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Abstract. — The onset of convection in a m-component Navier–Stokes fluid mixture, filling

a horizontal layer L heated from below and salted partly from above and partly from below,
Em a N, is investigated. The di‰culties of handling this nonlinear problem, grow drastically with

m and only under special circumstances the instability threshold can be given in algebraic simple
closed form. Then the problem of finding, in simple algebraic closed forms, suitable lower and

upper estimates of the instability threshold arises. In the present paper, for any type of boundary
(rigid-rigid, one rigid-one free, free-free), it is shown that: 1) a linearization principle in the energy

norm holds; 2) upper and lower estimates of the instability threshold can be obtained via auxiliary
classical Bénard problems. The estimates obtained appear to be of interest not only for theoreticians

but also for experimentalists investigating natural phenomena and/or industrial processes related to

the onset of convection.
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1. Introduction

The heat and mass transfer by convection in horizontal layers attracts the at-
tention of many scientists, theoreticians and experimentalists. The books and the
papers devoted – in various physical circumstances – to the onset of convection,
constitute a very extensive literature (see [1]–[32], and the references therein). This
is because convection occurs in many natural phenomena (of atmosphere, cli-
mate, meteorology, sea water, geothermically heated lakes, Earth’s core, air and
water pollution, subterranean flows, . . .), industrial processes and technological
problems (thermal engineering, solar cells, insulation of walls, crystal growth
in vapor transport process, . . .). In absence of chemical species (salts) dissolved
in the fluid, the convection phenomenon is called Bénard Problem because of
his laboratory experiments (1900). It is named binary (or double), ternary, quater-
nary, . . . , m-component convection according to the number of salts ð1; 2; 3; . . . ;mÞ,
dissolved in the fluid. Although the subject of double di¤usive convection is still a
very active area of research ([25]–[28]), its more di‰cult counterpart involving



more than two components, has been increasingly attracting attention (see [10]–
[12], [29]–[32] and the references therein). This is because in natural phenomena
and in industrial processes, the fluid mixtures at stake generally have various salts
dissolved in.

This paper is concerned with the onset of convection in a horizontal layer L
filled by a Navier–Stokes m-component fluid mixture – heated from below and
salted from below by rb 0 and from above by m� rb 0 salts – Em a N. The
di‰culties in handling this nonlinear problem grow rapidly with m. Denoting by
Pr, Pa, R, Ra, ða ¼ 1; 2; . . . ;mÞ, the fluid and salts Prandtl and Rayleigh numbers
and by RC the critical value of R2 such that convection occurs if and only if
R2 bRC , RC is given in simple algebraic closed form only for m < 2. In fact
the determination of RC , already in the case m ¼ 2, is not easy and becomes
very di‰cult for m > 2 (see [12], pp. 386–387). As far as we know, for m > 2, in
the existing literature, only numerical evaluations are provided. In the free-free
case lower bounds of RC have been found in [12] by looking for symmetries and
skew-symmetries hidden in the system equations governing the perturbations to
the thermal conduction. In the present paper our target is to obtain – via a new
strategy – estimates of RC , in simple algebraic closed form, for any type of
boundary (rigid-rigid, one rigid-one free, free-free). Precisely our aim, first of all,
is to show that Em a N, an Energy Linearization Principle holds and that an
estimate of the thermal critical Rayleigh number RCðmÞ of a m-component fluid
mixture can be given by the analogous number of a suitable auxiliary (m� 1)-
component virtual fluid mixture and hence, by successive applications to obtain
that a lower bound of RCðmÞ can be given by the critical Rayleigh number of an
auxiliary virtual Bénard problem. Analogously, an upper bound of RCðmÞ can be
given by introducing a second auxiliary virtual Bénard problem. Denoting by
F ðmÞ the fluid mixture at hand and by EðmÞ and ÊEðmÞ, the L2-energy of the
perturbations to the thermal conduction, evaluated respectively along their non-
linear and linear evolution equations, we obtain the following basic properties.

Property 1 (Linearization Principle). For any m a N, the decay of ÊEðmÞ at
t ¼ 0, for any admissible initial data, implies the decay of EðmÞ at any instant.

Property 2. There exists an auxiliary virtual fluid mixture F1 with m� 1 com-
ponents, which energy ÊE1ðm� 1Þ is lower than ÊEðmÞ and such that

RCðF1ÞaRC :ð1:1Þ

Property 3. For any m a N,

R2 <
Xr

a¼1

R2
a

Pa
�

Xm
a¼rþ1

R2
a

Pa
þ g

P�
;ð1:2Þ

with

P� ¼ maxð1;P1;P2; . . . ;PmÞð1:3Þ
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and g critical Rayleigh number of the classical Bénard problem associated to the
boundary conditions given by

g ¼
1707:762; rigid-rigid boundary;

1100:65; one rigid-one free boundary;

27

4
p4; free-free boundary;

8>>><
>>>:

ð1:4Þ

guarantees the nonlinear global asymptotic stability of the thermal conduction
(absence of convection).

Property 4. For any m a N,

R2 >
Xr

a¼1

R2
a

Pa

�
Xm
a¼rþ1

R2
a

Pa

þ g

P�
;ð1:5Þ

with

P� ¼ minð1;P1; . . . ;PmÞ;ð1:6Þ

guarantees the instability of thermal conduction (onset of convection).

