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Abstract. — We extend the basic idea of Serendipity Virtual Elements from the previous case

(by the same authors) of nodal (piecewise smooth and continuous) elements, to a more general
framework. Then we apply the general strategy to the case of HðdivÞ and HðcurlÞ conforming

Virtual Element Methods, in two and three dimensions.
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1. Introduction

Virtual Element Methods (VEM) were introduced a few years ago ([7], [8], [21],
[1]) as a new interpretation of Mimetic Finite Di¤erences (MFD) (see [38], [13]
and the references therein) that allowed, in a suitable sense, a generalization of
classical Finite Element Methods (FEM) to polygonal and polyhedral decom-
positions. More recently, they underwent rapid developments, with extension to
various problems (see [12], [10], [14], [3], [16], [15], [35], [39]).

Contrary to MFD, (and similarly to FEM) Virtual Elements are a Galerkin
method, using the variational formulation of the continuous problems in suitable
finite dimensional spaces. Contrary to Finite Elements (and similarly to MFD)
they can be used on very general decompositions, both in 2 and 3 dimensions,
and are very robust with respect to element distortions, hanging nodes, and so
on. Similarly to other methods for polytopes (see e.g. [6], [17], [37], [33], [42],
[43], [44], [45]) they use finite dimensional spaces that, within each element,
contain functions that are not polynomials.

Unlike these previous methods, however, with VEM these functions need not
to be computed (not even in a rough way) inside the elements, but some of their
properties (averages, polynomial projections, and the like) are computed exactly
starting from the data, and this allows (at least in problems with constant coe‰-
cients) the construction of schemes that satisfy the Patch Test exactly.

We also point out the interesting connections of Virtual elements with several
other important classes of methods based on a split approximation of the same
variables (at the boundary and in the interior), such as the many variants of the



quite successful Hybridizable Discontinuous Galerkin (HDG) (see e.g. [25], [24])
or the newer interesting Hybrid High Order methods (see e.g. [27], [28]). These
connections deserve to be further investigated, and in particular the question
of which approach would be preferable for each class of problems seems, to us, of
paramount importance for future studies.

The HðdivÞ and HðcurlÞ conforming variants of Virtual Elements were
introduced in [20] and successively extended in [9]. Their natural Mixed Finite
Element counterparts are the classical Raviart-Thomas (RT) or Brezzi–Douglas–
Marini (BDM ) elements for the HðdivÞ-conforming case and the equally classical
Nédélec elements of first and second kind (N1 and N2, respectively), for the
HðcurlÞ-conforming case. Compared to them, Mixed Virtual Elements exhibit a
much better robustness with respect to the element geometry, but often a bigger
number of degrees of freedom (see also, for instance, [18] for definitions and
properties of the above Finite Element spaces, and Figures 1 to 4 here in the next
sections for a comparison with VEMs). This justifies the e¤ort to eliminate some
internal degrees of freedom and, for HðcurlÞ-conforming polyhedrons, also some
of the degrees of freedom internal to faces. We are doing this here, following a
Serendipity-like strategy, in the stream of what has been done, for instance, in
[4], [11].

Here we slightly generalise the HðdivÞ and HðcurlÞ conforming spaces pre-
sented in [9], and identify di¤erent degrees of freedom, more suited to introduce
their Serendipity variants. We point out that in [9] we concentrated on spaces and
degrees of freedom that allow, on each d-dimensional polytope E (for d ¼ 2
or 3), the computation of the L2-projection operator on the space ðPkðEÞÞd
of vector valued polynomials of degreea k, while here we consider also the pos-
sibility of having a so-called B-compatible operator (also known as Fortin-type
interpolator), that, as is well known, is crucial in proving the inf-sup-condition in
a number of di¤erent circumstances.

In particular, we consider several types of vector-valued spaces, with di¤erent
degrees for the boundary, for the divergence, and for the curl, that include the
polytopal analogues of RT and N1 spaces, as well as the analogues of BDM or
N2 elements and the analogues of the Brezzi–Douglas–Fortin–Marini (BDFM)
elements, together with many other possibilities, as it was briefly indicated at the
end of [9].

Here too we limit ourselves to the description of the local spaces, on a generic
polygon or polyhedron E. The definition of the global spaces (on a decomposi-
tion made by several polytopes, respecting the HðdivÞ or the HðcurlÞ conformity)
is then immediate. The application of these elements to the approximation of
PDE problems in mixed formulation (partly trivial, partly non trivial) will be
discussed somewhere else, with error estimates and various additional properties.

Regarding, for several types of problems, the interest of polytopal decomposi-
tions with other numerical approaches, we refer for instance to [2], [19], [30], [29],
[34], [36], [41], [13] and to the references therein.

An outline of the paper is as follows. In the next section we will recall a few
basic definitions and some properties of polynomial spaces that will be useful in
the sequel. In Section 3 we present a rather general framework that we are going
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to use in order to construct Serendipity-like variants of local finite dimensional
spaces. We note however that the approach goes beyond the particular case of
Virtual Element Spaces, and could have an interest of its own in other situations.
In Section 4 we recall first the definition of our HðdivÞ-conforming 2-dimensional
elements, which slightly generalize the previous [20] and [9] cases, and we show
some comparisons with RT, BDM, and BDFM Finite Elements. At the end of
this Section we also recall the definition of B-compatible interpolators, that are
very useful for proving inf-sup conditions. We devote the next Section 5 to the
construction of Serendipity 2-dimensional face elements, following the general
guidelines of Section 3. Here, being the first application of our general frame-
work, the construction is given with much more details than what will be
done in the other cases. Section 6 deals with edge 2-dimensional spaces (HðrotÞ-
conforming) and their Serendipity variants. This Section is very short, since the
edge-2d case can be obtained from the face-2d case with a simple rotation of
p=2. Section 7 deals with the HðdivÞ-conforming 3-dimensional elements: the first
part, with definitions and basic properties of the spaces, based essentially on [9], is
simple and short, while the second part (dealing with the Serendipity variants) is
technically more complex. Section 8 deals with HðcurlÞ-conforming VEMs, and
is possibly the most innovative. The presentation of [9] is generalized and revised,
and then we introduce the Serendipity variants, that here, in addition to internal
degrees of freedom, allow a reduction of the face degrees of freedom (that could
not be dealt with simply by static condensation). Of the four cases ( face and
edge in 2 and 3 dimensions), the face 3d case is the most complex, but is a useful
step towards the 3d edge case, that in our opinion is the most innovative and
interesting one.

2. Generalities on polynomial spaces

To denote the independent variables, both in R2 and in R3 we will use either
xC ðx1; x2Þ (resp. xC ðx1; x2; x3Þ in 3 dimensions) or ðx; yÞ (resp. ðx; y; zÞ) when-
ever this is more convenient.

In two dimensions, for a scalar function v we define

rot v :¼
� qv

qy
;� qv

qx

�
;ð2:1Þ

and for a vector v ¼ ðv1; v2Þ we define the formal adjoint of rot as

rot v :¼ qv2

qx
� qv1

qy
:ð2:2Þ

Always in two dimensions, we recall that for every c a R2 we have

c ¼ gradðc � xÞ as well as c ¼ rotðc � x?Þð2:3Þ

where for a vector u ¼ ðu1; u2Þ in R2 its orthogonal u? is defined as

u? :¼ ðu2;�u1Þ:ð2:4Þ

145serendipity face and edge vem spaces



Similarly, in three dimensions for every c a R3 we have

c ¼ gradðc � xÞ as well as c ¼ 1

2
curlðcbxÞ:ð2:5Þ

Given a polyhedron E, and a smooth-enough vector v in E, for every face f
with normal nf , we can define the tangential part of the vector v on f as

vtf :¼ v� ðv � nf Þnf :ð2:6Þ

We observe that vtf could be obtained from vbn f by a suitable rotation of p=2,
so that

vtf ¼ 0 iff vbnf ¼ 0:ð2:7Þ

With (almost) obvious notation, for every face f we could also consider the two-
dimensional operators in the tangential variables gradf , divf , rotf , rotf , Df , etc.

2.1. Decompositions of polynomial vector spaces

On a generic domain O (in d dimensions, with d ¼ 1; 2; or 3), and for k
integerb 0 we will denote by Pk;dðOÞ (or simply by Pk;d or even Pk when no
confusion can occur) the space of polynomials of degreea k on O . With a
common notation, we will also use P�1C f0g. Following [9] we will denote by
pk;2 the dimension of the space Pk;2 (that is, ðk þ 1Þðk þ 2Þ=2), and by pk;3 the
dimension of Pk;3 (that is, ðk þ 1Þðk þ 2Þðk þ 3Þ=6). Moreover, for kb 1, we set

P0
kðOÞ :¼ p a PkðOÞ such that

Z
O

p dO ¼ 0

� �
;ð2:8Þ

ðPkÞddiv :¼ fp a ðPkÞd such that div p ¼ 0g:ð2:9Þ

The following decompositions of polynomial vector spaces are well known, and
they will be useful in what follows.

