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Abstract. — A general model for a triple porosity thermoelastic solid is presented in the linear

anisotropic case. This allows for cross coupling of inertia coe‰cients, and cross coupling of inter-

action coe‰cients representing actions between pressures in the macro, meso and micro structures.
Su‰cient conditions are derived to demonstrate uniqueness and stability when the elastic coe‰cients

are, in a precise sense, positive. Uniqueness is further demonstrated in the dynamical problem when
the elastic coe‰cients are not sign-definite and possess only the major symmetry. An indication is

given as to how one would proceed to obtain continuous dependence upon the inital data in the
Hölder sense. The proof of uniqueness in the indefinite elasticity tensor case involves a logarithmic

convexity method which proceeds by a novel choice of functional.
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1. Introduction

Triple porosity elastic materials are the subject of intense current research. Inter-
est is driven mainly by the many engineering applications of this topic. A triply
porous elastic body is a solid with pores on the macro scale, pores on a much
smaller meso scale, and pores (also called fissures or cracks) at an altogether
smaller scale known as micro pores. The notion of macro, meso and micro poros-
ity may change depending on the application and sometimes these are known,
respectively, as matrix porosity, cavern porosity, and fracture porosity, or matrix,
fracture, and channel components. Among the many possible application areas
for triple porosity elasticity we mention recovery of oil from an underground
reservoir, see e.g. Bai et al. [4], Bai & Roegiers [5], Wang et al. [52], Ali et al.
[2], Aguilera & Aguilera [1], Olusola et al. [33], Deng et al. [12]; recovering
methane gas from an underground coal bed, see e.g. Zou et al. [58], Wei & Zhang
[53]; involvement in fuel cell technology, see e.g. Yuan & Sundén [55]; provision
of good drinking water from a carbonate aquifer, see e.g. Zuber & Motyka
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[59], Ghasemizadeh et al. [16]; design of membrane – based bioartifical livers,
Dufresne et al. [13]; hydraulic fracturing (fracking) of underground rocks to
recover natural gas from shale gas reservoirs, see e.g. Huang et al. [21], Zhao
et al. [56], Kim & Moridis [25]; analysing interstitial fluid flow in bones or bone
replacement/recovery technology, see e.g. Svanadze & Scalia [50, 51], Sakamoto
& Matsumoto [40], Zhou et al. [57]. In fact, replacing long bones which are
damaged (in human beings) is a major problem for surgery since the porosity
can vary from 14% in the outer layer of the bone to 52% in the inner layer and
multi – porosity theory may need to cater even for graded porosity materials,
cf. Zhou et al. [57].

In this article we present and analyse a partial di¤erential equation model for
a triple porosity thermoelastic medium. The inclusion of thermal e¤ects is very
important since they can induce micro cracking in rocks such as granite, see e.g.
Homand-Etienne & Houpert [20], David et al. [10], Siratovich et al. [44].

The model we present allows for cross coupling of inertia e¤ects between the
macro pressure, meso pressure, micro pressure, and the temperature field. We
also allow cross interaction between macro and meso scales, meso and micro
scales, and the often neglected macro and micro scales. As Svanadze [49] points
out, Khalili [24] has demonstrated that neglecting coupling even in a double
porosity elastic system can lead to loss of important information and the defor-
mation cannot be simulated correctly.

Throughout the paper we employ standard indicial notation together with the
Einstein summation convention. For example, a subscript ,a denotes q=qxa, and
a superposed dot denotes q=qt, where t is time and xa, a ¼ 1; 2; 3; is a spatial
point. Let uiðx; tÞ denote the elastic displacement, pðx; tÞ denote the pressure in
the macro pores, qðx; tÞ denote the pressure in the meso pores, sðx; tÞ denote the
pressure in the micro pores, and let yðx; tÞ denote the temperature in the body.
Then, generalizing the approach in Svanadze [49], the linear anisotropic equa-
tions for a triple porosity elastic material are written as

r€uui ¼ ðaijkhuk;hÞ; j � ðbij pÞ; j � ðgijqÞ; j � ðoijsÞ; j � ðaijyÞ; j þ rfi;

a _ppþ a1 _qqþ a2 _ssþ a3 _yy ¼ ðkij p; jÞ; i � bij _uui; j � gðp� qÞ � oðp� sÞ;
a1 _ppþ b _qqþ b1 _ssþ b2

_yy ¼ ðmijq; jÞ; i � gij _uui; j þ gðp� qÞ � xðq� sÞ;
a2 _ppþ b1 _qqþ e _ssþ e1 _yy ¼ ðlijs; jÞ; i � oij _uui; j þ xðq� sÞ þ oðp� sÞ;
a3 _ppþ b2 _qqþ e1 _ssþ a _yy ¼ ðrijy; jÞ; i � aij _uui; j þ rr:

ð1Þ

In these equations r ¼ rðxÞ > 0 is the density, aijkhðxÞ are the elastic coe‰cients,
bij, gij, oij and aij are coupling coe‰cients and they are all symmetric tensors.