2. Preliminaries

Let L be a horizontal layer of depth d filled by a Navier–Stokes fluid mixture in
which m chemical species (‘‘salts’’) Sa (a ¼ 1; 2; . . . ;m), are dissolved in and let
Oxyz be an orthogonal frame of reference with fundamental unit vectors i, j, k
(k pointing vertically upwards). We suppose that L is uniformly heated from
below and salted, from below by rb 0 and from above by m� rb 0 salts.
The equations governing the fluid motion, in the Boussinesq approximation,
are [30]:

r0ðvt þ v � ‘vÞ ¼ �‘pþ r0nDv

�r0 1� AðT � T0Þ þ
Xm
a¼1

AaðCa � ĈCaÞ
" #

gk;

‘ � v ¼ 0;

Tt þ v � ‘T ¼ kDT ;

Cat þ v � ‘Ca ¼ kaDCa; a ¼ 1; 2; . . . ;m;

8>>>>>>>>>><
>>>>>>>>>>:

ð2:1Þ

with

r0 ¼ constant density; x ¼ ðx; y; zÞ; v ¼ fluid velocity;

T ¼ temperature; Ca ¼ salt Sa concentration;

p ¼ pressure; T0 ¼ reference temperature; g ¼ �gk ¼ gravity;
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ĈCa ¼ reference salt Sa concentration; n ¼ kinematic viscosity;

A ¼ thermal expansion coe‰cient; Aa ¼ salt Sa expansion coe‰cient;

k ¼ thermal di¤usivity; ka ¼ salt Sa di¤usivity; a ¼ 1; 2; . . . ;m:

To (2.1) we append the boundary conditions

Tðx; y; 0; tÞ ¼ Tl ; Tðx; y; d; tÞ ¼ Tu; Tl > Tu

Caðx; y; 0; tÞ ¼ Cal ; Caðx; y; d; tÞ ¼ Cau ; a ¼ 1; 2; . . . ;m

v � k ¼ 0; on z ¼ 0; d;

8><
>:ð2:2Þ

and the stress-free boundary conditions. The boundary value problem (2.1)–(2.2)
admits the thermal conduction solution m0 ¼ ðp; v;T ;C1; . . . ;CmÞ given by

v ¼ 0; T ¼ Tl �
dT

d
z; Ca ¼ Cal �

dCa

d
z;

dT ¼ Tl � Tu; dCa ¼ Cal � Cau ; a ¼ 1; 2; . . . ;m

pðzÞ ¼ p0 � r0gz 1� AðTl � T0Þ þ
Xm
a¼1

AaðCal � ĈCaÞ
" #

� r0gz
2

2d
AdT �

Xm
a¼1

AadCa

" #
; p0 ¼ const: > 0:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð2:3Þ

Setting

p ¼ pþ p; v ¼ vþ u; T ¼ T þ y; Ca ¼ Ca þFa;ð2:4Þ

introducing the non dimensional scalings

t ¼ t�
d 2

k
; u ¼ u� n

d
; p ¼ p� n

2r0
d 2

; x ¼ x�d; y ¼ y�Ta;

Fa ¼ F�
aF

a
a ; Ta¼

� n3jdT j
Agkd 3

�1
2

; Fa
a ¼

� n3jdCaj
Aagkad 3

�1
2

;

8>>><
>>>:

ð2:5Þ

(2.1) (omitting the asterisks) reduces to

P�1
r ut þ u � ‘u ¼ �‘pþ Duþ

�
Ry�

Xm
a¼1

RaFa

�
k;

‘ � u ¼ 0;

yt þ Pru � ‘y ¼ Rwþ Dy;

PaðFat þ Pru � ‘FaÞ ¼ HaRawþ DFa; a ¼ 1; 2; . . . ;m

8>>>>>><
>>>>>>:

ð2:6Þ
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with

R2 ¼ Agd 3jdT j
nk

thermal Rayleigh number;

R2
a ¼ Aagd

3jdCajPa

nk
salt Sa Rayleigh number; Ha ¼ sgnðdCaÞ;

Pr ¼
n

k
fluid Prandtl number; Pa ¼

k

ka
salt Sa Prandtl number:

8>>>>>>><
>>>>>>>:

ð2:7Þ

To (2.6) the boundary conditions of the free-free or rigid-rigid or rigid-free or
free-rigid case have to be appended. Setting u ¼ ðu; v;wÞ, the boundary condi-
tions to be taken are [1]

u ¼ v ¼ w ¼ qw

qz
¼ y ¼ Fa ¼ 0; on rigid boundary;

qu

qz
¼ qv

qz
¼ w ¼ q2w

qz2
¼ y ¼ Fa ¼ 0; on stress-free boundary:

8>>><
>>>:

ð2:8Þ

We assume that:

i) the perturbations ð‘p; u; v;w; y;F1; . . . ;FmÞ are periodic in the x and y direc-
tions, respectively of periods 2p=ax, 2p=ay;

ii) W ¼ ½0; 2p=ax� � ½0; 2p=ay� � ½0; 1� is the periodicity cell;
iii) u, v, w, y, F1; . . . ;Fm are such that together with all their first derivatives

and second spatial derivatives are square integrable in W, Et a Rþ and can
be expanded in a Fourier series uniformly convergent in W via complete
orthogonal sequences fjng, fjng, fjng – according to the boundary case at
stark – with eigenvalues

l1 a l2 a � � �a ln a � � �ð2:9Þ

Let us denote by AðWÞ the set of functions C such that:

1) C : ðx; tÞ a W� Rþ ! Cðx; tÞ a R, C a W 2;2ðWÞ, Et a Rþ, C is periodic in

the x and y directions of period
2p

ax
,
2p

ay
respectively;

2) C, together with all the first derivatives and second spatial derivatives, can be
expanded in a Fourier series absolutely uniformly convergent in W, Et a Rþ;

3) ðCÞz¼0 ¼ ðCÞz¼1 ¼ 0

and by BðWÞ the set of eigenfunctions j verifying 1)–2) and

4)
qj

qz

� �
z¼0

¼ qj

qz

� �
z¼1

¼ 0.
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Since the sequence fsin npzgn AN, is a complete orthogonal system for L2ð0; 1Þ
under the boundary conditions ½C�z¼0 ¼ ½C�z¼1 ¼ 0, by virtue of periodicity, it
turns out that EC a AðWÞ, there exists a sequence f ~CCnðx; y; tÞg such that

