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ABSTRACT. — We study the qualitative properties of ancient solutions of linear and semilinear heat
equations in a Riemannian manifold, with particular attention to positivity and constancy in space.
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1. INTRODUCTION

We will discuss some properties of solutions of linear and semilinear heat
equations in R” or in a Riemannian manifold. We will mainly consider the heat
equation or the semilinear parabolic equation u; = Au + 1>, but most of the
results can be extended to solutions of u, = Au + f(u), where f : R — R will be
a smooth, nonnegative and even real function, monotone increasing on R™ and
decreasing on R™, with f(s) = 0 if and only if s = 0.

DEFINITION 1.1. We call a solution of u, = Au+ f(u)

e ancient if it is defined in D x (—o0, T') for some T € R,
e immortal if it is defined in D x (T, 4o0) for some T € R,
e cternal if it is defined in D x R,

where D is some connected domain of a manifold.

We call a solution u trivial if it is constant in space, that is, u(x, ) = u(¢) and
solves the ODE u' = f(u). We say that u is simply constant if it is constant in
space and time.

Notice that positive ancient (trivial) solutions always exist (the problem
reduces to an ODE) and the same for negative immortal ones, while eternal
solutions are more difficult to exist.

By means of a priori gradient, energy or entropy estimates, we will prove some
Liouville type results (i.e. triviality in space variables) for ancient solutions of
linear and semilinear heat equations on Riemannian manifolds with nonnegative
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Ricci tensor (or simply bounded from below), under “mild” growth conditions.
We underline that we do not assume positivity of the solutions, but we deduce
it as a consequence of the boundedness from below of the Ricci tensor (see
Section 2). There is a quite large literature on this topic, for a rather complete
account we refer the interested reader to the paper of Souplet and Zhang [11],
which was also an inspiration for our analysis of the semilinear case in the last
section. Other interesting recent developments for the semilinear heat equation
can be found in [7], as well as in [9] which gives important improvements of
known results both for the scalar and system cases. Let us point out that, as a
consequence of our positivity Theorem 2.4, it is possible to improve results such
as Theorem 1 in [9] or Corollary 1.6 in [7].

2. PosITIVITY

We start with an easy example of which kind of results we are going to discuss in
this section.

ProPoOSITION 2.1. Let (M, g) be a compact Riemannian manifold without bound-
ary and u an ancient solution of the equation u, = Au+u?> in M x (—0,T),
for some T € R, which is uniformly bounded below, then either u=0 or u> 0
everywhere.

PrROOF. We define x, € M as the point such that wu(x;,7) = min,e s u(x, 1)
and we set v(f) = u(x,, 1), then, by maximum principle or, more precisely, by
Hamilton’s trick (see [4] or [6, Lemma 2.1.3] for details), at almost every
t € (—oo, T) (precisely where v'(¢) exists — notice that v is locally Lipschitz) there
holds v'(#) > v*(¢).

Hence, v is nondecreasing and there exists lim,_._., v(#) = m > —o0, by the
assumption on the uniform lower bound. Assume that m # 0, then v'(¢) >
m?/4 > 0, almost everywhere for ¢ small enough, but then, by integration, this

implies m = —oo, a contradiction. Thus, m = 0 and u > 0 everywhere. By strong
maximum principle, actually u > 0 everywhere, otherwise # =0, and we are
done. a

COROLLARY 2.2. Let u be an eternal solution of u; = Au + u” in M x R which is
uniformly bounded below, then u = 0.

PRrOOF. By the previous proposition, if u £ 0, the u is positive everywhere and
(with same notation) v(zp) =6 > 0, for some ¢, J € R. Then, by integrating the
differential inequality v’(¢) > v?(¢), we see that v(¢) goes to +oo in finite time,
hence, the same holds also for u, against the hypothesis that it is eternal. =]

We now deal with the general case, we follow the technical line of [2, Propo-
sition 2.1]. Let (M, g) an n-dimensional, complete Riemannian manifold without
boundary and u an ancient solution of u, = Au + u?> in M x (—oo, T). Notice
that M can be noncompact and we are not asking any bound on u.



