
þ ðmþ 1Þ log 2þ ð3mþ 2ÞX ðmÞ

a 48m2X ðmÞ ¼ mð48mX ðmÞÞ ¼ mX ðmþ 1Þ
< ðmþ 1ÞXðmþ 1Þ;

where we have used (4) on the second line and hðzÞa 14mXðmÞ on the fifth.

This concludes the inductive step, and therefore the proof of the theorem. r

Remark 8. While there is certainly room to improve the bound BðtÞ of the
previous theorem (for example, the numerical constant 48 is far from optimal),
without any new ideas it seems unlikely that one can do substantially better
than BðtÞ ¼ GðtÞ; let us rapidly go through the proof again to see why we cannot
expect to beat this bound. In order to get a lower bound for the denominator of
(6), we estimate the height of qmðatþ1Þ; since qmðxÞ is a polynomial of degree m
and the height of atþ1 could potentially be comparable with XðmÞ, at least if
atþ1 ¼ xjm , the bound we get for hðqmðatþ1ÞÞ will roughly be of size mX ðmÞ. On
the other hand, in order for the ratio defining enþ1 to be small enough, we need at
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the very least the numerator to be smaller than the denominator; since the lower
bound for the denominator is no be better than expð�mX ðmÞÞ, in the notation of
the previous proof we will have to take M at least of size expðmX ðmÞÞ, which
means that we cannot rule out z ¼ xjmþ1

being of heightQmX ðmÞ. Hence with
the present method we don’t expect to be able to do better than Xðmþ 1Þb
mXðmÞ, that is, XðmÞbGðmÞ.

4. Graphs with ‘‘many’’ rational points of small height

Recall the following celebrated result of Pila, already referred to in the intro-
duction:

Theorem 9 ([Pil91, Theorem 9]). Let f : ½0; 1� ! ½0; 1� be a transcendental ana-
lytic function. For all e > 0, the function

Cf ðTÞ ¼a x a QB ½0; 1� jHðxÞaT ;Hð f ðxÞÞaTf g

satisfies limT!l Cf ðTÞT�e ¼ 0.

One can ask whether this theorem is optimal, that is, if the gauge functions
xe can be replaced by anything smaller. The answer is that theorem 9 is indeed
sharp, in the following sense. We say that a function s : R ! R is slowly increas-
ing if for all e > 0 we have limx!l x�esðxÞ ¼ 0. Conversations between Pila and
Bombieri ([Pil04, §7.5]) led to the construction, for any slowly increasing function
s, of an analytic function f and an unbounded sequence of positive integers Tn

such that Cf ðTnÞb sðTnÞ, which shows that theorem 9 cannot be substantially
improved.

Through a slight modification of the construction of section 2 we now show
that theorem 9 is sharp (in the sense above) also if we restrict our attention to
functions f : ½0; 1� ! ½0; 1� that induce bijections of QB ½0; 1� with itself:

Theorem 10. Let sðxÞ be a slowly increasing function and fgnðxÞgn AN be any
countable sequence of functions ½0; 1� ! ½0; 1�. There exists a strictly increasing
analytic function f : ½0; 1� ! ½0; 1� such that

• f restricts to a bijection QB ½0; 1� ! QB ½0; 1�;
• f is di¤erent from all the gnðxÞ;
• for infinitely many values of T a R>0 we have

Cf ðTÞ ¼a x a QB ½0; 1� jHðxÞaT ;Hð f ðxÞÞaTf gb sðTÞ:ð10Þ

As before, the idea is to use an iterative construction. What changes with
respect to the proof of theorem 2, however, is that we take many more steps of
type (1) than steps of type (2), as we now make precise:

Proof. Let ðxiÞi AN and ðyjÞj AN be two enumerations of the rationals in ½0; 1�.
While yj can be arbitrary, we take xi to be given by the lexicographic ordering
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as in the previous section: we set x0 ¼ 0 and, by induction, we let xiþ1 to be
the (lexicographic) minimum of the set QB ½0; 1�nfx0; . . . ; xig. Again we shall
construct the function f ðxÞ as a limit of polynomials fnðxÞ a Q½x�, where

fnþ1ðxÞ ¼ fnðxÞ þ en
Y
q AQn

ðx� qÞ

for some rational number en and some subset Qn of QB ½0; 1�. We shall
require that Qn � Qnþ1 for all n. We shall also construct an auxiliary sequence
zn of rational numbers with the property that zn is the inverse image of yn
through the limit function f ðxÞ. In the first step of the recursion we set
f0ðxÞ ¼ x. We now show how to construct en, Qn, and zn assuming that fnðxÞ
has been defined.