Likewise kij, mij, lij and rij are all symmetric tensors. The inertia coe‰cients
a; a1; . . . ; a and the interaction coe‰cients g, o, x all depend on x and further
information is provided in section 2 of this article. The elastic coe‰cients are
required to be symmetric in the sense that

aijkh ¼ akhij ¼ ajikh:ð2Þ
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The term fiðx; tÞ represents a prescribed body force whereas rðx; tÞ is a prescribed
heat source. The e¤ect of a heat source may well be important in triple porosity
thermoelasticity as it could contribute to inducing internal thermal stresses.

We point out that Svanadze [49] presents an analogous system to (1) but for a
double porosity body which is isotropic. He does, however, include temperature
and cross inertia e¤ects, see also Scarpetta et al. [43], Scarpetta & Svanadze [42].
In addition we observe that cross interaction e¤ects are included in tridisperse
materials where internal fluid flow is considered in a rigid skeleton by Kuznetsov
& Nield [29], Nield & Kuznetsov [32], see also Straughan [48], pp. 203, 204.

In the next section we establish uniqueness for a solution to a boundary initial
value problem for equations (1) using an energy technique. This is followed by a
section where we establish continuous dependence on the initial data, continuous
dependence on the body force, and continuous dependence on the heat source. In
the following section we strongly relax the conditions on the elastic tensor and
demonstrate uniqueness by a logarithmic convexity method. It is worth noting
that Straughan [47] employs a logarithmic convexity method to establish contin-
uous dependence and uniqueness for a solution to a model for double porosity
elasticity. However, the model adopted by Straughan [47] does not have temper-
ature nor cross coupling inertia terms.

2. Non-negative elastic coefficients

Throughout the paper we let W denote a bounded domain in R3 with boundary G
su‰ciently smooth to allow application of the divergence theorem. We shall now
derive su‰cient conditions to establish uniqueness and stability of a solution to
the basic equations (1). We suppose that ðui; p; q; s; yÞ is a solution to equations
(1) in the domain W� ð0;TÞ where T < l is a fixed time. This solution is
required to satisfy the boundary conditions

uiðx; tÞ ¼ uB
i ðx; tÞ; pðx; tÞ ¼ pBðx; tÞ; qðx; tÞ ¼ qBðx; tÞ;

sðx; tÞ ¼ sBðx; tÞ; yðx; tÞ ¼ yBðx; tÞ; x a G� ð0;TÞ;
ð3Þ

where uB
i , p

B, qB, sB; and yB are prescribed. In addition, we require the solution
ðui; p; q; s; yÞ to satisfy the initial conditions

uiðx; 0Þ ¼ viðxÞ; _uuiðx; 0Þ ¼ wiðxÞ; pðx; 0Þ ¼ PðxÞ;
qðx; 0Þ ¼ QðxÞ; sðx; 0Þ ¼ SðxÞ; yðx; 0Þ ¼ YðxÞ; x a W;

ð4Þ

where the functions vi, wi, P, Q, S and Y are prescribed. Denote the boundary
initial value problem for equations (1) together with (3) and (4) by P.

We suppose that the coe‰cients kij, mij, lij and rij are functions of x with

kijxixj b 0; mijxixj b 0; lijxixj b 0; rijxixj b 0;ð5Þ

for all xi. In addition, the coupling coe‰cients bij, gij, oij and aij are functions
of x while the interaction coe‰cients g, o and x are positive functions of x.
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Likewise, the inertia coe‰cients a, b, e, a, a1, a2, a3, b1, b2 and e1 are functions of
the spatial variable x. These coe‰cients are such that a > 0, b > 0, e > 0 and
a > 0 together with the requirement that the symmetric matrix

A ¼

a a1 a2 a3

a1 b b1 b2
a2 b1 e e1

a3 b2 e1 a

0
BBB@

1
CCCA

is positive – definite. Thus, there exist positive constants k1; . . . ; k4 such that

yTAyb k2
1 y

2
1 þ k2y

2
2 þ k3y

2
3 þ k4y

2
4 :ð6Þ

In this section we shall also suppose that the elastic coe‰cients aijkh are func-
tions of x and

aijkhxijxkh b a0xijxijð7Þ

for all xij, where a0 b 0 to establish uniqueness and a0 > 0 when we are answer-
ing the stability question.

