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ABSTRACT. — In this note we present a new proof of a one-sided approximation of sets of finite
perimeter introduced in [2], in order to fill a gap in the original proof.
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1. INTRODUCTION

It is a classical result in geometric measure theory that a set of finite perimeter £
can be approximated with smooth sets Ej such that

(1.1) PN(E) — #N(E) and P(Ey) — P(E),

where P(E) is the perimeter of E and #" is the Lebesgue measure in R".
The approximating smooth sets (see for instance Ambrosio—Fusco—Pallara
[1, Remark 3.42] and Maggi [6, Theorem 13.8]) are the superlevel sets of the
mollifications of y, which can be chosen for a.e. ¢ € (0, 1). The one-sided approx-
imation refines the classical result in the sense that it distinguishes between the
superlevel sets for a.e. ¢ € (%, 1) from the ones corresponding to a.e. ¢ € (0,%),
thus providing an interior and an exterior approximation of the set respectively
(see Theorem 3.1 and Theorem 4.1). Indeed, in the first case, the difference be-
tween the level sets and the measure theoretic interior is asymptotically vanishing
with respect to the #V~!-measure; in the latter, we obtain the same result for the
measure theoretic exterior.

The main aim of this note is to fill a gap in the original proof of the main
approximation Theorem 4.1 (see [2, Theorem 4.10]). Thus, the results of this
note are not only interesting by themselves, but they also validate the applica-
tion of Theorem 4.1 to the construction of interior and exterior normal traces
of essentially bounded divergence-measure fields. This construction was devel-
oped in [2] and it was motivated by the study of systems of hyperbolic con-
servation laws with Lax entropy condition, where these vector fields naturally
appear.
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2. PRELIMINARIES

In what follows we will work in R". We introduce now a few basic definitions
and results on the theory of functions of bounded variations and sets of finite
perimeter, for which we refer mainly to [1], [4] and [6] (see also [5] and [7]).

DEFINITION 2.1. A function u € L'(R") is called a function of bounded varia-
tion if Du is a finite R"-vector valued Radon measure on R". A measurable
set EC RY is called a set of finite perimeter in R (or a Caccioppoli set) if
xg € BV(RY). Consequently, Dy, is an R"-vector valued Radon measure on
RY whose total variation is denoted as ||Dy||.

By the polar decomposition of measures, we can write Dy, = vg| Dy ||, where
vg is a || Dy||-measurable function such that |vz(x)| = 1 for || Dyy|l-a.e. x € RY.
We define the perimeter of E as

P(E) = sup{ [ aivio)assp e CUENRY) ol < 1]
E

and it can be proved that P(E) = || Dy||(R™).

The notion of perimeter generalizes the idea of #"~!-measure of the bound-
ary of the set E. It is a well-known fact that the topological boundary of a set of
finite perimeter can be very irregular, it can even have full Lebesgue measure.
This suggests that for a set of finite perimeter is interesting to consider subsets of
OE instead. In [3], De Giorgi considered a set of finite #'"~!-measure on which
|| Dy is concentrated, which he called reduced boundary.

DEFINITION 2.2. We say that x € 0" E, the reduced boundary of E, if

It can be shown that this definition implies a geometrical characterization
of the reduced boundary, by using the blow-up of the set £ around a point of
J0"E.

THEOREM 2.3. If x € 0"E, then

E—x
e

— H/ (x):={ye RY :y-ve(x) =0} inL (RY)ase—0
and

7(RN\E) - — H (X) = {y € IRN e VE(X) = 0} in Llloc(RN) ase— 0.

v
e E
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The proof can be found in [4, Section 5.7.2, Theorem 1]. Formulated in
another way, for ¢ > 0 small enough, E n B(x,¢) is asymptotically close to the
half ball H_(x) " B(x,¢).

Because of this result, we call vg(x) measure theoretic unit interior normal to E
at x € 0"E, since it is a generalization of the concept of unit interior normal.