C ¼
Xl
n¼1

~CCn sin npz;
qC

qt
¼

Xl
n¼1

q ~CCn

qt
sin npz;

D1C ¼ �a2C; DC ¼ �a2Cþ q2C

qz2
;

D1 ¼ q2=qx2 þ q2=qy2; a2 ¼ a2x þ a2y

8>>>>>>><
>>>>>>>:

ð2:10Þ

the series appearing in (2.10) being absolutely uniformly convergent in W. Anal-
ogously, since the sequence fcos npzgn AN is a complete orthogonal system

for L2ð0; 1Þ under the boundary conditions
qj

qz

� �
z¼0

¼ qj

qz

� �
z¼1

¼ 0, by virtue

of periodicity, it turns out that Ej a BðWÞ, there exists a sequence f~jjnðx; y; tÞg

j ¼
Xl
n¼1

jn ¼
Xl
n¼1

~jjn cos npz;
qj

qt
¼

Xl
n¼1

q~jjn
qt

cos npz;

D1j ¼ �a2j; Dj ¼ �
Xl
n¼1

xnjn cos npz:

8>>>>><
>>>>>:

ð2:11Þ

We end by remarking that:

i) Setting

z ¼ ð‘� uÞ � k ¼ qv

qx
� qu

qy
;ð2:12Þ

the horizontal components of u are given by

u ¼ 1

a2

� q2w

qxqz
þ qz

qy

�
; v ¼ 1

a2

� q2w

qyqz
� qz

qx

�
ð2:13Þ

and – in view of u ¼
Pl

n¼1 un, zn ¼
qvn

qx
� qun

qy
– it follows that

un ¼
1

a2

� q2wn

qxqz
þ qzn

qy

�
; vn ¼

1

a2

� q2wn

qyqz
� qzn

qx

�
;

‘ � un ¼
� 1

a2
D1wn þ wn

�
z
¼ 0

8>>><
>>>:

ð2:14Þ

ii) on the free boundary w; y;Fa a AðWÞ and u; v a BðWÞ;
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iii) on the rigid boundary

w ¼ qw

qz
¼ 0ð2:15Þ

requires a di¤erent basis fjng given in [1].

3. Linearization principle

Let us introduce the linear system ða ¼ 1; 2; . . . ;mÞ

P�1
r

qûu

qt
¼ Dûuþ

�
Rŷy�

Xm
a¼1

RaF̂Fa

�
k;

‘ � ûu ¼ 0;

qŷy

qt
¼ Rŵwþ Dŷy;

Pa
qF̂Fa

qt
¼ HaRaŵwþ DF̂Fa; a ¼ 1; 2; . . . ;m

8>>>>>>>>>><
>>>>>>>>>>:

ð3:1Þ

under the initial boundary conditions

ðûuÞðt¼0Þ ¼ ûuð0Þ; ðŷyÞðt¼0Þ ¼ ŷyð0Þ; ðF̂FaÞðt¼0Þ ¼ F̂Fð0Þ
a ;

ûuz ¼ v̂vz ¼ ŵw ¼ ŷy ¼ F̂Fa ¼ 0; a ¼ 1; 2; . . . ;m; on stress-free boundary;

ûu ¼ v̂v ¼ ŵw ¼ qŵw

qz
¼ ŷy ¼ F̂Fa ¼ 0; a ¼ 1; 2; . . . ;m; on rigid boundary:

8>>><
>>>:

ð3:2Þ

We denote by k � k and 3� ; �4 the L2ðWÞ-norm and the scalar product respectively
and introduce the energy

E ¼ 1

2
P�1
r kuk2 þ kyk2 þ

Xm
a¼1

kFak2
" #

;ð3:3Þ

of (2.6), (2.8) solutions and the energy

ÊE ¼ 1

2
P�1
r kûuk2 þ kŷyk2 þ

Xm
a¼1

kF̂Fak2
" #

;ð3:4Þ

of (3.1)–(3.2) solutions with

kuk2 ¼ kuk2 þ kvk2 þ kwk2; kûuk2 ¼ kûuk2 þ kv̂vk2 þ kŵwk2:ð3:5Þ
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Denoting by Q, Q the quadratic forms

Q ¼
�
�
k‘uk2 þ k‘yk2 þ

Xm
a¼1

1

Pa
k‘Fak2

�

þ 2Ry�
Xm
a¼1

�
1�Ha

Pa

�
RaFa;w

* +
;

8>>>><
>>>>:

ð3:6Þ

Q̂Q ¼
�
�
k‘ûuk2 þ k‘ŷyk2 þ

Xm
a¼1

1

Pa
k‘F̂Fak2

�

þ 2Rŷy�
Xm
a¼1

�
1�Ha

Pa

�
RaF̂Fa; ŵw

* +
;

8>>>><
>>>>:

ð3:7Þ

it follows that the time derivatives of E and ÊE respectively along (2.6), (2.8) and
(3.1)–(3.2) are given by

dE

dt
¼ Q;

dÊE

dt
¼ Q̂Q:ð3:8Þ

Then the following linearization principle holds.

Theorem 3.1. Let

� dÊE

dt

�
ðt¼0Þ

< 0;ð3:9Þ

for arbitrary (admissible) initial data. Then

� dE

dt

�
< 0; Etb 0:ð3:10Þ

Proof. Let t a Rþ. Then at t ¼ t it follows that

� dE

dt

�
ðt¼tÞ

¼ Qðt¼tÞ ¼ �
�
k‘uk2 þ k‘yk2 þ

Xm
a¼1

1

Pa
k‘Fak2

�
ðt¼tÞ

ð3:11Þ

þ 2RyðtÞ �
Xm
a¼1

�
1�Ha

Pa

�
RaFaðtÞ;wðtÞ

* +
:

Then, on choosing

ðûuÞðt¼0Þ ¼ uðtÞ; ðŷyÞðt¼0Þ ¼ yðtÞ; ðF̂FaÞðt¼0Þ ¼ FaðtÞ;ð3:12Þ
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it follows that (in view of (3.9) for any initial data)

Qðt¼tÞ ¼ Q̂Qðt¼0Þð3:13Þ

and hence (3.10) immediately follows.

