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ABSTRACT. — We give optimal bounds for the homogenization of mixtures of two types of
ferromagnetic interactions. This is done by characterizing the possible I'-limits of the corresponding
energies in a discrete-to-continuum setting. We show that for nearest-neighbour systems this
characterization can be provided by a description of the possible limit Wulff shapes in terms of the
percentage of one of the two types of interactions.
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1. INTRODUCTION

The homogenization of periodic ferromagnetic spin systems in a variational
framework has been addressed by Caffarelli and de la Llave [15] using the
notion of plane-like minimizers and by Braides and Piatnitsky [13] in a discrete-
to-continuum setting by I'-convergence (see also [3, 7]). In this paper we consider
the problem of describing the overall properties of periodic mixtures of two types
of nearest-neighbour interactions; i.e., of characterizing the homogenization of
periodic Ising systems of the form

(1) Z%’(“i — )’
ij

where u; € {—1,+1}, i € Z*, the sum runs over all nearest neighbours in a square
lattice, and the “bonds” c;; are periodic coefficients that may only take two posi-
tive values o and f with

(2) o< p.

A representation theorem in [13] shows that the variational properties of spin
energies (1) are approximately described (for large number of interactions) by an
interfacial energy

1
(3) /0*{141} p(v)dAH
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defined on the “magnetization” parameter u € BVjo.(R% {—1,+1}), which is a
continuum counterpart of the spin variable. We give a precise description of all
the homogenized surface tension ¢ that may be obtained in this way in terms of
the proportion 0 (or volume fraction) of f-bonds as follows. We show that, with
fixed 0, all possible such ¢ are the (even positively homogeneous of degree one)
convex functions such that

(4) a([vi| + nal) < @(v) < c1|vi| + ca|v2| forall v e S*
for some ¢; and ¢, where the coefficients ¢; and ¢, satisfy
(5) asp, a<sf, a+c=20+1-0)ua).

Note that since the volume fraction 0 is rational, such bounds are understood as
extended to all 0 € [0, 1] by approximation. These relations are a particular case
of bounds obtained in [11] when also not-nearest neighbour are taken into ac-
count. When only nearest-neighbour interaction are considered as in this paper,
a simplified proof using a homogenization formula on paths is possible, and a
nice description of bounds in terms of the Wulff shapes of the continuum energies
can be given.

1.1. A localization principle

We note that the characterization of bounds has an application far beyond
the description of periodic Ising systems. Indeed, a general localization principle
proved in [11] shows that the description of the ¢ above allows the analysis of the
behaviour of arbitrary sequences (parameterized by n € N)

(6) Zci'}(“i — )’

without any periodicity assumption on ¢;. More precisely, in a discrete-to-
continuum approach, we may define (up to subsequences) the local volume frac-
tion 0(x) as the density of the weak*-limit of the measures

1
(7) 4T12 Z 5(i+j)/zn
{(i,j)e Z:ci’;:/}}

with respect to the Lebesgue measure. Note that the normalization factor is such
that the weak*-limit is the constant 0 times the Lebesgue measure (0 the volume
fraction defined above) when ¢} = ¢; independent of n with ¢; periodic. Then
the localization principle states that all possible continuum counterparts of (6)
are energies of the form

(8) /a*{ :l}go(x, V) dA!
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defined on BVie(R*; {—1,+1}), where ¢(x,-) satisfies the bounds described
above when 6 = (x) for almost every x.

1.2. Description of the optimal geometry of bounds

The discrete setting allows to give a (relatively) easy proof of the optimal bounds
in a way similar to the treatment of mixtures of linearly elastic discrete structures
[10]. The bounds obtained by sections and by averages in the elastic case have as
counterpart bounds by projection, where the homogenized surface tension is esti-
mated from below by considering the minimal value of the coefficient on each
section, and bounds by averaging, where coeflicients on a section are substituted
with their average. The discrete setting allows to construct (almost-)optimal
periodic geometries, which optimize one type or the other of bounds in each
direction.

