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Abstract. — In this note we present a new proof of a one-sided approximation of sets of finite

perimeter introduced in [2], in order to fill a gap in the original proof.
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1. Introduction

It is a classical result in geometric measure theory that a set of finite perimeter E
can be approximated with smooth sets Ek such that

LNðEkÞ ! LNðEÞ and PðEkÞ ! PðEÞ;ð1:1Þ

where PðEÞ is the perimeter of E and LN is the Lebesgue measure in RN .
The approximating smooth sets (see for instance Ambrosio–Fusco–Pallara
[1, Remark 3.42] and Maggi [6, Theorem 13.8]) are the superlevel sets of the
mollifications of wE , which can be chosen for a.e. t a ð0; 1Þ. The one-sided approx-
imation refines the classical result in the sense that it distinguishes between the
superlevel sets for a.e. t a

�
1
2 ; 1

�
from the ones corresponding to a.e. t a

�
0; 12

�
,

thus providing an interior and an exterior approximation of the set respectively
(see Theorem 3.1 and Theorem 4.1). Indeed, in the first case, the di¤erence be-
tween the level sets and the measure theoretic interior is asymptotically vanishing
with respect to the HN�1-measure; in the latter, we obtain the same result for the
measure theoretic exterior.

The main aim of this note is to fill a gap in the original proof of the main
approximation Theorem 4.1 (see [2, Theorem 4.10]). Thus, the results of this
note are not only interesting by themselves, but they also validate the applica-
tion of Theorem 4.1 to the construction of interior and exterior normal traces
of essentially bounded divergence-measure fields. This construction was devel-
oped in [2] and it was motivated by the study of systems of hyperbolic con-
servation laws with Lax entropy condition, where these vector fields naturally
appear.



2. Preliminaries

In what follows we will work in RN . We introduce now a few basic definitions
and results on the theory of functions of bounded variations and sets of finite
perimeter, for which we refer mainly to [1], [4] and [6] (see also [5] and [7]).

Definition 2.1. A function u a L1ðRNÞ is called a function of bounded varia-
tion if Du is a finite RN -vector valued Radon measure on RN . A measurable
set E � RN is called a set of finite perimeter in RN (or a Caccioppoli set) if
wE a BVðRNÞ. Consequently, DwE is an RN -vector valued Radon measure on

RN whose total variation is denoted as kDwEk.

By the polar decomposition of measures, we can write DwE ¼ nEkDwEk, where
nE is a kDwEk-measurable function such that jnEðxÞj ¼ 1 for kDwEk-a.e. x a RN .

We define the perimeter of E as

PðEÞ :¼ sup

Z
E

divðjÞ dx : j a C1
c ðRN ;RNÞ; kjkl a 1

� �

and it can be proved that PðEÞ ¼ kDwEkðRNÞ.
The notion of perimeter generalizes the idea of HN�1-measure of the bound-

ary of the set E. It is a well-known fact that the topological boundary of a set of
finite perimeter can be very irregular, it can even have full Lebesgue measure.
This suggests that for a set of finite perimeter is interesting to consider subsets of
qE instead. In [3], De Giorgi considered a set of finite HN�1-measure on which
kDwEk is concentrated, which he called reduced boundary.

Definition 2.2. We say that x a q�E, the reduced boundary of E, if

(1) kDwEkðBðx; rÞÞ > 0, Er > 0;

(2) lim
r!0

1

kDwEkðBðx; rÞÞ

Z
Bðx; rÞ

nEðyÞdkDwEkðyÞ ¼ nEðxÞ;

(3) jnEðxÞj ¼ 1.

It can be shown that this definition implies a geometrical characterization
of the reduced boundary, by using the blow-up of the set E around a point of
q�E.