Remark 3.1. We remark that:

i) denoting by ûun, ŷyn, F̂Fan the Fourier components of ûu, ŷy, F̂Fa and denoting by

ÊEn ¼
1

2
P�1
r kûunk2 þ kŷynk2 þ

Xm
a¼1

PakF̂Fank2
" #

;ð3:14Þ

the L2ðWÞ-energy of ûun, ŷyn, F̂Fan, it follows that

ÊE ¼
Xl
n¼1

ÊEn;

dÊEn

dt
¼ Q̂Qn ¼ �

�
k‘ûunk2 þ k‘ŷynk2 þ

Xm
a¼1

1

Pa
k‘F̂Fank2

�

þ 2Rŷyn �
Xm
a¼1

�
1�Ha

Pa

�
RaF̂Fan; ŵwn

* +

8>>>>>>>>>><
>>>>>>>>>>:

ð3:15Þ

and hence � dÊEn

dt

�
ðt¼0Þ

< 0;ð3:16Þ

for any initial data En a N, implies (3.10);
ii) ûun, ŷyn, F̂Fan are governed – in view of the linearity of (3.1) – by

P�1
r

qûun

qt
¼ Dûun þ

�
Rŷyn �

Xm
a¼1

RaF̂Fan

�
k;

‘ � ûun ¼ 0;

qŷyn

qt
¼ Rŵwn þ Dŷyn;

Pa
qF̂Fan

qt
¼ HaRaŵwn þ DF̂Fan; a ¼ 1; 2; . . . ;m

8>>>>>>>>>><
>>>>>>>>>>:

ð3:17Þ

with

qûun

qz
¼ qv̂vn

qz
¼ ŵwn ¼ ŷyn ¼ F̂Fan ¼ 0; on stress-free boundary;

ûun ¼ v̂vn ¼ ŵwn ¼
qŵwn

qz
¼ ŷyn ¼ F̂Fan ¼ 0; on rigid boundary:

8>><
>>:ð3:18Þ
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iii) ûun, v̂vn in view of (2.10) are of type

Cn ¼ ~CCnðx; y; tÞj 0
nðzÞð3:19Þ

and it follows that (Poincarè inequality)

3Cn;DCn4 < �p2kCnk2;ð3:20Þ

iv) (3.17)1 implies

P�1
r

qûun

qt
¼ Dûun; P�1

r

qv̂vn

qt
¼ Dv̂vn;ð3:21Þ

then, by virtue of (3.20)3, one obtains

1

2
P�1
r ðkûunk2 þ kv̂vnk2Þ < �p2ðkûunk2 þ kv̂vnk2Þ < 0;ð3:22Þ

v) setting

~EEn ¼
1

2
P�1
r k~uunk2 þ k~yynk2 þ

Xm
a¼1

Pak~FFank2
" #

;ð3:23Þ

then

� d ~EEn

dt

�
ðt¼0Þ

< 0;ð3:24Þ

En a N and for any initial data, implies (3.9) for any initial data;
vi) equations governing ŵwn, ŷyn, F̂Fan can be reduced to

P�1
r

qDŵwn

qt
¼ D1

�
Rŷyn �

Xm
a¼1

RaF̂Fan

�
þ DDŵwn;

qŷyn

qt
¼ Rŵwn þ Dŷyn;

Pa
qF̂Fan

qt
¼ HaRaŵwn þ DF̂Fan

8>>>>>>>><
>>>>>>>>:

ð3:25Þ

where (3.25)1 is the third component of the double curl of (3.17)1.

Remark 3.2. In view of theorem 3.1, one is led to find conditions, necessary
and su‰cient, for guaranteeing (3.9). As matter of fact, these conditions
require that the eigenvalues of (3.1)–(3.2) have, En a N, negative real part.
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Then the solutions of the system are given, En a N, by functions of type
fn ¼ exp½ðan þ ibnÞt�gnðx; y; zÞ and of type Fn ¼ tq½expðan þ ibnÞt�gnðx; yÞ with
an < 0 and q ¼ 1; 2; . . . , according to an þ ibn is a double, triple, . . . root of the
spectral equation. Denoting by f n and Fn the complex conjugate of fn and Fn, it
follows that

1

2

d

dt
3 fn; f n4 ¼ 1

2

d

dt
e2antkgnk2 ¼ ane

2antkgnk2 < 0;

1

2

d

dt
3 fn; f n4

� �
ðt¼0Þ

¼ ankgnk2;

1

2

d

dt
3Fn;Fn4

� �
ðt¼0Þ

¼ ½ðqt2q�1 þ ant
2qÞe2ant�ðt¼0Þkgnk ¼ 0:

8>>>>>>>><
>>>>>>>>:

ð3:26Þ

Hence (3.9) is verified for any initial data. Therefore, the necessary and su‰cient
conditions guaranteeing that the eigenvalues of (3.1) have, En a N, negative real
part – in view of theorem 3.1 – are necessary and su‰cient for guaranteeing
that Q, along the solutions of (2.6), is negative definite. Vice-versa, conditions
guaranteeing that Q is negative definite are only su‰cient to guarantee that
(3.1)-eigenvalues have, En a N, negative real part. These conditions can be too
restrictive and not able to put in evidence the stabilizing e¤ect of skew-symmetric
terms appearing in (2.6), but giving a zero contribution to Qn. This happens,
for instance, when L rotates uniformly about z. Then in (2.6)1 appears the term
Tu� k, with T (Taylor number) positive constant and, in view of u � u� k ¼ 0,
does not give any contribution to Q. Further this happens also in MHD con-
vection [13].