To establish uniqueness for a solution to P we let the functions
ðu1i ; p1; q1; s1; y

1Þ and ðu2i ; p2; q2; s2; y
2Þ be two solutions to P for the same

boundary data functions hB
i , p

B, qB, sB, yB, for the same initial data functions
vi, wi, P, Q, S, Y, and for the same body force fi and for the same heat source
r. Define the di¤erence variables ui, p, q, s and y by the relations

ui ¼ u1i � u2i ; p ¼ p1 � p1; q ¼ q1 � q2;

s ¼ s1 � s2; y ¼ y1 � y2:
ð8Þ

Then by subtraction, one sees from equations (1), (3) and (4), that the solution
ðui; p; q; s; yÞ satisfies the boundary initial value problem

r€uui ¼ ðaijkhuk;hÞ; j � ðbij pÞ; j � ðgijqÞ; j � ðoijsÞ; j � ðaijyÞ; j;
a _ppþ a1 _qqþ a2 _ssþ a3 _yy ¼ ðkij p; jÞ; i � gðp� qÞ � oðp� sÞ � bij _uui; j;

a1 _ppþ b _qqþ b1 _ssþ b2
_yy ¼ ðmijq; jÞ; i þ gðp� qÞ � xðq� sÞ � gij _uui; j;

a2 _ppþ b1 _qqþ e _ssþ e1 _yy ¼ ðlijs; jÞ; i þ oðp� sÞ þ xðq� sÞ � oij _uui; j;

a3 _ppþ b2 _qqþ e1 _ssþ a _yy ¼ ðrijy; jÞ; i � aij _uui; j;

ð9Þ

where now the boundary conditions are

uiðx; tÞ ¼ 0; pðx; tÞ ¼ 0; qðx; tÞ ¼ 0;

sðx; tÞ ¼ 0; yðx; tÞ ¼ 0; x a G;
ð10Þ

and the initial conditions are
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uiðx; 0Þ ¼ 0; _uuiðx; 0Þ ¼ 0; pðx; 0Þ ¼ 0;

qðx; 0Þ ¼ 0; sðx; 0Þ ¼ 0; yðx; 0Þ ¼ 0; x a W:
ð11Þ

To establish uniqueness of a solution to P under the conditions (5) and (7) we
multiply equation (9)1 by _uui and integrate over W. Then we multiply equations
(9)2–(9)5, respectively, by p, q, s and y and integrate each over W. We integrate
by parts, use the boundary conditions, and add the results of each together. Let

us denote by 3 � 4 integration over W, e.g. 3 f 4 ¼
Z
W

f dx. Then we define an
energy function EðtÞ by

EðtÞ ¼ 1

2
3r _uui _uui4þ 1

2
3aijkhui; juk;h4þ 1

2
3ap24þ 1

2
3bq24ð12Þ

þ 1

2
3es24þ 1

2
3ay24þ 3a1pq4þ 3a2sp4

þ 3a3yp4þ 3b1qs4þ 3b2qy4þ 3e1ys4:

By proceeding in the manner outlined above we may now show that EðtÞ satisfies
the energy equation

EðtÞ þ
Z t

0

3kij p; i p; j4 daþ
Z t

0

3mijq; iq; j4 dað13Þ

þ
Z t

0

3lijs; is; j4 daþ
Z t

0

3rijy; iy; j4 da

þ
Z t

0

3gðp� qÞ24 daþ
Z t

0

3oðp� sÞ24 da

þ
Z t

0

3xðs� qÞ24 da ¼ Eð0Þ;

where da denotes integration with respect to time.
For uniqueness Eð0Þ ¼ 0 and then from (13) we deduce by employing condi-

tions (5) and (6) that

pC 0; qC 0; sC 0; yC 0; and _uui C 0;

and so ui C 0 in W� ð0;TÞ. Thus, uniqueness of a solution to P follows.

3. Stability

3.1. Continuous dependence upon the initial data

We commence with an analysis of stability in the sense of continuous dependence
upon the initial data. Thus, suppose there are two solutions ðu1i ; p1; q1; s1; y

1Þ and

195uniqueness and stability in triple porosity thermoelasticity



ðu2i ; p2; q2; s2; y
2Þ which satisfy equations (1) for the same body force fi and for

the same heat source r. These solutions also satisfy the boundary conditions
(3) for the same functions uB

i , p
B, qB, sB and yB. However, they are subject to

di¤erent initial conditions in that ðu1i ; p1; q1; s1; y
1Þ is required to satisfy the initial

conditions

u1i ðx; 0Þ ¼ v1i ðxÞ; _uu1i ðx; 0Þ ¼ w1
i ðxÞ; p1ðx; 0Þ ¼ P1ðxÞ;

q1ðx; 0Þ ¼ Q1ðxÞ; s1ðx; 0Þ ¼ S1ðxÞ; y1ðx; 0Þ ¼ Y1ðxÞ;
ð14Þ

for x a W; whereas ðu2i ; p2; q2; s2; y
2Þ satisfies another set of initial conditions