In two dimensions we have

ðPkÞ2 ¼ gradðPkþ1Þa x?Pk�1;ð2:10Þ
ðPkÞ2 ¼ rotðPkþ1Þa xPk�1:ð2:11Þ

Remark 2.1. A useful consequence of (2.10) is the well known property (valid
for all sb 0):

Eps a Ps b a unique qs a Ps such that rotðx?qsÞ ¼ ps:ð2:12Þ

The property follows easily from (2.10) with k ¼ sþ 1 by observing that
rotððPsþ1Þ2Þ ¼ Ps. In proving (2.12) (and the similar properties that follow)
we could have used a more constructive argument, but this is simpler. We also
notice that an elegant use of the properties of di¤erential operators applied to
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homogeneous polynomials can be found in [23]. We just point out that, as one
can easily check, for a homogeneous polynomial ps of degree s we have

rotðx?psÞ ¼ ðsþ 2Þps:ð2:13Þ

Clearly, from (2.11) we have instead

Eps a Ps b a unique qs a Ps such that divðxqsÞ ¼ ps;ð2:14Þ

with identical arguments. r

In three dimensions the analogues of (2.10)–(2.11) are

ðPkÞ3 ¼ curlððPkþ1Þ3Þa xPk�1;ð2:15Þ
ðPkÞ3 ¼ gradðPkþ1Þa xbðPk�1Þ3:ð2:16Þ

Remark 2.2. In computing the dimension of the space xbðPk�1Þ3 that appears
in (2.16), it has to be noted that xbðxPsÞC 0 for all s, so that the dimension of

xbðPk�1Þ3 is equal to that of ðPk�1Þ3 minus the dimension of Pk�2. And, indeed,
one can check that 3pk;3 ¼ ½pkþ1;3 � 1� þ ½3pk�1;3 � pk�2;3�. In its turn, taking

into account that the dimension of curlððPkþ1Þ3Þ is equal to the dimension of
ðPkþ1Þ3 minus that of gradðPkþ2Þ, we can check the dimensions in (2.15) through
3pk;3 ¼ ½3pkþ1;3 � fpkþ2;3 � 1g� þ pk�1;3. One should just avoid mistakes in the
math. r

Remark 2.3. As done in Remark 2.1, useful consequences of (2.15) and (2.16)
are the equally well known properties (valid for all sb 0):

Eps a Ps bqs a ðPsÞ3 such that divðxqsÞ ¼ ps;ð2:17Þ

and

Eps a ðPsÞ3 with div ps ¼ 0 bqs a ðPsÞ3 with div qs ¼ 0 such thatð2:18Þ
curlðxbqsÞ ¼ ps: r

2.2. Polynomial Spaces

In the Mixed Finite Elements practice one typically encounters vector valued
polynomial spaces of a special type. We recall some of them. For kb 0, in 2 or
3 dimensions, we have

RTk :¼ ðPkÞd a xPhom
kð2:19Þ

(where, here and in the sequel, the superscript hom stands for homogeneous) and,
for kb 1,

BDMk :¼ ðPkÞd :ð2:20Þ
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It is simple but useful to note that in any case

fv a RTkg and fdiv v ¼ 0g imply fv a ðPkÞdg:ð2:21Þ

These two types of elements are tailored for the construction of HðdivÞ-
conforming mixed finite elements on simplexes. Typically the normal components
(on edges in 2d, and on faces in 3d) are used as boundary degrees of freedom,
so that their continuity, from one element to another, will ensure the HðdivÞ con-
formity of the global space. The di¤erence between the two families is that, for
a given accuracy Pk of the normal components at the boundary, we have
divðBDMkÞ ¼ Pk�1 and divðRTkÞ ¼ Pk, so that the RT elements are recom-
mended when you need a better accuracy in HðdivÞ, while the BDM elements
are cheaper for the same accuracy in L2. They are both quite popular and widely
used.

The HðrotÞ (in 2d) or HðcurlÞ (in 3d) counterparts of these elements are the
Nédélec elements of first type (N1) and of second type (N2). In two dimensions,
the two types are just the RT and (respectively) BDM elements, up to a rotation
of p=2:

N1k :¼ ðPkÞ2 a x?Phom
kð2:22Þ

N2k :¼ ðPkÞ2:ð2:23Þ

The di¤erences (between RT and BDM, on one side, and N1–N2 on the other
side) are much more relevant in 3d. Indeed, in 3d we have

N1k :¼ ðPkÞ3 a xbðPhom
k Þ3ð2:24Þ

N2k :¼ ðPkÞ3:ð2:25Þ

Here the tangential components at the boundary have to be prescribed to ensure
the HðrotÞ-conformity.

This is done by assigning the tangential component on each edge, and then
completing the set of degrees of freedom, per face, with the internal ones.

The above spaces are very well suited for applications to simplicial elements.
When applied, in 2d, on squares (and their a‰ne or isoparametric images) their
definition changes. For instance, on rectangles the spaces RT become

RT
q
k :¼ Qkþ1;k �Qk;kþ1ð2:26Þ

where for integers r and s we used the common notation:

Qr; s ¼ fpolinomials of degreea r in x1 and of degreea s in x2gð2:27Þ

while

BDM
q
k :¼ ðPkÞ2 a spanfrotðxkþ1yÞga spanfrotðxykþ1Þg:ð2:28Þ
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In 3d, for cubes we have

RT
q
k :¼ Qkþ1;k;k �Qk;kþ1;k �Qk;k;kþ1ð2:29Þ

with obvious extension of the notation (2.27). The definition of BDM on cubes is
more complicated (see e.g. [5], [18]).

We also point out that the non a‰ne images of these spaces on boxes (squares
or cubes) exhibit several forms of severe approximation deficits.

3. General strategy towards serendipity spaces

We position ourselves at the current element level of a decomposition, and we
consider a very general type of local spaces. Then, as usual, the local spaces will
be put together to construct the global Virtual Element spaces defined on the
whole computational domain.

Let then E be a polytope, in two or three dimensions, and let V be a finite
dimensional space made of smooth enough functions. Let N be the dimension
of V ; we assume that we have N linear functionals F1; . . . ;FN from V to R,
linearly independent, that play the role of original degrees of freedom.

The name of the game is to be able to slim down the spaceV and, accordingly,
the degrees of freedom F , in such a way that we preserve certain properties at
a cheaper price.

3.1. The d.o.f. and the subspace that we want to keep

We then assume that, among the original degrees of freedom, we have a subset of
degrees of freedom that we want to keep. Typically these will be the boundary
ones (or a subset of them, necessary to ensure the desired conformity properties
for the global space) plus, possibly, some internal ones that we will need in order
to satisfy some additional properties (for instance, an inf-sup condition of the
global space with respect to some other given space).

All this will become clear in the examples that follow, but for the moment we
do not need to specify them. We just assume that our original degrees of freedom
are numbered in such a way that those that we want to keep are the first ones. In
other words, given an integer number M aN , the degrees of freedom that we
want to keep are F1; . . . ;FM .

We also assume that we have a subspace S �V that we want to preserve
while reducing V . A typical example would be to choose S as the space of
polynomials up to a certain degree, that we want to keep in order to ensure the
desired accuracy for the final discretized problem.

3.2. The crucial step

Here comes the crucial step: we assume that we have an intermediate set of
degrees of freedom (or, with a suitable numbering of the original ones, an integer
S with M aS aN ) having the crucial property defined here below.
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Definition 3.1. The degrees of freedom F1; . . . ;FS are S-identifying if

Eq a S fF1ðqÞ ¼ � � � ¼ FS ðqÞ ¼ 0g ) fqC 0g:ð3:1Þ r

Defining the operatorDS : S ! RS by

DS ðqÞ :¼ ðF1ðqÞ; . . . ;FS ðqÞÞ;ð3:2Þ

we immediately have that property (3.1) could also be expressed as:

DS is injective from S to RS :

Remark 3.2. It is clear that we have, actually, to choose the degrees of freedom
(within FMþ1; . . . ;FN ) that we want to add, and then re-order the degrees of
freedom so that the first S are ‘‘the first M ones plus the chosen additional
ones’’. However, quite often in what follows, with an abuse of language we will
talk about choosing S to mean that we choose the additional degrees of freedom
and, if necessary, we re-order the whole set. r

Note that, in a certain number of cases, we will be allowed to take S ¼ M ,
meaning that the degrees of freedom ‘‘that we want to keep in any case’’ are
already S-identifying. In other cases, we will have to add other degrees of free-
dom, on top of the first M ones, in order to have (3.1).

Remark 3.3. In all the examples in this paper, the choice of the degrees of
freedom that we want to keep, and the choice of the space S that we want to
preserve will be dictated by general needs on the properties of ‘‘the global space
that comes out of the local spaces used within each element’’: conformity, accu-
racy, compatibility with other spaces, and so on. On the other hand, the choice of
the additional FMþ1; . . . ;FS degrees of freedom (if any) will depend very much on
several other properties, related to the combination of: the shape of E, the space
S, and the degrees of freedom F1; . . . ;FM . r

In all cases, the first important step will be to check whether the initial
F1; . . . ;FM are already S-identifying or not. And if they are not, an even more
crucial (and sometimes delicate) step will be to identify the space

Z :¼ fq a S such that F1ðqÞ ¼ � � � ¼ FMðqÞ ¼ 0gð3:3Þ

and decide what are the additional degrees of freedom needed to obtain (3.1).
In several cases, depending on the dimension (2 or 3), on the types of spaces

(nodal, edge, face), on the degree of the polynomials S, and on the geometry of
the element we are working on, the identification of Z , and the identification of a
possible set of additional degrees of freedom

FMþ1; . . . ;FSð3:4Þ

will be relatively easy, and computationally cheap. In other cases, it risks to be
a nightmare. It is therefore worthwhile, in our opinion, to introduce a general
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strategy that, though rather expensive (in terms of operations to be performed at
the element level), can be used in a systematic (and conceptually simple) way in
the computer code. As we shall see, in cases where the same decomposition is
going to be used many times (for solving PDE problems with di¤erent coe‰-
cients, or with di¤erent right-hand sides) such a procedure, implemented once
and for all, could be of great help.