Theorem 2.3. If x a q�E, then

E � x

e
! Hþ

nE
ðxÞ :¼ fy a RN : y � nEðxÞb 0g in L1

locðRNÞ as e ! 0

and

ðRNnEÞ � x

e
! H�

nE
ðxÞ :¼ fy a RN : y � nEðxÞa 0g in L1

locðRNÞ as e ! 0:
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The proof can be found in [4, Section 5.7.2, Theorem 1]. Formulated in
another way, for e > 0 small enough, EBBðx; eÞ is asymptotically close to the
half ball H�

nE
ðxÞBBðx; eÞ.

Because of this result, we call nEðxÞ measure theoretic unit interior normal to E
at x a q�E, since it is a generalization of the concept of unit interior normal.

In addition, De Giorgi proved that kDwEk ¼ HN�1
Oq

�E, so that DwE ¼
nEH

N�1
O q

�E and PðEÞ ¼ HN�1ðq�EÞ (see [4, Section 5.7.3, Theorem 2]).
For every a a ½0; 1� we set

E a :¼ fx a RN : DðE; xÞ ¼ ag;

where

DðE; xÞ :¼ lim
r!0

jBðx; rÞBEj
jBðx; rÞj ;

and we give the following definitions:

(1) E1 is called the measure theoretic interior of E.
(2) E0 is called the measure theoretic exterior of E.

We recall (see Maggi [6, Example 5.17]) that every Lebesgue measurable set is
equivalent to the set of its points of density one; that is,

LNðEDE1Þ ¼ LNððRNnEÞDE0Þ ¼ 0:ð2:1Þ

It is also a well-know result due to Federer that there exists a set N with
HN�1ðNÞ ¼ 0 such that RN ¼ E1 A q�EAE0 AN (see [1, Theorem 3.61]).

The perimeter PðEÞ of E is invariant under modifications by a set of LN-
measure zero, even though these modifications might largely increase the size of
the topological boundary. In this paper we consider the following representative

E :¼ E1 A q�E:ð2:2Þ

Given a smooth nonnegative radially symmetric mollifier r a Cl
c ðBð0; 1ÞÞ,

we denote the mollification of wE by ukðxÞ :¼ ðwE � rekÞðxÞ for some positive
sequence ek ! 0. We define, for t a ð0; 1Þ,

Ak; t :¼ fuk > tg:ð2:3Þ

By Sard’s theorem (for which we refer to [6, Lemma 13.15]), we know that,
since uk : R

N ! R is Cl, L1-a.e. t a ð0; 1Þ is not the image of a critical point
for uk and so Ak; t has a smooth boundary for these values of t. Thus, for each k
there exists a set Zk � ð0; 1Þ, with L1ðZkÞ ¼ 0, which is the set of values of t for
which Ak; t has not a smooth boundary. If we set Z :¼

Sþl
k¼1 Zk, then L1ðZÞ ¼ 0

and, for each t a ð0; 1ÞnZ and for each k, Ak; t has a smooth boundary.
It is a well-known result from BV theory (see for instance [1, Corollary 3.80])

that every function of bounded variations u admits a representative which is the
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pointwise limit HN�1-a.e. of any mollification of u and which coincides HN�1-
a.e. with the precise representative u�:

u�ðxÞ :¼ lim
r!0

1

jBðx; rÞj

Z
Bðx; rÞ

uðyÞ dy if this limit exists

0 otherwise

8<
: :

For any set of finite perimeter E, we denote the precise representative of the
function wE by uE , which is given by

uEðxÞ ¼
1; x a E1

0; x a E0

1
2 ; x a q�E

8><
>: :

Since HN�1ðRNnðE1 A q�EAE0ÞÞ ¼ 0, the function uE is well defined
HN�1-a.e..

In order to prove Theorem 4.1, we need to use the classical coarea formula,
for which we refer to [4, Section 3.4, Theorem 1].

