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Abstract. — Given a N-function A and a continuous function h satisfying certain assumptions,

we derive the inequalityZ
R

Aðj f 0ðxÞjhð f ðxÞÞÞ dxaC1

Z
R

AðC2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jMf 00ðxÞTh; pð f ; xÞjp

q
� hð f ðxÞÞÞ dx;

with constants C1, C2 independent of f , where f b 0 belongs locally to the Sobolev space W 2; 1ðRÞ,
f 0 has compact support, p > 1 is smaller than the lower Boyd index of A, Th; pð�Þ is certain nonlinear
transform depending of h but not of A and M denotes the Hardy–Littlewood maximal function.

Moreover, we show that when hC 1, then Mf 00 can be improved by f 00. This inequality generalizes
a previous result by the third author and Peszek, which was dealing with p ¼ 2.
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1. Introduction

In [21] the third author, together with Peszek, obtained the inequalityZ
R

j f 0ðxÞj phð f ðxÞÞ dxa ð
ffiffiffiffiffiffiffiffiffiffiffi
p� 1

p
Þ p
Z
R

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j f 00ðxÞThð f ðxÞÞj

p
Þ phð f ðxÞÞ dxð1:1Þ

where pb 2, f b 0 belongs to the Sobolev space W
2;1
loc ðRÞ and f 0 has bounded

support. The function h is given and Th is a transform depending of h, but
not of p. Such inequality generalizes the following variant of the classical
Gagliardo–Niremberg inequalityZ

R

j f 0ðxÞj p dxa ð
ffiffiffiffiffiffiffiffiffiffiffi
p� 1

p
Þ p
Z
R

j ff 00j p=2 dx; f a Cl
0 ðRÞ; pb 2

(see [21, Lemma 1.1]), and, in view of the applications described therein, (1.1) has
been proved in the rather general form. Another extension, dealing with the case



hðxÞ ¼ xa under the slightly less general assumptions, has been obtained in [17].
In both mentioned papers such inequalities were applied as a main tool to the
asymptotic behavior and regularity of solutions of singular ODEs like, for exam-
ple, to Emden–Fowler equations having the form u 00ðxÞ ¼ gðxÞðuðxÞÞa in ða; bÞ,
g a Lpða; bÞ. Another application is also in the study of the regularity of solutions
to Cucker–Smale flocking model, see Peszek [28].

In [22] the Orlicz version of (1.1)

Z
R

Aðj f 0ðxÞjhð f ðxÞÞÞ dxaCA;2

Z
R

Að
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j f 00ðxÞTh;2ð f ; xÞj

q
� hð f ðxÞÞÞ dxð1:2Þ

has been obtained, where A stands for a general N-function which replaces the
original power p. Here A has to satisfy the assumptions

dA
AðtÞ
t

aA 0ðtÞaDA

AðtÞ
t

; t > 0;ð1:3Þ

where DA b dA > 2 and

L :¼ max lim sup
l!0

AðtÞ
tDA

; lim sup
l!l

AðtÞ
tdA

� �
< l:

Such inequality was applied in [22] to derive certain second order isoperimetric
inequalities and capacitary estimates.

In this paper we improve the condition DA b dA > 2, this way weakening the
assumption on A. In order to do this, we note that inequality (1.2) is invariant
under certain equivalence classes of N-functions A. Taking this into account,
as a key tool, we applied an idea by the second author and Krbec [8]. Here a
characterization of Boyd indices, based again on the same invariance, has been
obtained and revealed useful for questions related to variational integrals and
extrapolation of integral operators.

As an example, let us consider the function

AðtÞ :¼
t7=3 if 0a t < 1

ð2t� 1Þt1=3 if 1a t < 2

t7=3=2þ t1=3 if tb 2:

8<
:

It does not satisfy (1.3) with any dA b 2, because its lower Simonenko index,
which intuitively is the highest possible dA satisfying (1.3) (see (2.5) for the defini-
tion), is 5=3. As it is smaller than 2, it cannot be considered in the previous state-
ment (1.2), but it can be considered in the statement of our Theorem 3.1, because
its lower Boyd index is 7=3, greater than 2. Let us mention that the computation
of the lower Boyd index can be done without using the artificial definition, but
using the simple formula found in [9]. The heart of the matter is the following:
the growth of AðtÞ must be, in fact, according to the arguments in [22], at least
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like the power t2, but the way (1.3) to ‘‘measure’’ the growth of A is not optimal
and it can be refined, by means of the Boyd indices. In the case of the example
above, the smaller growth of A in the interval ½1; 2½ influences the Simonenko
index but not the Boyd index. Indeed, according to [9], only the values in the
neighborhoods of 0 and l are relevant for the computation of the Boyd
indices. The idea in [8], in this case, is that there exists another function A1

which is equivalent to A (in the sense that A1=A is bounded away from 0
and l) and satisfies (1.3) with dA1

> 2. Therefore A1 can replace A in (1.1)
with a worst constant.

We stress that our generalization will lead to inequalities true not only for
N-functions AðtÞ essentially growing faster than t2, but also for N-functions AðtÞ
essentially growing faster than t p, with any fixed p > 1. As it is natural to expect,
in this case the square root on the right hand side of (1.2) must be replaced by
the p-root (see (3.1)). Moreover, Th;2ð�Þ is then replaced by a more general
transform Th;pð�Þ which is local when p ¼ 2 and nonlocal in the other cases.
This means that its value at the given point x, when pA 2, depends not only
on the value of the involved function f at x, but it depends of the distribution
of the values of f over all interval ð�l; xÞ. It is described by a certain inte-
gration formula (see (2.1) and Remark 2.1) and, contrary to the case p ¼ 2, it
depends also on f 0.

As an e¤ect of this investigation, we obtain the inequalityZ
R

Aðj f 0ðxÞjhð f ðxÞÞÞ dxaCA;p

Z
R

Að
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jMf 00ðxÞTh;pð f ; xÞjp

q
� hð f ðxÞÞÞ dx;ð1:4Þ

with constant CA;p independent of f , where f is nonnegative and belongs locally
to the Sobolev space W 2;1ðRÞ, f 0 has compact support, p > 1 is smaller than the
lower Boyd index of A, and Mg denotes the Hardy–Littlewood maximal func-
tion of g.