ANCIENT SOLUTIONS OF SEMILINEAR HEAT EQUATIONS ON RIEMANNIAN MANIFOLDS 87

LEMMA 2.3. Let the Ricci tensor of (M, g) bounded below by —K, with K > 0.
Let u: M x [0,T) — R be a solution of the equation u, = Au+ u*. For any
0 <o <1, there is a constant Cs > 0 such that, if u> —L, for some positive
L e R, in the ball B4,(xo) at t =0, with

A>2+420n— DT/ +2n— 1)TVEK/r,

then,

u(x,t) >min{— ! _G }
T (1=0)y+1/L" A%3)’

for every x € By 4(x0) and t € [0, T).

PRrROOF. By the Laplacian comparison theorem (see [8, Chapter 9, Section 3.3]
and also [10]), if Ric > —K, with K > 0, we have

2.1)  —Ad(x,x0) = _d’(:;o) (- 1WEK > —”r_o L - 1WE

whenever d(x, xo) > ro, in the sense of support functions.
We consider the function w(x, ) = u(x, t){(x, ) with

d(xg,x) + (%4— (n—1)VK)t
Ar() )7

W 0) = o

where ¢ is a fixed smooth, nonnegative and nonincreasing function such that
9p=1on(—,3],and ¢ =0 on [1,+0).
Then,

(2.2) (%—A)W:w(%—A)u+u<%—A)¢—2V¢Vu

u
Ar()

— o+ ¢ [”_1+(n_1)\/f}_mp—szu

ro

-1
:(pu2+¢/% [—Ad(xo,x)+n + (n— 1)\/?]
0

ro

n U
— 9" —— —2VyVu,
A2I’§

at smooth points of distance function (notice that in the last passage we used the
fact that |Vd| = 1).

Let wpin(¢) = miny, w(-, 7) be achieved at some point x;, € M. If uyin () <0,
also win(#) < 0, hence (x;,¢) > 0 and ¢'u > 0. Hence, the factor in front of
the second term in the right hand side of the above formula is nonnegative.
Moreover, if x; € B, (xp), we have
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d(xo, %) + (5L + (= D)VK)t o+ (%L + (- D)VK)T
Ar(] = AV()

ro+ "0+ (n — 1)VEKT

= 210 +2(n— )T /ro +2(n— 1)VKT
<1/2

hence, by the choice of ¢, it is easy to see that Vi (x,,7) = Ay(x,,¢) =0. It
follows, by the second line in computation (2.2), that in such case w/ . (7) >
ou?(x,, 1) = w2. (1), at almost every time 7 € [0, T).

If instead d(x;,xp) > ro, estimate (2.1) holds and at (x;,7) we have, by the
second line in computation (2.2),

u
2.2
A%rg

2
W\

—w> uz_ "
V ¢ @ Azrg lp

-2 — 2 "
3 VyVu =opu” — ¢

g (o)

v A%r} ®

in the sense of support function, since 0 = Vw = yyVu + uVys at (x,, ¢), by mini-
mality, at almost every time ¢ € [0, T').

Then, by maximum principle or, more precisely, by Hamilton’s trick (see [4]
or |6, Lemma 2.1.3]), for any ¢ € (0, 1), we have

d 2 u 2[¢/]2 //)
— Wmin = -
" Ut A?r} ( ¢ ¢
s L 20
> 2_Y 02 - (_ o //)
=L 204% 30\ ¢ v
w2 C?

> Imin (] _5/0) -~
= (p< /2) 254%

) C?
> (1 —5)w§m +§ (Wﬁlm - A‘é“)’
0

where we used Peter—Paul inequality, the estimate ’% —"
1/p > 1.