In addition, De Giorgi proved that | Dyg| = # "V 'L0*E, so that Dy, =
ve#N"1 L 0*E and P(E) = #N~1(07E) (see [4, Section 5.7.3, Theorem 2)).

For every o € [0, 1] we set

E*:={xeRY:D(E,x) =0},
where

Y |B(x,r) N E|
DIE.) = I B

and we give the following definitions:

(1) E'is called the measure theoretic interior of E.
(2) E° is called the measure theoretic exterior of E.

We recall (see Maggi [6, Example 5.17]) that every Lebesgue measurable set is
equivalent to the set of its points of density one; that is,

(2.1) PN(EAEYY = 2N ((RV\E)AE®) = 0.

It is also a well-know result due to Federer that there exists a set .4~ with
AN AN) =0 such that RY = E' U0*E U E® U ./ (see [1, Theorem 3.61)).

The perimeter P(E) of E is invariant under modifications by a set of £ *-
measure zero, even though these modifications might largely increase the size of
the topological boundary. In this paper we consider the following representative

(2.2) E:=E'UJ'E.

Given a smooth nonnegative radially symmetric mollifier p € C°(B(0, 1)),
we denote the mollification of yp by wux(x) := (g * p,)(x) for some positive
sequence & — 0. We define, for 7 € (0, 1),

(2.3) Ape.r = {ug > t}.

By Sard’s theorem (for which we refer to [6, Lemma 13.15]), we know that,
since u; : RY — Ris C*, L'-ae. t € (0,1) is not the image of a critical point
for u; and so Ay, has a smooth boundary for these values of . Thus, for each k
there exists a set Z; C (0, 1), with #'(Z;) = 0, which is the set of values of ¢ for
which 4., has not a smooth boundary. If we set Z := | ;%] Z, then £2'(Z) =0
and, for each ¢ € (0,1)\Z and for each k, A, has a smooth boundary.

It is a well-known result from BV theory (see for instance [1, Corollary 3.80])
that every function of bounded variations u admits a representative which is the
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pointwise limit #¥~'-a.e. of any mollification of # and which coincides #"V~!-
a.e. with the precise representative u*:

1
. lim———— / u(y)dy if this limit exists
u (X) = r—>0|B(X77’)| B(x,r) ( ) .
0 otherwise

For any set of finite perimeter E, we denote the precise representative of the
function y; by ug, which is given by

1, xeE!
ug(x) =¢ 0, xekE° .
1. xed'E

29

Since # NN (RV\(E' U0*EUE’)) =0, the function up is well defined
AHN lae.

In order to prove Theorem 4.1, we need to use the classical coarea formula,
for which we refer to [4, Section 3.4, Theorem 1].

THEOREM 2.4. Let u: RY — R be Lipschitz. Then, for any £ -measurable set
A, we have

(2.4) /A|Vu|dx:/R,}’/N1(Amul(t))dt.

3. THE APPROXIMATION OF E WITH RESPECT TO ANY y <« #V~!

The one-sided approximation theorem allows to extend (1.1) to any Radon
measure u such that u « #V~!. More precisely, for any bounded set of finite
perimeter E, there exist smooth sets Ej.;, E.., such that

(3.1) W(Exi) — w(EY),  P(Ex;) — P(E)
and
(3.2) W(Ex.) — W(E), P(Ew.) — P(E).

The convergence of the perimeters in (3.1) and (3.2) follows as in the standard
proof of (1.1). However, the convergence with respect to u is a consequence of
the following result.

THEOREM 3.1. Let u be a Radon measure such that u < #"~' and E be a
bounded set of finite perimeter in RY. Then:

(@) |lull(E'Ady; ) — 0, for§ <1< 1;
(b) llull(EAAk,) — 0, for 0 <t <}
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PROOF. We have

(3.3) we(x) — up(x) for #V lae. x.