Since fnðxÞ is a polynomial, say of degree dn, we can find a constant bn large
enough that for all rational numbers in ½0; 1� we have

Hð fnðxÞÞa bnHðxÞdn :

We can assume without loss of generality that bn b 1, and we obtain the existence
of a constant cn > 0 such that for all T b bn we have

afq a QB ½0; 1� jHðqÞaT ;Hð fnðqÞÞaTg
bafq a QB ½0; 1� jHðqÞaT ; bnHðqÞdn aTg
¼afq a QB ½0; 1� jHðqÞa ðT=bnÞ1=dng
b cnT

2=dn :

Since by assumption T�2=dnsðTÞ tends to 0 as T tends to infinity, we can choose a
value Tn a N, Tn > bn, so large that cnT

2=dn
n b sðTnÞ. Without loss of generality

we shall also assume that the inequality Tn bTn�1 þ n holds, so that in particular
the sequence Tn satisfies limn!l Tn ¼ þl.

We now turn to the definition of en, Qn, zn. We start by setting

Qn ¼ fq a QB ½0; 1� jHðqÞaTngA fz0; . . . ; zn�1g;

which obviously contains Qn 0 for all n 0 < n. Notice that for n ¼ 0 we assume
fz0; . . . ; zn�1g to be the empty set. Independently of the choice of en or of any of
the Qn 00 for n 00 > n (as long as they contain Qn), our choice of Qn implies that
f ðqÞ ¼ fnðqÞ for all rationals q of height at most Tn; in turn, this gives

afq a QB ½0; 1� jHðqÞaTn;Hð f ðqÞÞaTng
¼afq a QB ½0; 1� jHðqÞaTn;Hð fnðqÞÞaTng > sðTnÞ;

so that our limit function f ðxÞ, if it exists, does indeed satisfy inequality (10) for
infinitely many values of T .
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We still need to ensure that our limit function f ðxÞ exists, is analytic, strictly
increasing, induces a bijection from QB ½0; 1� to itself, and is di¤erent from all
the functions gnðxÞ. This is done in the same spirit as in the proof of theorem 2.
More precisely,

1. by the same argument as in the proof of theorem 2, in order to guarantee that
the limit function f ðxÞ is analytic and monotonically increasing it su‰ces to
choose the en to be su‰ciently small (say less than 4�jQnj�1jQnj�1);

2. the construction implies that f ðxÞ is rational whenever x is rational: indeed,
for any given x a QB ½0; 1� there exists n a N such that Tn > HðxÞ; it follows
that x belongs to Qm for all mb n, hence that f ðxÞ ¼ fnðxÞ is rational,
because fnðxÞ is a polynomial with rational coe‰cients;

3. to ensure that the limit function f ðxÞ maps QB ½0; 1� onto itself it su‰ces
to ensure that every yj lies in the image of f ðxÞ. This will be achieved by
choosing the sequences zn, en in such a way that fmðznÞ ¼ yn for all m > n;

4. we shall inductively choose the sequences zn, en so as to ensure that f ðxÞ is
distinct from all the gnðxÞ; more precisely, at step n of the construction we
shall make sure that f ðxÞ is di¤erent from gnðxÞ.

Before proving that we can realize the construction in such a way as to satisfy
constraints 1, 3 and 4 above, we make a preliminary remark. Since the limit func-
tion f ðxÞ we are constructing is going to be a strictly increasing bijection of ½0; 1�
with itself, it will certainly be di¤erent from all the functions gnðxÞ that do not
possess this property. Hence, replacing ðgnÞn AN with a subsequence if necessary,
we can assume that every gnðxÞ is a strictly increasing bijection of ½0; 1� with itself:
this slightly simplifies the argument to follow.