Resuming, at almost every time 7€ [0,7) such that wy(f) <0 either
wl. (f) > w2. (1) or the inequality (2.3) holds. Then, by integration of these
differential inequalities, we conclude

Winin (1) = min{ ! Co }
Wmin = - s )
(1-0)t+1/L Azrg

< C/p and that
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which implies

u(x, 1) > min{— 1 _ G }
e (1—0)t+1/L" A%}
for every x € By, /4(xo) and 1 € [0, T'). O

THEOREM 2.4. Let the Ricci tensor of (M,g) be uniformly bounded below. If
u: M x (—o0,T) — R is an ancient solution of the equation u; = Au+ u?, then
either u =0 or u > 0 everywhere

PrOOF. We only need to show that # > 0 everywhere, then the conclusion will
follow by the strong maximum principle.

Since the estimate in the previous lemma is invariant by translation in time,
for every m € N, we can consider the interval [—m, T') and conclude that

' 1 Gs
u(x, 1) me{—(l _5)(;+m)+1/L’_A2V§}

for every x € B, /4(x0) and t € [-m, T'), with —L < inmeO (x) 4 and
A>242n—1)T/r} +2(n—1)(T +m)VK/r.

In particular, for every # € [-m + 1, T) and x € B,,/4(x0), sending L to +co, we

have
) 1 GCs
u(x, t) 2m1n{— ,— },
(1 =90)(t+m) A2r§

sending now me N to +oo, we have that for every 7€ (—oo0,7T) and
X e BAr0/4(xo),

u(x,t) = —Cs/A*r2.
Sending finally also 4 — +o0, we conclude that u > 0 everywhere. O

REMARK 2.5. Notice that Theorem 2.4 does not hold for the standard linear
heat equation, the (positive) nonlinearity plays a key role here.

REMARK 2.6. In the noncompact situation, the conclusion of Corollary 2.2 does
not necessarily hold. Consider M = R" and u given by a “Talenti’s function”
(an extremal of Sobolev inequalities, see [12] and also [1]),

n(n—2) '
(1+ 3%
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In the special case n = 6, we have

24

O =y

which, by a straightforward computation, satisfies Au + u> =0 in R®, in par-
ticular, u is a nonzero eternal solution for the semilinear heat equation u, =
Au + u?.

REMARK 2.7. This theorem, in the special case M = R", implies that the
positivity hypothesis in Theorem 1 of [9] and Corollary 1.6 in [7] (dealing with
ancient/eternal solutions of u#, = Au + u?), for p = 2, can be actually removed.

3. TRivIALITY I — HEAT EQUATION

3.1. Gradient estimates.

ProrosSITION 3.1. Let (M, g) be a compact Riemannian manifold without bound-
ary and u an ancient solution of the heat equation u, = Au in M x (—o0,T), for
some T € R, which is uniformly bounded, then u is trivial (that is, |Vu| = 0), hence,
constant.

PrOOE. We first compute the evolution equation for the gradient squared of u.
d
7 \Vu|* = 2VuVu, = 2VuVAu = 2VuAVu = A|Vul* — 2|D%u|.

Hence,

% [1? +2(t — 10)|Vu|*] = Au® + 2(t — 10)[A|Vul* — 2| D%u|?]

< A[u® +2(t — 1) |Vu|*.

Then, setting v = u? + 2(¢ — t0)|Vu|2, by maximum principle, we have v/, <0,
almost everywhere. We conclude that v(x, t) < vmax(fo), that is

u?(x, 1) + 2(1 — 1) |Vu(x, )|* <, (-, 10) < C < +o0,
for every 1y € (—o0, T) and (x,1) € M x (ty, T). It follows

C

Vu ,12£ ,
V(e ) <

sending #y — —oo, we get Vu(x, t) = 0 for every (x,7) € M x (—o0, T), that is, u
is trivial. O
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COROLLARY 3.2. Let u be an eternal solution of the heat equation u;, = Au
in M x R on a compact manifold (M, g), which is uniformly bounded, then u is
constant.

REMARK 3.3. Notice that boundedness is necessary, the function u(6,?) =
e~'sin @ is an ancient (actually eternal), nontrivial, unbounded (above and below)
solution of the heat equation on S' x R.

3.2. Energy estimates. Let u: M x (—oo,T) be an ancient solution of the heat
equation u, = Au in a compact Riemannian manifold (M, g) (without boundary).