We briefly describe the ‘extreme’ geometries in Fig. 1 and Fig. 2, where
a-connections are represented as dotted lines, f-connections are represented as
solid lines, and the nodes with the value +1 or —1 as white circles or black circles,

Figure 1. periodicity cell for a mixture giving the lower bound

Figure 2. periodicity cell for a mixture giving an upper bound
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respectively. In Fig. 1 there are pictured the periodicity cell of a mixture giving
as a result the lower bound «(|vi| + |v2|) and an interface with minimal energy.
Fig. 2 represents the periodicity cell of a mixture giving a upper bound of the
form c¢;|vi| + c2|v2|. Note that the interface pictured in that figure crosses exactly
a number of bonds proportional to the percentage 6, of f-bonds in the horizontal
direction.

It must be noted that, contrary to the elastic case, the bounds (i.e., the sets of
possible @) are increasing with 6, and in particular they always contain the mini-
mal surface tension o(|v;| + |v2|), which can be achieved with an arbitrarily small
amount of a-bonds.

1.3. Description of the optimal bounds in terms of Wulff shapes

We can picture the bounds in terms of their Wulff shapes; i.e., of the solutions 4,
centered in 0 to the problem

max{|A| / o(v) doA (x) = 1}.

0A

If p(v) = c1|vi| + c2|v2| then such a Wulff shape is simply the rectangle centered
in 0 with one vertex in (1/(8¢;),1/(8¢1)). A general ¢ satisfying (4) and (5) corre-
sponds to a convex symmetric set contained in the square of side length 1/(4«)
(which is the Wulff shape corresponding to o(|vi| + |v2|)) and containing one of
such rectangles for ¢; and ¢, satisfying (5). The envelope of the vertices of such
rectangles lies in the curve (see Fig. 3).

1 1
lxi]  [xaf

9) =16(0f+ (1 — O)a)

In terms of that envelope, we can describe the Wulff shapes of ¢ as follows:

e if 0 < 1/2 then it is any symmetric convex set contained in the square of side
length 1/(4o) and intersecting the four portions of the set of points satisfying
(9) contained in that square (see Fig. 4(a));

] .
L]

Figure 3. envelope of rectangular Wulff shapes
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Figure 4. possible Wulff shapes with: (a) 0 < 1/2 and (b) 0 > 1/2

e if > 1/2 then it is any symmetric convex set contained in the square of
side length 1/(40) and intersecting the four portions of the set of points sat-
isfying (9) with |x;| > 1/(8f) and |x,| > 1/(8f) contained in that square (see
Fig. 4(b)). This second condition is automatically satisfied if 6 < 1/2.

1.4. Connection with continuum problems defined on Finsler metrics

The continuous counterpart of the problem of optimal bounds for (1) is the deter-
mination of optimal bounds for Finsler metrics obtained from the homogeniza-
tion of periodic Riemannian metrics (see [1, 9, 8]) of the form

ba@u’zdt
| (),

and a(u) is a periodic function in R? taking only the values « and 3. This problem
has been studied in [16], where it is shown that homogenized metrics satisfy

%< p(v) < (08 + (1 - O)a),

but the optimality of such bounds is not proved. The connection with energies (3)
is that a ‘dual’ equivalent formulation in dimension two is obtained by consider-
ing the homogenization of periodic perimeter functionals of the form

/ a(f)dc%”l(x)
o4 N¢

with the same type of @ as above (see [4, 5]). The corresponding ¢ in this case can
be interpreted as the homogenized surface tension of the homogenized perimeter
functional.

2. SETTING OF THE PROBLEM

We consider a discrete system of nearest-neighbour interactions in dimension
two with coefficients ¢; =¢; >0, i,j € 7%. The corresponding ferromagnetic
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spin energy is

(10) F(u) :% > el —w)?,

(Lphez

where u: 7> — {—1,+1}, u; = u(i), and the sum runs over the set of nearest
neighbours or bonds in 72, which is denoted by

7 ={(i,j))eZ*x7*:|i—jl=1}.

Such energies correspond to inhomogeneous surface energies on the continuum
[2, 13].

DEFINITION 1. Let {¢;} be indices as above with infj; ¢;; > 0 and periodic; i.e.,
such that there exists 7 € N such that

Clite, T)(j+eiT) = Cli+eT)(j+erT) = Cij-

Then, we define the homogenized energy density of {c;} as the convex positively

homogeneous function of degree one ¢ : R> — [0, +00) such that for all v e S!

we have

(11) (v) = lim inf IZN: iy —ip = v R+ o(R)
p(v) = R Cijy IN — o=V 0 .