We now show that we can indeed achieve 1, 3 and 4. Our construction of the
sets Qn immediately implies that fmðznÞ ¼ fnþ1ðznÞ for all m > n, so in order for
property 3 to be satisfied it su‰ces to choose en, zn in such a way that

yn ¼ fnþ1ðznÞ ¼ fnðznÞ þ en
Y
q AQn

ðzn � qÞ:

We use this equation to define en in terms of zn, so that we only need to choose
the latter. Two cases arise:

• Suppose that we have fnðzÞ ¼ yn for some z a Qn. Then we have f ðzÞ ¼
fnðzÞ ¼ yn, so in order to satisfy 3 we can simply take zn ¼ z, and in order to
satisfy 1 it su‰ces to take en to be rational and smaller than 4�jQnj�1jQnj�1.
Hence we just need to prove that, with a suitable choice of en, we can also
make sure that 4 is satisfied. To this end, consider the set

~QQnþ1 ¼ fr a QB ½0; 1� jTn < HðrÞaTnþ1gnfz0; . . . ; zn�1g;

we claim that it is nonempty. Indeed we have assumed Tnþ1 to be at least
Tn þ nþ 1, so the cardinality of ~QQnþ1 is at least

81on the analytic bijections of the rationals in ½0; 1�



jfq a QB ½0; 1� jTn < HðqÞaTnþ1gj � n

b jfq a QB ½0; 1� jHðqÞ a fTn þ 1; . . . ;Tn þ nþ 1ggj � n

b
1

Tn þ 1
; . . . ;

1

Tn þ nþ 1

� �����
����� n ¼ 1:

Let r be any element of ~QQnþ1. Since HðrÞaTnþ1, the number r belongs to Qm

for all mb nþ 1, hence

f ðrÞ ¼ fnþ1ðrÞ ¼ fnðrÞ þ en
Y
q AQn

ðr� qÞ;

in order to make sure that f ðxÞA gnðxÞ, it su‰ces to choose en in such a way
that the above expression is di¤erent from gnðrÞ.

• If instead yn does not belong to the set f fnðzÞ j z a Qng, then, since fn is a bijec-
tion from ½0; 1� to itself (cf. the proof of theorem 2), there is a z a ½0; 1�nQn

such that fnðzÞ ¼ yn. If we now choose zn to be close enough to z, then (by
continuity, and since the denominator does not vanish in z B Qn) we can ensure
that

en ¼
yn � fnðznÞQ
q AQn

ðzn � qÞ

is smaller than 4�jQnj�1jQnj�1. Finally we can also make sure that f ðxÞA gnðxÞ
by picking zn distinct from g�1

n ðynÞ; notice that this last condition makes sense,
because gn : ½0; 1� ! ½0; 1� is a bijection, hence g�1

n ðynÞ consists of precisely one
point.

This concludes the iterative step of the construction, and shows that we can
indeed find a function f ðxÞ as in the statement of the theorem. r
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ported by the Fondation Mathématique Jacques Hadamard (grant ANR-10-CAMP-0151-02).

References

[BJ15] G. Boxall - G. Jones, Rational values of entire functions of finite order, Int.
Math. Res. Not. IMRN, (22):12251–12264, 2015.

[BP89] E. Bombieri - J. Pila, The number of integral points on arcs and ovals, Duke
Math. J., 59(2):337–357, 1989.

[Fra25] Ph. Franklin, Analytic transformations of everywhere dense point sets, Trans.
Amer. Math. Soc., 27(1):91–100, 1925.

[Pil91] J. Pila, Geometric postulation of a smooth function and the number of rational

points, Duke Math. J., 63(2):449–463, 1991.

82 d. lombardo



[Pil04] J. Pila, Integer points on the dilation of a subanalytic surface, Q. J. Math.,
55(2):207–223, 2004.

[PW06] J. Pila - A. J. Wilkie, The rational points of a definable set, Duke Math. J.,
133(3):591–616, 2006.
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