4. Basic lemmas for lower estimates of the instability threshold

Setting

ŷy� ¼ Rŷy; F̂F�
a ¼ RaF̂Fa;ð4:1Þ

(3.25) in view of (3.20) omitting the stars, becomes

P�1
r

qDŵwn

qt
¼ D1

�
ŷyn �

Xm
a¼1

F̂Fan

�
þ DDŵwn;

qŷyn

qt
¼ R2ŵwn þ Dŷyn;

Pa
qF̂Fan

qt
¼ R2

aŵwn þ DF̂Fan; a ¼ 1; 2; . . . ; r;

Pa
qF̂Fan

qt
¼ �R2

aŵwn þ DF̂Fan; a ¼ rþ 1; . . . ;m;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð4:2Þ
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with

ŵwn ¼ ŷyn ¼ F̂Fan ¼ 0; En a N; on stress-free boundary;

ŵwn ¼
qŵwn

qz
¼ ŷyn ¼ F̂Fan ¼ 0; En a N; on rigid boundary:

8<
:ð4:3Þ

The following basic Lemmas hold.

Lemma 4.1. Let

Pij ¼ maxðPi;PjÞ; iA j a f1; 2; . . . ; ngð4:4Þ

and let us associate to

qF̂Fin

qt
¼ HiR

2
i

Pi

ŵwn þ
1

Pi

DF̂Fin;

qF̂Fjn

qt
¼

HjR
2
j

Pj

ŵwn þ
1

Pj

DF̂Fjn;

8>>><
>>>:

ð4:5Þ

under the boundary conditions (4.3), the auxiliary system

qFin

qt
¼ HiR

2
i

Pi

wn þ
1

Pij

DFin;

qFjn

qt
¼

HjR
2
j

Pj

wn þ
1

Pij

DFjn;

8>>>><
>>>>:

ð4:6Þ

under the boundary conditions

wn ¼ yn ¼ Fin ¼ Fjn0; En a N; on stress-free boundary;

wn ¼
qwn

qz
¼ yn ¼ Fin ¼ Fjn0; En a N; on rigid boundary:

8<
:ð4:7Þ

Then

d

dt
ðkFink2 þ kFjnk2Þ

� �
ðt¼0Þ

< 0;ð4:8Þ

for any initial data, implies

d

dt
ðkF̂Fink2 þ kF̂Fjnk2Þ

� �
ðt¼0Þ

< 0;ð4:9Þ

for any initial data.
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Proof. It easily follows that

d

dt
ðkFink2 þ kFjnk2Þ

� �
ðt¼0Þ

¼ 2 wð0Þ
n ;

HiR
2
i

Pi

F
ð0Þ
in þ

HjR
2
j

Pj

F
ð0Þ
jn

* +
� 1

Pij

ðk‘Fð0Þ
in k2 þ k‘Fð0Þ

jn k2Þ
" #

;

d

dt
ðkF̂Fink2 þ kF̂Fjnk2Þ

� �
ðt¼0Þ

¼ 2 ŵw
ð0Þ
n ;

HiR
2
i

Pi

F̂F
ð0Þ
in þ

HjR
2
j

Pj

F̂F
ð0Þ
jn

* +
� 1

Pi

k‘F̂Fð0Þ
in k2 � 1

Pj

k‘F̂Fð0Þ
jn k2

" #
;

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð4:10Þ

with

f ð0Þ ¼ ð f Þðt¼0Þ; Ef a ðw; ŵw;Fi; F̂Fi;Fj; F̂FjÞ:ð4:11Þ

On choosing

wð0Þ
n ¼ ŵwð0Þ

n ; F
ð0Þ
in ¼ F̂F

ð0Þ
in ; F

ð0Þ
jn ¼ F̂F

ð0Þ
jn ;ð4:12Þ

in view of (4.10) and (4.4), (4.9) immediately follows.

Lemma 4.2. Let

d

dt
ðkFin þFjnk2Þ

� �
ðt¼0Þ

< 0;ð4:13Þ

for any initial data. Then

d

dt
ðkFink2 þ kFjnk2Þ < 0;ð4:14Þ

for any initial data.

Proof. Setting

Uijn ¼ Fin þFjn; Vijn ¼
HjR

2
j

Pj

Fin �
HiR

2
i

Pi

Fjn;ð4:15Þ

(4.6) can be substituted by the equivalent system

qUijn

qt
¼
�HiR

2
i

Pi

þ
HjR

2
j

Pj

�
wn þ

1

Pij

DUijn;

qVijn

qt
¼ 1

Pij

DVijn;

8>>><
>>>:

ð4:16Þ
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under the zero boundary conditions for z ¼ 0; 1 implied by (4.7). In view of
(4.16)2, V appears to be an independent field and since

d

dt
kVijnk2 ¼ � 2

Pij

k‘Vijnk2;ð4:17Þ

(4.13) guarantees that the initial energy of (4.16) is negative for any initial data.
Then the energy of (4.6) decays if decays the energy of (4.16)1, i.e. of

Pij

q

qt
ðFin þFjnÞ ¼ Rijwn þ DðFin þFjnÞ;ð4:18Þ

with

Rij ¼ Pij

�HiR
2
i

Pi

þ
HjR

2
j

Pj

�
:ð4:19Þ

5. Proof of (1.1)

Starting from (4.2), by successive applications of Lemma 4.2, a ‘‘sequence of
stability auxiliary systems’’ can be obtained such that the stability of one system
of this sequence – implied by the request that all the eigenvalues have negative
real part – in view of (3.26), guarantees that, for any initial data, the L2-energy
decreases and tends to zero exponentially.

