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1. Introduction

We will discuss some properties of solutions of linear and semilinear heat
equations in Rn or in a Riemannian manifold. We will mainly consider the heat
equation or the semilinear parabolic equation ut ¼ Duþ u2, but most of the
results can be extended to solutions of ut ¼ Duþ f ðuÞ, where f : R ! R will be
a smooth, nonnegative and even real function, monotone increasing on Rþ and
decreasing on R�, with f ðsÞ ¼ 0 if and only if s ¼ 0.

Definition 1.1. We call a solution of ut ¼ Duþ f ðuÞ

• ancient if it is defined in D� ð�l;TÞ for some T a R,

• immortal if it is defined in D� ðT ;þlÞ for some T a R,

• eternal if it is defined in D� R,

where D is some connected domain of a manifold.
We call a solution u trivial if it is constant in space, that is, uðx; tÞ ¼ uðtÞ and

solves the ODE u 0 ¼ f ðuÞ. We say that u is simply constant if it is constant in
space and time.

Notice that positive ancient (trivial) solutions always exist (the problem
reduces to an ODE) and the same for negative immortal ones, while eternal
solutions are more di‰cult to exist.

By means of a priori gradient, energy or entropy estimates, we will prove some
Liouville type results (i.e. triviality in space variables) for ancient solutions of
linear and semilinear heat equations on Riemannian manifolds with nonnegative



Ricci tensor (or simply bounded from below), under ‘‘mild’’ growth conditions.
We underline that we do not assume positivity of the solutions, but we deduce
it as a consequence of the boundedness from below of the Ricci tensor (see
Section 2). There is a quite large literature on this topic, for a rather complete
account we refer the interested reader to the paper of Souplet and Zhang [11],
which was also an inspiration for our analysis of the semilinear case in the last
section. Other interesting recent developments for the semilinear heat equation
can be found in [7], as well as in [9] which gives important improvements of
known results both for the scalar and system cases. Let us point out that, as a
consequence of our positivity Theorem 2.4, it is possible to improve results such
as Theorem 1 in [9] or Corollary 1.6 in [7].

2. Positivity

We start with an easy example of which kind of results we are going to discuss in
this section.

Proposition 2.1. Let ðM; gÞ be a compact Riemannian manifold without bound-
ary and u an ancient solution of the equation ut ¼ Duþ u2 in M � ð�l;TÞ,
for some T a R, which is uniformly bounded below, then either uC 0 or u > 0
everywhere.

Proof. We define xt a M as the point such that uðxt; tÞ ¼ minx AM uðx; tÞ
and we set vðtÞ ¼ uðxt; tÞ, then, by maximum principle or, more precisely, by
Hamilton’s trick (see [4] or [6, Lemma 2.1.3] for details), at almost every
t a ð�l;TÞ (precisely where v 0ðtÞ exists – notice that v is locally Lipschitz) there
holds v 0ðtÞb v2ðtÞ.

Hence, v is nondecreasing and there exists limt!�l vðtÞ ¼ m > �l, by the
assumption on the uniform lower bound. Assume that mA 0, then v 0ðtÞb
m2=4 > 0, almost everywhere for t small enough, but then, by integration, this
implies m ¼ �l, a contradiction. Thus, m ¼ 0 and ub 0 everywhere. By strong
maximum principle, actually u > 0 everywhere, otherwise uC 0, and we are
done. r

Corollary 2.2. Let u be an eternal solution of ut ¼ Duþ u2 in M � R which is
uniformly bounded below, then uC 0.

Proof. By the previous proposition, if u2 0, the u is positive everywhere and
(with same notation) vðt0Þb d > 0, for some t0, d a R. Then, by integrating the
di¤erential inequality v 0ðtÞb v2ðtÞ, we see that vðtÞ goes to þl in finite time,
hence, the same holds also for u, against the hypothesis that it is eternal. r

We now deal with the general case, we follow the technical line of [2, Propo-
sition 2.1]. Let ðM; gÞ an n-dimensional, complete Riemannian manifold without
boundary and u an ancient solution of ut ¼ Duþ u2 in M � ð�l;TÞ. Notice
that M can be noncompact and we are not asking any bound on u.
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Lemma 2.3. Let the Ricci tensor of ðM; gÞ bounded below by �K, with K b 0.
Let u : M � ½0;TÞ ! R be a solution of the equation ut ¼ Duþ u2. For any
0 < d < 1, there is a constant Cd > 0 such that, if ub�L, for some positive
L a R, in the ball BAr0ðx0Þ at t ¼ 0, with

Ab 2þ 2ðn� 1ÞT=r20 þ 2ðn� 1ÞT
ffiffiffiffi
K

p
=r0;

then,

uðx; tÞbmin � 1

ð1� dÞtþ 1=L
;� Cd

A2r20

� �
;

for every x a BAr0=4ðx0Þ and t a ½0;TÞ.