3.3. A systematic way to pick FMþ1; . . . ;FS

To further simplify the presentation, we also assume that the degrees of free-
dom FMþ1; . . . ;FN are naturally sliced in several layers: typically, when they
correspond to moments against a polynomial space, the slices could be the
homogeneous polynomials of increasing degree: 0; 1; 2; . . . ; k, or some obvious
adaptations of this same slicing to other cases, for instance when S is, say, a
Raviart–Thomas space or a Nédélec-first kind space. Note that this is not neces-
sary (we could always take N -M slices of size 1), but it could help in simplifying
the code, as well as the intuitive grasp of the procedure. Hence we introduce the
integer numbers s0; s1; . . . sr to identify the slices:

fFMþ1; . . . ;FMþs0g; fFMþs0þ1; . . . ;FMþs1g; . . . ; fFMþsrþ1; . . . ;FN g:ð3:5Þ

Let NS be the dimension of S. Taking a basis s1; . . . ; sNS
in S we can therefore

consider the NS � N matrix D given by

Dij :¼ FjðsiÞ:ð3:6Þ

Since S �V , and the degrees of freedom F1; . . . ;FN are unisolvent inV we easily
have that the matrix D has maximum rank (i.e. rank equal to NS). Note that
to say that Z C f0g is equivalent to say that the sub-matrix DM , made by the first
M columns of D, has already maximum rank. And our target (in choosing NS)
is to have a sub-matrix DNS

(made by the first NS columns of D) that has
maximum rank. Having to choose S we can proceed (in a sort of brutal way) by
checking successively the sub-matrices

DM ;DMþs0 ;DMþs1 ; . . .ð3:7Þ

until we find the first one that has maximum rank (that surely exists, since the
whole matrix DCDN has maximum rank). This will determine a viable choice
for S .

Needless to say, in a number of particular cases we could find a simpler,
cheaper, and sometimes more e¤ective way of choosing S , as we shall see in the
following sections. However, the general strategy described above has to be
considered as a solid back-up that allows us to proceed even in the worst cases.
Hence in the remaining part of the present section, that deals with the general
strategy to construct our Serendipity-like spaces, we shall assume, from now on,
that S has been chosen.
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3.4. Construction of the Serendipity subspaces

It is now time to explain the way to construct (after S has been chosen) our
Serendipity-like local spaces, and in particular to see how property (3.1) is used
for it.

Assume therefore that we have chosen the degrees of freedom F1; . . . ;FS , and
let us construct a suitable (serendipity!) subspaceVS , with S �VS �V , for which
F1; . . . ;FS are a unisolvent set of degrees of freedom.

The procedure will now be simple, since we prepared everything already.
We define a projection operator PS :V ! S as follows. For v a V , we define

PSv as the unique element of S such that

½DS ðPSvÞ;DSq�RS ¼ ½DSv;DSq�RS Eq a Sð3:8Þ

where ½� ; ��RS is the Euclidean scalar product in RS . Note that the fact thatDS is
injective (that is, property (3.1)) plays a crucial role in ensuring that problem (3.8)
has a unique solution in S. Needless to say, the Euclidean scalar product ½� ; ��RS

could be substituted by any other symmetric and positive definite bilinear form
on RS .

Once PS has been defined, we can introduce the serendipity spaceVS as

VS :¼ fv a V such that FiðvÞ ¼ FiðPSvÞ ði ¼ S þ 1; . . . ;N Þg:ð3:9Þ

The following proposition is an immediate consequence of this construction.

Proposition 3.4. With the above construction, the degrees of freedom F1; . . . ;FS

are unisolvent for the spaceVS . Moreover, if v a VS, using F1ðvÞ; . . . ;FS ðvÞ one can
compute the remaining FSþ1ðvÞ; . . . ;FN ðvÞ. Finally, we observe that S �VS . r

To summarize the results of the present section, we recall that, in all cases, in
order to pass from the original space (with original degrees of freedom) to the
Serendipity space (with a smaller number of degrees of freedom), one has to:

• Identify the M degrees of freedom that we want to keep, and the polynomial
space S that we want to maintain inside the local space.

• Consider the space Z defined in (3.3).

• If Z C f0g, take S ¼ M and proceed directly to (3.8), and then to (3.9).

• If instead Z contains some nonzero elements, identify NZ additional degrees of
freedom that, added to the previous M , form a set of S-identifying degrees of
freedom, in the sense of Definition (3.1). Then take S ¼ M þ NZ .

Clearly, in the latter case, NZ will have to be equal, or bigger than the dimension
of Z .

In the following sections we will first recall the mixed virtual element spaces
already introduced in [9] (although with slightly di¤erent degrees of freedom),
and then discuss the application of the general Serendipity strategy to each
particular case.
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4. Face virtual elements in 2d

4.1. Definition of the VEM spaces

We start by considering the two-dimensional face elements V f
k;kd ;kr

ðEÞ. For k, kd ,
kr integers, with kb 0, kd b 0, krb�1 we set:

V
f
k;kd ;kr

ðEÞ :¼ fv j v � ne a PkðeÞ E edge e; div v a Pkd ðEÞ; rot v a PkrðEÞg;ð4:1Þ

with the following degrees of freedom:

D1 :

Z
e

v � neqk de for all qk a PkðeÞ; for all edge e;ð4:2Þ

D2 : for kd b 1 :

Z
E

v � grad qkd dE for all qkd a Pkd ðEÞ;ð4:3Þ

D3 : for kr b 0 :

Z
E

v � x?qkr dE for all qkr a PkrðEÞ:ð4:4Þ

Proposition 4.1. The degrees of freedom (4.2)–(4.4) are unisolvent. Moreover,
they allow to compute the L2ðEÞ-orthogonal projection operator from V

f
k;kd ;kr

ðEÞ
to ðPsÞ2 for every integer sa kr þ 1.

Proof. First we observe that, using (2.12) with s ¼ kr, for every v in V
f
k;kd ;kr

ðEÞ
we can always find a pkr such that rotðx?pkrÞ ¼ rot v. Then rotðv� x?pkrÞ ¼ 0,
and therefore v� x?pkr is a gradient. We deduce that:

every v a V
f
k;kd ;kr

ðEÞ can be written in a unique way as

v ¼ grad fþ x?pkr for some function f and some pkr in Pkr :

(
ð4:5Þ

This immediately gives the unisolvence of the d.o.f. Indeed, the number of d.o.f.
being equal to the dimension of V

f
k;kd ;kr

ðEÞ, we have to show that if a v in

V
f
k;kd ;kr

ðEÞ verifies D1 ¼ D2 ¼ D3 ¼ 0, then vC 0. From D1 ¼ 0 we immediately
deduce v � n ¼ 0 on qE which, together with D2 ¼ 0 and an integration by parts
gives div v ¼ 0 in E: Consequently:Z

E

v � grad j dE ¼ �
Z
E

div vj dE þ
Z
qE

v � nj de ¼ 0 Ej a H 1ðEÞ:ð4:6Þ

Finally, using (4.5), then (4.6) and D3 ¼ 0:Z
E

jvj2 dE ¼
Z
E

v � ðgrad fþ x?pkrÞ dE ¼ 0þ 0:ð4:7Þ

Arguing as for (4.6) we see that the d.o.f. (4.2) and (4.3) allow to compute the

integral

Z
E

v � p dE for every p ¼ grad j, and j polynomial of any degree. On the
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other hand, the d.o.f. (4.4) allow to compute also

Z
E

v � x?p dE for every p a Pkr .

Hence, looking now at (2.10), we deduce that for every sa kr þ 1 and for every

v a V
f
k;kd ;kk

ðEÞ we can compute the L2-projection P0
s v on ðPsðEÞÞ2. r

Remark 4.2. As it comes out clearly from the last part of the above proof, once
the degrees of freedom (4.2) and (4.3) match the values of k and kd (respectively)
in (4.1), then the computability of P0

s (for s arbitrarily big) depends only on the
value of kr. r

Remark 4.3. It is easy to see that when used in combination with the degrees of
freedom (4.2), the degrees of freedom (4.3) can equivalently be replaced by

� for kd b 1 :

Z
E

div vqkd dE for all qkd a P0
kd
ðEÞ:ð4:8Þ r

Along the same lines, it should also be pointed out, at the general level, that
for the same space we could obviously construct a huge number of di¤erent
unisolvent sets of d.o.f. which, as such, are all equivalent. In some cases the pro-
cedure that one has to follow to pass from one set to an equivalent one is reason-
ably simple and can be performed with a modest amount of computations. In
other cases, however, this passage would require much more di‰cult computa-
tions: typically, the solution of a partial di¤erential equation (or even a system
of partial di¤erential equations) within the element, something that goes far
beyond the work that one is ready to perform. Here for instance, instead of the
degrees of freedom (4.4) we could clearly use

� for kr b 0 :

Z
E

rot vqkr dE for all qkr a PkrðEÞ:ð4:9Þ

It is however easy to see that in order to pass from one set to the other we should
solve a div� rot system in E. Depending on what you need to compute inside the
element E you must therefore choose and use one set of degrees of freedom, and
forget the other ones that are equivalent but not ‘‘computationally equivalent’’.

Remark 4.4. In principle, one could consider, say, face Virtual Elements
with kd ¼ �1, implying that we restrict our attention to divergence-free vectors.

Unfortunately, in this case, the divergence theorem requires

Z
qE

v � n ¼ 0 in (4.2),

and we could not use a local basis in the computational domain. r

4.2. Comparisons with Finite Elements

The comparison between VEMs and FEMs can only be done on a limited
number of classical geometries (here for simplicity we consider only simplexes
and boxes). However it should be clear from the very beginning that VEMs allow
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much more general geometries. For these more general geometries the compar-
ison should actually be done between VEMs and other methods designed for
polytopes, as for instance [13], [17], [22], [24], [26], [27], [31], [33], [32], [34], [37],
[40], [38], [41], [42], [45].

The natural comparison, within Finite Elements, of our V
f
k;k�1;k�1 elements

are clearly the BDM spaces as described in (2.20) for triangles (see Figure 1).
The same comparison for quadrilaterals is shown in Figure 2. In both cases we

see that the elements in V
f
k;k�1;k�1 have a higher number of degrees of freedom

than the corresponding BDM Finite Elements.
On the other hand, the natural counterpart for V

f
k;k;k�1 are the classical

Raviart–Thomas elements. For comparison, see Figure 3 for triangles, where

Figure 2. Quadrilaterals: BDMk and VEMk;k�1;k�1

Figure 1. Triangles: BDMk and VEMk;k�1;k�1
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again VEMs have more degrees of freedom. Instead, on quadrilaterals VEMs
have a smaller number of degrees of freedom than RT (see Figure 4).