u2i ðx; 0Þ ¼ v2i ðxÞ; _uu2i ðx; 0Þ ¼ w2
i ðxÞ; p2ðx; 0Þ ¼ P2ðxÞ;

q2ðx; 0Þ ¼ Q2ðxÞ; s2ðx; 0Þ ¼ S2ðxÞ; y2ðx; 0Þ ¼ Y2ðxÞ;
ð15Þ

for x a W: In equations (14) and (15) the functions v1i ðxÞ; . . . ;Y2ðxÞ are prescribed.
One again forms the di¤erence solution ðui; p; q; s; yÞ as in (8) and one may

verify that this solution satisfies the di¤erential equations (9) and the boundary
conditions (10). Let us now define the data functions vi, wi, P, Q, S and Y by

viðxÞ ¼ v1ðxÞ � v2i ðxÞ; wiðxÞ ¼ w1
i ðxÞ � w2

i ðxÞ;
PðxÞ ¼ P1ðxÞ � P2ðxÞ; QðxÞ ¼ Q1ðxÞ �Q2ðxÞ;
SðxÞ ¼ S1ðxÞ � S2ðxÞ; YðxÞ ¼ Y1ðxÞ �Y2ðxÞ; x a W:

ð16Þ

Then, instead of satisfying the initial conditions (9) one sees that the di¤erence
solution ðui; p; q; s; yÞ is subject to the initial conditions

uiðx; 0Þ ¼ viðxÞ; _uuiðx; 0Þ ¼ wiðxÞ; pðx; 0Þ ¼ PðxÞ;
qðx; 0Þ ¼ QðxÞ; sðx; 0Þ ¼ SðxÞ; yðx; 0Þ ¼ YðxÞ; x a W:

ð17Þ

Thus, the di¤erence solution ðui; p; q; s; yÞ in this section satisfies the boundary
initial value problem P1 comprising equations (9), (10) and (17).

By proceeding as in the analysis leading to equation (13) one finds that this
equation again holds, but now Eð0Þ > 0. One may employ (5) and the fact that
g, o and x are positive to then deduce from the analogous equation to (13) that

EðtÞaEð0Þð18Þ

where EðtÞ is as given in (12) and Eð0Þ > 0 is the constant given by

Eð0Þ ¼ 1

2
3rwiwi4þ 1

2
3aijkhvi; jvk;h4þ 1

2
3aP24þ 1

2
3bQ24ð19Þ

þ 1

2
3eS24þ 1

2
3aY24þ 3a1PQ4þ 3a2SP4

þ 3a3YP4þ 3b1QS4þ 3b2QY4þ 3e1YS4:
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We next employ inequality (6) in inequality (18) to find

1

2
3r _uui _uui4þ 1

2
3aijkhui; juk;h4þ k1kpk2 þ k2kqk2 þ k3ksk2 þ k4kyk2 aEð0Þ;ð20Þ

where k � k is the norm on L2ðWÞ. We then employ inequality (7) for a constant
a0 > 0 to obtain from inequality (20)

1

2
3r _uui _uui4þ a0

2
k‘uk2 þ k1kpk2 þ k2kqk2 þ k3ksk2 þ k4kyk2 aEð0Þ:ð21Þ

Inequality (21) establishes continuous dependence on the initial data for all t > 0
in the L2 measure for _uu, p, q, s, y and in H 1

0 ðWÞ for u.

3.2. Continuous dependence upon the body force

In this section we wish to consider continuous dependence of the solution to
equations (1) upon changes in the body force, fi, itself. This class of stability
problem, where one e¤ectively considers a change to the model itself, is known
as structural stability. In fact, many writers believe structural stability is as im-
portant a concept as continuous dependence on the initial data. Certainly, struc-
tural stability features prominently in the classic text of Hirsch & Smale [19]. In
the field of linear elastodynamics structural stability was analysed in depth by
Knops & Payne [26] with significant improvements given by Knops & Payne
[28]. It is also worth observing that structural stability occupies the whole of
chapter 2 of the book by Straughan [45].