Proof. By the Laplacian comparison theorem (see [8, Chapter 9, Section 3.3]
and also [10]), if Ricb�K, with Kb 0, we have

�Ddðx; x0Þb� n� 1

dðx; x0Þ
� ðn� 1Þ

ffiffiffiffi
K

p
b� n� 1

r0
� ðn� 1Þ

ffiffiffiffi
K

p
ð2:1Þ

whenever dðx; x0Þb r0; in the sense of support functions.
We consider the function wðx; tÞ ¼ uðx; tÞcðx; tÞ with

cðx; tÞ ¼ j
� dðx0; xÞ þ

�
n�1
r0

þ ðn� 1Þ
ffiffiffiffi
K

p �
t

Ar0

�
;

where j is a fixed smooth, nonnegative and nonincreasing function such that
j ¼ 1 on ð�l; 34 �; and j ¼ 0 on ½1;þlÞ.

Then,

� q

qt
� D

�
w ¼ j

� q

qt
� D

�
uþ u

� q

qt
� D

�
c� 2‘c‘uð2:2Þ

¼ ju2 þ j 0 u

Ar0

n� 1

r0
þ ðn� 1Þ

ffiffiffiffi
K

p� 	
� Dc� 2‘c‘u

¼ ju2 þ j 0 u

Ar0
�Ddðx0; xÞ þ

n� 1

r0
þ ðn� 1Þ

ffiffiffiffi
K

p� 	

� j 00 u

A2r20
� 2‘c‘u;

at smooth points of distance function (notice that in the last passage we used the
fact that j‘dj ¼ 1).

Let wminðtÞ ¼ minM wð�; tÞ be achieved at some point xt a M. If uminðtÞ < 0,
also wminðtÞ < 0, hence cðxt; tÞ > 0 and j 0ub 0. Hence, the factor in front of
the second term in the right hand side of the above formula is nonnegative.
Moreover, if xt a Br0ðx0Þ, we have
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dðx0; xÞ þ
�
n�1
r0

þ ðn� 1Þ
ffiffiffiffi
K

p �
t

Ar0
a

r0 þ
�
n�1
r0

þ ðn� 1Þ
ffiffiffiffi
K

p �
T

Ar0

a
r0 þ ðn�1ÞT

r0
þ ðn� 1Þ

ffiffiffiffi
K

p
T

2r0 þ 2ðn� 1ÞT=r0 þ 2ðn� 1Þ
ffiffiffiffi
K

p
T

a 1=2

hence, by the choice of j, it is easy to see that ‘cðxt; tÞ ¼ Dcðxt; tÞ ¼ 0. It
follows, by the second line in computation (2.2), that in such case w 0

minðtÞb
ju2ðxt; tÞ ¼ w2

minðtÞ, at almost every time t a ½0;TÞ.
If instead dðxt; x0Þb r0, estimate (2.1) holds and at ðxt; tÞ we have, by the

second line in computation (2.2),

q

qt
wb ju2 � j 00 u

A2r20
� 2‘c‘u ¼ ju2 � j 00 u

A2r20
� 2u

j‘cj2

c

¼ ju2 þ u

A2r20

� 2½j 0�2

j
� j 00

�
;

in the sense of support function, since 0 ¼ ‘w ¼ c‘uþ u‘c at ðxt; tÞ, by mini-
mality, at almost every time t a ½0;TÞ.

Then, by maximum principle or, more precisely, by Hamilton’s trick (see [4]
or [6, Lemma 2.1.3]), for any d a ð0; 1Þ, we have

d

dt
wmin b ju2 þ u

A2r20

� 2½j 0�2

j
� j 00

�

b ju2 � d

2
ju2 � 1

2dA4r40j

� 2½j 0�2

j
� j 00

�2

b
w2
min

j
ð1� d=2Þ � C2

2dA4r40

b ð1� dÞw2
min þ

d

2

�
w2
min �

C2
d

A4r40

�
;

where we used Peter–Paul inequality, the estimate
2½j 0 �2
j

� j 00



 