Finally, the natural counterpart of the VEM f
k;k;k are the BDFM finite element

spaces. We omit a detailed comparison, and we only point out that here too
VEMs have more degrees of freedom.

4.3. B-Compatible Interpolators for Face VEM in 2d

Given a smooth enough vector valued function u, we can now use the degrees
of freedom (4.2)–(4.4) to define an interpolation operator that, for brevity,

Figure 4. Quadrilaterals: RTk and VEMk;k;k�1

Figure 3. Triangles: RTk and VEMk;k; k�1
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we denote by PI (neglecting its obvious dependence on k, kd , kr, and E)
given by

� PIu a V
f
k;kd ;kr

ðEÞð4:10Þ

and

�
Z
e

ðu�PIuÞ � neqk de ¼ 0 for all qk a PkðeÞ; for all edge e;ð4:11Þ

� for kd b 1 :

Z
E

ðu�PIuÞ � grad qkd dE ¼ 0 for all qkd a Pkd ðEÞ;ð4:12Þ

� for kr b 0 :

Z
E

ðu�PIuÞ � x?qkr dE ¼ 0 for all qkr a PkrðEÞ:ð4:13Þ

It is easy to check that PI is a B-compatible operator (in the sense, for
instance, of Section 5.4.3 of [18]). In our particular case, this means thatZ

E

divðu�PIuÞqkd dE ¼ 0; Eqkd a Pkd ðEÞ;ð4:14Þ

which is an easy consequence of (4.11) and (4.12) upon an integration by parts.

Remark 4.5. It is important to point out that in the definition (4.11)–(4.13) of
the operator PI , only the degrees of freedom (4.11)–(4.12) are necessary in order
to have (4.14). Hence, among the degrees of freedom that we will want to keep
(in our Serendipity approach), we will have to include (4.11)–(4.12), in order to
preserve conformity and B-Compatibility, while the degrees of freedom (4.13)
will be, so to speak, ‘‘expendible’’. r

5. Serendipity face elements in 2 dimensions

We want now to eliminate some of the internal degrees of freedom of the VEM
spaces defined in the previous section, following the general strategy of Sect. 3.
As we have seen there, we have to decide first what are the M degrees of freedom
that we want to keep, and what is the polynomial space that we want to preserve.

The first choice (concerning the degrees of freedom) is rather simple, as we
already pointed out in Remark 4.5: in order to have an HðdivÞ-conforming
global space we need to keep all the boundary degrees of freedom, i.e., (4.2)
in the present case; and in order to preserve the B-compatibility we also need the
degrees of freedom (4.3). Concerning the space to be preserved, the obvious

choice would be S ¼ BDMk C ðPkÞ2 if kd ¼ k � 1, and S ¼ RTk if kd ¼ k.
Clearly, these are not the only possible reasonable choices. In particular cases,
other choices could also be valuable. For instance, if we know that the HðdivÞ
component of the solution of our problem is a gradient, we can restrict out
attention to the case of the gradients of Pkþ1 (as suggested, for instance, in [20].
See also [13] in the context of Mimetic Finite Di¤erences).
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Here however, we don’t want to enter the details of a very general setting.
Hence, we will limit ourselves to the cases kd ¼ k and kd ¼ k � 1, that, as we
shall see, can be treated with the same arguments. For this, we will denote simply
by Sk the space to be preserved, knowing that it should be either BDMk or
RTk. Still following Section 3, we go then hunting for the space Z in (3.3) that
in both our cases reduces to

Z k :¼ fv a ðPkÞ2 such that div v ¼ 0 in E and v � n ¼ 0 on qEg:ð5:1Þ

Assuming for simplicity that E is simply connected, Z k can also be written as

Z k ¼ rotðPkþ1BH 1
0 ðEÞÞ:ð5:2Þ

5.1. Characterization of Z k

Following [11] we start by observing that, for r integerb 1, if a polynomial
pr a Pr;2 vanishes identically on a segment (with positive measure) belonging to
the straight line with equation axþ byþ c ¼ 0, then pr can be written in the form

prðx; yÞ ¼ ðaxþ byþ cÞqr�1ðx; yÞð5:3Þ

for some polynomial qr�1 of degree r� 1. As a consequence, if a polynomial pr
in Pr;2 vanishes identically on rþ 1 segments (with positive measure) belonging
to rþ 1 di¤erent straight lines, then pr is identically zero. So far so good. Now,
to the polygon E we attach the integer number hE defined as

hE :¼ the minimum number of straight lines necessary to cover qE;ð5:4Þ

and we recall the following obvious but useful property (already used in [11]).

Proposition 5.1. Let pr a Pr;2 be a polynomial of degree r that vanishes iden-
tically on qE. Then for r < hE we have prC 0, and for rb hE we have that pr
must be of the form pr ¼ qr�hEbh, where qr�hE is a polynomial of degree r� hE
and bh is a polynomial of degree hE that vanishes identically on qE. r

As an immediate consequence of this and of (5.2), we have that

Z k :¼
f0g for hE > k;

rotðbhEPk�hEþ1Þ for hE a k:

�
ð5:5Þ

Remark 5.2. If E is convex then bh will not change sign in E, a property that
will become handy in just a while. Moreover, assume that E is not convex, but
there are only two ‘‘re-entrant’’ edges (more precisely: edges belonging to straight
lines that intersect the interior of E, and consequently whose equations change
sign inside E), and let g2 be the second degree polynomial that vanishes on the
two straight lines that contain the two re-entrant edges. In this case it is easy to
see that the product bhg2 does not change sign in E. r
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The following Lemma is an immediate consequence of Proposition 5.1.

Lemma 5.3. Assume, for simplicity, that E is convex, and let ðk; kd ; krÞ be a
triplet of integers with kb 0, kd bmaxf0; k � 1g and kr b k þ 1� hE. Assume
that pk a Z k is such that

�
Z
E

pk � ðx?qsÞ dE ¼ 0 for all qs a Pkþ1�hE ðEÞ:ð5:6Þ

Then pk C 0.

Proof. Using (5.5) we have that if k þ 1 < hE the proof is immediate, while
if k þ 1b hE then pk ¼ rotðbhcÞ for some polynomial c of degree k þ 1� hE .
Then we use (2.12) with s ¼ k þ 1� hE and ps ¼ c to get a qs such that
rotðx?qsÞ ¼ c, and we insert it in (5.6) to obtain

0 ¼
Z
E

pk � x?qs dE ¼
Z
E

rotðbhcÞ � x?qs dEð5:7Þ

¼
Z
E

ðbhcÞ rotðx?qsÞ dE ¼
Z
E

bhc
2 dE

that ends the proof since bh does not change sign. r

Remark 5.4. If we give up the convexity assumption we could always follow
the path of Subsection 3.2. Otherwise, we should find some ‘‘ad hoc’’ alternative
ways to design suitable sets of conditions that, in a way similar to Lemma 5.3,
imply that pk ¼ 0. This is surely possible in many circumstances. For instance,
assume that E is a quadrilateral with two re-entrant edges, and k ¼ 3 (so that
k þ 1� hE ¼ 0, and (5.6) would be required just for qs constant). Assuming that
the origin is in the re-entrant vertex, we could use, instead of (5.6),

Z
E

pk � ðx?g2Þ dE ¼ 0;ð5:8Þ

where g2 is ‘‘the product of the two re-entrant edges’’ as in Remark 5.2. It is
immediate to see that, as the origin is in the re-entrant vertex, then g2 is a homo-
geneous polynomial of degree 2, so that from (2.13) we have rotðx?g2Þ ¼ 4g2.
Hence, still following Remark 5.2, we have that bhg2 does not change sign, and
therefore the argument in (5.7) still goes through. Indeed, always for k þ 1 ¼ hE
we would have now that j ¼ lbh for some constant l, and then:

0 ¼
Z
E

pk � ðx?g2Þ dE ¼
Z
E

rotðlbhÞ � ðx?g2Þ dEð5:9Þ

¼
Z
E

ðlbhÞ rotðx?g2Þ dE ¼ 4

Z
E

lbhg2 dE
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that implies l ¼ 0 and ends the proof. However, a detailed study of the di¤erent
cases of non convex polygons and of the possible remedies goes beyonds the
scope of the present paper, and in any case we always have the systematic path
of Subsection 3.2. Throughout the sequel of the paper, for simplicity, we will stick
to the convexity assumption. r

5.2. The Serendipity face spaces

At this point we just have to follow the general setting of Section 3: define as in
(3.2) the mappingDS of the degrees of freedom, use it to define the operator PS

as in (3.8), and finally define our serendipity space as in (3.9).

Remark 5.5. It is easy to see that even for our Serendipity spaces we can con-
struct an interpolation operator, using this time the degrees of freedom (4.2) and
(4.3), plus those in (5.6) when hE b k. It is also easy to see that such an inter-
polation operator will be B-compatible. r

The new Serendipity elements can again be compared, for triangular and
quadrilateral domains, with classical finite elements of di¤erent types. The com-
parison with triangular elements is, in some sense, not very interesting, since
(as it can be easily checked) the new Serendipity Virtual Elements coincide now
exactly with the classical (polynomial) Finite Elements, having the same number
of degrees of freedom, and been one included in the other. On the other hand, on
quadrilaterals we have now a considerable gain, as it can be seen in Figure 5.