Taking ¢y € (—oo, T) and setting uy = u(-, ty), supposing for a moment that M is
flat, by differentiating and integrating by parts, we have

i/ udx:/u,dx:/Audx:O,
dt Jm M M

hence, H(u) = / udx = / uodx = H(uy) (heat conservation), for every te€
(l(), T) M M
Then, for any m € N, we have

i/ u’”dx:m/ u’”lu,dx:m/ "' Audx
dt [y M M

= —m(m — 1)/ u"2|Vu)? dx,
M

hence, if u >0, E,,(u) = / u™ dx is nonincreasing in time.
We have M

d
(3.1) —/ |Vu|2dx—2/ VuVu,dx—Z/ VuVAu dx
dt Ju M M
= 2/ VuAVudx = 2/ |D?u|? dx.
M M
Finally, we consider the functional
W(u) = / u? + 2|Vul|* (t — 19) dx.
M
Notice that W = E, — (1 — ty) E5, hence W' = —(t — ty) E5 and
d

() = —4( - zo)/ D%l dx < 0,
dt M

which implies that W (u) is a monotone nonincreasing function and E(u) is a
convex function for ¢ € (#, T).
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It clearly follows,

W(0) < W) = [ i dx
M
for every ¢ € (1p, T') and we conclude

/IVMI LS lleC, 0) 1 Z2ar)

t—1

forevery t € (8, T).

Hence, assuming that the L? norm of u is uniformly bounded in time, taking
the limit as 7p — —oo, we get that u is necessarily constant in space (|Vu| =0
everywhere).

All these computations (and arguments) can be performed analogously if
(M, g) is a compact Riemannian manifold without boundary, but passing from
the third to the fourth term in equation (3.1) we interchanged space deriva-
tives and this produces an extra “error” term, due to the curvature of (M, g),
given by

—2/ (t — tp) Ric(Vu, Vu) dx,
M

hence getting

(3.2) % W(u) = —4(t — to)/ |D?u|* 4 Ric(Vu, Vu) dx.
M

Notice that the formulas H' = 0 and E] = -2 / |Vu|* dx < 0 are not affected.

M

Clearly, the quantity on the right hand side of formula (3.2) is non positive
if Ric > 0. In such case we can conclude as before that W (u) is a monotone
nonincreasing function and E,(u) is a convex function for ¢ € (¢, T'), moreover,
the function u is trivial.

ProposITION 3.4. Let (M,g) be a compact Riemannian manifold without
boundary and Ric > 0. If u an ancient solution of the heat equation u, = Au
in M x (—oo, T) with uniformly bounded (in time) L* norm (in space), then u is
trivial, hence constant.

We remark that the results of this section can be extended to noncompact
manifolds, if all the integrals are finite and integrations by parts are justified.

3.3. Entropy estimates. Let u: M x (—oo,T) be an ancient positive solution of
the heat equation u, = Au in a compact Riemannian manifold (M,g) without
boundary. Taking #y € (—oo, T') and setting uy = u(-, ty), supposing for a moment
that M is flat, by differentiating and integrating by parts, we have
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i/ ulogudx:/ u,(logu—f—l)dx:/ Au(logu + 1) dx
dt M M

Vu|?
— —dax

M U

= —/ u|Vlogu|* dx <0,
M

hence, E(u) :/ ulogudx < / up logug dx = E(uy) (entropy dissipation), for
M M
every t € (t, T).

Then, we consider the functional

2
|Vul

F(u):/Mu(logu—l)—i- Vu

(1 —to) dx.

Notice that F = E — H — (1 — tp)E’, hence F' = —(t — 1)) E".

d Vul?
(3.3) ZFW) :/ u(logu—1)+u, +——+ (1 — 19)
t M u

2VuVu, |Vu|2u]dx
t

u u?

2
:/ Aulogu—i—'vu| +(t—1)
M u

u?

2VuVA :
VuuV u |Vul A”} .

u3 u?