Since {0 < |uy —ug| <1} C Es:= {x e R" : dist(x, E) <6}, for any k if 6 >
maxe¢g, and Es is bounded, then we can apply the dominated convergence
theorem with respect to the measure ||x||, taking 1 as summable majorant since

1 is a Radon measure. Hence, for any ¢ > 0, there exists k£ large enough such
that, if } < 7 < 1, we have

o2 [ ) = us(oldlul

2 [ w0 —uslalal + [ ) el
> (13 ) Il (AkAE") + (1= 1)l (E'\ A, )

> min{t - %,1 - t}||y||(Ak;,AE1).

Thus, for k large enough and % < t < 1, we obtain

&

A AEY) < ,
Il (A AET) < min{7—1,1—¢}

which is (a). Analogously, for 0 < 7 < 1, we have
o2 [ ()~ ugoldl

> /Ak:r\E |y (x) — g (x)|d||ul| +/ lug(x) — e (x)|d|

E\Ak:t

2l (A \E) + (5~ 1) Dl (B\ A

1
> min 1~ (A1 AE).

Thus, for large k and 0 < ¢ < %,

&

A AE) < —————
||:uH( kst ) = min{t,%— Z}

)

which gives (b). O
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REMARK 3.2. The convergence in (3.1) follows easily from Theorem 3.1: we
have

W(EY) = p(Ak)| = |(E A1) — (A \EY)|
and it is clear that (a) implies

U(E"\ A )] < [l (E"\Age1) — 0,
(AGNED] < 1l (A \E') — 0.

One can show (3.2) in a similar way using (b).

We also notice that Theorem 3.1 has been proved for any 7 € (0,5) u (4,1).
However, since the sets Ay, have smooth boundary only for almost every ¢,
we shall consider only 7 ¢ Z, where Z is the set of singular values defined in the
preliminaries.

REMARK 3.3. With g = #V~!L 9*E, we obtain from Theorem 3.1:

(@) AN NO'EnAk) —0fori<t<;
(b) #NNO*E N (RM\Ay,,)) — Ofor 0 < ¢ <1,

Indeed, this is clear from the following identities

O"En (E'"AAy.;) = 0"E A [(EN\A.) U (A \E")] = 0°E 0 Ay,
0*E N (EAAy.,) = 0°E 0 [(E\Ak.)) U (Ar. \E)] = 0"E 0 (R¥\4y.,).

REMARK 3.4. Using Remark 3.3 we can also show that we have:

(a) AN YOE (1) — 0forl<rs<1;
(b) # NN Enu (1)) — 0for 0 <t < 1.

Indeed, u;'(r) C Ap,s for 1 <s< <1 and u'(t) C RN\ Ay, for 0 <1<
1

s <s5.

2

In addition, we observe that ||u|(u;'(f)) = 0 for £'-a.e. ¢, since u is a Radon
measure. It is in fact clear that wu;'(¢) = 0Ay,, that A, C Ak, C Ago if
0 <s<t< 1, with Ay, bounded, and that the sets Ay, are pairwise disjoint.
Hence, since ||| is finite on bounded sets and additive, the set

{re(0,1) : [|ul|(0Ak; ) > e}

is finite for any ¢ > 0. This implies that the set {¢ € (0,1) : ||u|[(0Ak,,) > O} is at
most countable (see also the observation at the end of Section 1.4 of [1]).
Then we obtain also:

@) AN NO*Enu;! (1) =0forae J<t<1;
(b) AN NO*Enu (1) =0forae 0<t< 5.
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4. THE MAIN APPROXIMATION RESULT

The following theorem, together with Theorem 3.1, shows that indeed we have an
interior approximation of E for a.e. t € (§,1).

THEOREM 4.1. Let E be a set of finite perimeter in R™. There exists a sequence &
converging to 0 such that, if uy := yp * p,, , we have

(4.1) lim # N (u " ()\E") =0

k—+o0
forae. te (%, 1).