To investigate continuous dependence on the body force for a solution to
equations (1) we let ðu1i ; p1; q1; s1; y

1Þ be a solution to equations (1) for a body
force f 1i ðx; tÞ and we let ðu2i ; p2; q2; s2; y

2Þ be a solution to equations (1) for a
body force f 2i ðx; tÞ. We suppose that both solutions are subject to the same heat
source rðx; tÞ and both solutions satisfy the boundary conditions (3) and the
initial conditions (4) for the same functions uB

i , p
B, qB, sB, yB and vi, wi, P, Q,

S and Y.
We now define the di¤erence body force fi by

fiðx; tÞ ¼ f 1i ðx; tÞ � f 2i ðx; tÞ:ð22Þ

By subtraction we see that the di¤erence solution defined by (8) satisfies the
boundary initial value problem

r€uui ¼ ðaijkhuk;hÞ; j � ðbij pÞ; j � ðgijqÞ; j � ðoijsÞ; j � ðaijyÞ; j þ rfi;

a _ppþ a1 _qqþ a2 _ssþ a3 _yy ¼ ðkij p; jÞ; i � gðp� qÞ � oðp� sÞ � bij _uui; j;

a1 _ppþ b _qqþ b1 _ssþ b2
_yy ¼ ðmijq; jÞ; i þ gðp� qÞ � xðq� sÞ � gij _uui; j;

a2 _ppþ b1 _qqþ e _ssþ e1 _yy ¼ ðlijs; jÞ; i þ oðp� sÞ þ xðq� sÞ � oij _uui; j;

a3 _ppþ b2 _qqþ e1 _ssþ a _yy ¼ ðrijy; jÞ; i � aij _uui; j;

ð23Þ
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together with

uiðx; tÞ ¼ 0; pðx; tÞ ¼ 0; qðx; tÞ ¼ 0;

sðx; tÞ ¼ 0; yðx; tÞ ¼ 0; x a G;
ð24Þ

and

uiðx; 0Þ ¼ 0; _uuiðx; 0Þ ¼ 0; pðx; 0Þ ¼ 0;

qðx; 0Þ ¼ 0; sðx; 0Þ ¼ 0; yðx; 0Þ ¼ 0; x a W:
ð25Þ

To analyse continuous dependence upon the body force we multiply equation
(23)1 by _uui and integrate over W. We then multiply equations (23)2–(23)5 each,
respectively, by p, q, s and y and integrate over W. After use of the boundary
conditions (24) we add the results to find that

dE

dt
þ 3kij p; ip; j4þ 3mijq; iq; j4þ 3lijs; is; j4þ 3rijy; iy; j4ð26Þ

þ 3gðp� qÞ24þ 3oðp� sÞ24þ 3xðs� qÞ24 ¼ 3rfi _uui4;

where EðtÞ is as defined in (12). To progress from this we employ the arithmetic–
geometric mean inequality on the term on the right of (26) in the form

3rfi _uui4a
1

2
3r _uui _uui4þ 1

2
3rfi fi4:ð27Þ

We appeal to conditions (5) and discard terms on the left of (26) and then after
using (27) in (26) we multiply by the integrating factor e�t and integrate in t to
obtain after using (6) the inequality

1

2
3r _uui _uui4þ 1

2
3aijkhui; juk;h4þ 1

2
k1kpk2 þ

1

2
k2kqk2 þ

1

2
k3ksk2 þ

1

2
k4kyk2ð28Þ

a

Z t

0

eðt�aÞ3rfiðx; aÞ fiðx; aÞ4:

Finally, we employ (7) with a0 > 0 to obtain

1

2
3r _uui _uui4þ 1

2
a0k‘uk2 þ

1

2
k1kpk2 þ

1

2
k2kqk2 þ

1

2
k3ksk2 þ

1

2
k4kyk2ð29Þ

a

Z t

0

eðt�aÞ3rfiðx; aÞ fiðx; aÞ4:

Inequality (29) is the required estimate and establishes continuous dependence of
a solution to equations (1) upon the body force fi.
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3.3. Continuous dependence upon the heat source

In this section we analyse another problem of structural stability, namely, con-
tinuous dependence of a solution to equations (1) upon changes in the heat
source rðx; tÞ.

The procedure develops as in section 3.2 in that we let ðu1i ; p1; q1; s1; y
1Þ and

ðu2i ; p2; q2; s2; y
2Þ be two solutions to equations (1) but now they satisfy the

same body force, fi, but di¤erent heat sources r1 and r2, respectively. The two
solutions satisfy the same boundary and initial conditions. Thus, the di¤erence
solution defined by (8) again satisfies the boundary conditions (24) and initial
conditions (25). However, the di¤erence solution satisfies the partial di¤erential
equations

r€uui ¼ ðaijkhuk;hÞ; j � ðbij pÞ; j � ðgijqÞ; j � ðoijsÞ; j � ðaijyÞ; j ;
a _ppþ a1 _qqþ a2 _ssþ a3 _yy ¼ ðkij p; jÞ; i � gðp� qÞ � oðp� sÞ � bij _uui; j;

a1 _ppþ b _qqþ b1 _ssþ b2
_yy ¼ ðmijq; jÞ; i þ gðp� qÞ � xðq� sÞ � gij _uui; j;

a2 _ppþ b1 _qqþ e _ssþ e1 _yy ¼ ðlijs; jÞ; i þ oðp� sÞ þ xðq� sÞ � oij _uui; j;

a3 _ppþ b2 _qqþ e1 _ssþ a _yy ¼ ðrijy; jÞ; i � aij _uui; j þ rr:

ð30Þ

We commence as in section 3.2 and multiply each of (30)1–(30)5 by _uui, p, q, s and
y, respectively, and integrate over W. This procedure now leads to the equation

dE

dt
þ 3kij p; i p; j4þ 3mijq; iq; j4þ 3lij s; is; j4þ 3rijy; iy; j4ð31Þ

þ 3gðp� qÞ24þ 3oðp� sÞ24þ 3xðs� qÞ24 ¼ 3ryr4:

We again require kij, mij and lij to satisfy (5) but now we request that rij satisfy
the stronger (but usually physically acceptable) condition that

rijxixj b r0xixi;ð32Þ

for all x, and for a constant r0 > 0. In this case we employ inequality (32) on the
appropriate term in (31) and then we employ the arithmetic–geometric mean
inequality to find

dE

dt
þ r0k‘yk2 a

1

2b
3y24þ b

2
3r2r24;ð33Þ

for a constant b > 0 at our disposal. We next employ Poincaré’s inequality in the
form k‘yk2 b l1kyk2 where l1 > 0 is the first eigenvalue in the membrane prob-
lem for W. We pick b ¼ 1=2r0l1 and then from (33) we derive

dE

dt
a

b

2
3r2r24:ð34Þ
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Upon integration in time we utilize inequality (6) to find

3r _uui _uui4þ 3aijkhui; juk;h4þ k1kpk2 þ k2kqk2 þ k3ksk2 þ k4kyk2ð35Þ

a b

Z t

0

3r2r24 da:

Finally we employ (7) with a0 > 0 to derive the estimate

3r _uui _uui4þ a0k‘uk2 þ k1kpk2 þ k2kqk2 þ k3ksk2 þ k4kyk2ð36Þ

a
1

2r0l1

Z t

0

3r2r24 da:

The estimate (36) is an a priori inequality which demonstrates continuous de-
pendence of a solution to the triple porosity thermoelastic equations (1) upon
changes in the heat source rðx; tÞ.

4. Indefinite elastic coefficients

In this section we shall not require any definiteness conditions on the elasticity
tensor aijkh and we suppose only symmetry as in (2).

Many modern, often man made, materials may well have elastic coe‰cients
which are not sign-definite. For example, auxetic materials, Greaves et al. [17],
Sanami et al. [41]; graded systems, Jou et al. [23]; chiral bodies, Lakes [30], Ha
et al. [18], Iesan & Quintanilla [22]; some composites, Miller et al. [31], Greaves
et al. [17]; may possess properties not normally associated with typical elastic
behaviour. To amplify this we mention briefly isotropic linear elastodynamics
where the equations are, see e.g. Knops & Payne [27], p. 16,

r€uui ¼ mDui þ ðlþ mÞuj; ij:ð37Þ

In these equations l and m are the Lamé and shear moduli, respectively, and they
are connected to Poisson’s ratio s; and Young’s modulus E, by, see Knops &
Payne [27], p. 10,

l ¼ 2ms

1� 2s
; m ¼ E

2ð1þ sÞ :ð38Þ

Many classical works on elasticity have required positive-definiteness of the elas-
tic coe‰cients and for an isotropic elastic body in three dimensions this means l
and m must satisfy, Knops & Payne [27], p. 19,

3lþ 2m > 0; m > 0;ð39Þ
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which is equivalent to

�1 < s <
1

2
; m > 0:ð40Þ

A weaker condition is often employed, namely that of strong ellipticity and this
requires, Knops & Payne [27], p. 21, Chirita & Ghiba [9],

mðlþ 2mÞ > 0;ð41Þ

which is equivalent to

�l < s <
1

2
; 1 < s < l; mA 0:ð42Þ

While Poisson’s ratio is allowed to be negative by the criteria (40) and
(42), it has often been argued in the past that it should always be positive.
With the advent of many new materials it is now a known fact that Poisson’s
ratio may be negative, see Xinchun & Lakes [54], and other non-classical
e¤ects are often reported from experiments, cf. Greaves et al. [17], Ha et al.
[18]. In view of the range of new e¤ects being discovered in elasticity we
believe it is desirable to analyse the case of indefinite elastic coe‰cients, espe-
cially in the context of a body with a triple porosity structure. Another very
strong motivation for requiring indefiniteness of the elastic tensor is that when
the equations are linearized about a state of nonlinear deformation then the
elastic coe‰cients contain the e¤ect of pre-stress and then it is not at all obvious
why the elasticity tensor should be positive. This point is succinctly made on
page 47 of the book by Straughan [46], cf. also Flavin & Green [15] and Flavin
[14].