2 2
_/ =t [_2Vu|Vu| Vu , VuV|Vul
M

2,12 2
B 2|D u” VuDquuAu dx
u u
4 2,2 2
D D
:/(z—zo) l-z'v”ﬂ P AL ;NuAu]dx
I u u u

=-2(t— ZO)/ u|D*logu|* dx
M

<0

)

which implies that F(u) is a monotone nonincreasing function and E(u) is a
convex function for ¢ € (#, T'), by the previous remark.
It clearly follows,

F(u(-,1) < F(u) = /Muo(loguo — 1) dx,

for every t € (t, T).
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By heat conservation and

~ Vol(M,g)

S/ulogudxs/uologuodst(uo)SCVOI(M,g),
¢ M M

we conclude

Vul* ,_ E(w) +Vol(M,g)/e

M U t— 1

for every ¢ € (1, T'). Hence, taking the limit as /) — —oo, we get that u is neces-
sarily constant in space (|Vu| = 0 everywhere).

Hence, assuming that the entropy of u« is uniformly bounded in time, taking
the limit as ) — —oo0, we get that u is trivial.

The same argument/computation can be performed analogously if (M, g)
is a compact Riemannian manifold without boundary, but passing from the
second to the third line in computation (3.3) we interchanged spatial deriva-
tives and this produces an extra “error” term, due to the curvature of (M, g),
given by

_/ (l—tO)ZRIC(Vu’Vu)dx,
M u

hence getting

d o 2 2 . Vu Vu
(3.4) EF(u)_—2(l—to)/Mu{|D log u +R1C<7,7>}dx

==2(t— 1) / u[|D? log u|* 4+ Ric(Vlogu, Vlog u)] dx.
M

Notice that the formulas dH (u)/dt = 0 and dE(u)/dt = —/ ulVlogu|* dx < 0
are not affected. M

Clearly, the quantity on the right hand side of formula (3.4) is nonpositive
if Ric > 0. In such case we can conclude as before that F(u) is a monotone
nonincreasing function and the entropy E(u) is a convex function for 7 € (¢, T),
moreover, by the same argument above, the function u is constant in space, for
every t € (—oo, T).

ProproSITION 3.5. Let (M,g) be a compact Riemannian manifold without
boundary and Ric > 0. If u an ancient solution of the heat equation u, = Au in
M x (—o0, T) with uniformly bounded entropy, then u is trivial, hence constant.

As before, all the results of this section can be extended to noncompact
manifolds, if all the integrals are finite and integration by parts are justified.



ANCIENT SOLUTIONS OF SEMILINEAR HEAT EQUATIONS ON RIEMANNIAN MANIFOLDS 95
4. TRIVIALITY II — SEMILINEAR CASE

4.1. Gradient estimates. We will now prove a gradient estimate for positive solu-
tions to the semilinear heat equation u; = Au + u?> on manifolds with nonnegative
Ricci tensor, following the line of Souplet and Zhang in [11], who showed an
analogous (actually slightly stronger) result for the heat equation. We will then
apply this estimate to study the triviality of ancient solutions of u, = Au + u?
with a mild growth condition at minus infinity.

LemMA 4.1. Let (M, g) be a Riemannian manifold such that Ric(M, g) > kg > 0,
for some k e R. Let u be a positive solution to the semilinear heat equation
Uy = Au+u* in Qp.r = B(xo,R) x [Ty — T, Ty|, with B(xo, R) the geodesic ball
centered at xo € M of radius R. Assume that u < D in Qg 1. Then, there exists
C = C, > 0 such that on Qg 7> there holds

|Vu(x, )] - (1 1

(41) u(x, 1) R VT

+ (2—k)+)<1+10gu(it))

PRrOOF. Since estimate (4.1) is invariant under the rescaling ¥ — u/D, without
loss of generality we can suppose that 0 < u# < 1. Let us define

Vf I
(1-£)°

Thanks to the semilinear heat equation we easily see that

f=logu, w=

fi=A V)P + e,

which allows us to derive an equation for w. We have, in a orthonormal basis,

2
= 2 AT
(=) (=)
_ VA VP e) 2AVSRA + VS o)

(1— 1) (1-5)°
VA V) AV + V)@= f)ed 2V
(-7 (1=f) L=/ a-fy
B/ /L VA M Ry A\ A
(-7 (1=f) L= (-yy

_ Yy = 2Riey fify + ifify | ULy +2AVf 2= 1)e! 2AVST
(1= 1) (1=f) L=7 ="
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where we interchanged derivatives (hence, there is an “extra” error term given by
the Ricci tensor), passing from the fourth to the fifth line and we use the usual
convention of summing on repeated indexes.