In the case hC 1 the above inequality reduces toZ
R

Aðj f 0ðxÞjÞ dxaCA;p

Z
R

Að
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j f 00ðxÞThC1; pð f ; xÞjp

q
ÞÞ dx;ð1:5Þ

where ThC1; pð f Þ ¼
Z x

�l
j f 0ðyÞj p�2

f 0ðyÞ dy ¼ D�1ðDp f Þ, D�1 is the inverse of

the classical Laplacian operator and Dp f ¼ ðj f 0j p�2
f 0Þ0 is the p-Laplacian, both

acting in 1-d (see (2.1)). We remark that when pA 2 the nonlocality of such
transform is clearly visible and that it depends only on f 0.

For example, the choice of hðtÞ ¼ ta where ab 0 and AðtÞ ¼ tq where
1 < p < q < l implies the inequalityZ

R

j f 0ðyÞjqð f ðyÞÞa dy

aC
�Z

R

ðj f 0ðyÞjð f ðyÞÞaÞ p�1
dy
�q

p

Z
R

ðMf 00ðyÞð f ðyÞÞaÞ
q

p dy;
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see Theorem 4.2, while the choice of hC 1, f :¼
Z x

�l
jgðyÞj dy, where

g a W 1;1ðRÞ is compactly supported, implies the following variant of the
Gagliardo–Nirenberg inequalityZ

R

AðjgðyÞjÞ dyaCA;p

Z
R

A
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jg 0ðxÞj
Z x

�l
jgðyÞj p�1

dy
p

s �
dx;

which seems to be unknown also for A being of power type, see Theorem 4.3.
Let us mention that contrary to (1.5) and (1.2), in the generalization (1.4),

we had to substitute f 00 by its maximal function Mf 00. This is not a surprise,
because several other interpolation inequalities, having the pointwise character,
were already known with the maximal function involved. We refer for instance
to the following pioneering inequality due to Maz’ja and Kufner (see [27, formula
(1.9)])

ð f 0ðxÞÞ2 a 2f ðxÞMf 00ðxÞ; f a W
2;1
loc ðRÞ; f b 0;

which will be applied in the proof of our main result. For further generalizations
of pointwise inequalities see also [15, 16, 25, 30, 31].

Inequality (1.1) has been already applied to mathematical models related to
singular elliptic PDEs [17, 21, 28], while inequality (1.2) was considered to derive
isoperimetric inequalities and capacitary estimates [22]. Therefore we believe that
our new inequality is not only of purely theoretical interest but that it can con-
tribute in the future to the isoperimetric inequalities and models in the similar
way. For other Gagliardo–Nirenberg inequalities and their applications, see e.g.
[5, 11, 20, 29].

2. Notation and preliminaries

2.1. Preliminaries

Compositions with Lipschitz functions. The following simple observation is a
classical fact (see e.g. [26], [1, Appendix A]):

Lemma 2.1. If 0 < Raþl, f : ½�R;R� ! ½a; b� is absolutely continuous and
L : ½a; b� ! R is a Lipschitz function, then ðL � f ÞðxÞ :¼ Lð f ðxÞÞ is absolutely
continuous on ½�R;R�.

Some special transforms. Let pb 1 and set

FpðtÞ :¼ jtj p�2
t if tA 0

0 if t ¼ 0

�

Observe that F2ðtÞ ¼ t and for general pb 1 the function Fp is odd, and on
ð0;lÞ is continuous and locally Lipschitz. Moreover, FpðtÞ ¼ t p�1 when

122 c. capone, a. fiorenza and a. kaŁamajska



tb 0, FpðabÞ ¼ FpðaÞFpðbÞ, and F 0
pðtÞ ¼ ðp� 1Þjtj p�2, ðjtj pÞ0 ¼ pFpðtÞ, when

tA 0.
The following definition will be crucial for our considerations.

Definition 2.1. Let pb 1, let h : ð0;lÞ ! ð0;lÞ be a continuous function
such that h a L1ðð0; rÞÞ for any finite r, and let f a W 2;1

loc ðRÞ, be nonnegative

and such that f 0 is compactly supported and hð f ð�ÞÞ p�1
wf f ð�Þ>0g a L1

locðRÞ.
We define the following transforms of h and f :

Gh;pð f ; xÞ :¼
Z x

�l
j f 0ðyÞhð f ðyÞÞj p�1 sgn f 0ðyÞwf f ðyÞA0g dyð2:1Þ

¼
Z x

�l
hð f ðyÞÞ p�1Fpð f 0ðyÞÞwf f ðyÞA0g dy

¼
Z x

�l
Fpðhð f ðyÞÞ f 0ðyÞÞwf f ðyÞA0g dy;ð2:2Þ

Th;pð f ; xÞ :¼
Gh; pð f ;xÞ
hð f ðxÞÞ p�1 when f ðxÞA 0

0 when f ðxÞ ¼ 0

(

where we use the convention that if F � R and function g is defined on F , by
gwF we denote the extension of g by zero outside set F .

Remark 2.1. Let pb 1 and let H : ½0;lÞ ! R be the locally absolutely

continuous primitive of h such that Hð0Þ ¼ 0, i.e. HðtÞ ¼
Z t

0

hðsÞ ds. The
mapping x 7! Gh;pð f ; xÞ is locally absolutely continuous and

Gh;2ð f ; xÞ ¼ Hð f ðxÞÞ;
Th;2ð f ; xÞ ¼ ðH=hÞð f ðxÞÞwf f ðxÞA0gðxÞ;

ThC1; pð f ; xÞ ¼ GhC1;pð f ; xÞ � wf f ðxÞA0gðxÞ ¼
Z x

�l
Fpð f 0ðyÞÞ dy � wf f ðxÞA0gðxÞ;

d

dx
ðGh;pð f ; xÞÞ ¼ Fpðhð f ðxÞÞ f 0ðxÞÞ; when p > 1:

Indeed, only the first statement requires some explanation. This follows because

ðhð f ðxÞÞ p�1Fpð f 0ðxÞÞwf f ðxÞA0g is integrable ( f 0 is continuous and compactly

supported, so bounded, while ðhð f ðxÞÞ p�1Þwf f ðxÞA0g is integrable) and so its inte-
gral Gh;pð f ; xÞ is locally absolutely continuous function. Let us also note that
f 0ðxÞ ¼ 0 whenever f ðxÞ ¼ 0 because f is nonnegative.