aC

ffiffiffi
j

p
and that

1=jb 1.
Resuming, at almost every time t a ½0;TÞ such that wminðtÞ < 0 either

w 0
minðtÞbw2

minðtÞ or the inequality (2.3) holds. Then, by integration of these
di¤erential inequalities, we conclude

wminðtÞbmin � 1

ð1� dÞtþ 1=L
;� Cd

A2r20

� �
;
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which implies

uðx; tÞbmin � 1

ð1� dÞtþ 1=L
;� Cd

A2r20

� �

for every x a BAr0=4ðx0Þ and t a ½0;TÞ. r

Theorem 2.4. Let the Ricci tensor of ðM; gÞ be uniformly bounded below. If
u : M � ð�l;TÞ ! R is an ancient solution of the equation ut ¼ Duþ u2, then
either uC 0 or u > 0 everywhere

Proof. We only need to show that ub 0 everywhere, then the conclusion will
follow by the strong maximum principle.

Since the estimate in the previous lemma is invariant by translation in time,
for every m a N, we can consider the interval ½�m;TÞ and conclude that

uðx; tÞbmin � 1

ð1� dÞðtþmÞ þ 1=L
;� Cd

A2r20

� �

for every x a BAr0=4ðx0Þ and t a ½�m;TÞ, with �La infBAr0
ðx0Þ u and

Ab 2þ 2ðn� 1ÞT=r20 þ 2ðn� 1ÞðT þmÞ
ffiffiffiffi
K

p
=r0:

In particular, for every t a ½�mþ 1;TÞ and x a BAr0=4ðx0Þ, sending L to þl, we
have

uðx; tÞbmin � 1

ð1� dÞðtþmÞ ;�
Cd

A2r20

� �
;

sending now m a N to þl, we have that for every t a ð�l;TÞ and
x a BAr0=4ðx0Þ,

uðx; tÞb�Cd=A
2r20 :

Sending finally also A ! þl, we conclude that ub 0 everywhere. r

Remark 2.5. Notice that Theorem 2.4 does not hold for the standard linear
heat equation, the (positive) nonlinearity plays a key role here.

Remark 2.6. In the noncompact situation, the conclusion of Corollary 2.2 does
not necessarily hold. Consider M ¼ Rn and u given by a ‘‘Talenti’s function’’
(an extremal of Sobolev inequalities, see [12] and also [1]),

uðxÞ ¼ nðn� 2Þ
ð1þ jxj2Þ

n�2
2

:
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In the special case n ¼ 6, we have

uðxÞ ¼ 24

ð1þ jxj2Þ2

which, by a straightforward computation, satisfies Duþ u2 ¼ 0 in R6, in par-
ticular, u is a nonzero eternal solution for the semilinear heat equation ut ¼
Duþ u2.

Remark 2.7. This theorem, in the special case M ¼ Rn, implies that the
positivity hypothesis in Theorem 1 of [9] and Corollary 1.6 in [7] (dealing with
ancient/eternal solutions of ut ¼ Duþ u p), for p ¼ 2, can be actually removed.

3. Triviality I – Heat equation

3.1. Gradient estimates.

Proposition 3.1. Let ðM; gÞ be a compact Riemannian manifold without bound-
ary and u an ancient solution of the heat equation ut ¼ Du in M � ð�l;TÞ, for
some T a R, which is uniformly bounded, then u is trivial (that is, j‘ujC 0), hence,
constant.

Proof. We first compute the evolution equation for the gradient squared of u.

d

dt
j‘uj2 ¼ 2‘u‘ut ¼ 2‘u‘Du ¼ 2‘uD‘u ¼ Dj‘uj2 � 2jD2uj:

Hence,

d

dt
½u2 þ 2ðt� t0Þj‘uj2� ¼ Du2 þ 2ðt� t0Þ½Dj‘uj2 � 2jD2uj2�

aD½u2 þ 2ðt� t0Þj‘uj2�:

Then, setting v ¼ u2 þ 2ðt� t0Þj‘uj2, by maximum principle, we have v 0max a 0,
almost everywhere. We conclude that vðx; tÞa vmaxðt0Þ, that is

u2ðx; tÞ þ 2ðt� t0Þj‘uðx; tÞj2 a u2maxð�; t0ÞaC < þl;

for every t0 a ð�l;TÞ and ðx; tÞ a M � ðt0;TÞ. It follows

j‘uðx; tÞj2 a C

t� t0
;

sending t0 ! �l, we get ‘uðx; tÞ ¼ 0 for every ðx; tÞ a M � ð�l;TÞ, that is, u
is trivial. r
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Corollary 3.2. Let u be an eternal solution of the heat equation ut ¼ Du
in M � R on a compact manifold ðM; gÞ, which is uniformly bounded, then u is
constant.