We now apply the procedure of Lemma 4.2 to the salts salting L from below.
Let r > 1

P12 ¼ maxðP1;P2Þ; C ¼ F1 þF2ð5:1Þ

and associate to (4.2) the auxiliary system

P�1
r

qDwn

qt
¼ DDwn þ D1

�
yn �C1n �

Xm
a¼3

Fan

�
;

qyn

qt
¼ R2wn þ Dyn;

Pa
qFan

qt
¼ R2

awn þ DFan; a ¼ 1; 2; . . . ; r

Pa
qFan

qt
¼ �R2

awn þ DFan; a ¼ rþ 1; . . . ;m

qC1n

qt
¼
�R2

1

P1
þ R2

2

P2

�
wn þ

1

P12
DC1n;

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð5:2Þ
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under the boundary conditions

wn ¼ yn ¼ C1n ¼ Fan ¼ 0; on stress-free boundary;

qwn

qz
¼ wn ¼ yn ¼ C1n ¼ Fan ¼ 0; on rigid boundary:

8<
:ð5:3Þ

In view of lemmas 4.1–4.2 and remark 3.2, the stability of the null solution of
(5.2) – guaranteed by the negativity of the real part of the eigenvalues – implies
the stability of the null solution of (4.2). System (5.2)–(5.3) governs the onset of
convection in L filled by a fluid mixture with m� 1 components and salted from
below by r� 1 salts. Applying to (5.2) the procedure of lemma 4.2, one obtains a
fluid mixture with m� 2 components with L salted from below by r� 2 salts.
Therefore – by successive applications of the procedure of lemma 4.2 – one
arrives to

P�1
r

qDwn

qt
¼ DDwn þ D1

�
yn � Z1n �

Xm
a¼rþ1

Fan

�
;

qyn

qt
¼ R2wn þ Dyn;

qZ1n

qt
¼ R2

1wn þ
DZ1n

P1
;

qFan

qt
¼ �R2

a

Pa
wn þ

DFan

Pa
; a ¼ rþ 1; . . . ;m

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð5:4Þ

with

P1 ¼ maxðP1;P2; . . . ;PrÞ; R2
1 ¼

Xr

a¼1

R2
a

Pa
; Z1 ¼

Xr

a¼1

Fað5:5Þ

under the boundary conditions implied by (5.3). Starting from (5.4), with the same
procedure applied successively to the salts salting L from above, one arrives to

P�1
r

qDwn

qt
¼ DDwn þ D1ðyn � Z1n � Z2nÞ;

qyn

qt
¼ R2wn þ Dyn;

qZ1n

qt
¼ R2

1wn þ
DZ1n

P1
;

qZ2n

qt
¼ �R2

2wn þ
DZ2n

P2
;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð5:6Þ

with

P2 ¼ maxðPrþ1; . . . ;PmÞ; R2
2 ¼

Xm
a¼rþ1

R2
a

Pa

; Z2 ¼
Xm
a¼rþ1

Fað5:7Þ
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and successively to

P�1
r

qDwn

qt
¼ DDwn þ D1ðyn �CnÞ;

qyn

qt
¼ R2wn þ Dyn;

qCn

qt
¼ ðR2

1 �R2
2Þwn þ

DCn

P
;

8>>>>>>><
>>>>>>>:

ð5:8Þ

with

P ¼ maxðP1; . . . ;PmÞ; C ¼
Xm
a¼1

Fa;ð5:9Þ

under the boundary conditions implied by (5.3).

6. Proof of (1.2) via an auxiliary virtual Bénard problem

To (5.8) we associate the system

P�1
r

qDwn

qt
¼ DDwn þ D1ðyn �CnÞ;

qyn

qt
¼ R2wn þ

1

P�
Dyn;

qCn

qt
¼ ðR2

1 �R2
2Þwn þ

1

P�
DCn;

8>>>>>>>><
>>>>>>>>:

ð6:1Þ

which is equivalent to

P�1
r

qDwn

qt
¼ DDwn þ D1ðyn �CnÞ;

q

qt
ðyn �CnÞ ¼ ðR2 �R2

1 �R2
2Þwn þ

D

P�
ðyn �CnÞ;

q

qt
½ðR2

1 �R2
2Þyn � R2Cn� ¼

D

P�
½ðR2

1 �R2
2Þyn � R2Cn�:

8>>>>>>><
>>>>>>>:

ð6:2Þ

Setting

y� ¼ y�
Xm
a¼1

Fa ¼ y�C; C� ¼ ðR2
1 �R2

2Þy� R2C;

t ¼ t

P�
; P�

r ¼ PrP�;

8>>><
>>>:

ð6:3Þ
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one is reduced to investigate the stability of the null solution of

1

P�
r

qDwn

qt
¼ DDwn þ D1y

�
n ;

qy�
n

qt
¼ P�ðR2 �R2

1 þR2
2Þwn þ Dy�

n ;

8>>><
>>>:

ð6:4Þ

under the boundary conditions

wn ¼ y�
n ¼ 0; on stress-free boundary;

qwn

qz
¼ wn ¼ y�

n ; on rigid boundary

8<
:ð6:5Þ

System (6.4)–(6.5) is an auxiliary Bénard problem since (6.4)–(6.5) governs the
onset of convection in L, filled by a virtual fluid F having P� as Prandtl number,
heated from below or above according to ðR2 �R2

1 þR2
2Þ is positive or nega-

tive. In the case R2 �R2
1 þR2

2 > 0, introducing the auxiliary thermal Rayleigh

number given by R2
� ¼ P�ðR2 �R2

1 þR2
2Þ the critical values of R2

� , as shown in
[1], is given by P�ðR2 �R2

1 þR2
2Þ ¼ g, hence (1.3) immediately follows. We

remark that (1.3) continues to hold also for R2 �R2
1 þR2

2 a 0. For the sake of
simplicity, we give the proof in the free-free case.