The assumptions on h in Definition 2.1 and in Remark 2.1 will be used in the
statement of our main result. We introduce the following condition:
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(h) h : ð0;lÞ ! ð0;lÞ is of class C1ð0;lÞ, and there exists a constant Ch > 0
such that

jh 0ðtÞjtaChhðtÞ; t > 0:ð2:3Þ

Moreover, when h is unbounded nearby zero, we assume that it is strictly
decreasing in some neighborhood of zero.

Easy verification shows that the above condition is satisfied for example by
hðtÞ ¼ ta, a a R or by hðtÞ ¼ taðlnð1þ tÞÞb where a a R, b > 0.

2.2. N-functions

By N-function we mean any function A : ½0;lÞ ! ½0;lÞ which is continuous,
strictly increasing, convex, such that Að0Þ ¼ 0, lim

t!0
AðtÞ=t ¼ lim

t!l
t=AðtÞ ¼ 0. For

A, A1 given N-functions, we will say that A1 is equivalent to A (A1 PA) if there
exist constants c1; c2 > 0 such that

c1AðtÞaA1ðtÞa c2AðtÞ; tb 0:

The symbol A� will denote the Legendre transform of A:

A�ðsÞ ¼ supfst� AðtÞ : t > 0g; sb 0:

It is known that A� is also a N-function and the mapping A 7! A� defined in the
class of N-functions is an involution (see e.g. [24, Theorem 4.3]).

In the sequel we will assume that A is a di¤erentiable N-function satisfying
the condition:

dA
AðtÞ
t

aA 0ðtÞaDA

AðtÞ
t

; t > 0;ð2:4Þ

where DA b dA b 1. Without loss of generality we may assume that dA is the
largest possible value and DA is the smallest possible value such that (2.4) holds
for A, by defining:

dA :¼ inf
t>0

tA 0ðtÞ
AðtÞ ; DA :¼ sup

t>0

tA 0ðtÞ
AðtÞ :ð2:5Þ

These numbers are called Simonenko lower and upper index of A, respectively
[33].

Remark 2.2. We recall that the condition dA
AðtÞ
t

aA 0ðtÞ is equivalent to the
fact that

AðtÞ
t dA

is nondecreasing, and, analogously, the condition DA
AðtÞ
t

bA 0ðtÞ is
equivalent to the fact that

AðtÞ
tDA

is nonincreasing. This latter inequality implies that
A satisfies the so called D2-condition:

Að2tÞaCAðtÞ; tb 0;
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with some constant C > 1 independent of t. The condition dA > 1 in (2.4) is
equivalent to the D2-condition for A� (see e.g. [24, Theorems 4.1 and 4.3]).

We conclude this section recalling the notion of lower and upper Boyd index
of A, denoted by iA and IA respectively (see Boyd [3], Gustavsson and Peetre [12]
and [35]). Such indices can be defined by the following formulae ([8, Theorem
1.1]), based on the fact that lower and upper Simonenko index are not invariant
under equivalence relationP, i.e. the condition A1 PA does not imply dA1

¼ dA
(see [8, Remark 3.5]):

iA :¼ sup
A1PA

dA1
IA :¼ inf

A1PA
DA1

:

From these expressions it is clear that Boyd indices are invariants of relationP.

3. The main result

By Mh we denote the Hardy–Littlewood maximal function of the locally inte-
grable function h : R ! R, defined by

MhðxÞ :¼ sup
x A I

1

jI j

Z
I

jhðyÞj dy; x a R;

where I varies among all intervals containing x. Its most known and important
property is the boundedness as operator from LpðRÞ to LpðRÞ, 1 < pal.
Due to the several applications, e.g. in Harmonic Analysis and PDEs, this prop-
erty has been intensively studied and extended in a variety of unweighted and
weighted function spaces. For a quite recent picture, which starts from the first
remarks on M as operator, see e.g. [6] and several references therein. For our
purposes we need to recall that by the classical Lorentz–Shimogaki theorem, see
e.g. [2, Theorem 5.17 p. 154], M is bounded on an Orlicz space LFðRÞ if and only
if iF > 1. If A is a N-function satisfying (2.4), and if we set FðtÞ ¼ Aðt1=pÞ where
1 < p < iA, then it is iF ¼ iA=p > 1 (see e.g. [8, Proposition 2.1]) and therefore,
taking into account that A satisfies the D2 condition, for any g locally integrable
in R it is FðgÞ a L1ðRÞ if and only if FðMgÞ a L1ðRÞ. These considerations will
be of help in the discussion about the finiteness of the right hand side of next
(3.2), which are part of the following result.

Theorem 3.1. Suppose that A satisfies (2.4) with dA > 1 and let 1 < p < iA.
Then we have

i) For every nonnegative f a W
2;1
loc ðRÞ such that f 0 is compactly supported

Z
R

Aðj f 0ðxÞjÞ dxaCA;p

Z
R

Að
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j f 00ðxÞThC1; pð f ; xÞjp

q
ÞÞ dx:ð3:1Þ

125strongly nonlinear gagliardo–nirenberg inequality in orlicz spaces



ii) Assume that the function h : ð0;lÞ ! ð0;lÞ is as in Definition 2.1 and satisfies

(h). Moreover, let f a W
2;1
loc ðRÞ be nonnegative and such that f 0 is compactly

supported, hð f ð�ÞÞ p�1 a L1
locðRÞ, and additionally that

Z
R

Að
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f 00ðxÞjp

p
ÞÞ dx < l

when hð�Þ is bounded in some neighborhood of zero and that

Z
R

Að
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mf 00ðxÞhð f ðxÞÞp

p
Þ dx < l

when hð�Þ is unbounded and strictly decreasing near zero. Then we haveZ
RBfx: f ðxÞ>0g

Aðj f 0ðxÞjhð f ðxÞÞÞ dxð3:2Þ

aCA;p

Z
RBfx: f ðxÞ>0g

Að
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mf 00ðxÞjTh;pð f ; xÞjp

q
� hð f ðxÞÞÞ dx;

where Mf 00 is Hardy–Littlewood maximal function of f 00.

Constants CA;p;CA;p > 0 are independent on f and Th;p is as in Definition 2.1.

Remark 3.1. Inequality (3.1) dealing with p ¼ 2 was obtained earlier in [18] in
general dimension. Inequality (3.2) can be interpreted as certain extension of the
pointwise inequality which will appear in (4.10).