Remark 3.3. Notice that boundedness is necessary, the function uðy; tÞ ¼
e�t sin y is an ancient (actually eternal), nontrivial, unbounded (above and below)
solution of the heat equation on S1 � R.

3.2. Energy estimates. Let u : M � ð�l;TÞ be an ancient solution of the heat
equation ut ¼ Du in a compact Riemannian manifold ðM; gÞ (without boundary).
Taking t0 a ð�l;TÞ and setting u0 ¼ uð�; t0Þ, supposing for a moment that M is
flat, by di¤erentiating and integrating by parts, we have

d

dt

Z
M

u dx ¼
Z
M

ut dx ¼
Z
M

Du dx ¼ 0;

hence, HðuÞ ¼
Z
M

u dx ¼
Z
M

u0 dx ¼ Hðu0Þ (heat conservation), for every t a
ðt0;TÞ.

Then, for any m a N, we have

d

dt

Z
M

um dx ¼ m

Z
M

um�1ut dx ¼ m

Z
M

um�1Du dx

¼ �mðm� 1Þ
Z
M

um�2j‘uj2 dx;

hence, if ub 0, EmðuÞ ¼
Z
M

um dx is nonincreasing in time.
We have

d

dt

Z
M

j‘uj2 dx ¼ 2

Z
M

‘u‘ut dx ¼ 2

Z
M

‘u‘Du dxð3:1Þ

¼ 2

Z
M

‘uD‘u dx ¼ �2

Z
M

jD2uj2 dx:

Finally, we consider the functional

W ðuÞ ¼
Z
M

u2 þ 2j‘uj2ðt� t0Þ dx:

Notice that W ¼ E2 � ðt� t0ÞE 0
2, hence W

0 ¼ �ðt� t0ÞE 00
2 and

d

dt
WðuÞ ¼ �4ðt� t0Þ

Z
M

jD2uj2 dxa 0;

which implies that WðuÞ is a monotone nonincreasing function and E2ðuÞ is a
convex function for t a ðt0;TÞ.
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It clearly follows,

W ðuð�; tÞÞaW ðu0Þ ¼
Z
M

u20 dx;

for every t a ðt0;TÞ and we concludeZ
M

j‘uj2 dxa
kuð�; t0Þk2L2ðMÞ

t� t0
;

for every t a ðt0;TÞ.
Hence, assuming that the L2 norm of u is uniformly bounded in time, taking

the limit as t0 ! �l, we get that u is necessarily constant in space (j‘ujC 0
everywhere).

All these computations (and arguments) can be performed analogously if
ðM; gÞ is a compact Riemannian manifold without boundary, but passing from
the third to the fourth term in equation (3.1) we interchanged space deriva-
tives and this produces an extra ‘‘error’’ term, due to the curvature of ðM; gÞ,
given by

�2

Z
M

ðt� t0ÞRicð‘u;‘uÞ dx;

hence getting

d

dt
W ðuÞ ¼ �4ðt� t0Þ

Z
M

jD2uj2 þRicð‘u;‘uÞ dx:ð3:2Þ

Notice that the formulas H 0 ¼ 0 and E 0
2 ¼ �2

Z
M

j‘uj2 dxa 0 are not a¤ected.

Clearly, the quantity on the right hand side of formula (3.2) is non positive
if Ricb 0. In such case we can conclude as before that WðuÞ is a monotone
nonincreasing function and E2ðuÞ is a convex function for t a ðt0;TÞ, moreover,
the function u is trivial.

Proposition 3.4. Let ðM; gÞ be a compact Riemannian manifold without
boundary and Ricb 0. If u an ancient solution of the heat equation ut ¼ Du
in M � ð�l;TÞ with uniformly bounded (in time) L2 norm (in space), then u is
trivial, hence constant.

We remark that the results of this section can be extended to noncompact
manifolds, if all the integrals are finite and integrations by parts are justified.