In that case one has

jn ¼ sin npz; wn ¼ ~wwn sin npz; y�
n ¼ ~yy�

n sin npz;

D ¼ �xn; DD ¼ x2n

(
ð6:6Þ

and (6.4) becomes

q~wwn

qt
¼ �P�

r xn ~wwn þ
a2

xn
P�
r
~yy�
n ;

q~yy�
n

qt
¼ P�ðR2 �R2

1 þR2
2Þ~wwn � xn~yy

�
n :

8>>><
>>>:

ð6:7Þ

The null solution of (6.7) is stable if and only if

x2n � P�
a2

xn
ðR2 �R2

1 þR2
2Þ > 0ð6:8Þ

and, in view of

min
ðn;a2Þ AN�Rþ

ða2 þ n2p2Þ3

a2
¼ ða2 þ n2p2Þ3

a2

" #ðn¼1Þ

ða2¼p2=2Þ

¼ 27

4
p4;ð6:9Þ

(1.3) immediately follows for R2
1 aR2

2 .
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7. A better lower estimate of RC via a binary auxiliary

virtual convection problem

Condition (1.3) is su‰cient for inhibiting the onset of convection since

R2 <
Xr

a¼1

R2
a

Pa
�

Xm
a¼rþ1

R2
a

Pa
þ g

P�
) R2 < RC :ð7:1Þ

Better estimates of RC can be obtained via (5.8)–(5.9) and (5.6)–(5.7). We here
confine ourselves to provide a bigger lower estimate of RC via the binary vir-
tual auxiliary convection system (5.8)–(5.9), in the free-free case for R2

1 < R2
2 .

Setting

Ln ¼

�Prxn
a2

xn
Pr � a2

xn
Pr

R2 �xn 0

R2
1 �R2

2 0 � xn
P

0
BBBBB@

1
CCCCCAð7:2Þ

(5.8)–(5.9) becomes

q

qt

wn

yn

Cn

0
@

1
A¼ Ln

wn

yn

Cn

0
@

1
A:ð7:3Þ

The eigenvalues of Ln are the roots of

l3 � I1nl
2 þ I2nl� I3n ¼ 0;ð7:4Þ

with Ins, ðs ¼ 1; 2; 3Þ, characteristic (invariants) values of (7.2) given by (see [38]–
[39] and [12], pp. 386–387)

I1n ¼
X3

s¼1

lns ¼ �
�
1þ Pr þ

1

P

�
xn;

I2n ¼
X1�3

sAp

lnslnp ¼
�Prxn Prhn
R2 �xn

����
����þ

�xn 0

0 � xn
P

������
������

þ
�Prxn �Prhn

R2
1 �R2

2 � xn
P

������
������¼ Prhn

�
1þ 1þPr

PPr

� x2n
hn

þ ðR2
1 �R2

2Þ�R2

" #
;

I3n ¼ detLn ¼
Y3
s¼1

lns ¼ a2Pr R2 � ðR2
1 �R2

2Þ �
x2n
Phn

" #
;

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð7:5Þ

246 s. rionero



with hn ¼
a2

xn
. Since for R2

1 < R2
2 , (7.2) is symmetrizable, the eigenvalues are real

and instability occurs via the steady state associated to the lowest value of R2

such that

detLn ¼ a2Pr R2 � ðR2
1 �R2

2Þ �
x3n
Pa2

" #
¼ 0;ð7:6Þ

i.e. at

R2 ¼ R2
1 �R2

2 þ
27

4

p4

P
:ð7:7Þ

Since

P < P� ) R2
1 �R2

2 þ
27

4
p4 1

P�
< R2

1 �R2
2 þ

27

4
p4 1

P
;

(7.7) for P < P� guarantees stability also for

R2
1 �R2

2 þ
27

4
p4 1

P�
< R2 < R2

1 �R2
2 þ

27

4
p4 1

P
:

8. Proof of property 4

Let (1.5) holds. Then in any ball of the L2-phase space there exists a path along
which the energy ÊE increases and tends to infinity exponentially. This instability
result is implied by the following Lemma.

Lemma 8.1. Let

P�
ij ¼ minðPi;PjÞ; iA j a f1; 2; . . . ; ngð8:1Þ

and let us associate to

qF̂Fin

qt
¼ HiR

2
i

Pi

ŵwn þ
1

Pi

DF̂Fin;

qF̂Fjn

qt
¼

HjR
2
j

Pj

ŵwn þ
1

Pj

DF̂Fjn;

8>>>><
>>>>:

ð8:2Þ

under the boundary conditions (4.3), the auxiliary system

qF�
in

qt
¼ HiR

2
i

Pi

w�
n þ

1

P�
ij

DF�
in;

qF�
jn

qt
¼

HjR
2
j

Pj

w�
n þ

1

P�
ij

DF�
jn;

8>>>><
>>>>:

ð8:3Þ
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under the boundary conditions

w�
n ¼ y�

n ¼ F�
in ¼ F�

jn ¼ 0; En a N; on stress-free boundary;

w�
n ¼ qw�

n

qz
¼ y�

n ¼ F�
in ¼ F�

jn ¼ 0; En a N; on rigid boundary:

8<
:ð8:4Þ

Then

d

dt
ðkF�

ink
2 þ kF�

jnk
2Þ > 0;ð8:5Þ

implies

d

dt
ðkF̂F�

ink
2 þ kF̂Fjnk2Þ > 0;ð8:6Þ

on the same data.