We again let ðu1i ; p1; q1; s1; y
1Þ and ðu2i ; p2; q2; s2; y

2Þ be solutions to P for the
same body force, boundary conditions and initial conditions as in section 2 and
define the di¤erence solution ðui; p; q; s; yÞ as in (8). Thus, the di¤erence solution
ðui; p; q; s; yÞ satisfies equations (9), (10) and (11). We again require conditions (5)
and (6). However, we relax the positivity condition (7) and require of aijkh only
the symmetry condition (2).

To establish uniqueness we commence by introducing the functions hðx; tÞ,
zðx; tÞ, fðx; tÞ and cðx; tÞ by

hðx; tÞ ¼
Z t

0

pðx; aÞ da; zðx; tÞ ¼
Z t

0

qðx; aÞ da;

fðx; tÞ ¼
Z t

0

sðx; aÞ da; cðx; tÞ ¼
Z t

0

yðx; aÞ da;
ð43Þ

where da denotes integration in time. We next introduce the functional F ðtÞ by
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F ðtÞ ¼ 3ruiui4þ
Z t

0

3kijh; ih; j4 daþ
Z t

0

3mijz; iz; j4 dað44Þ

þ
Z t

0

3lijf; if; j4 daþ
Z t

0

3rijc; ic; j4 da

þ
Z t

0

3gðh� zÞ24 daþ
Z t

0

3xðf� zÞ24 da

þ
Z t

0

3oðh� fÞ24 da:

For the uniqueness case the initial data are zero and then one may di¤erentiate F
in (44) to see that

F 0ðtÞ ¼ 23rui _uui4þ 2

Z t

0

3kijh; ip; j4 dað45Þ

þ 2

Z t

0

3mijz; iq; j4 daþ 2

Z t

0

3lijf; is; j4 da

þ 2

Z t

0

3rijc; iy; j4 daþ 2

Z t

0

3gðh� zÞðp� qÞ4 da

þ 2

Z t

0

3xðf� zÞðs� qÞ4 da

þ 2

Z t

0

3oðh� fÞðp� sÞ4 da:

After a further di¤erentiation one obtains,

F 00ðtÞ ¼ 23rui€uui4þ 23r _uui _uui4þ 23kijh; i p; j4þ 23mijz; iq; j4ð46Þ
þ 23lijf; is; j4þ 23rijc; iy; j4þ 23gðh� zÞðp� qÞ4
þ 23xðf� zÞðs� qÞ4þ 23oðh� fÞðp� sÞ4:

To progress we need to write equations (9)2–(9)5 in terms of h, z, f and c and
so we integrate these equations in time to derive the equations

apþ a1qþ a2sþ a3y ¼ ðkijh; jÞ; i � gðh� zÞ � oðh� fÞ � bijui; j;

a1pþ bqþ b1sþ b2y ¼ ðmijz; jÞ; i þ gðh� zÞ � xðz� fÞ � gijui; j;

a2pþ b1qþ esþ e1y ¼ ðlijf; jÞ; i þ oðh� fÞ þ xðz� fÞ � oijui; j;

a3pþ b2qþ e1sþ ay ¼ ðrijc; jÞ; i � aijui; j:

ð47Þ

We now multiply equation (47)1 by p, equation (47)2 by q, equation (47)3 by s,
equation (47)4 by y, and integrate over W. We multiply equation (9)1 by ui and
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integrate over W. The next step is to form the sum of the results and in this
manner after some integration by parts and use of the boundary conditions we
obtain the relation

3ap24þ 3bq24þ 3es24þ 3ay24þ 23a1pq4þ 23a2sp4þ 23a3yp4ð48Þ
þ 23b1sq4þ 23b2qy4þ 23e1ys4þ 3aijkhui; juk;h4

¼ �3rui€uui4� 3rijc; jy; i4� 3lijf; js; i4� 3mijz; jq; i4� 3kijh; jp; i4

� 3xðf� zÞðs� qÞ4� 3oðh� fÞðp� sÞ4� 3gðp� qÞðh� zÞ4:

The next step is to substitute the expression on the right hand side of (48) into
equation (46) for F 00 and rewrite this function as

F 00 ¼ 43r _uui _uui4� 23ap24� 23bq24� 23es24� 23ay24ð49Þ
� 43a1pq4� 43a2sp4� 43a3yp4� 43b1sq4

� 43b2qy4� 43e1ys4� 23aijkhui; juk;h4� 23r _uui _uui4:

The energy equation (13) holds with Eð0Þ ¼ 0 and then we substitute from this
equation into equation (49) to further rewrite F 00 as