Theorem 2.4. Let u : RN ! R be Lipschitz. Then, for any LN-measurable set
A, we have

Z
A

j‘uj dx ¼
Z
R

HN�1ðAB u�1ðtÞÞ dt:ð2:4Þ

3. The approximation of E with respect to any mfHN�1

The one-sided approximation theorem allows to extend (1.1) to any Radon
measure m such that mfHN�1. More precisely, for any bounded set of finite
perimeter E, there exist smooth sets Ek; i, Ek; e, such that

mðEk; iÞ ! mðE1Þ; PðEk; iÞ ! PðEÞð3:1Þ

and

mðEk; eÞ ! mðEÞ; PðEk; eÞ ! PðEÞ:ð3:2Þ

The convergence of the perimeters in (3.1) and (3.2) follows as in the standard
proof of (1.1). However, the convergence with respect to m is a consequence of
the following result.

Theorem 3.1. Let m be a Radon measure such that mfHN�1 and E be a
bounded set of finite perimeter in RN. Then:

(a) kmkðE1DAk; tÞ ! 0, for 1
2 < t < 1;

(b) kmkðEDAk; tÞ ! 0, for 0 < t < 1
2 .
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Proof. We have

ukðxÞ ! uEðxÞ for HN�1-a:e: x:ð3:3Þ

Since f0 < juk � uE ja 1g � Ed :¼ fx a RN : distðx;EÞa dg, for any k if d >
max ek, and Ed is bounded, then we can apply the dominated convergence
theorem with respect to the measure kmk, taking 1 as summable majorant since
m is a Radon measure. Hence, for any e > 0, there exists k large enough such
that, if 1

2 < t < 1, we have

eb

Z
Rn

jukðxÞ � uEðxÞjdkmk

b

Z
Ak; tnE 1

jukðxÞ � uEðxÞjdkmk þ
Z
E 1nAk; t

juEðxÞ � ukðxÞjdkmk

b

�
t� 1

2

�
kmkðAk; tnE1Þ þ ð1� tÞkmkðE1nAk; tÞ

bmin t� 1

2
; 1� t

� �
kmkðAk; tDE

1Þ:

Thus, for k large enough and 1
2 < t < 1, we obtain

kmkðAk; tDE
1Þa e

min
�
t� 1

2 ; 1� t
� ;

which is (a). Analogously, for 0 < t < 1
2 , we have

eb

Z
Rn

jukðxÞ � uEðxÞjdkmk

b

Z
Ak; tnE

jukðxÞ � uEðxÞjdkmk þ
Z
EnAk; t

juEðxÞ � ukðxÞjdkmk

b tkmkðAk; tnEÞ þ
� 1

2
� t

�
kmkðEnAk; tÞ

bmin t;
1

2
� t

� �
kmkðAk; tDEÞ:

Thus, for large k and 0 < t < 1
2 ,

kmkðAk; tDEÞa
e

min
�
t; 12 � t

� ;
which gives (b). r
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Remark 3.2. The convergence in (3.1) follows easily from Theorem 3.1: we
have

jmðE1Þ � mðAk; tÞj ¼ jmðE1nAk; tÞ � mðAk; tnE1Þj

and it is clear that (a) implies

jmðE1nAk; tÞja kmkðE1nAk; tÞ ! 0;

jmðAk; tnE1Þja kmkðAk; tnE1Þ ! 0:

One can show (3.2) in a similar way using (b).
We also notice that Theorem 3.1 has been proved for any t a

�
0; 12

�
A
�
1
2 ; 1

�
.

However, since the sets Ak; t have smooth boundary only for almost every t,
we shall consider only t B Z, where Z is the set of singular values defined in the
preliminaries.

Remark 3.3. With m ¼ HN�1
O q

�E, we obtain from Theorem 3.1:

(a) HN�1ðq�EBAk; tÞ ! 0 for 1
2 < t < 1;

(b) HN�1ðq�EB ðRNnAk; tÞÞ ! 0 for 0 < t < 1
2 .

Indeed, this is clear from the following identities

q�EB ðE1DAk; tÞ ¼ q�EB ½ðE1nAk; tÞA ðAk; tnE1Þ� ¼ q�EBAk; t;

q�EB ðEDAk; tÞ ¼ q�EB ½ðEnAk; tÞA ðAk; tnEÞ� ¼ q�EB ðRNnAk; tÞ:

Remark 3.4. Using Remark 3.3 we can also show that we have:

(a) HN�1ðq�EB u�1
k ðtÞÞ ! 0 for 1

2 < t < 1;

(b) HN�1ðq�EB u�1
k ðtÞÞ ! 0 for 0 < t < 1

2 .