Remark 3.2. Inequalities (3.1) and (3.2) may become trivial when, of course,
their right hand sides are þl. In the notation fixed at the beginning of this
Section, we remark that in the case when h is bounded near zero, right hand
side in (3.2) is finite provided that Fð f 00Þ a L1ðRÞ. Indeed, under the assumptions
of the theorem, there exists a bounded closed interval where f 0 is absolutely con-
tinuous, while f 0 is zero outside. Therefore f 0 is bounded, and so is f , hð f Þ and
Gh;pð f ; �Þ, because we assume that h is bounded near zero. In that case we have

jTh;pð f ; xÞj ¼
jGh;pð f ; xÞj
hð f ðxÞÞ p�1

a
1

hð f ðxÞÞ p�1

Z x

�l
ðhð f ðyÞÞÞ p�1j f 0ðyÞj p�1

dy;

jTh;pð f ; xÞj
1
phð f ðxÞÞ ¼ ðhð f ðxÞÞÞ

1
p

�Z x

�l
ðhð f ðyÞÞÞ p�1j f 0ðyÞj p�1

dy
�1

pð3:3Þ

a supfhðtÞ : t a ð0; k f klÞg
�Z

R

j f 0ðyÞj p�1
dy
�1

p

< l

and the conclusion is the same as before. Hence, right hand side in (3.2) is finite,
provided that FðMf 00Þ a L1ðRÞ, i.e. when Fð f 00Þ a L1ðRÞ.
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Remark 3.3. The considerations at the beginning of this Section could be
obtained equivalently applying the main result of [4] in the case wC 1 or, alter-
natively, the main result of [10], recently generalized in [14].

4. Proof of the main result

We begin with few preliminary results.

Lemma 4.1. Suppose that A is an N-function satisfying (2.4) and 1a p < dA.
Then we have

i) The function

Ap�1ðtÞ :¼
AðjtjÞ
FpðtÞ when tA 0

0 when t ¼ 0

(
ð4:1Þ

defined on R, is nondecreasing, locally Lipschitz and

ðAp�1Þ0ðtÞa ðDA � pþ 1ÞAðjtjÞjtj p wtA0; when t a R;ð4:2Þ

ii) For all a; b > 0 we have

AðaÞ
a p

b p
a

�
1� p

DA

�
AðaÞ þ p

dA
AðbÞ:ð4:3Þ

Proof.

i) We observe that Ap�1ð�Þ is odd and zero at 0. To show that it is locally
Lipshitz, we first verify that the derivative of Ap�1 is bounded when t a ð0; t0Þ

for any t0 > 0. We note that when t > 0 we have Ap�1ðtÞ ¼
AðtÞ
tdA

� tdA�pþ1, so

that Ap�1ðtÞ is increasing by Remark 2.2. Therefore when t > 0

0aA 0
p�1ðtÞ ¼

t p�1A 0ðtÞ � ðp� 1Þt p�2AðtÞ
t2p�2

a
t p�1

t2p�2

�
DA

AðtÞ
t

� ðp� 1ÞAðtÞ
t

�

¼ ðDA � pþ 1ÞAðtÞ
t p

¼ ðDA � pþ 1ÞAðtÞ
tdA

� tdA�p:

Since the latter function is nondecreasing, it is bounded by ðDA � pþ 1Þ Aðt0Þ
t
dA
0

�
t
dA�p
0 and so (4.2) follows when tA 0. The estimate for t ¼ 0 holds as well,
because

Ap�1ðtÞ � Ap�1ð0Þ
t

¼ Ap�1ðtÞ
t

¼ AðjtjÞ
jtj p ¼ AðjtjÞ

jtjdA
� jtjdA�p �!t!0

0:

127strongly nonlinear gagliardo–nirenberg inequality in orlicz spaces



ii) We apply the Oppenheim inequality known since 1927 (see Theorem 158 in
[13] or [32]):

Y
n

fnðanÞa
X
n

Z an

0

Y
mAn

fmðxÞ dfnðxÞ;ð4:4Þ

whenever n ¼ 1; 2 . . . ; n, an b 0, fn are nonnegative, continuous and strictly
increasing functions and one of fnð0Þ equals 0. For this we consider at first
p < dA, so that the map AðtÞ=t p is strictly increasing and it can be naturally

extended continuously to 0 at 0. Therefore we can apply (4.4) with f1ðaÞ ¼ AðaÞ
a p

and f2ðbÞ ¼ b p, to get

AðaÞ
a p

b p
a

Z a

0

x pd
�AðxÞ

x p

�
þ
Z b

0

AðxÞ
x p

dðx pÞ ¼
Z a

0

x p A
0ðxÞx p � AðxÞ

x
px p

x2p
dx

þ
Z b

0

AðxÞ
x p

px p�1 dx ¼
Z a

0

�
A 0ðxÞ � AðxÞ

x
p
�
dxþ

Z b

0

AðxÞ
x

p dx

a
ð2:4Þ Z a

0

�
A 0ðxÞ � p

DA

A 0ðxÞ
�
dxþ

Z b

0

p

dA
A 0ðxÞ dx

¼
�
1� p

DA

�
AðaÞ þ p

dA
AðbÞ:

Inequality for p ¼ dA follows after letting p ! dA. r

Remark 4.1. In the case AðtÞ ¼ t p we could not apply Oppenheim inequality
directly as then DA ¼ dA ¼ p and AðtÞ=t p is not strictly increasing, but, on the
other hand, the inequality is obvious because it reads

a p

a p
b p ¼ AðaÞ

a p
b p

a

�
1� p

DA

�
AðaÞ þ p

dA
AðbÞ ¼ AðbÞ:

Remark 4.2. For p ¼ 1 inequality (4.3) was known and applied earlier to
obtain Hardy inequalities, some of them with best constants, see e.g. Lemma 4.2
in [19] or proof of Lemma 3.1 in [34].