F 00 ¼ 43r _uui _uui4þ 4

Z t

0

3kij p; ip; j4 dað50Þ

þ 4

Z t

0

3mijq; iq; j4 daþ 4

Z t

0

3lijs; is; j4 da

þ 4

Z t

0

3rijy; iy; j4 daþ 4

Z t

0

3gðp� qÞ24 da

þ 4

Z t

0

3oðp� sÞ24 daþ 4

Z t

0

3xðs� qÞ24 da:

We now form the combination FF 00 � ðF 0Þ2 from equations (50), (45) and (44)
and then we appeal to the Cauchy–Schwarz inequality to deduce that

FF 00 � ðF 0Þ2 b 0:ð51Þ

Thus, on the interval ð0;TÞ, logF ðtÞ is a convex function of t. From inequality
(51) one may show F ðtÞC 0 on ð0;TÞ, see e.g. Ames & Straughan [3], p. 17.
Actually, one has to take care with the uniqueness proof since Fð0Þ ¼ 0 and con-
sequently logF ð0Þ is not defined. One has to employ a contradiction argument
and assume F A 0 on an interval, ðe;TÞ say, with e > 0. Then from (51) one
shows

logF ðtÞa logFðeÞ
�T � t

T � e

�
þ logFðTÞ

� t� e

T � e

�
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for t a ðe;TÞ and a continuity argument allowing e ! 0 establishes F C 0. Alter-
natively, one may define FðtÞ ¼ F ðtÞ þ e where F is defined by (44) and demon-
strate F satisfies an inequality like (51). Again, a continuity argument allowing
e ! 0 furnishes a proof that F C 0. Thus, from the definition of F ðtÞ in (44)
one deduces uiðx; tÞC 0 in W� ð0;TÞ. Now with ui C 0 the energy identity (13)
together with the definition of EðtÞ in (12) allows one to also deduce

pC0; qC 0; sC 0; and yC 0:

Thus, uniqueness of a solution to P follows with only the symmetry condition (2)
on the elastic coe‰cients..

One may take this logarithmic convexity analysis further to establish a stabil-
ity result with only symmetry imposed upon the elastic coe‰cients aijkh, in the
sense that one may demonstrate Hölder continuous dependence upon the initial
data on compact intervals of ð0;TÞ. The proof is somewhat tricky and one has
to extend the definition of h, z, f and c by adding contributions to account
for non-zero initial data. One has also to strengthen conditions (5) and instead
request that

kijxixj b k0xixi mijxixj bm0xixi;

lijxixj b l0xixi; rijxixj b r0xixi;
ð52Þ

for all xi, and for constants k0 > 0, m0 > 0, l0 > 0; r0 > 0.
Details are similar to those in Straughan [47], equations (23)–(25). It will

be necessary to consider two separate cases, namely when Eð0Þa 0 and when
Eð0Þ > 0, as analysed by Straughan [47], and the functional chosen for each
case is di¤erent. However, the proof may be completed following the method in
Straughan [47], mutatis mutandis.

5. Conclusions

We have presented a system of partial di¤erential equations to describe the evo-
lutionary behaviour of a triply porous elastic body in a non-isothermal setting.
Due to the numerous applications a theory of triple porosity has, many of which
are outlined in the introduction to this article, we believe the development of such
a system of equations will prove beneficial. In particular, the inclusion of temper-
ature e¤ects is important in real life since thermal stresses can induce cracking
behaviour, as pointed out in the introduction. A particular feature of the model
is to allow cross inertia e¤ects and cross interaction e¤ects between the macro,
meso and micro porosity structure of the elastic matrix.

We have commenced an analysis of the mathematical properties of the sys-
tem of partial di¤erential equations for a triply porous thermoelastic body and
have demonstrated uniqueness and stability in the sense of continuous depen-
dence upon the initial data in a precise mathematical manner. We have also
begun an analysis of structural stability on the model itself and we have estab-
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lished continuous dependence upon changes in the body force and also upon
the heat source. The conditions imposed upon the elastic coe‰cients are impor-
tant and we have considered the case where these are positive, in a precise sense.
However, we have also considered the case which is likely to be important for
many new materials where the elasticity tensor is sign indefinite. To accommo-
date the cross e¤ects and indefiniteness has necessitated the introduction of a
novel technique.

It is worth mentioning that thermal convection in a multi-porosity body has
also been attracting much attention, see e.g. chapter 13 of the book by Straughan
[48]. The models in that case have been restricted to the situation where the solid
skeleton is rigid and are usually referred to as bidisperse or tridisperse media.
However, the e¤ect of a moving elastic skeleton upon thermal convection would
be a highly interesting topic. This would be particularly so in practical scenarios
where often there are additionally many di¤erent salts present. For a clear fluid
or a single porosity case thermal convection with many salts is a topic of much
recent research, see e.g. Rionero [34–39], Capone & De Luca [7, 6, 8], Deepika
& Narayana [11], and the references therein.
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