R—+ 1

The infimum is taken over all paths of bonds; i.e., pairs (iy, j,) such that the unit
segment centred in % and orthogonal to i, — j, has an endpoint in common
with the unit segment centred in 1t and orthogonal to i, | — j,_;. This is a

good definition thanks to [13].

REMARK 2. The definition above can be interpreted in terms of a passage
from a discrete to a continuous description as follows. We consider the scaled
energies

1
Fg(u) = g Z SC;(M,' - Llj)z,

(i.))ee

where u : eZ> — {—1,+1}, the factor 1/8 is a normalization factor, the sum runs
over nearest neighbours in ¢Z2, and
&

ci=c

& 1~
B

Upon identifying u with its piecewise-constant interpolation, we can regard these
energies as defined on L} (R?). Their I-limit in that space is infinite outside
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BVioe(R?, {#1}), where it has the form

with ¢ as above.

Periodic mixtures of two types of bonds. We will consider the case when
(12) cij € {o, f} with0 <o < f5;
If we have such coefficients, we define the volume fraction of f-bonds as

(13) 0({cs}) :%#{(i,j) ez:F e, T)z,c,;j:ﬂ}_

DEerFINITION 3. Let 6 € [0,1]. The set of homogenized energy densities of mix-
tures of o and [ bonds, with volume fraction 6 (of  bonds) is defined as

(14) H, 4(0) = {p : R* — [0,+00) : there exist O — 0, g, — ¢
and {cl];} with 0({65 ) = 6k and ¢,
homogenized energy density of {c,’lc 1}

The following theorem completely characterizes the set H, (0).

THEOREM 4 (optimal bounds). The elements of the set H, 3(0) are all even

convex positively homogeneous functions of degree one ¢ : R* — [0,400) such
that

(15) a|x1] + [x2]) < o(x1,x2) < cr|x1] + 2] x|
for some o < ¢y, ¢, < f such that
(16) c1+c =200+ (1—-0)).
Note that the lower bound for functions in H, (0) is independent of f.

Note moreover that in the case § = 1 we have all functions satisfying the trivial
bound

(17) of[xi] + [x2]) < p(x1,x2) < B(lxr] + [x2l).-
This is due to the fact that in that case by considering 8, — 1 we allow a vanish-

ing volume fraction of o bonds, which is nevertheless sufficient to allow for all
possible ¢.
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3. OPTIMALITY OF BOUNDS
We first give two bounds valid for every set of periodic coefficients {c;}.

PropoSITION 5 (bounds by projection). Let ¢ be the homogenized energy
density of {c;}; then we have

(18) 9(x) = cf|x1] + ¢f|xal,

where

(19) cf = T min{c; : ih = j» = k}
k=0

and

(20) ol = ?Z min{c; : iy = ji = k}.
k=0

PrOOF. The lower bound (18) immediately follows from the definition of ¢,
by subdividing the contributions of ¢;, ; in (11) into those with (i,), = (i4-1),
(or equivalently such that i, —i,_; = te;) and those with (i,); = (i,—1), (or
equivalently i, — i,_; = +e,, and estimating

Cipriy = Min{¢y iy = jo = (in)y }
and
Cip iy = min{cy iy = j1 = (in), },
respectively, in the two cases. |

PRrROPOSITION 6 (bounds by averaging). Let ¢ be the homogenized energy density
of {cij}, then we have

(21 p(x) < cffxi] + ¢3]xal,

where c{ is the average over horizontal bonds

1 i+J . .
(22) Ci"ﬁZ{Ciﬁ 7 G[OvT)Z,lz—Jz}

and c5 is the average over vertical bonds

.1 i+ .
(23) c :ﬁz{cl‘f‘T e [0,7)%, i :]1}.
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PRrROOF. The proof is obtained by construction of a suitable competitor {iy, j,}
for the characterization (11) of ¢. To that end let ny,ny € {1,..., T} be such that