Proof. It easily follows that

d

dt
ðkF�

ink
2 þ kF�

jnk
2Þ

� �
ðt¼tÞ

¼ 2 w�
n ;
HiR

2
i

Pi

F�
in þ

HjR
2
j

Pj

F�
jn

* +
� 1

P�
ij

ðk‘F�
ink

2 þ k‘F�
jnk

2Þ
" #

ðt¼tÞ

;

d

dt
ðkF̂Fink2 þ kF̂Fjnk2Þ

� �
ðt¼tÞ

¼ 2 ŵwn;
HiR

2
i

Pi

F̂Fin þ
HjR

2
j

Pj

F̂Fjn

* +
� 1

Pi

k‘F̂Fink2 �
1

Pj

k‘F̂Fjnk2
" #

ðt¼tÞ

:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð8:7Þ

Therefore

ŵwnðtÞ ¼ w�
n ðtÞ; F̂FinðtÞ ¼ F�

inðtÞ;ð8:8Þ
ð‘F̂FinÞðt¼tÞ ¼ ð‘F�

inÞðt¼tÞ; Ei a ð1; 2; . . . ; nÞ;

in view of (8.1), (8.4) implies (8.6).

Starting from (4.2), by successive applications of Lemma 8.1, a sequence
of instability auxiliary systems can be obtained. The instability of one system
of this sequence – implied by the existence of an eigenvalue with positive real
part – in view of (3.26) with an > 0, guarantees the existence of a path, in any
ball centered at the origin of the L2-phase space, along which the L2-energy
increases exponentially and in view of Lemma 8.1 – in any ball (centered at the
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origin) each previous system has a path along which its L2-energy increases
exponentially. In fact, by successive applications of Lemma 8.1, following –
mutatis mutandis – the procedure of section 5, one obtains the auxiliary system
(analogous to (5.8))

P�1
r

qDw�
n

qt
¼ DDw�

n þ D1ðy�
n �C�

n Þ;

qy�
n

qt
¼ R2w�

n þ Dy�
n ;

qC�
n

qt
¼ ðR2

1 �R2
2Þw�

n þ
DC�

n

P� ;

8>>>>>>><
>>>>>>>:

ð8:9Þ

with

P� ¼ minðP1; . . . ;PmÞ; C� ¼
Xn

a¼1

F�
a :ð8:10Þ

To (8.9) we associate the system

P�1
r

qDw�
n

qt
¼ DDw�

n þ D1ðy�
n �C�

n Þ;

qy�
n

qt
¼ R2w�

n þ
1

P�
Dy�

n ;

qC�
n

qt
¼ ðR2

1 �R2
2Þw�

n þ
1

P�
DC�

n ;

8>>>>>>><
>>>>>>>:

ð8:11Þ

which is equivalent to

P�1
r

qDw�
n

qt
¼ DDw�

n þ D1ðy�
n �C�

n Þ;

q

qt
ðy�

n �C�
n Þ ¼ ðR2 �R2

1 �R2
2Þw�

n þ
D

P�
ðy�

n �C�
n Þ;

q

qt
½ðR2

1 �R2
2Þy

�
n � R2C�

n � ¼
D

P�
½ðR2

1 �R2
2Þy

�
n � R2C�

n �;

8>>>>>>><
>>>>>>>:

ð8:12Þ

via the (6.3), with P� at the place of P� and P
�
r ¼ PrP�, one is reduced to investi-

gate for the instability of the null solution of

1

P
�
r

qDwn

qt
¼ DDwn þ D1y

�
n ;

qy�
n

qt
¼ P�ðR2 �R2

1 �R2
2Þwn þ Dy�

n ;

8>>><
>>>:

ð8:13Þ
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under the boundary conditions (6.5). System ((8.13), (6.5)) is an auxiliary virtual
Bénard problem governing the onset of convection in L filled by a virtual fluid F,
having P� as Prandtl number, heated from below or from above according to
(R2 �R2

1 þR2
2) is positive or negative. Then, via remarks analogous to the which

ones of Sect. 6, one easily obtains the instability condition (1.4).

9. Discussion and comments

1) The onset of convection in a m-component, Em a N, Navier–Stokes fluid
mixture, filling a horizontal layer L-heated from below and salted partly
from above and partly from below – is investigated;

2) Since the di‰culties of providing, in closed simple form, the instability thresh-
old RC grow drastically with m, the problem of finding simple useful estimates
of RC to be used not only by theoreticians but also for experimentalists, arises;

3) A linearization principle in the L2-energy norm is obtained;
4) For any m a N, it is shown that exist two virtual auxiliary fluid mixtures with

m� 1 components which instability thresholds give, respectively, a lower and
an upper estimate of RC ;

5) Exist two virtual auxiliary Bénard problems which instability thresholds give,
respectively, a lower and an upper estimate of RC such that, according to
(1.2)–(1.4), one has

Xr

a¼1

R2
a

Pa
�

Xm
a¼rþ1

R2
a

Pa
þ g

P�
< RC <

Xr

a¼1

R2
a

Pa
�

Xm
a¼rþ1

R2
a

Pa
þ g

P�
;ð9:1Þ

and hence

R2 <
Xr

a¼1

R2
a

Pa
�

Xm
a¼rþ1

R2
a

Pa
þ g

P�
; inhibits convection;ð9:2Þ

while

R2 >
Xr

a¼1

R2
a

Pa
�

Xm
a¼rþ1

R2
a

Pa
þ g

P�
; guarantees convection;ð9:3Þ

6) For

Xm
a¼rþ1

R2
a

Pa
>

Xr

a¼1

R2
a

Pa
þ g

P�
;ð9:4Þ

(9.3) is verified ER2 (i.e. irrespective of the temperature gradient) and guaran-
tees the onset of ‘‘cold convection’’ [40];

7) Looking for symmetries and skew-symmetries hidden in (3.25) – as done in
[12] in the free-free case – one can obtain, only for particular values of the
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Prandtl numbers, conditions guaranteeing stability which generally does not
appear to be more convenient of (9.2);

8) As far as we know, (9.1)–(9.4) are new in the existing literature;
9) (9.1)–(9.4) appear to be of interest not only for theoreticians but also for the

experimentalists investigating natural phenomena and/or industrial processes
related to the onset of convection.

Acknowledgments. This paper has been performed under the auspices of G.N.F.M. of
INdAM.
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