Figure 5. FEM spaces, VEM spaces and Serendipity ones
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In particular we can see that the new VEMS
f
k;k�1;k�1 (that is, Serendipity with

Sk ¼ BDMk) have the same number of degrees of freedom as the corresponding
BDM spaces (although it has also to be noted that on the one hand VEMs are
much more robust with respect to geometric distortions, but on the other hand
the elimination of the internal degrees of freedom require an additional work
that is not present in the traditional Finite Elements). Instead, the VEMS

f
k;k;k�1

(that is, the Serendipity VEMs with Sk ¼ RTk) have now much less degrees of
freedom than the corresponding Finite Element RT spaces. And we recall once
more that VEMs are defined on almost arbitrary geometries. The comparison,
actually, should be done with Serendipity RT spaces. In that case we have exactly
that same number of degrees of freedom as (for instance) the elements in [5] (but
again, with much more generality in the geometry and additional work inside the
elements).

Remark 5.6. For stability reasons, in practice, in the definition (5.4) of hE it
would be wise to apply the same (slight) correction that we used already in [11]
for nodal elements: it consists in taking a smaller value of hE (and hence using
more degrees of freedom) whenever we have two or more edges that belong
almost to the same straight line. Practically this corresponds to decide (once and
for all) a minimum angle y0 and then to consider that two straight lines are
‘‘distinct’’ only if they cross with four angles all bigger than y0. Parallel lines can
be accepted if their distance is not too small (compared with the diameter of E).
Note that, in the framework of the general systematic strategy of Subsection 3.2,
this would correspond to decide the minimum amount of the smallest singular
value in the matrixD in (3.7) to be accepted in order to say that it has ‘‘maximum
rank’’. r

Remark 5.7. Always for stability reasons, the use of the Euclidean scalar prod-
uct in RS in (3.8) is recommended only if the degrees of freedom ‘‘scale in the
same way’’ (a concept widely used in the VEM context: see e.g. [7]). r

5.3. The lazy choice, the stingy choice, and the static condensation

Always following what has been done in [11], we can distinguish di¤erent types
of strategies to be adopted in coding these elements, in particular when dealing
with very general geometries. The two extremes of this set of possible choices
have been called the stingy choice and the lazy choice. Here we recall the basic
ideas behind them, pointing out, however, that there are a number of intermediate
strategies, to be used to adapt to the di¤erent situations. The stingy choice corre-
sponds to use the Serendipity strategy in order to drop as many internal degrees of
freedom as we can. This, referring to Remark 5.6, and considering for simplicity
the case of convex polygons, would correspond to compute hE taking a small
minimum angle, and then reduce the number of internal additional degrees of
freedom to ps;2 with sa k � hE þ 1. In a more general context (even without
the convexity assumption), following the general strategy of Subsection 3.2, this
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would imply, for instance, to take slices of dimension 1, and discard each one
that does not increase the rank of the submatrixDMþs in (3.7).

The lazy choice, instead, would correspond to minimize the work necessary to
choose the additional d.o.f. (3.4). This can be done, for instance, pretending that
hE ¼ 3, and therefore considering, as additional degrees of freedom (5.7), all
the polynomials of the form x?q with q a Pk�2. Note that already on a general
quadrilateral mesh, for any quadrilateral that is not degenerated into a triangle
our theory allows to take in (5.3) q a Pk�3, using only pk�3;2 additional degrees
of freedom and saving k � 1 (that is: pk�2;2 � pk�3;2) degrees of freedom with
respect to the triangular case. But, as a counterpart, it would require to check
the ‘‘non-degeneracy into a triangle’’ of every element. A non-obvious trade-o¤.
For more general decompositions, with a high k, both the cost and the gain of the
stingy choice would be more conspicuous. Then the decision could rely on several
factors, including the degree k but also, for instance, the number of problems that
we plan to solve on the same grid.

Another matter that would be worth discussing is the comparison with static
condensation techniques, that, when solving with a sophisticated direct method,
could become almost automatic and be reasonably cheap. There too, the gain/
loss assessment is not always obvious. We just point out that the present ser-
endipity procedure is not equal to static condensation (as, for instance, the static
condensation of the internal node of a Q2 nine-node finite element is not equal to
use a Serendipity eight-node element). Moreover we point out that, if Serendipity
elements are used on the faces of a three-dimensional decomposition, then the
gain is much more clear, since the static condensation of face unknowns is surely
far from obvious.

6. General edge elements in 2d

6.1. Edge VEM spaces and degrees of freedom

The case of edge elements in two dimensions can be treated exactly as we did for
face elements. We summarize them quickly. We set, for every kb 0, kd b�1,
and kr b 0:

Ve
k;kd ;kr

ðEÞ :¼ fv j v � te a PkðeÞE edge e; div v a Pkd ðEÞ; rot v a PkrðEÞg;ð6:1Þ

with the degrees of freedom:

~DD1 :

Z
e

v � teqk de for all qk a PkðeÞ; for all edge e;ð6:2Þ

~DD2 : for kr b 1 :

Z
E

v � rot qkr dE for all qkr a PkrðEÞ;ð6:3Þ

~DD3 : for kd b 0 :

Z
E

v � xqkd dE for all qkd a Pkd ðEÞ:ð6:4Þ
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Similar to Proposition 4.1 we have

Proposition 6.1. The degrees of freedom (6.2)–(6.4) are unisolvent.

Moreover, proceeding as in Remark 4.2 we easily see that out of the above
d.o.f. one can computeZ

E

v � q dE for every q a ðPkdþ1Þ2;ð6:5Þ

and hence the projection operator on ðPkdþ1ðEÞÞ2.

Remark 6.2. It is easy to see that when used in combination with the degrees of
freedom (6.2), the degrees of freedom (6.3) can equivalently be replaced by

� for kr b 1 :

Z
E

rot vqkr dE for all qkr a P0
kr
ðEÞ:ð6:6Þ

Here too we could argue as in Remark 4.3 regarding other equivalent but pos-
sibly not ‘‘computationally equivalent’’ degrees of freedom. r

Remark 6.3. In almost all applications, the value of kr in (6.1) is either equal to
k or equal to k � 1. This, as we already saw for face elements, corresponds to
choices mimicking the Nédélec Finite element spaces of first and second kind
(that is, N1 and N2), and, ultimately, the choice among the two cases depends
on the accuracy that we demand in HðrotÞ (and not only in L2). r

Remark 6.4. As we did in Remark 4.4, for Edge Virtual Elements we cannot
take kr ¼ �1, unless we give up the possibility of having a local basis. r

6.2. Edge Serendipity VEMs in 2d

We can now extend all the definitions and results obtained for Face Serendipity
VEMs to the case of Edge Serendipity VEMs, just by changing, as we did so
far, ‘‘n’’ into ‘‘t’’, then ‘‘div’’ into ‘‘rot’’, and finally ‘‘kd , kr’’ into ‘‘kr, kd ’’. In
particular we have now

Z k :¼ fv a ðPkÞ2 such that rot v ¼ 0 in E and v � t ¼ 0 on qEg:ð6:7Þ

Assuming for simplicity that E is simply connected, Z k can also be written as

Z k :¼ gradðPkþ1BH 1
0 ðEÞÞð6:8Þ

that can be analyzed exactly as in the case of face VEM. Recalling Proposition
5.1 we have now

Z k :¼
f0g; for hE > k;

gradðbhEPk�hEþ1Þ for hE a k:

�
ð6:9Þ
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Then for our Serendipity space we just have to keep (6.2)–(6.3) plus, for
k þ 1� hE b 0, the additional d.o.f.

�
Z
E

v � xq dE for all q a Pkþ1�hE ðEÞ:ð6:10Þ

Then everything proceeds as a mirror image of what has been done and said in
Sections 3 and 5. In particular, after choosing S as (tipically) N1k or N2k, we
can construct a projector PS : Ve

k;kd ;kr
ðEÞ ! S, based on the degrees of freedom

(6.2), (6.3), and (6.10), and then define, as in (3.9),

Ve
k;S;kr

ðEÞ :¼ fv a Ve
k;kd ;kr

ðEÞ s:t: FiðvÞ ¼ FiðPSvÞ; i ¼ S þ 1; . . . ;N g:ð6:11Þ

7. General face elements in 3d

7.1. The spaces and the degrees of freedom

The definition of the spaces V f
k;kd ;kr

in three dimensions is an immediate gener-

alization of the two-dimensional case, essentially using (2.16) instead of (2.10).
For kb 0, kd b 0, and kr b�1 they can be defined as

V
f
k;kd ;kr

ðEÞ :¼ fv j such that v � nf a Pkð f ÞE face f ;ð7:1Þ

div v a Pkd ðEÞ; curl v a ðPkrðEÞÞ
3g:

It is easy to see (arguing as in the two-dimensional case) that we can take, as
degrees of freedom in V

f
k;kd ;kr

ðEÞ, the following ones

�
Z
f

v � nf qk df for all qk a Pkð f Þ; for all face f ;ð7:2Þ

� for kd b 1 :

Z
E

v � grad qkd dE for all qkd a Pkd ðEÞ;ð7:3Þ

� and for kr b 0 :

Z
E

v � xbqkr dE for all qkr a ðPkrðEÞÞ
3:ð7:4Þ

It is also easy to see that, proceeding as in the proof of Proposition 4.1, out of the
above degrees of freedom one can compute the integral

Z
E

v � q dE for every q a ðPkrþ1Þ3;ð7:5Þ

and then the L2-projection operator P0
krþ1 on the space ðPkrþ1;3Þ3.
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Remark 7.1. As we did in the previous cases, we can easily see that we could
substitute the degrees of freedom (7.3) with the equivalent ones

�
Z
E

div vqkd dE for all qkd a P0
kd
ðEÞ:ð7:6Þ

It is also immediate to see that the degrees of freedom (7.6) are also ‘‘computa-
tionally equivalent’’ to (7.3). r

Remark 7.2. In di¤erent applications, one could give up the possibility to com-
pute the L2-projection operator P0

krþ1 and use, instead of (7.4), the degrees of
freedom

�
Z
E

curl v � qkr dE for all qkr a ðPkrðEÞÞ
3
divð7:7Þ

(see the notation (2.9)) that are equivalent (but not ‘‘computationally equiva-
lent’’, in the spirit of Remark 4.3) to (7.4). r

7.2. Serendipity face elements in 3d

The construction of the Serendipity variants of the face Virtual Elements defined
in (7.1) is decidedly more complicated than in the two-dimensional case. As
before, in order to have an HðdivÞ conforming global space and preserve the
B-compatibility, we will need to keep the degrees of freedom (7.2) and (7.3), so
that the Serendipity reduction will act only on the degrees of freedom (7.4).