1 <& 1 i+ .
?Zc(nlfl,k),(nuk) < TZZ{CU : > e [0, T)2712 :J2}

k=1
and

1 T

TZC(km 1), (k) < TZZ{CU e[0,7), 1=j1}-
k=

1

Up to a translation, we may suppose that n; = n, = 1. It is not restrictive to
suppose that vi >0 and v, > 0. We define iy = (| Rv»],0) and iy = (0, | Rv]).
It suffices then to take in Definition 3 the path of bonds {i,, j,} obtained by con-
catenating the two paths of bonds defined by

il = ([Rvs] —m.0), j' =(Rva)—n1), n=0,. . |R)—1
and
15:(0,11), j,%:(l,n), n=1,...,|Rv].
We then have

I_RVZ LRV[

RETQQ?(Z(/nOI1I+ZCOn1n>
1 <& 1 <&
= |V2|TZ Cln,0)(n,1) T |v1|TZc(0,n)(l,n)v
n=1 n=1

and the desired inequality. O

We now specialize the previous bound to mixtures of two types of bonds.
Given {¢;} satisfying (12) we define the volume fraction of horizontal -bonds as

@) o)) = gr{iez: B e 0D 6 =i =i

and the volume fraction of vertical p-bonds as

25 e =g ipe L 01 =i}
Note that
(26) 911({04'/})2 (e} 0{esh).



112 A. BRAIDES AND L. KREUTZ

PrOPOSITION 7. Let {c;} satisfy (12), let 0, = O4({c;j}) and 0, = 0,({c;}), and
let ¢ be the homogenized energy density of {c;}. Then

(27) p(v) < (Ouf + (1 = Op)o)[vi] + (0 + (1 = O,)) |2

Proor. It suffices to rewrite ¢ and ¢ given by the previous proposition using
(24) and (25). O

The previous proposition, together with (26) and the trivial bound (17) gives
the bounds in the statement of Theorem 4. We now prove their optimality. First
we deal with a special case, from which the general result will be deduced by
approximation.

PROPOSITION 8. Let

o(v) = c1|vi| + c2|vs
with o < ¢1,¢, < ff and
(28) ¢+ <2(p0+(1-0)a)
Sfor some 0 € (0,1). Then ¢ € H, 4(0).

PROOF. The case 6 =1 is trivial. In the other cases, since the set of (¢, ¢z) as
above coincides with the closure of its interior, by approximation it suffices to
consider the case when indeed

(29) a<c,e<p, e+ <2(p0+(1—-0)).

In particular, we can find 6; € (0,1) and 6, € (0, 1) such that 6, + 6, = 260 and
(30) 1 <o+ (1—0))a, c2<pl+(1—0,)o.

We then write

(31) a=pn+(1—t)a, c=pr+ (-0

for some #; < 0y and 1, < 0,.
We construct {c;} with period T € N and with

On({ci}) = 01, O,({cy}) = ba

by defining separately the horizontal and vertical bonds. Upon an approximation
argument we may suppose that N; = ;7 € N, and that 720; € N fori = 1,2. We
only describe the construction for the horizontal bonds. We define

p ifj=0,....,T—1landn=0,...,N; —1
C(jn),(j+1,n) = oo
(om), (G1,m) o« if j=0andn=Ny,...,T -1
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and any choice of o and f for other indices i, j, only subject to the total constraint
that 0, ({c;}) = 0. With this choice of ¢; we have

.. B ifn=0,...,N —1
mm{‘”"z_”_”}_{a ifn=Ny, ... T—1
The analogous construction for vertical bonds gives

B ifn=0,... N —1

min{6y1i1=jlzn}:{a if n=N, r-1

Then, Proposition 5 gives that the homogenized energy density of {c;} satisfies
p(v) = ci|vi| + 2|2l
To give a lower bound we use the same construction of the proof of Prop-

osition 6, after noticing that the vertical and horizontal paths with i! = (0,n),
Jjl=(1,n) or i = (n,0), j> = (n,1) are such that

1 <& 1 <&
T}:Cin]u}} =<1 T}:Ci,% = €
n=1 n=1

In this way we obtain the estimate

p(v) < civi| + e2|va)-
and hence the desired equality. O
PROOF OF THEOREM 4. Thanks to Remarks 2 and 9 it suffices to approximate
F,, in the sense of I'-convergence with functionals F; associated to ;. Since all the
functionals involved are equicoercive we can make some simplyfing assumptions

on ¢.