Now,
O /S 1/ S v
) A (o) ey ey
and

./ S /B 1/ e/ v/
1= Q-0 a-n a-n a-n

Hence, we get
o A Yilia = 2RI S 4l SR+ 2N @)l 2V
t - 2 3 2
(1=1) (I=7) L=/ -5
Ui 2w Sl 2% )
(=07 A= A= 1= a-0°
_4fif = 2Ricy fify  2VfI' 2= flel 2VfP
(1-1)° (1-5)7 1=/ (-f)
/A /1 /L. s/
(1= =" a-n
As, by hypothesis, Ric;; fif; > k]Vf|2 and f <0, we have

Qi%£:<u-l yf<2

hence,

anfufi | 20 2@ k)P

2+ 3+ 2
(1=07 (=) 1=/
I/ M /Y /) A
(1=0* =0 a-r5
Notice that by (4.2), there holds

w,—Aw <

s, AV
S =G -

hence, substituting, we get
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2V 22 =RV’

1-7°>  a-x7

2 sk eV

-0 a-n a-n

2<Vf|VW> 22 -KIVP 2vf
-f (1-57  (1-7)

M anss v

-0 a-n a-n

(4.3)  w—Aw < 2Vf | Vw) —

= 2(Vf | Vw) —

s 202 = k)|VfI?
- 1_f<Vf|Vw>—|—4(l_f)2
vt 2 fif;

(1-/)° (1-1) (ff f>

2
< - %Wf | VW) +2(2 — k)w — 2(1 — f)w?
We introduce the following cut—off functions (of Li—Yau): let i to be a
smooth cut—off function supported in Qg 7 with the following properties:

(1) Y(x, 1) = p(dM(x,x0),1) € [0,1] with ¢(r,f) =1 if r < R/2 and Ty — T/4 <
t < Ty,

(2) ¢ is nonincreasing in the space variable r,

(3) |Vl//|/gb 10,0|/9p* < C,/R and |0?¢|/p? < C,/R?, when 0 < a < 1,

(4) [owl/v'? < /T,

for some constants C, C,,.
Then by inequality (4.3) with a straightforward calculation, setting b =
— —Vf one has

A + <61 V) - 23 ] V() ) - (o),

> 20(1 — f)w? 4+ <b | Vdw —2 W+ wAY — yw+ 2(k — 2)wy.

vul®
W
Suppose that the positive maximum of yw is reached at some point (x;,#,) €
Or, 1, which cannot be on the boundary where = 0. By Li-Yau [5], we can
assume that x; is not in the cut-locus of M. In fact, in general the distance
is only Lipschitz on the cut-locus of M and the maximum principle would
have to be intended in a weak sense. However, thanks to an argument of Calabi
we can assume without loss of generality that yw is smooth when applying
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the maximum principle, see for instance [8]. Then, at such point there holds
A(yw) <0, (Yw), =0 and V(yw) = 0, hence

(44)  29(1 = f)wi(xi,n)

2
2|Vj| w

We now estimate each term on the right-hand side. For the first term we have,

21/

— | <b[Vyow - + (Ap)w =y w + 2(k = 2)wip | (31, 11).