3.3. Entropy estimates. Let u : M � ð�l;TÞ be an ancient positive solution of
the heat equation ut ¼ Du in a compact Riemannian manifold ðM; gÞ without
boundary. Taking t0 a ð�l;TÞ and setting u0 ¼ uð�; t0Þ, supposing for a moment
that M is flat, by di¤erentiating and integrating by parts, we have
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d

dt

Z
M

u log u dx ¼
Z
M

utðlog uþ 1Þ dx ¼
Z
M

Duðlog uþ 1Þ dx

¼ �
Z
M

j‘uj2

u
dx ¼ �

Z
M

uj‘ log uj2 dxa 0;

hence, EðuÞ ¼
Z
M

u log u dxa

Z
M

u0 log u0 dx ¼ Eðu0Þ (entropy dissipation), for

every t a ðt0;TÞ.
Then, we consider the functional

FðuÞ ¼
Z
M

uðlog u� 1Þ þ j‘uj2

u
ðt� t0Þ dx:

Notice that F ¼ E �H � ðt� t0ÞE 0, hence F 0 ¼ �ðt� t0ÞE 00.

d

dt
FðuÞ ¼

Z
M

utðlog u� 1Þ þ ut þ
j‘uj2

u
þ ðt� t0Þ

2‘u‘ut
u

� j‘uj2

u2
ut

" #
dxð3:3Þ

¼
Z
M

Du log uþ j‘uj2

u
þ ðt� t0Þ

2‘u‘Du

u
� j‘uj2

u2
Du

" #
dx

¼
Z
M

ðt� t0Þ
"
�2

‘uj‘uj2‘u
u3

þ ‘u‘j‘uj2

u2

� 2
jD2uj2

u
� ‘uD2u‘u

u2
Du

#
dx

¼
Z
M

ðt� t0Þ �2
j‘uj4

u3
� 2

jD2uj2

u
þ 4

‘uD2u‘u

u2
Du

" #
dx

¼ �2ðt� t0Þ
Z
M

ujD2 log uj2 dx

a 0;

which implies that FðuÞ is a monotone nonincreasing function and EðuÞ is a
convex function for t a ðt0;TÞ, by the previous remark.

It clearly follows,

F ðuð�; tÞÞaFðu0Þ ¼
Z
M

u0ðlog u0 � 1Þ dx;

for every t a ðt0;TÞ.
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By heat conservation and

�VolðM; gÞ
e

a

Z
M

u log u dxa

Z
M

u0 log u0 dxaCðu0ÞaC VolðM; gÞ;

we conclude Z
M

j‘uj2

u
dxa

Eðu0Þ þ VolðM; gÞ=e
t� t0

;

for every t a ðt0;TÞ. Hence, taking the limit as t0 ! �l, we get that u is neces-
sarily constant in space (j‘ujC 0 everywhere).

Hence, assuming that the entropy of u is uniformly bounded in time, taking
the limit as t0 ! �l, we get that u is trivial.

The same argument/computation can be performed analogously if ðM; gÞ
is a compact Riemannian manifold without boundary, but passing from the
second to the third line in computation (3.3) we interchanged spatial deriva-
tives and this produces an extra ‘‘error’’ term, due to the curvature of ðM; gÞ,
given by

�
Z
M

ðt� t0Þ
2Ricð‘u;‘uÞ

u
dx;

hence getting

d

dt
F ðuÞ ¼ �2ðt� t0Þ

Z
M

u jD2 log uj2 þRic
�‘u

u
;
‘u

u

�� 	
dxð3:4Þ

¼ �2ðt� t0Þ
Z
M

u½jD2 log uj2 þRicð‘ log u;‘ log uÞ� dx:

Notice that the formulas dHðuÞ=dt ¼ 0 and dEðuÞ=dt ¼ �
Z
M

uj‘ log uj2 dxa 0
are not a¤ected.

Clearly, the quantity on the right hand side of formula (3.4) is nonpositive
if Ricb 0. In such case we can conclude as before that F ðuÞ is a monotone
nonincreasing function and the entropy EðuÞ is a convex function for t a ðt0;TÞ,
moreover, by the same argument above, the function u is constant in space, for
every t a ð�l;TÞ.

Proposition 3.5. Let ðM; gÞ be a compact Riemannian manifold without
boundary and Ricb 0. If u an ancient solution of the heat equation ut ¼ Du in
M � ð�l;TÞ with uniformly bounded entropy, then u is trivial, hence constant.

As before, all the results of this section can be extended to noncompact
manifolds, if all the integrals are finite and integration by parts are justified.
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4. Triviality II – Semilinear case

4.1. Gradient estimates. We will now prove a gradient estimate for positive solu-
tions to the semilinear heat equation ut ¼ Duþ u2 on manifolds with nonnegative
Ricci tensor, following the line of Souplet and Zhang in [11], who showed an
analogous (actually slightly stronger) result for the heat equation. We will then
apply this estimate to study the triviality of ancient solutions of ut ¼ Duþ u2

with a mild growth condition at minus infinity.