Proor. We take s > % and a sequence g, with ¢, — 0, and we consider the set
Aje.s = {uy > s}. By the coarea formula (2.4), we have

1
(42) | LVl dx= | A 0 0 (B

_ / AN (O\E") d,

S

since, for ¢ <s, u (1) N (A \E') = 0, while, for 7> s, u ' (1) N (Ars\E') =
u (D\E".
We claim that

(43) Vel ey = -

In order to prove the claim, we observe that, for any x € RY,

Vi (x) = /R HEWIVapy (x = p)dy = = /R AEWVapy (x = y)dy

= /RN Po (X = eV Dxell(¥) = (P, * Drp)(x)-

Hence, Vuy = (Dyg * p,,) = (| Dygllve * p,, ), which implies
(4.4) Vi < |1 Dyll * iy -
Recalling from (2.1) that " (EAE') = 0, (4.4) leads to

Voot = [ Vo4l

< [ Dzl =) taseds = [ (oo a1
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Thus, we need to investigate, for any xe ¢0"E, the behaviour of
(Pe * Xap\£)(X) as k — +o00. We have

- Y
s 200 = [ () 2, )t ()

RN
~=x+az= [ 3 PO ) s+ )

RV\E)—x
\E) , hence

We observe that x + ¢z € RV\E if and only if z € (

Xwe) (X + ) = x@ve () — XH;E(X)(') in L'(B(0,1)) as k — +o0,
i
by Theorem 2.3. In particular, this means that the L' limit of y (RV\E) (x + &z) is

not #"-a.e. zero only if z - vg(x) < 0, so we can restrict the mtegratlon domain
to B(0,1) NH . . On the other hand X+ &z € Ag.s = {ur > s} if and only if

(X + &xz) > 8. We see that
wrto2) = [ pet oz =) 2e()dy
= [y =x+ ez + &y :/ p(u) xp(x + &x(u+z)) du.
B(0,1)

Arguing as before, we obtain y;(x + & (z +-)) — X (x )(z+-) in L'(B(0, ))
as k — +oo, for any x € 0"E and z € B(0, 1). Now, we Tecall that z - ve(x) <0
and, since we have A (x) (z+u)=1 if and only if 0<(z4u)- ve(x), we
conclude that 0 < —z-vg(x) < u-vg(x) < 1; that is, u belongs to the half ball
B(0,1) n H} (x). This implies that, for any x € 0"E and z € B(0,1) n H_(x),

N —

(4.5) lim we(x + &z) == v(x,z) = / PU) X gt () (2 +u) du <
k—+o0 B(0,1) e

Therefore, these calculations yield

(46)  (py *Zanp)¥) = / P(2) 2 (5 + e82) 2oy (5 + ex2) 2

—>/01 X{ m)>s}() ()(Z)dza

for any x € 0'E.
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Equation (4.5) shows then that the limit in (4.6) is identically zero, since

{z e RY :o(x,z) > 5> %} NB(0,1)nH, (x) =0,
for any x € 0"E.

We can now apply the Lebesgue dominated convergence theorem with respect
to the measure #V~!L 0*E and the sequence of functions Pe, * Xap\£ (since the
constant 1 is clearly a summable majorant), thus obtaining (4.3).

Finally, up to passing to a subsequence (which we shall keep calling ¢ with a
little abuse of notation), (4.2) and (4.3) yield (4.1), for a.e. > s. Since s > 1 is
fixed arbitrarily, we can conclude that (4.1) is valid for a.e. 7 > 1. O

4.1. REMARK. An analogous result holds for the measure theoretic exterior;
namely, there exists a sequence ¢, converging to 0 such that, if u := yz * p, , we
have

(4.7) lim N (u " ()\E®) =0

k—+000
forae.re (0,%).

4.2. REMARK. It is not difficult to see that Theorem 3.1 and Theorem 4.1 are
also valid if we work in an open set QQ and we consider a set of finite perimeter
E CcC Q (which is the framework of [2]). Indeed, the extension to 0 in R¥\Q of
the function y is a function of bounded variations in RY; that is, E can be seen
as a set of finite perimeter in R”. In this way, the previous results follow.
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