But the main di¤erence here is in the characterization of the space Z k:

Z kðEÞ ¼ fz a ðPkÞ3 such that z � n ¼ 0 on qE; and div z ¼ 0 in Eg:ð7:8Þ

Indeed, in two dimensions, the elements of Z k were the rot of a scalar function
vanishing on the whole qE, and their characterization (in Proposition (5.1)) was
relatively easy. In three dimensions, instead, we have the curl of a vector valued
potential whose tangential components vanish on all faces.

It is immediate to see that for k ¼ 0 and k ¼ 1 the space Z k is reduced to f0g.
The characterization of the elements of Z k for kb 2, instead, is less obvious, and
to perform it for a general polyhedral geometry looks rather heavy and complex,
so that it seems advisable to stick on the systematic strategy of Subsection 3.2,
unless the decomposition has some particular feature that could be exploited.

However, to give an idea of the type of problems to be tackled, we report here,
as an example, the treatment of the simplest case of a tetrahedral element (that
might also come out handy if we opt for some kind of lazy choice).

7.3. The space Z kðEÞ for kb 2 on a tetrahedron

We need some additional notation. Let f1; . . . ; f4 be the faces of E, let li be the
P1 polynomial such that: liðxÞ ¼ 0 is the plane containing the face fi, and the
outward unit normal to E on fi is given by ni ¼ ‘li. Then,

165serendipity face and edge vem spaces



• let b4 be the fourth degree polynomial l1l2l3l4,

• for i ¼ 1; . . . ; 4 let b
ð�iÞ
3 be the product of all the lj with jA i.

We also recall the elementary equality

curlðj‘cÞ ¼ ‘jb‘c Ej;c a H 1:ð7:9Þ

Proposition 7.3. With the above notation, for every polynomial p and for every
face fi (with 1a ia 4) we have

• ð‘pb‘liÞ � ni ¼ 0

• divð‘pb‘liÞ ¼ 0

• For every i with 1a ia 4, if p contains b
ð�iÞ
3 as a factor, then we have

ð‘pb‘liÞ � n ¼ 0 on all qE.

Proof. The first statement follows immediately from the fact that ni ¼ ‘li and
the properties of the scalar triple product. The second follows immediately from
(7.9) observing that ‘pb‘li ¼ curlðp‘liÞ. Finally, to see the third we remark
that on each face fj ð jA iÞ the condition ‘‘p ¼ 0 on fj’’ implies that ‘p is directed
as nj ¼ ‘lj. Hence, on each face fj (whether j ¼ i or not!) at least one between
‘p and ‘li is directed as nj and the scalar triple product vanishes. r

As a consequence of Proposition 7.3 we have that:

• for all polynomial p of degree k � 3, and for every constant vector c, we have
that curlðcb4pÞ belongs to Z k;

• Ei with 1a ia 4 and for all polynomial p a Pk�2 we have that curlð‘libð�iÞ
3 pÞ

belongs to Z k.

We can then introduce some additional notation. For sb 1 integer, we set

• B s (the bubbles of degreea sÞ :¼ fp a PsðEÞ : pC 0 on qEg.
Note that B sC f0g for s < 4, and for sb 4 the dimension of B s is equal to
ps�4;3.

For 1a ia 4 we define

• C i
s (the cups of degreea sÞ :¼ fbð�iÞ

3 ps�3ni; ps�3 a Ps�3g.
Note that an element of C i

s vanishes on the whole qE with the only possible
exception of the face fi. Moreover, C i

s C f0g for s < 3, and for sb 3 the dimen-
sion of each C i

s is equal to ps�3;3.

Then we set

• Cs :¼ spanfC i
sði ¼ 1; . . . ; 4Þg:

We have the following result.
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Proposition 7.4. Let E be a tetrahedron. Then it holds

Z k ¼ curlðCkþ1Þ:

Proof. Since we already noted that curlðCkþ1Þ � Z k, we only need to prove the
converse. From (7.8) it is easy to check that the space Z k can be written as

Z k ¼ fcurl p j p a ðPkþ1Þ3 such that rotf ðptf Þ ¼ 0 for all f a qEg;ð7:10Þ

where we used the well known formula rotf p
tf ¼ ðcurl pj f Þ � nf , valid on every

face f of E.
Therefore, in order to show that Z k � curlðCkþ1Þ, it is su‰cient to prove that

for any p as in definition (7.10) there exists an element ckþ1 a Ckþ1 such that
curl ckþ1 ¼ curl p. The above condition is surely satisfied if, given any p as in
definition (7.10), we can find ckþ1 a Ckþ1 and c a Pkþ2ðEÞ such that

ckþ1 þ gradc ¼ p in E:ð7:11Þ

We start by working on the boundary of the element. Take any face f a qE.
Since by definition rotf p

tf ¼ 0, there exists a qf a Pkþ2ð f Þ such that

ptf ¼ gradf qf on f :ð7:12Þ

Note that each qf , f a qE, is uniquely defined up to an additive constant; we also
observe that across each edge e of E (with faces f , f 0 sharing e) it holds

grad qf � te ¼ pj f � te ¼ pj f 0 � te ¼ grad qf 0 � te:ð7:13Þ

Running along the edges of each face (and taking into account that rotf qf ¼ 0
on each face f ), it is then easy to check that we can choose the free additive
constants for qf in such a way that they glue continuously across all edges.

We can therefore define c on each face as follows

cj f ¼ qf Ef a qE;ð7:14Þ

and have that c is continuous on qE and face-wise polynomial of degree k þ 2.
Therefore, we can now take c a Pkþ2ðEÞ in (7.11) as any polynomial having

such a function as a trace (here is where we use the fact that E is a tetrahedron).
Note that if k < 2 there is only one such polynomial, otherwise there are infinitely
many, actually a space of dimension pk�2;3. Using (7.14), (7.12) and recalling that
the tangential components of elements in Ckþ1 on the boundary are always
vanishing, we have found that

Ef a qE; Eckþ1 a Ckþ1 ðckþ1 þ gradcÞtf ¼ ðgradcÞtf ¼ ptf ;ð7:15Þ

where the notation (2.6) was used for the tangential components. Let now e a qE
be an edge shared by two faces f , f 0, and let s denote the unit vector co-planar
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with f and orthogonal to e (pointing outwards with respect to f ). Similarly, let s 0

denote the analogous vector with respect to f 0. It is immediate to check that
fte; s; s 0g are linearly independent. Using (7.13) and (7.15) we obtain that on the
edge e

gradc � te ¼ p � te; gradc � s ¼ p � s; gradc � s 0 ¼ p � s 0:

We conclude that in particular

gradcje ¼ pje Ee a qE:ð7:16Þ

From (7.16) we have that, for all fi in qE, the di¤erence ðgradc� pÞj fi � n van-
ishes on the boundary of the face fi, and is in Pkþ1ð f Þ. Therefore such a function
is a polynomial bubble of degree k þ 1 on the face; thus one can always find a
cup c ikþ1 such that

ðp� gradcÞj fi � n
i ¼ b

ð�iÞ
3 pi

k�2 ¼: c ikþ1 � n i; i ¼ 1; . . . ; 4:

Note that each cup c ikþ1 vanishes on all faces fj with jA i. By taking the function
ckþ1 ¼

P4
i¼1 c

i
kþ1 and using (7.15) and (7.16) we have then

p� gradc� ckþ1 ¼ 0 on qE:ð7:17Þ

The function on the left hand side of (7.17) is a polynomial in ðPkþ1Þ3 that

vanishes on qE, and is therefore in the space of bubbles ðBkþ1Þ3. Since
ðBkþ1Þ3 � Ckþ1 we can find a ĉckþ1 a Ckþ1 such that

p� gradc� ckþ1 ¼ ĉckþ1 on E:

The proof is therefore concluded taking c as above and ckþ1 ¼ ckþ1 þ ĉckþ1. r

We now look into the dimension of the space curlðCkþ1Þ ¼ Z k. We note that,
for every p a B s we have four cups ni p a C i

s ði ¼ 1; . . . ; 4Þ, but only three of them
are independent, as only three normals are independent. Hence, in particular, it
must hold

dimðCsÞa 4ps�3;3 � ps�4;3;ð7:18Þ

that applied to s ¼ k þ 1 gives

dimðCkþ1Þa 4pk�2;3 � pk�3;3:ð7:19Þ

According to what we saw in Proposition 7.4, every curl of an element of Ckþ1 is
an element of Z k. However, we note that for every ck�2 a Pk�2 the gradient of
‘ðb4ck�2Þ belongs to Ckþ1, and curl‘ðb4ck�2Þ is zero. Hence

dimðZ kÞ ¼ dimðcurlðCkþ1ÞÞa dimðCkþ1Þ � pk�2;3 a 3pk�2;3 � pk�3;3:ð7:20Þ
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On the other hand, we easily obtain a lower bound on the dimension of Z k by
taking the dimension of ðPkÞ3 and subtracting the number of constraints in
(7.8). This is only a lower bound since in principle some of those constraints
could be linearly dependent. Noting that the integral of the divergence must
be equal to zero for any function with vanishing normal component on the
boundary, one obtains

dimðZ kÞb 3pk;3 � 4pk;2 � pk�1;3 þ 1 ¼ 3pk�2;3 � pk�3;3;ð7:21Þ

where the last identity is trivial to check. Combining bounds (7.20) and (7.21) we
obtain that

dimðZ kÞ ¼ 3pk�2;3 � pk�3;3:

Other ad-hoc arguments could be applied for specific geometries. For instance
it is almost immediate to check that on the unit cube ��1; 1½3 we have Z 1 ¼
Z 2 ¼ f0g and setting b6 :¼ ðx2 � 1Þðy2 � 1Þðz2 � 1Þ

Z 3 ¼ curl span
� b6

x2 � 1
; 0; 0

�
;
�
0;

b6

y2 � 1
; 0
�
;
�
0; 0;

b6

z2 � 1

�� �� �
:

7.4. The lazy choice and the stingy choice

As we have seen, it is far from easy to design general properties that allow, for
each single polyhedron, a simple and systematic strategy to spot the elements of
Z k, and use them to chose the Sk-preserving degrees of freedom. The ‘‘simple’’
available choices are essentially the lazy choice, and the systematic strategy
of subsection 3.2 (with various prices depending on the type of slicing that we
choose).