Lemma 4.1. Let ðM; gÞ be a Riemannian manifold such that RicðM; gÞb kgb 0,
for some k a R. Let u be a positive solution to the semilinear heat equation
ut ¼ Duþ u2 in QR;T ¼ Bðx0;RÞ � ½T0 � T ;T0�, with Bðx0;RÞ the geodesic ball
centered at x0 a M of radius R. Assume that uaD in QR;T. Then, there exists
C ¼ Cn > 0 such that on QR=2;T=2 there holds

j‘uðx; tÞj
uðx; tÞ aC

� 1

R
þ 1ffiffiffiffi

T
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� kÞþ

q ��
1þ log

D

uðx; tÞ

�
ð4:1Þ

Proof. Since estimate (4.1) is invariant under the rescaling u ! u=D, without
loss of generality we can suppose that 0 < ua 1. Let us define

f ¼ log u; w ¼ j‘f j2

ð1� f Þ2

Thanks to the semilinear heat equation we easily see that

ft ¼ Df þ j‘f j2 þ e f ;

which allows us to derive an equation for w. We have, in a orthonormal basis,

wt ¼
2‘f‘ft

ð1� f Þ2
þ 2j‘f j2ft
ð1� f Þ3

¼ 2‘f‘ðDf þ j‘f j2 þ e f Þ
ð1� f Þ2

þ 2j‘f j2ðDf þ j‘f j2 þ e f Þ
ð1� f Þ3

¼ 2‘f‘ðDf þ j‘f j2Þ
ð1� f Þ2

þ 2j‘f j2ðDf þ j‘f j2Þ
ð1� f Þ3

þ ð2� f Þe f

1� f

2j‘f j2

ð1� f Þ2

¼ 2fjii fj þ 4fi fj fij

ð1� f Þ2
þ 2f 2i fjj þ 2j‘f j4

ð1� f Þ3
þ ð2� f Þe f

1� f

2j‘f j2

ð1� f Þ2

¼ 2fiij fj � 2Ricij fi fj þ 4fi fj fij

ð1� f Þ2
þ 2f 2i fjj þ 2j‘f j4

ð1� f Þ3
þ ð2� f Þe f

1� f

2j‘f j2

ð1� f Þ2
;

95ancient solutions of semilinear heat equations on riemannian manifolds



where we interchanged derivatives (hence, there is an ‘‘extra’’ error term given by
the Ricci tensor), passing from the fourth to the fifth line and we use the usual
convention of summing on repeated indexes.

Now,

‘jw ¼ ‘j

� f 2i

ð1� f Þ2
�
¼ 2fi fji

ð1� f Þ2
þ 2f 2i fj

ð1� f Þ3
ð4:2Þ

and

Dw ¼
2f 2ij

ð1� f Þ2
þ 2fi fjji

ð1� f Þ2
þ 8fi fij fj

ð1� f Þ3
þ 2f 2i fjj

ð1� f Þ3
þ

6f 2i f
2
j

ð1� f Þ4
:

Hence, we get

wt � Dw ¼ 2fj fiij � 2Ricij fi fj þ 4fi fij fj

ð1� f Þ2
þ 2f 2i fjj þ 2j‘f j4

ð1� f Þ3
þ ð2� f Þe f

1� f

2j‘f j2

ð1� f Þ2

�
2f 2ij

ð1� f Þ2
� 2fi fjji

ð1� f Þ2
� 8fi fij fj

ð1� f Þ3
� 2f 2i fjj

ð1� f Þ3
�

6f 2i f
2
j

ð1� f Þ4

¼ 4fj fij fj � 2Ricij fi fj

ð1� f Þ2
þ 2j‘f j4

ð1� f Þ3
þ ð2� f Þe f

1� f

2j‘f j2

ð1� f Þ2

�
2f 2ij

ð1� f Þ2
� 8fi fij fj

ð1� f Þ3
�

6f 2i f
2
j

ð1� f Þ4
:

As, by hypothesis, Ricij fi fj b kj‘f j2 and f a 0, we have

ð2� f Þe f

1� f
¼
�
1þ 1

1� f

�
e f

a 2;

hence,

wt � Dwa
4fi fij fj

ð1� f Þ2
þ 2j‘f j4

ð1� f Þ3
þ 2ð2� kÞj‘f j2

ð1� f Þ2

�
2f 2ij

ð1� f Þ2
� 8fi fij fj

ð1� f Þ3
� 6j‘f j4

ð1� f Þ4
:

Notice that by (4.2), there holds

3‘f j‘w4 ¼ 2fi fij fj

ð1� f Þ2
þ 2j‘f j4

ð1� f Þ3
;

hence, substituting, we get
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wt � Dwa 23‘f j‘w4� 2j‘f j4

ð1� f Þ3
þ 2ð2� kÞj‘f j2

ð1� f Þ2
ð4:3Þ

�
2f 2ij

ð1� f Þ2
� 8fi fij fj

ð1� f Þ3
� 6j‘f j4

ð1� f Þ4

¼ 23‘f j‘w4� 23‘f j‘w4
1� f

þ 2ð2� kÞj‘f j2

ð1� f Þ2
� 2j‘f j4

ð1� f Þ3

�
2f 2ij

ð1� f Þ2
� 4fi fij fj

ð1� f Þ3
� 2j‘f j4

ð1� f Þ4

¼ � 2f

1� f
3‘f j‘w4þ 2ð2� kÞj‘f j2

ð1� f Þ2

� 2j‘f j4

ð1� f Þ3
� 2

ð1� f Þ2
�
fij þ

fi fj

1� f

�2

a � 2f

1� f
3‘f j‘w4þ 2ð2� kÞw� 2ð1� f Þw2:

We introduce the following cut–o¤ functions (of Li–Yau): let c to be a
smooth cut–o¤ function supported in QR;T with the following properties:

(1) cðx; tÞ ¼ jðdMðx; x0Þ; tÞ a ½0; 1� with jðr; tÞC 1 if raR=2 and T0 � T=4a
taT0,

(2) j is nonincreasing in the space variable r,
(3) j‘cj=ca ¼ jqrjj=ja aCa=R and jq2r jj=ja aCa=R

2, when 0 < a < 1,
(4) jqtcj=c1=2

aC=T ,

for some constants C, Ca.
Then, by inequality (4.3) with a straightforward calculation, setting b ¼

� 2f

1� f
‘f one has

DðcwÞ þ 3b j‘ðcwÞ4� 2
‘c

c





‘ðcwÞ
� �

� ðcwÞt

b 2cð1� f Þw2 þ 3b j‘c4w� 2
j‘cj2

c
wþ wDc� ctwþ 2ðk � 2Þwc:

Suppose that the positive maximum of cw is reached at some point ðx1; t1Þ a
QR;T , which cannot be on the boundary where c ¼ 0. By Li–Yau [5], we can
assume that x1 is not in the cut-locus of M. In fact, in general the distance
is only Lipschitz on the cut-locus of M and the maximum principle would
have to be intended in a weak sense. However, thanks to an argument of Calabi
we can assume without loss of generality that cw is smooth when applying
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the maximum principle, see for instance [8]. Then, at such point there holds
DðcwÞa 0, ðcwÞt b 0 and ‘ðcwÞ ¼ 0, hence

2cð1� f Þw2ðx1; t1Þð4:4Þ

a� 3b j‘c4w� 2
j‘cj2

c
wþ ðDcÞw� ctwþ 2ðk � 2Þwc

" #
ðx1; t1Þ:

We now estimate each term on the right-hand side. For the first term we have,

j3b j‘c4wja 2j f j
1� f

j‘f j j‘cjwð4:5Þ

a 2w3=2j f j j‘cj

¼ 2½ð1� f Þcw2�3=4 j f j j‘cj
½ð1� f Þc�3=4

a ð1� f Þcw2 þ C
ð f j‘cjÞ4

½ð1� f Þc�3

a ð1� f Þcw2 þ C
f 4

R4ð1� f Þ3
;

by the properties of the function c.
For the second term,

j‘cj2

c
w ¼ c1=2 j‘cj

2

c3=2
wa

1

8
cw2 þ C

� j‘cj2

c3=2

�2
a

1

8
cw2 þ C

R4
:ð4:6Þ

Thanks to the assumption on the nonnegative Ricci curvature, by the Lapla-
cian comparison theorem (see [8, Chapter 9, Section 3.3] or [10]), one has

�ðDcÞwa �
�
q2r jþ n� 1

r
qrj

�
wð4:7Þ

a

�
jq2r jj þ 2ðn� 1Þ jqrjj

R

�
w

a j1=2w
� jq2r jj
j1=2

þ 2ðn� 1Þ jqrjj
Rj1=2

�

a
1

8
jw2 þ C

jq2r jj
j1=2

" #2

þ jqrjj
Rj1=2

� 	20
@

1
A

a
1

8
cw2 þ C

R4
;
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by the properties of the functions j and c (n here is the dimension of the man-
ifold M).