Step 1: We may suppose that

(32) o]+ ) < o(v) < (BO1 + (1 = O1)a)|[vi| + (P02 + (1 — O2)or) v2]
=: c1[vi| + 2|2

for some 6,6, € (0, 1) such that
0, + 6, = 20.

Moreover we can assume that ¢ is crystalline, i.e. the set {¢ < 1} is a convex
polyhedron whose vertices correspond to rational directions and contain the
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directions e, ey, i.e. there exists {ej,e2} C {vk},?;l C S, v # v, j # k such that
forall k € {1,..., N} there exists 4; € R such that J;v; € Z%, and we have

N
(33) p(v) = el<v, v,
k=1

with ¢, > 0.

Step 2: For every ¢ satisfying (32) and (33) there exists F, that approximates F,,
where F, is of the form

X
34 Fg u _/ f —,V dﬂl
(34) () o {u=1} (‘9 )
where
() if yede, k=1,....N
Je(y,v) = { civi| + e2]va|  otherwise,

with 4; := I1,, + Z*. In fact by [5] F, T-converge to F, as ¢ — 0 with respect to
the L} (R?)-topology.

Step 3: Note that for every k € {1,..., N} we can write

(35) () = ¢t [y + e31(v),|
for some o < ¢ < ¢;, i = 1,2. We can therefore consider equivalently

H(ve)y | + L)yl if v e Ty + 2% k=1,...,N
civi] + 2| v2] otherwise.

f(w)z{

Every functional of the form (34) can be approximated by functionals of the
form

(36) Bt = [ () ar

where for § > 0 f; : R* x R*> — [0, +00) is defined by

k k if yeAdrs, y¢As
ctloehl+ el goran 2k k=1,....8
fi(y,v) = if yeAksnAjs
for some j,k e {1,...,N}, j#k

ci|vi| + e[| otherwise,

a[vi] + [r2l)

with 4; 5 = {y € R? : disto (»,I1,, + Z*) < J}.
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Step 4: Every functional of the form (36) can be approximated by functionals of
the form

(37) B = [ a(ont9)ar'

where for 7,6 > 0 f, 5 : R* x R? — [0, +00) is defined by

k k if yedis, yéAjs
el + 100l ot ik k=1, N
if y e Arsn Aj s for some
+ ; 204010
fn,&.N(}’yV): OC(|VI| |VZ|) ]7ke{157N}7]7ék
if y e Arsiy\Axs, ¥ & Ajs
Blvil+ al) forall j#k k=1....,N
C1|V1| —|—62|V2| otherwise,

Step 5: By localizing the construction in Proposition 8 we can find ¢} = ¢} mose

n-periodic such that

S~
=~ -

1 -
F"’”"j’g(u):§ > ;cz‘j(”z’—”j)Z,

(i.))esz

and F, ,s . I'-converges to F, s, with respect to the LIOC([RRz) as n— o and
H({c”}) — 0 as 5 —0. Usmg a diagonal argument we can find ¢} = ¢},
—-perlodlc such that

I'-converges to

Ew= [ emar

as well as 0({c;}) — 0 as ¢ — 0. We can conclude using the following remark.

REMARK 9. In order to prove that the homogenized energy densities ¢, of c;
converge to ¢ if ¢, + i s perlodlc and F, I'-converges to F,, we extend our functlonals
1-homogenously to BVj..(R?) by

1 &
E,(u) = 2 Z eci|u; — ul
(i,j)eeZ

such that E,(u) = F,(u) whenever u € BVio.(R* {—1,+1}). Using [12], Theo-
rem 2.1, one can prove that the energy densities of the I'-limits defined on
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E : BVioo(R?) — [0, +0] and F : BVioe(R?, {—1,+1}) — [0, +0] agree. Further-

more by a convexity argument, we see that the homogenized energy den-

sities ¢, of the energies defined on BVlOC([R{z) (and therefore the homogenized

energy densities of the ¢j;) converge to the limit energy density ¢. (See [11] for
details)

By the application of this remark the approximation procedure is completed.

O
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