In particular here the lazy choice would correspond to treat every polyhedron
as if it was a tetrahedron, by picking, in an almost arbitrary way, four di¤erent
planes that contain one or more faces each, and then construct the cups and the
bubbles relative to the tetrahedron T made by the four chosen planes. Clearly the
number of these cups and bubbles will depend on the desired accuracy k. Out of
them we can then construct the elements of Z kðTÞ. To construct a suitable set
of Sk-preserving degrees of freedom we will keep all the boundary degrees of
freedom (7.2) and all the ‘‘divergence’’ degrees of freedom (7.3), then rearrange
the other ones, inserting suitable ones based on Z kðTÞ: typically, integrals, over
T , against all the elements of Z kðTÞ. Clearly, on a polyhedron with many faces,
the true space Z k will be much smaller, and our lazy choice will force us to use
many more degrees of freedom than needed.

Moreover the lazy choice, unfortunately, will not be available when E is a
parallelepiped (with three pairs of parallel planes). This happens since we cannot
find four faces with four normals all di¤erent from each other (as needed to
build a tetrahedron). On the other hand, the systematic strategy described in
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Subsection 3.2 is always a way-out, although it might require a heavy additional
work on each element (that in our opinion would be worth the e¤ort only in
very special cases, and in particular if one plans to use the same mesh for many
di¤erent computations).

Remark 7.5. It is easy to see that, similarly to what has been done for face 2d
elements (and extended to edge 2d elements), here too we can easily construct a
B-compatible interpolation operator, that will work both for the original face 3d
spaces and for their Serendipity variant. See again (4.14) and Remark 5.5. r

8. Edge elements in 3d

The definition of edge elements in three dimensions is more complex than the
above, and requires suitable VEM spaces on the faces, and suitable VEM spaces
inside.

8.1. The boundary

At a (very) general level, for every triplet b ¼ ðb; bd ; brÞ and for every face f we
set

Ve
bð f Þ :¼ Ve

b;bd ;br
ð f Þð8:1Þ

and we define

BbðqEÞ :¼ fv j vtf a Ve
bð f ÞE face f and v � te continuous E edge e of qEg:ð8:2Þ

8.2. The curl

For every triplet m ¼ ðm; md ; mrÞ we set

V f
m ðEÞ :¼ V f

m;md ;mr
ðEÞ:ð8:3Þ

8.3. The space

We are ready: for indexes b, kd , m with br ¼ m we define

Ve
b;kd ;m

ðEÞ :¼ fv j s:t: vjqE a BbðqEÞ; div v a Pkd ðEÞ; curl v a V f
m g:ð8:4Þ

Note that the equality br ¼ m must be required because, on every face f , we
have that rotf v

tf (that belongs to Pbrð f Þ) coincides with ðcurl vÞ � nf (that belongs
to Pmð f Þ), that is

rotf v
tf C ðcurl vÞ � nf Cw � nf :ð8:5Þ
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This can be easily seen by considering a face f with equation x3 ¼ 0 where
curl v � nf (the third component of curl v) is given by v2;x � v1;yC rotf v

tf . More-
over, since the divergence of any curl v a V f

m ðEÞ vanishes, one can directly
take md ¼ �1 in the definition of m. As a consequence of the above observations,
we always have m ¼ br and md ¼ �1. Therefore the space Ve

b;kd ;m
ðEÞ in (8.4) is

determined by five (and not seven) parameters.
As far as the degrees of freedom are concerned, we need, at the boundary:

�
Z
e

v � teqb de for all qb a PbðeÞ; for all edge e;ð8:6Þ

� for bd b 0 :

Z
f

v � xqbd df for all qbd a Pbd ð f Þ for all face f ;ð8:7Þ

� for br b 1 :

Z
f

v � rot qbr df for all qbr a Pbrð f Þ for all face f :ð8:8Þ

As we observed in the two-dimensional case (see (6.5)) we see that out of the
above degrees of freedom we will be able to compute, for each v a BbðqEÞ:

Z
f

vtf � qs df E face f and Eqs a ðPsð f ÞÞ2; for sa bd þ 1:ð8:9Þ

As far as w :¼ curl v is concerned, we should use (7.2)–(7.4). We note however
that, always for m ¼ br and using (8.5), the d.o.f. (7.2) are already determined
by the values of rotf v

tf on each face, that in turn can be computed using
(8.8) and (8.6). Similarly, the d.o.f. (7.3) (after integration by parts) are equal

to

Z
qE

w � nqmd de, since obviously divw ¼ 0. Hence, the only information that is

needed, in addition to (8.6)–(8.8) is:

� for mr b 0 :

Z
E

w � xbqmr dE for all qmr a ðPmrðEÞÞ
3:ð8:10Þ

Following the previous discussion (see formula (7.5)) we see that out of the above
degrees of freedom we will be able to compute, for each v a Ve

b;kd ;m
ðEÞ:

Z
f

ðcurl vÞ � qs df Eqs a ðPsð f ÞÞ3; for sa mr þ 1:ð8:11Þ

After we took care of wC curl v we must (finally) require

� for kd b 0 :

Z
E

v � xqkd dE for all qkd a Pkd ðEÞ:ð8:12Þ
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Remark 8.1. If we need to compute the projection of an element v a Ve
b;kd ;m

ðEÞ
onto the space ðPsðEÞÞ3 we can use the decomposition (2.15) as

ps ¼ curl qsþ1 þ xrs�1

and, integrating the first term by parts, writeZ
E

v � ps ¼
Z
E

v � curl qsþ1 þ
Z
E

v � xrs�1ð8:13Þ

¼
Z
E

curl v � qsþ1 þ
Z
qE

vtf � qsþ1bnþ
Z
E

v � xrs�1:

In the last line, the first term, as in (8.11), can be computed for sþ 1a mr þ 1
(meaning obviously sa mr); the second term, as in (8.9) can be computed for
sþ 1a bd þ 1 (meaning, here too, sa bd ) and finally the last term, following
(8.12), can be computed for s� 1a kd , meaning sa kd þ 1. Summarizing: the
projection of an element v a Ve

b;kd ;m
ðEÞ onto the space ðPsðEÞÞ3 can be computed

for

saminfmr; bd ; kd þ 1g:

Remark 8.2. In a case like the present one (in which the space curlðVe
b;kd ;m

ðEÞÞ
is not a polynomial space), the ‘‘B-compatibility property’’ (see e.g. (4.14)) would

be better defined, for an interpolation operator P from ðC1ðEÞÞ3 to Ve
b;kd ;m

ðEÞ,
as

Eu a ðC1ðEÞÞ3 with curl u a V f
m ðEÞ we have curlðPu� uÞ ¼ 0:ð8:14Þ

With that, we easily see that the natural interpolation operator associated with
the degrees of freedom (8.6)–(8.8), (8.10), and (8.12) is curl-preserving. r

All this, dealing with spaces with seven indexes, is very general, and very
confusing. We shall therefore look at some particular case.

8.4. A particular case: N2-type VEMs

We set b ¼ ðk; k � 1; k � 1Þ, m ¼ ðk � 1;�1; k � 2Þ, and kd ¼ k � 1. Then we
have for each face, the N2-like VEM space:

Ve
bð f Þ :¼ Ve

k;k�1;k�1ð f ÞC fv j such that v � te a PkðeÞE edge e;ð8:15Þ
divf v a Pk�1; rotf v a Pk�1g:

Note that, for a triangular face, we will have the space ðPkð f ÞÞ2. The space
BbðqEÞ will then be made of vector valued functions that on each edge have a
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tangential component of degreea k, and whose tangential part on each face has a
2-d divergence and a 2-d rotational polynomials of degreea k � 1. Moreover the
tangential components on edges are continuous (¼ single valued) when passing
from a face to a neighboring one.

As degrees of freedom in BbðqEÞ we have

�
Z
e

v � teqk ds on each edge e; for each qk a PkðeÞ;ð8:16Þ

�
Z
f

vtf � xtf qk�1 df on each face f ; for each qk�1 a Pk�1ð f Þ;ð8:17Þ

�
Z
f

vtf � rot2 qk�1 df on each face f ; for each qk�1 a Pk�1ð f Þ:ð8:18Þ

As additional degrees of freedom for wC curl v in V f
m ðEÞCV

f
k�1;�1;k�2ðEÞ we

have, according to (8.10)

�
Z
E

w � xbqk�1 dE for all qk�1 a ðPk�1ðEÞÞ3:ð8:19Þ

Finally we will need the degrees of freedom (8.12) that now become

�
Z
E

v � xqk�1 dE for all qk�1 a Pk�1ðEÞ:ð8:20Þ

One can see that this could be interpreted as a generalization to polyhedrons of
the Nédélec second-kind elements.