Now we estimate jctjw as

jctjw ¼ c1=2 jctj
c1=2

wa
1

8
cw2 þ C

� jctj
c1=2

�2
a

1

8
cw2 þ C

T 2
;ð4:8Þ

again by the properties of c.
Finally, we deal with the last term,

2ð2� kÞwca 2ð2� kÞþwca
1

8
cw2 þ Cð2� kÞ2þð4:9Þ

Substituting estimates (4.5), (4.6), (4.7), (4.8), (4.9) in the right-hand side of
inequality (4.4), we deduce

2ð1� f Þcw2
a ð1� f Þcw2 þ C

f 4

R4ð1� f Þ3
þ 1

2
cw2 þ C

R4
þ C

T 2
þ Cð2� kÞ2þ:

Recalling that f a 0, it follows

cw2ðx1; t1ÞaC
f 4

R4ð1� f Þ4
þ 1

2
cw2ðx1; t1Þ þ

C

R4
þ C

T 2
þ Cð2� kÞ2þ

and, since f 4=ð1� f Þ4 a 1, we conclude that

c2ðx; tÞw2ðx; tÞac2ðx1; t1Þw2ðx1; t1Þacðx1; t1Þw2ðx1; t1Þ

a
C

R4
þ C

T 2
þ Cð2� kÞ2þ;

for all ðx; tÞ a QR;T .
As c > 0 in QR=2;T=2 and w ¼ j‘f j2=ð1� f Þ2, we finally have

j‘f j
ð1� f Þ a

C

R
þ Cffiffiffiffi

T
p þ C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� kÞþ

q

for every ðx; tÞ a QR=2;T=2. Since f ¼ logðu=DÞ, we are done. r

Remark 4.2. Notice that if k > 0, then the manifold is compact, by Bonnet–
Myers theorem (see [3]).

Corollary 4.3. Let ðM; gÞ be a compact Riemannian manifold such that
RicðM; gÞb kgb 0, for some k a R. Let u be a positive solution to the semilinear
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heat equation ut ¼ Duþ u2 in M � ½T0 � T ;T0�. Assume that uaD, then, there
exists C ¼ Cn > 0 such that on M � ½T0 � T=2;T0� there holds

j‘uðx; tÞj
uðx; tÞ aC

� 1ffiffiffiffi
T

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� kÞþ

q ��
1þ log

D

uðx; tÞ

�
ð4:10Þ

Proof. The proof is the same, we simply consider analogous functions c which
are constant in space. r

We can now prove the following triviality result.

Theorem 4.4. Let ðM; gÞ be a compact Riemannian manifold such that
RicðM; gÞb 2g. Let u be an ancient solution to the semilinear heat equation
such that

log uðx; tÞ ¼ oð
ffiffiffiffiffi
jtj

p
Þ; as t ! �lð4:11Þ

Then u is trivial.

Proof. By Theorem 2.4 we know that, if u is nontrivial, then u is necessarily
positive. Hence, under the above hypothesis, we have that estimate (4.10) on
QR=2;T=2 reads as

j‘uðx; tÞj
uðx; tÞ a

Cffiffiffiffi
T

p
�
1þ log

D

uðx; tÞ

�
;ð4:12Þ

with D ¼ maxM�½T0�T ;T0� uðx; tÞ. Notice that thanks to the compactness of M and
the hypothesis (4.11), we clearly have

logD ¼ oð
ffiffiffiffiffiffiffi
jT j

p
Þ; as T ! �l

Now, if we fix ðx0; t0Þ is space-time, using inequality (4.12) on the cube
Bðx0;RÞ � ½t0 � R2; t0� and the growth hypothesis (4.11) we finally deduce

j‘uðx; tÞj
uðx; tÞ a

C

R
ð1þ oðRÞÞ:ð4:13Þ

Letting R ! l in inequality (4.13) it follows that j‘uðx0; t0Þj ¼ 0 and being
ðx0; t0Þ arbitrary, u is necessarily constant. r

Remark 4.5. Let us point out that the positive curvature bound in Theorem 4.4
is necessary. A counterexample in the flat case M ¼ Rn is given again by the
‘‘Talenti’s function’’

uðxÞ ¼ 24

ð1þ jxj2Þ2
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which satisfies Duþ u2 ¼ 0 in R6, hence, it is a nonconstant stationary solution
(eternal) for the semilinear heat equation, contradicting Theorem 4.4 in the flat
case.
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