(4.5) [<b VYW |_1 VA1V lw

szw”ﬂfuvw
/] VY]
[(1— /)P
(fIvy))*
(1= 1)y
f4
RY(1—f)

=2[(1 — f)yw?*
<(1-flyw*+C

<(1—fyw*+C

)

by the properties of the function .
For the second term,

vy vy vyP\2 C
|w| LWL ) =g

Thanks to the assumption on the nonnegative Ricci curvature, by the Lapla-
cian comparison theorem (see [8, Chapter 9, Section 3.3] or [10]), one has

/ 1
(4.6) = lﬁl : =3 Yyw? + C(

4.7) —(AYy)w < — (83(/) + ?(%(o)w

< (1220l + 200 - 1) %),y

1/2 |5r§0| 0|
<o (¢1/2+2( _I)R(pl/z)

L 0} | 69l 17
< g +C< | T Ry /2
g TR
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by the properties of the functions ¢ and y (n here is the dimension of the man-
ifold M).
Now we estimate [i,|w as

12 Wt| l 2 |lpt| 2 l 2 £
(4.8) W |w = szgfgww +c(¢1/2) < gun? + 5,
again by the properties of .
Finally, we deal with the last term,
1
(4.9) 22 —k)ywp <2(2 k), wy < glpwz +C2—-k)?

Substituting estimates (4.5), (4.6), (4.7), (4.8), (4.9) in the right-hand side of
inequality (4.4), we deduce

1 c C
3+§lpw2+—+—+ C2—k)?.

4
2(1 = fyw? < (1= fHyw? + CR4 / RY T T2

(1)

Recalling that f < 0, it follows

4
M+;¢DV2(X1J]) +

and, since f*/(1 — f)* < 1, we conclude that

C

¢ 2
+o5+ CR -}

lpwz(xl,tl) <C ﬁ

(e, Owr(x, 1) < P (xn, 0w (xn, n) < Wixg, 0)w?(xr, 1)

c C
< atgat C2—k)?,

for all (x,7) € Og 7.
As > 01in Qgjs 72 and w = |Vf|*/(1 — f)*, we finally have

|V ¢ C /
(l—f) SE‘FW—FC (2—/()+

for every (x,) € Qg2 1/2- Since f = log(u/D), we are done. |

REMARK 4.2. Notice that if k¥ > 0, then the manifold is compact, by Bonnet—
Myers theorem (see [3]).

COROLLARY 4.3. Let (M,g) be a compact Riemannian manifold such that
Ric(M,g) > kg > 0, for some k € R. Let u be a positive solution to the semilinear
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heat equation u, = Au+u® in M x [Ty — T, To]. Assume that u < D, then, there
exists C = C, > 0 such that on M x [Ty — T /2, Ty there holds

|Vu(x, )| 1 D
4.10 PRSI < (= (2= k), ) (1+10g- )
(4.10) u(x, 1) VT T -+ ’ Ogu(x, t)
PrOOF. The proof is the same, we simply consider analogous functions y» which
are constant in space. O

We can now prove the following triviality result.

THEOREM 4.4. Let (M,g) be a compact Riemannian manifold such that
Ric(M,g) > 2g. Let u be an ancient solution to the semilinear heat equation
such that

(4.11) logu(x, 1) = o(\/[t]), ast— —co
Then u is trivial.

PrROOF. By Theorem 2.4 we know that, if u is nontrivial, then u is necessarily
positive. Hence, under the above hypothesis, we have that estimate (4.10) on

Ory2,7/2 Teads as

|Vu(x, )] C

with D = maxy/(r,—r, 7, 4(x, t). Notice that thanks to the compactness of M and
the hypothesis (4.11), we clearly have

log D = o(\/T]), as T — —oo

Now, if we fix (xo,%) is space-time, using inequality (4.12) on the cube
B(xo, R) x [ty — R?, )] and the growth hypothesis (4.11) we finally deduce

u(f,t))’

Wulx O _ € 1 4 o(r)).

(413) u(x,t) ~ R

Letting R — oo in inequality (4.13) it follows that |Vu(xo,?)| =0 and being
(xo, to) arbitrary, u is necessarily constant. O

REMARK 4.5. Let us point out that the positive curvature bound in Theorem 4.4
is necessary. A counterexample in the flat case M = R" is given again by the
“Talenti’s function™

24

O =)y
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which satisfies Au + 1> = 0 in R®, hence, it is a nonconstant stationary solution
(eternal) for the semilinear heat equation, contradicting Theorem 4.4 in the flat
case.
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