Proposition 4.1 ([23]). If A is a N-function satisfying (2.4), then

minðtdA ; tDAÞAðrÞaAðtrÞamaxðtdA ; tDAÞAðrÞ; r; t > 0:

Proof of Theorem 3.1. It su‰ces to show the proof under the assumption
1 < p < dA as inequalities (3.1) and (3.2) stay invariant up to the constants if
we substitute there A1 PA instead of A. Clearly, we can assume that right hand
sides in the inequalities (3.1) and (3.2) are finite and that their left hand sides are
strictly positive.
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i) Set

I :¼
Z
R

Aðj f 0ðxÞjÞ dx; J :¼
Z
R

Að
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j f 00ðxÞThC1;pð f ; xÞjp

q
Þ dx:

Note that I < l. According to the formulae (4.1) and Remark 2.1, we have

I ¼
Z
R

Ap�1ð f 0ðxÞÞ � ðGhC1; pð f ; xÞÞ0 dx:

By Lemma 4.1 the function Ap�1ðtÞ is locally Lipschitz. Moreover, f 0 belongs
to W 1;1ðRÞ and is compactly supported and bounded. Therefore by Lemma
2.1 the function Ap�1ðj f 0jÞ is absolutely continuous on R and compactly
supported. This and the fact that GhC1; pð f ; xÞ belongs to W

1;1
loc ðRÞ allows us

to integrate by parts in the expression above, to get:

I ¼ �
Z
R

ðAp�1ð f 0ðxÞÞÞ0 � GhC1; pð f ; xÞ dx:ð4:5Þ

Therefore, as ðAp�1ð f 0ðxÞÞÞ0 ¼ 0 a.e. on level set of f 0 and fx : f 0ðxÞA 0g �
fx : f ðxÞA 0g for the nonnegative f , we obtain

I ¼ �
Z
RBfx: f 0ðxÞA0g

ðAp�1ð f 0ðxÞÞÞ0 � GhC1; pð f ; xÞ dx

¼ �
Z
RBfx: f ðxÞA0g

ðAp�1ð f 0ðxÞÞÞ0 � GhC1; pð f ; xÞ dx

¼ �
Z
R

ðAp�1ð f 0ðxÞÞÞ0 �ThC1; pð f ; xÞ dx:

Note that A 0
p�1ð�Þ is even and

0aA 0
p�1ðtÞ a

ð4:2Þ
ðDA � pþ 1ÞAðjtjÞjtj p wtA0;

ðAp�1ð f 0ðxÞÞÞ0 ¼ A 0
p�1ð f 0ðxÞÞ f 00ðxÞ:

Consequently

I a

Z
R

ðAp�1ð f 0ðxÞÞÞ0 �ThC1; pð f ; xÞ dx
����

����ð4:6Þ

a ðDA � pþ 1Þ
Z
RBfx: f 0ðxÞA0g

Aðj f 0ðxÞjÞ
j f 0ðxÞj p j f 00ðxÞThC1; pð f ; xÞj dx:

Let a ¼ ðDA � pþ 1Þ. We apply (4.3) to estimate
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I a ad

Z
RBfx: f 0ðxÞA0g

�Aðj f 0jÞ
j f 0j p

�
� j f 00ThC1; pð f ; xÞj

d

� �1=p !p

dxð4:7Þ

a a
�
1� p

DA

�
d

Z
R

Aðj f 0jÞ dx

þ a
p

dA
d

Z
RBfx: f 0ðxÞA0g

A
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j f 00ThC1; pð f ; xÞj
d

p

r �
dx;

where d > 0 will be chosen later. The first integral equals a
�
1� p

DA

�
dI . To

estimate the second one we note that according to Lemma 4.1: A
�

t ffiffi
d

pp
�
a

max
	�

1
d

�DA
p ;
�
1
d

�dA
p


AðtÞ. This implies:

I a ðDA � pþ 1Þ
�
1� p

DA

�
dI

þ ðDA � pþ 1Þ p

dA
d �max

� 1
d

�DA
p

;
� 1
d

�dA
p

( )Z
R

Að
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j f 00ThC1; pð f ; xÞjp

q
Þ dx

¼ ðDA � pþ 1Þ
�
1� p

DA

�
dI

þ ðDA � pþ 1Þ p

dA
d �max

� 1
d

�DA
p

;
� 1
d

�dA
p

( )
J:

We choose d ¼ d0 such that ðDA � pþ 1Þ
�
1� p

DA

�
d0 ¼ 1

2 , i.e. d0 ¼
1

2ðDA�pþ1Þ
�
1� p

DA

� . Therefore setting
C1ðd0Þ :¼ ðDA � pþ 1Þ p

dA
d0 �max

� 1

d0

�DA
p

;
� 1

d0

�dA
p

( )
;

we arrive at the inequality

I a 2C1ðd0ÞJ;

which is what we wanted to prove.
ii) Let f a W

2;1
loc ðRÞ, and denote fe ¼ f þ e

IðeÞ :¼
Z
R

Aðj f 0jhð feðxÞÞÞ dx;

JðeÞ :¼
Z
R

Að
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jMf 00ðxÞTh;pð fe; xÞjp

q
hð feðxÞÞÞ dx:

Then as before we have IðeÞ < l and

IðeÞ ¼
Z
R

ðAp�1ð f 0
e hð feÞÞÞ �Fpð f 0

e hð feÞÞ dx:

130 c. capone, a. fiorenza and a. kaŁamajska



By Lemma 4.1 the function Ap�1ðtÞ is locally Lipschitz. Moreover, the function
f 0
e hð feÞ belongs to W 1;1ðRÞ and is compactly supported and bounded. Indeed, the
function hð�Þ is Lipschitz on every interval of the form ½e; rÞ and fe is bounded,
therefore by Lemma 2.1 we have hð feÞ a W 1;1

loc ðRÞ. As f 0
e belongs to W 1;1ðRÞ,

by the multiplicative properties of W 1;1 we have f 0
e hð feÞ belongs to W 1;1ðRÞ

and it is compactly supported. We note that Gh;pð fe; xÞ is also locally abso-
lutely continuous and by Remark 2.1 ðGh;pð fe; xÞÞ0 ¼ Fpð f 0

e hð feÞÞ in sense of
distributions and almost everywhere. We integrate by parts in the expression
above, and we get:

IðeÞ ¼
Z
R

ðAp�1ð f 0
e hð feÞÞÞ � ðGh;pð fe; xÞÞ0 dxð4:8Þ

¼ �
Z
R

ðAp�1ð f 0
e hð feÞÞÞ

0 � Gh;pð fe; xÞ dx:

Setting lfeðxÞ ¼ f 0ðxÞhð feÞðxÞ, we have

ðAp�1ðlfeÞÞ
0 ¼ A 0

p�1ðlfeÞf f 00hð feÞ þ ð f 0Þ2h 0ð feÞg

Therefore, by (4.2)