We point out that the space defined in (8.15) is exactly the same three-
dimensional edge space introduced in [9], while the degrees of freedom are
di¤erent.

8.5. Another particular case: N1-type spaces

The Virtual Elements of the previous subsection were of the BDM or N2 type.
Let us see here those of RT or N1 type.

We set b ¼ ðk; k � 1; kÞ, m ¼ ðk;�1; k � 1Þ, and kd ¼ k � 1. Then we have for
each face:

Ve
bð f Þ :¼ Ve

k;k�1;kð f ÞC fv j such that v � te a PkðeÞE edge e;ð8:21Þ
divf v a Pk�1; rotf v a Pkg:

The space BbðqEÞ will be made of vector valued functions that on each edge have
a tangential component of degreea k � 1, and whose tangential part on each
face has a 2-d divergence of degree k � 1 and a 2-d rotational of degreea k.
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Moreover the tangential components on edges are continuous (¼ single valued)
when passing from one face to a neighboring one.

As degrees of freedom in BbðqEÞ we have

�
Z
e

v � teqk ds on each edge e; for each qk a PkðeÞ;ð8:22Þ

�
Z
f

vtf � xtf qk�1 df on each face f ; for each qk�1 a Pk�1ð f Þ;ð8:23Þ

�
Z
f

vtf � rot2 qk df on each face f ; for each qk a Pkð f Þ:ð8:24Þ

As additional degrees of freedom for wC curl v in V f
m ðEÞCV

f
k�1;�1;k�1ðEÞ we

have, according to (8.10)

�
Z
E

w � xbqk dE for all qk a ðPkðEÞÞ3:ð8:25Þ

Finally we will need the degrees of freedom (8.12) that now become

�
Z
E

v � xqk�1 dE for all qk�1 a Pk�1ðEÞ:ð8:26Þ

One can see that this could be interpreted as a generalization to polyhedrons of
the N1 elements.

8.6. Unisolvence of the degrees of freedom

For the sake of simplicity, we will discuss the unisolvence of our degrees of free-
dom for 3d edge Virtual Elements of the type N2. The extension to the general
case would be conceptually trivial and only the notation would be heavier.

Assume therefore that, for a particular v in our space, all the degrees of
freedom (8.16)–(8.20) are zero. Using the degrees of freedom (8.16)–(8.18)
(which are on each face the analogues of (6.2)–(6.4)) we easily see that on each
face f the tangential component vtf is identically zero, thanks to Proposition
6.1. Hence, the normal component of w ¼ curl v will also be zero on each face,
that is, the d.o.f. (7.2) for w are zero. We also have, integrating by parts and using
divw ¼ 0,

Z
E

w � grad qk�1 dE ¼
X
f

Z
f

w � nqk�1 df ¼ 0 for all qk�1 a Pk�1ðEÞ;ð8:27Þ

so that the d.o.f. (7.3) for w are also zero. Finally, since the d.o.f. (8.19) are
equal to zero, we have that the d.o.f. (7.4) for w are also zero. The unisol-
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vence of the degrees of freedom (7.2)–(7.4) for face elements implies then
wC curl v ¼ 0. Therefore, v ¼ grad j for some j a H 1ðEÞ, and since vtf ¼ 0 on
the boundary we can take j a H 1

0 ðEÞ. As div v a Pk�1 we have that Dj a Pk�1.
Since we assumed that the degrees of freedom (8.20) are also zero, and recalling
(2.17) we deduce that

Z
E

jpk�1 dE ¼ 0 Epk�1 a Pk�1:ð8:28Þ

Thus, Z
E

j‘jj2 dE ¼ �
Z
E

jDj dE ¼ 0;ð8:29Þ

so that j ¼ 0 and hence v ¼ 0.
With minor modifications, the above proof can be adapted to the general case

given in (8.4).

8.7. Serendipity Edge Virtual Elements in 3d

Following the same path of the previous sections, we could now construct the
serendipity variants of our 3d edge VEMs.

We remark however, from the very beginning, that (contrary to what hap-
pened for face 3d elements), here on each face we have a 2d VEM space
(and not just a polynomial as we had in (7.1)). We also point out that there is a
big di¤erence, for three-dimensional elements, between the degrees of freedom
internal to the element (that could be eliminated by static condensation) and
the degrees of freedom internal to faces, where static condensation cannot be
applied).

We also point out that in general the number of faces is quite big: for instance,
on a regular mesh of n� n� n cubes we have n3 cubes and, asymptotically, 3n3

faces (precisely 3n3 þ 3n2, including the boundary ones).
Hence it would be very convenient, whenever possible, to use, on faces, the

2d serendipity spaces (introduced in Subsection 6.2) instead of the original
ones from Subsection 6.1. In order to describe the Serendipity reduction for
the present three-dimensional edge elements, we could choose for simplicity
one of the two classical cases (N1-like VEMs or N2-like VEMs), or else remain
in the more general context of the space (8.4). Following what we did in Sub-
section 8.4 we take the simplest case of N2-like VEMs, in the hope that once
this case is clear the more complex ones could be reconstructed without major
e¤orts.

Hence, we start by changing (8.2) into

B S
k ðqEÞ :¼ fv j such that vtf a Ve

Sk
ð f Þ for all face f of qEð8:30Þ

and v � te continuous along the edges e of qEg;
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where with our choice the space Sk to be preserved, on each face f , is N2ð f Þ, and
Ve

Sk
ð f Þ is the corresponding 2d serendipity edge space constructed in Sect. 6 (that

is, precisely, (6.11) with br equal to k � 1).
If, for the sake of simplicity, every face f of E is a convex polygon, we can

now apply the general strategy of Sect. 3 to each face. Thus we have:

Proposition 8.3. Assume that every face f of E is a convex polygon, and let hf
be defined as in (5.4). Then in B S

k ðqEÞ we can use the degrees of freedom

�
Z
e

v � teqk de; Eqk a PkðeÞ; E edge e;ð8:31Þ

� for kb 2 :

Z
f

v � rotf qk�1 df ; Eqk�1 a Pk�1ð f Þ; E face f ;ð8:32Þ

plus, whenever s :¼ k þ 1� hf is non-negative,

�
Z
f

v � xqs df ; Eqs a Psð f Þ E face f :ð8:33Þ

Then, as a starting space, we use

Ve
k ðEÞ ¼ fv j s:t: vjqE a B S

k ðqEÞ; div v a Pk�1ðEÞ; curl v a V
f
k;�1;k�1g:ð8:34Þ

Starting from Ve
k ðEÞ, and following our choice of N2-like VEMs, we now

choose the polynomial space (that we still denote by Sk) that we want to pre-
serve, as N2kðEÞ (that is, ðPkðEÞÞ3). Then, following the track of the previous
cases, we start our ‘‘Serendipity reduction’’ by choosing a suitable set of degrees
of freedom that we wnt to keep. In particular, (as in Subsection 3.1), we will
choose the boundary ones (8.31)–(8.33) (that are the boundary-serendipity substi-
tutes of the (8.6), (8.8)) to provide HðcurlÞ-conformity, together with the ones in
(8.25) to ensure B-compatibility (where, this time, B is the curl operator). In case
these are not Sk-identifying, we will have to choose some additional ones among
the (8.12).

8.8. Boundary preserving, curl-preserving, and Sk-identifying degrees of freedom

In order to decide which degrees of freedom to choose, we must start considering
the vector-valued polynomials p, of degreea k, that have the degrees of freedom
(8.31)–(8.33) and (8.25) equal to zero. We define therefore

Z k :¼ fp a ðPkðEÞÞ3 s:t: ptf ¼ 0 on qE and curl p ¼ 0g:ð8:35Þ

It is almost immediate to see that all the elements p of Z k must be gradients
(since their curl is equal to zero and E is simply connected). Hence p ¼ grad j
for some j a Pkþ1. Considering the boundary conditions we see that we can
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take j a H 1
0 ðEÞ. In other words, j will be a scalar bubble of degree k þ 1. Recall-

ing the results of [11] we can define now hE as the minimum number of di¤erent
planes necessary to cover qE, and deduce that if hE > k þ 1 then Z k is reduced
to f0g, and the degrees of freedom (8.31)–(8.33) and (8.25) will already be able
to identify all the elements of Sk in a unique way; this would mean that we can
take S ¼ M in (3.1). Otherwise, for hE a k þ 1, we will have that the dimension
of Z k is equal to pkþ1�h;3, and we need an S such that S �M b pkþ1�h;3. As in
the two-dimensional cases (and also for nodal Serendipity VEMs) we have now
that, for a convex E we could take as additional degrees of freedom

Z
E

v � xq dE for all q a Pkþ1�hðEÞ:ð8:36Þ

Othewise, in the non-convex case, the easiest way out would probably be to
follow the systematic path of Subsection 3.2 and start by checking whether the
D matrix corresponding to the above choice (8.36) has maximum rank or not. If
you are not particularly unlucky, it will, and you can behave as in the convex
case. Otherwise, you could add (say, one by one) the degrees of freedom of type
(8.36) corresponding to a q homogeneous polynomial of degree k þ 2� h (and
if all of them fail, you pass to the homogeneous degree k þ 3� h, and so on).
Or else, you pick a lazy choice and use directly (8.36) with all the q in Pk�3

(as if E was a tetrahedron).
Note that, in several cases, the gain in the number of degrees of freedom (com-

pared to the general case (8.4)) will not be due to the reduction of the degrees of
freedom in (8.36) using polynomials of degree k þ 1� hE instead of the original
k � 1, but mostly to the choice of using Serendipity edge VEMs on faces.
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method for discrete fracture network simulations, Comput. Methods Appl. Mech. Engrg.
280 (2014), 135–156.

[16] M. F. Benedetto - S. Berrone - A. Borio - S. Pieraccini - S. Scialò, A hybrid
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