Indeed, u�1
k ðtÞ � Ak; s for 1

2 < s < t < 1 and u�1
k ðtÞ � RNnAk; s for 0 < ta

s < 1
2 .
In addition, we observe that kmkðu�1

k ðtÞÞ ¼ 0 for L1-a.e. t, since m is a Radon

measure. It is in fact clear that u�1
k ðtÞ ¼ qAk; t, that Ak; t � Ak; s � Ak;0 if

0 < s < t < 1, with Ak;0 bounded, and that the sets qAk; t are pairwise disjoint.
Hence, since kmk is finite on bounded sets and additive, the set

ft a ð0; 1Þ : kmkðqAk; tÞ > eg

is finite for any e > 0. This implies that the set ft a ð0; 1Þ : kmkðqAk; tÞ > 0g is at
most countable (see also the observation at the end of Section 1.4 of [1]).

Then we obtain also:

(a) HN�1ðq�EB u�1
k ðtÞÞ ¼ 0 for a.e. 1

2 < t < 1;
(b) HN�1ðq�EB u�1

k ðtÞÞ ¼ 0 for a.e. 0 < t < 1
2 .
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4. The main approximation result

The following theorem, together with Theorem 3.1, shows that indeed we have an
interior approximation of E for a.e. t a

�
1
2 ; 1

�
.

Theorem 4.1. Let E be a set of finite perimeter in RN. There exists a sequence ek
converging to 0 such that, if uk :¼ wE � rek , we have

lim
k!þl

HN�1ðu�1
k ðtÞnE1Þ ¼ 0ð4:1Þ

for a.e. t a
�
1
2 ; 1

�
.

Proof. We take s > 1
2 and a sequence ek, with ek ! 0, and we consider the set

Ak; s :¼ fuk > sg. By the coarea formula (2.4), we have

Z
Ak; snE 1

j‘ukj dx ¼
Z 1

0

HN�1ðu�1
k ðtÞB ðAk; snE1ÞÞ dtð4:2Þ

¼
Z 1

s

HN�1ðu�1
k ðtÞnE1Þ dt;

since, for ta s, u�1
k ðtÞB ðAk; snE1Þ ¼ j, while, for t > s, u�1

k ðtÞB ðAk; snE1Þ ¼
u�1
k ðtÞnE1.
We claim that

k‘ukkL1ðAk; snE 1Þ ! 0:ð4:3Þ

In order to prove the claim, we observe that, for any x a RN ,

‘ukðxÞ ¼
Z
RN

wEðyÞ‘xrekðx� yÞ dy ¼ �
Z
RN

wEðyÞ‘yrekðx� yÞ dy

¼
Z
RN

rekðx� yÞnEðyÞdkDwEkðyÞ ¼ ðrek �DwEÞðxÞ:

Hence, ‘uk ¼ ðDwE � rekÞ ¼ ðkDwEknE � rekÞ, which implies

j‘ukja kDwEk � rek :ð4:4Þ

Recalling from (2.1) that LNðEDE1Þ ¼ 0, (4.4) leads to

k‘ukkL1ðAk; snE 1Þ ¼
Z
RN

j‘ukj wAk; snE dx

a

Z
RN

ðkDwEk � rekÞ wAk; snE dx ¼
Z
RN

ðrek � wAk; snEÞdkDwEk

¼
Z
q�E

ðrek � wAk; snEÞ dH
N�1:
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Thus, we need to investigate, for any x a q�E, the behaviour of
ðrek � wAk; snEÞðxÞ as k ! þl. We have

ðrek � wAk; snEÞðxÞ ¼
Z
RN

e�N
k r

� x� y

ek

�
wAk; s

ðyÞ wðRNnEÞðyÞ dy

¼ ½y ¼ xþ ekz� ¼
Z
Bð0;1Þ

rðzÞ wAk; s
ðxþ ekzÞ wðRNnEÞðxþ ekzÞ dz:

We observe that xþ ekz a RNnE if and only if z a
ðRNnEÞ�x

ek
, hence

wðRNnEÞðxþ ek�Þ ¼ w ðRN nEÞ�x

ek

ð�Þ ! wH�
nE
ðxÞð�Þ in L1ðBð0; 1ÞÞ as k ! þl;

by Theorem 2.3. In particular, this means that the L1 limit of wðRNnEÞðxþ ekzÞ is
not LN -a.e. zero only if z � nEðxÞa 0, so we can restrict the integration domain
to Bð0; 1ÞBH�

nEðxÞ. On the other hand, xþ ekz a Ak; s ¼ fuk > sg if and only if

ukðxþ ekzÞ > s. We see that

ukðxþ ekzÞ ¼
Z
RN

rekðxþ ekz� yÞ wEðyÞ dy

¼ ½y ¼ xþ ekzþ eku� ¼
Z
Bð0;1Þ

rðuÞ wEðxþ ekðuþ zÞÞ du:

Arguing as before, we obtain wEðxþ ekðzþ �ÞÞ ! wHþ
nE
ðxÞðzþ �Þ in L1ðBð0; 1ÞÞ

as k ! þl, for any x a q�E and z a Bð0; 1Þ. Now, we recall that z � nEðxÞa 0,
and, since we have wHþ

nE
ðxÞðzþ uÞ ¼ 1 if and only if 0a ðzþ uÞ � nEðxÞ, we

conclude that 0a�z � nEðxÞa u � nEðxÞa 1; that is, u belongs to the half ball
Bð0; 1ÞBHþ

nE
ðxÞ. This implies that, for any x a q�E and z a Bð0; 1ÞBH�

nE
ðxÞ,

lim
k!þl

ukðxþ ekzÞ :¼ vðx; zÞ ¼
Z
Bð0;1Þ

rðuÞ wHþ
nE
ðxÞðzþ uÞ dua 1

2
:ð4:5Þ

Therefore, these calculations yield

ðrek � wAk; snEÞðxÞ ¼
Z
Bð0;1Þ

rðzÞ wAk; s
ðxþ ekzÞ wðRNnEÞðxþ ekzÞ dzð4:6Þ

!
Z
Bð0;1Þ

rðzÞ wfvðx; zÞ>sgðzÞ wH�
nE
ðxÞðzÞ dz;

for any x a q�E.
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Equation (4.5) shows then that the limit in (4.6) is identically zero, since

z a RN : vðx; zÞ > s >
1

2

� �
BBð0; 1ÞBH�

nE
ðxÞ ¼ j;

for any x a q�E.
We can now apply the Lebesgue dominated convergence theorem with respect

to the measure HN�1
O q

�E and the sequence of functions rek � wAk; snE (since the
constant 1 is clearly a summable majorant), thus obtaining (4.3).

Finally, up to passing to a subsequence (which we shall keep calling ek with a
little abuse of notation), (4.2) and (4.3) yield (4.1), for a.e. t > s. Since s > 1

2 is
fixed arbitrarily, we can conclude that (4.1) is valid for a.e. t > 1

2 . r

4.1. Remark. An analogous result holds for the measure theoretic exterior;
namely, there exists a sequence ek converging to 0 such that, if uk :¼ wE � rek , we
have

lim
k!þl

HN�1ðu�1
k ðtÞnE0Þ ¼ 0ð4:7Þ

for a.e. t a
�
0; 12

�
.

4.2. Remark. It is not di‰cult to see that Theorem 3.1 and Theorem 4.1 are
also valid if we work in an open set W and we consider a set of finite perimeter
E �� W (which is the framework of [2]). Indeed, the extension to 0 in RNnW of
the function wE is a function of bounded variations in RN ; that is, E can be seen
as a set of finite perimeter in RN . In this way, the previous results follow.
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