IðeÞa
Z
RBflfeA0g

ðAp�1ð f 0
e hð feÞÞÞ

0 � Gh;pð fe; xÞ dx
�����

�����ð4:9Þ

a ðDA � pþ 1Þ
Z
R

Aðjlfe jÞ
jlfe j

p j f 00hð feÞGh;pð fe; xÞjwf f 0ðxÞA0g dx

þ ðDA � pþ 1Þ
Z
R

Aðjlfe jÞ
jlfe j

p ð f 0Þ2jh 0ð feÞGh;pð fe; xÞjwf f 0ðxÞA0g dx

¼: I1 þ I2:

We put a ¼ ðDA � pþ 1Þ and apply (4.3) to get

I1 ¼ ad

Z
RBfx: f 0ðxÞA0g

�Aðj f 0jhð feÞÞ
j f 0hð feÞj p

�
� j f 00hð feÞGh;pð fe; xÞj

d

� �1=p !p

dx

¼ ad

Z
RBfx: f 0ðxÞA0g

�Aðj f 0jhð feÞÞ
j f 0hð feÞj p

�
� j f 00ðhð feÞÞ pTh;pð fe; xÞj

d

� �1=p !p

dx

a a
�
1� p

DA

�
d

Z
RBf f 0ðxÞA0g

Aðj f 0jhð feÞÞ dx

þ a
p

dA
d

Z
RBf f 0ðxÞA0g

A
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j f 00Th;pð fe; xÞj
d

p

r
hð feÞ

�
dx;
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and as MhðxÞb jhðxÞj a.e., we obtain inequality

I1 a ðDA � pþ 1Þ
�
1� p

DA

�
dIðeÞ

þ ðDA � pþ 1Þ p

dA
d �max

� 1
d

�DA
p

;
� 1
d

�dA
p

( )
JðeÞ:

We are left with the estimates for expression I2. Using the assumption (2.3), then
the following pointwise inequality due to Maz’ya and Kufner ([27], Remark 1.7),
valid for every nonnegative function f a W

2;1
loc ðRÞ

ð f 0ðxÞÞ2 a 2f ðxÞMf 00ðxÞ; x a R;ð4:10Þ

we compute that

I2 ¼ a

Z
RBf f 0ðxÞA0g

Aðjlfe jÞ
jlfe j

p ð f 0
e Þ

2 h 0ð feÞ
hð feÞ

Gh;pð fe; xÞ
ðhð feÞÞ p�1

�����
�����ðhð feÞÞ p dx

a aCh

Z
RBf f 0ðxÞA0g

Aðjlfe jÞ
jlfe j

p � ð f
0
e Þ

2

fe
� fjTh;pð fe; xÞjgðhð feÞÞ p dx

a 2aChd

Z
RBf f 0ðxÞA0g

Aðjlfe jÞ
jlfe j

p �Mf 00ðxÞ � fjTh;pð fe; xÞjgjhð feÞj p

d
dx

where d > 0 will be chosen later, and again by (4.3), we get

I2 a 2aCh

�
1� p

DA

�
d

Z
RBf f 0ðxÞA0g

Aðjlfe jÞ dx

þ 2aCh

p

dA
d

Z
RBf f 0ðxÞA0g

A
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Mf 00ðxÞjTh;pð fe; xÞjp
p

hð feÞ
d

1
p

�
dx

a 2aCh

�
1� p

DA

�
dIðeÞ þ 2aCh

p

dA
d �max

� 1
d

�DA
p

;
� 1
d

�dA
p

( )
JðeÞ:

In the end we get

IðeÞa aðdÞdIðeÞ þ aðdÞJðeÞ;

where

aðdÞ ¼ ðDA � pþ 1Þ
�
1� p

DA

�
ð1þ 2ChÞd;

bðdÞ ¼ ðDA � pþ 1Þ p

dA
ð1þ 2ChÞd �max

� 1
d

�DA
p

;
� 1
d

�dA
p

( )
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Now it su‰ces to choose the su‰ciently small d, for example to have aðdÞ ¼ 1=2,
and rearrange to get (3.2) with fe instead of f .

We complete the arguments by letting e ! 0. For this we have to explain the
convergence

IðeÞ �!e!0
Ið0Þ; and JðeÞ �!e!0

Jð0Þ;ð4:11Þ

where we set f0 ¼ f . We consider two cases: a) when h is bounded near zero and
b) when h is decreasing in some neighborhood of zero.

In case a) convergence follows from Lebesgue’s Dominated Convergence
Theorem. Indeed, in that case j f 0hð feÞj is bounded uniformly in e and compactly
supported and so is jTh;pð fe; xÞj1=phð feðxÞÞ by similar considerations as in (3.3).
Therefore

Að
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jMf 00ðxÞTh;pð fe; xÞjp

q
hð feðxÞÞÞaAðC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jMf 00ðxÞÞp

p
Þ a
A AD2

C1Að
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jMf 00ðxÞÞp

p
Þ

¼ C1FðjMf 00ðxÞjÞ;

where constants C1, C do not depend on e and we recall that property of
Fð�Þ ¼ A � j � j1=p were discussed at the beginning of this section. Last term above
is integrable because by our assumption Fðj f 00ðxÞjÞ belongs to L1ðRÞ, which
is equivalent to the fact that FðjMf 00ðxÞjÞ belongs to L1ðRÞ. In case b) we will
find constant D > 0 such that

hð feðxÞÞaDhð f ðxÞÞ:

Indeed, let us fix k > 0 such that h is decreasing on ð0; k� and let e < k=2. Then
we have for every x such that f ðxÞ > 0

hð feðxÞÞ ¼ hð f ðxÞ þ eÞwf0< f ðxÞak=2g þ hð f ðxÞ þ eÞwf f ðxÞ>k=2g

a hð f ðxÞÞwf0< f ðxÞak=2g þ hð f ðxÞÞ hð f ðxÞ þ eÞ
hð f ðxÞÞ wf f ðxÞ>k=2g

a hð f ðxÞÞwf0< f ðxÞak=2g þDhð f ðxÞÞwf f ðxÞ>k=2g

aDhð f ðxÞÞ;

where

D :¼ supfhðtÞ : t a ½k=2; k f kl þ k=2�g
inffhðtÞ : t a ½k=2; k f kl�g

We will verify that for every x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jTð fe; xÞjp

p
hð feðxÞÞaK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð f ðxÞÞp

p
;
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with constant K independent on e. Indeed, this follows from sequence of
estimations

Z x

�l
Fpðhð feðyÞÞ f 0ðyÞÞ dy

����
���� � hð feðxÞÞ

� �1
p

a

�
k f 0k p�1

l

Z
f 0A0

h p�1ð feðyÞÞ dy � hð feðxÞÞ
�1

p

a k f 0k1�
1
p

l

�Z
f 0A0

Dp�1h p�1ð f ðyÞÞ dy �Dhð f ðxÞÞ
�1

p

a Dk f 0k1�
1
p

l

�Z
f 0A0

h p�1ð f ðyÞÞ dy
�1

p

� �
� ðhð f ðxÞÞÞ

1
p

¼: K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð f ðxÞÞp

p
:

Using this estimation and the D2 condition for A we get

Að
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jMf 00ðxÞTh;pð fe; xÞjp

q
hð feðxÞÞÞaEAð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jMf 00ðxÞhð f ðxÞÞp

p
Þ a L1ðRÞ

Therefore we can use Lebesgue’s Dominated Convergence Theorem to justify
properties from (4.11). r

The following statements follow from careful analysis of the proof of Theorem
3.1 and its modifications. Our first statement contributes to the analysis to the
case p ¼ dA, which was not covered by Theorem 3.1.

Theorem 4.1. Let 1 < p < l. Then

i) For every nonnegative f a W
2;1
loc ðRÞ such that f 0 is compactly supported, we

have Z
R

j f 0ðxÞj p dxa
Z
R

j f 00ðxÞj
Z x

�l
j f 0ðyÞj p�1

dy dx

a

Z
R

j f 0ðxÞj p�1
dx

Z
R

j f 00ðxÞj dx;

ii) Assume that the function h : ð0;lÞ ! ð0;lÞ is as in Definition 2.1 and satisfies

(h). Moreover, let f a W
2;1
loc ðRÞ be nonnegative and such that f 0 is compactly

supported, ðhð f ð�ÞÞÞ p�1 a L1
locðRÞ, and additionally that

Z
R

Mf 00ðxÞ dx < l,

when hð�Þ is bounded in some neighborhood of zero and thatZ
R

Mf 00ðxÞhð f ðxÞÞ dx < l
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when hð�Þ is unbounded and strictly increasing near zero. Then we haveZ
RBf f ðxÞ>0g

j f 0ðxÞj phð f ðxÞÞ p dx

aC

Z
RBf f ðxÞ>0g

Mf 00ðxÞ � jTh;pð f ; xÞjhð f ðxÞÞ p dx;

where C ¼ 1þ 2Ch.

Remark 4.3. Since from the assumptions of the theorem it follows that f 00 is

compactly supported, the condition

Z
R

Mf 00ðxÞ dx < l is equivalent to the fact

that

Z
R

j f 00ðxÞjðlnj f 00ðxÞjÞþ dx < l, by celebrated Stein inequality.

Proof.

i) This follows immediately from (4.5) after we note that for AðtÞ ¼ t p we have
Ap�1ðtÞ ¼ t, so that ðAp�1ð f 0ÞÞ0 ¼ f 00.

ii) We note that (4.8) reads as

IðeÞ ¼ �
Z
R

ð f 0
e hð feÞÞ

0 � Gh;pð fe; xÞ dx and

ð f 0
e hð feÞÞ

0 ¼ f 00hð feÞ þ ð f 0Þ2h 0ð feÞ:

This, the condition (h), the fact that for almost every x in fx : f 0ðxÞ ¼ 0g we have
f 00ðxÞ ¼ 0 and that fx : f 0ðxÞA 0g � fx : f ðxÞ > 0g give

IðeÞa
Z
R

j f 00hð feÞj jGh;pð fe; xÞj dxþ Ch

Z
RBf f 0ðxÞA0g

ð f 0
e Þ

2

fe
hð feÞjGh;pð fe; xÞj dx

a
ð4:10Þ Z

R

j f 00hð feÞj jGh;pð fe; xÞj dxþ 2Ch

Z
RBf f 0ðxÞA0g

Mf 00 � hð feÞjGh;pð fe; xÞj dx

aC

Z
RBf f ðxÞ>0g

Mf 00 � jTh;pð fe; xÞjhð feÞ p dx;

where C ¼ 1þ 2Ch. When letting e ! 0 and applying the same arguments as at
the end of the proof of Theorem 3.1, we getZ

RBf f ðxÞ>0g
j f 0ðxÞj phð f ðxÞÞ p dx

aC

Z
RBf f ðxÞ>0g

Mf 00ðxÞ � jTh;pð f ; xÞjhð f ðxÞÞ p dx;

where C ¼ 1þ 2Ch, under the suitable assumptions on f . r
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Precise analysis of the case AðtÞ ¼ tq in Theorem 3.1, together with the more
precise estimates give the following result.

Theorem 4.2. For any p; q a R where 1 < p < q < l, we have

i) For every nonnegative f a W 2;1
loc ðRÞ such that f 0 is compactly supported, we

have

Z
R

j f 0ðxÞjq dxaDðp; qÞ
Z
R

j f 00ðxÞj
q

p

�Z x

�l
j f 0ðyÞj p�1

dy
�q

p

dxð4:12Þ

aDðp; qÞ
�Z

R

j f 00ðxÞj
q

p dx
��Z

R

j f 0ðxÞj p�1
dx
�q

p

;

where Dðp; qÞ ¼ ðq� pþ 1Þ
q

p;

ii) Let a a Rnf0g, f a W
2;1
loc ðRÞ be nonnegative and such that f 0 is compactly

supported, ð f ð�ÞÞaðp�1Þ a L1
locðRÞ, and additionally that

Z
R

j f 00ðxÞj
q

p dx < l

when a > 0 and that

Z
R

ðMf 00ðxÞð f ðxÞÞaÞ
q

p dx < l when a < 0. Then

Z
R

j f 0ðxÞjqð f ðxÞÞa dxð4:13Þ

aDðp; q; aÞ
Z
R

ðMf 00ðxÞÞ
q

p

�Z x

�l
j f 0ðyÞj p�1ð f ðyÞÞaðp�1Þ

dy
�q

p

f ðxÞ
aq

p dx

aDðp; q; aÞ
�Z

R

ðj f 0ðyÞjð f ðyÞÞaÞ p�1
dy
�q

p

Z
R

ðMf 00ðyÞð f ðyÞÞaÞ
q

p dy;

where Dðp; q; aÞ ¼ ½ðq� pþ 1Þð1þ 2jajÞ�
p

q .

Proof.

i) We apply the identity (4.6) and we note that in our case DA ¼ dA ¼ q. This
together with Hölder inequality gives

Z
R

j f 0ðxÞjq dx

a ðq� pþ 1Þ
Z
R

j f 0ðxÞjq�p � ðj f 00ðxÞjThC1; pð f ; xÞÞ dx

a ðq� pþ 1Þ
�Z

R

j f 0ðxÞjq dx
�1� p

q
�Z

R

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j f 00ðxÞjThC1; pð f ; xÞp

q
Þq dx

�p

q

;

which implies (4.12).
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ii) We consider hðtÞ ¼ ta, where a a Rnf0g in part ii) of Theorem 3.1. Then

Tjtja; pð f ; xÞ ¼
Z x

�l
ð f ðyÞÞaðp�1ÞFpð f 0ðyÞÞ dy;

Gjtja; pð f ; xÞ ¼
1

ð f ðxÞÞaðp�1Þ

Z x

�l
ð f ðyÞÞaðp�1ÞFpð f 0ðyÞÞ dy for f ðxÞ > 0:

To obtain (4.13), we apply (4.9) and note that in our case jh 0ðtÞj ¼ jaj hðtÞ
t
.

According to the notation in (4.9) this gives

IðeÞ ¼
Z
r

j f 0ðxÞjqð feðxÞÞaq dx

a ðq� pþ 1Þ
(Z

R

j f 0ð feÞajq�pj f 00ð feÞa � Gj�ja; pð fe; xÞ dx

þ jaj
Z
R

j f 0ð feÞajq�pj ð f
0Þ2

fe
ð feÞa � Gjtja; pð fe; xÞ dx

)
:

Applying inequality j f 00jaMf 00 and (4.10), we get

IðeÞa ðq� pþ 1Þð1þ 2jajÞ
Z
R

ðj f 0ð feÞajÞq�p � ðjMf 00ð feÞa � Gjtja; pð fe; xÞÞ dx;

which together with Hölder inequality, and (4.11), implies (4.13). r

Remark 4.4. First inequality in (4.12) is the variant of mixed norm Gagliardo–
Nirenberg type inequality and seems to us new.

Remark 4.5. It would be interesting to know whether constants in the in-
equalities (4.12) and (4.13) are optimal.

Our next statement does not involve second derivatives and is the strong
variant of the Gagliardo–Nirenberg inequality.

Theorem 4.3. Let us consider an arbitrary compactly supported function
g a W 1;1ðRÞ. Then

i) For any 1 < p < q < l we have

Z
R

jgðxÞjq dxa ðq� pþ 1Þ
q

p

Z
R

jg 0ðxÞj
q

p

�Z x

�l
jgðyÞj p�1

dy
�q

p

dx:ð4:14Þ
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ii) When A satisfy (2.4) and dA > 1, 1 < p < iA, then

Z
R

AðjgðyÞjÞ dyaCA;p

Z
R

A
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jg 0ðxÞj
Z x

�l
jgðyÞj p�1

dy
p

s �
dx:

where the constant CA;p does not depend on g.

Proof.

i) The function f ðxÞ :¼
Z x

�l
jgðyÞj dy is nonnegative and belongs to W 2;1

loc ðRÞ,

f 0ðxÞ ¼ jgðxÞj has bounded support and j f 00ðxÞj ¼ jg 0ðxÞj a.e.. Inequality
(4.12) leads to (4.14).

ii) We use the same substitution as before to the statement i) in Theorem 3.1.
r

Remark 4.6. Note that (4.14) involves the (nonlinear) nonlocal operatorZ x

�l
jgðyÞj p�1

dy and that it implies the following inequality:

�Z
R

jgðxÞjq dx
�1

q

a ðq� pþ 1Þ
1
p

�Z
R

jg 0ðxÞj
q
p dx
�1

q
�Z

R

jgðxÞj p�1
dx
�1

p

:

The substitution of r :¼ q

p
> 1 and s :¼ p� 1 > 1 implies the Gagliardo–

Nirenberg type inequality:

kgkLqðRÞ a
~DDðr; sÞkg 0ka

LrðRÞkgk
1�a
LsðRÞ;ð4:15Þ

where ~DDðr; sÞ ¼ ðsðr� 1Þ þ rÞ
1

sþ1, q ¼ rðsþ 1Þ and a ¼ 1
sþ1 . Note that in particular

1
q
¼ ð1

r
� 1Þaþ 1

s
ð1� aÞ.

The general Gagliardo–Nirenberg type inequalities in dimension n have the
form:

kD jukLqðRnÞ aCkDmuka
LrðRnÞkuk

1�a
LsðRnÞ;

where 1
q
¼ j

n
þ
�
1
r
� m

n

�
aþ 1

s
ð1� aÞ, u : Rn ! R, 1a s; ral, j;m a N, j

m
a

aa 1. We deal with the case j ¼ 0, m ¼ n ¼ 1.

Remark 4.7. Let us consider inequality (4.15) in the case r ¼ s ¼ 2, q ¼ 6.
According to our result it holds with constant ~DDð2; 2Þ ¼ 41=3. This inequality
is known to hold with optimal constant CGNð6Þ ¼ p1=3. Indeed, for this we use
results of Section 3.1. in [7] and the notation there, showing that the optimal

constant CGNð6Þ ¼
� C1ð6Þ

cð6Þ
�16
24, where
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C1ð6Þ ¼
8

8
16

4
4
16 4

4
16

� I
2�4
16

2

" #
¼ 2I

1
2

2 ¼ 2
ffiffiffi
p

p
; I2 ¼

ffiffiffi
p

p
G
�
1
2

�
G
�
8
8

� ¼ p ðas G
� 1
2

�
¼ pÞ;

cð6Þ ¼
� 8
2

�2�4
16 ¼ 2; so that

CGNð6Þ ¼ p
1
3:

Hence, our constant ~DDð2; 2Þ is not optimal in that inequality. On the other hand,
our inequality (4.15) follows as a consequence of stronger inequality (4.14), so
perhaps it explains the nonoptimality of the derived constant.
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