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ABSTRACT. — The onset of convection in a m-component Navier—Stokes fluid mixture, filling
a horizontal layer L heated from below and salted partly from above and partly from below,
Vm € N, is investigated. The difficulties of handling this nonlinear problem, grow drastically with
m and only under special circumstances the instability threshold can be given in algebraic simple
closed form. Then the problem of finding, in simple algebraic closed forms, suitable lower and
upper estimates of the instability threshold arises. In the present paper, for any type of boundary
(rigid-rigid, one rigid-one free, free-free), it is shown that: 1) a linearization principle in the energy
norm holds; 2) upper and lower estimates of the instability threshold can be obtained via auxiliary
classical Bénard problems. The estimates obtained appear to be of interest not only for theoreticians
but also for experimentalists investigating natural phenomena and/or industrial processes related to
the onset of convection.
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1. INTRODUCTION

The heat and mass transfer by convection in horizontal layers attracts the at-
tention of many scientists, theoreticians and experimentalists. The books and the
papers devoted — in various physical circumstances — to the onset of convection,
constitute a very extensive literature (see [1]—[32], and the references therein). This
is because convection occurs in many natural phenomena (of atmosphere, cli-
mate, meteorology, sea water, geothermically heated lakes, Earth’s core, air and
water pollution, subterranean flows, . ..), industrial processes and technological
problems (thermal engineering, solar cells, insulation of walls, crystal growth
in vapor transport process, ...). In absence of chemical species (salts) dissolved
in the fluid, the convection phenomenon is called Bénard Problem because of
his laboratory experiments (1900). It is named binary (or double), ternary, quater-
nary,. .., m-component convection according to the number of salts (1,2,3,...,m),
dissolved in the fluid. Although the subject of double diffusive convection is still a
very active area of research ([25]-[28]), its more difficult counterpart involving
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more than two components, has been increasingly attracting attention (see [10]—
[12], [29]-[32] and the references therein). This is because in natural phenomena
and in industrial processes, the fluid mixtures at stake generally have various salts
dissolved in.

This paper is concerned with the onset of convection in a horizontal layer L
filled by a Navier—Stokes m-component fluid mixture — heated from below and
salted from below by r > 0 and from above by m — r > 0 salts — Vm € N. The
difficulties in handling this nonlinear problem grow rapidly with m. Denoting by
P., P, R, Ry, (0 =1,2,...,m), the fluid and salts Prandtl and Rayleigh numbers
and by R¢ the critical value of R? such that convection occurs if and only if
R? > R¢, Re is given in simple algebraic closed form only for m < 2. In fact
the determination of R, already in the case m = 2, is not easy and becomes
very difficult for m > 2 (see [12], pp. 386—-387). As far as we know, for m > 2, in
the existing literature, only numerical evaluations are provided. In the free-free
case lower bounds of R¢ have been found in [12] by looking for symmetries and
skew-symmetries hidden in the system equations governing the perturbations to
the thermal conduction. In the present paper our target is to obtain — via a new
strategy — estimates of R¢, in simple algebraic closed form, for any type of
boundary (rigid-rigid, one rigid-one free, free-free). Precisely our aim, first of all,
is to show that Vm € N, an Energy Linearization Principle holds and that an
estimate of the thermal critical Rayleigh number R¢(m) of a m-component fluid
mixture can be given by the analogous number of a suitable auxiliary (m — 1)-
component virtual fluid mixture and hence, by successive applications to obtain
that a lower bound of R¢(m) can be given by the critical Rayleigh number of an
auxiliary virtual Bénard problem. Analogously, an upper bound of R¢(m1) can be
given by introducing a second auxiliary virtual Bénard problem. Denoting by
F(m) the fluid mixture at hand and by E(m) and E(m), the L*-energy of the
perturbations to the thermal conduction, evaluated respectively along their non-
linear and linear evolution equations, we obtain the following basic properties.

PROPERTY 1 (Linearization Principle). For any m € N, the decay of E(m) at
t =0, for any admissible initial data, implies the decay of E(m) at any instant.

PROPERTY 2. There exists an auxiliary virtual fluid mixture Fy with m — 1 com-
ponents, which energy E\(m — 1) is lower than E(m) and such that

(1.1) Rc(F) < Re.

PROPERTY 3. For any m € N,

r RZ m R2
(1.2) RP <y 22— Ly

(13) P*:max(l,Pl,Pz,...,Pm)



UPPER AND LOWER ESTIMATES 231

and y critical Rayleigh number of the classical Bénard problem associated to the
boundary conditions given by

1707.762, rigid-rigid boundary,

(1.4) y = 1100.65,  one rigid-one free boundary,
27
Tn“, free-free boundary,

guarantees the nonlinear global asymptotic stability of the thermal conduction
(absence of convection).

PROPERTY 4. For any m € N,

r R2 m R2 y
1.5 R? o a2
(1.5) > ZIP[X D Pt
o= oa=r+1
with
(1.6) P, =min(1,Py,..., P,),

guarantees the instability of thermal conduction (onset of convection).

2. PRELIMINARIES

Let L be a horizontal layer of depth d filled by a Navier—Stokes fluid mixture in
which m chemical species (“salts”) S, (¢ =1,2,...,m), are dissolved in and let
Oxyz be an orthogonal frame of reference with fundamental unit vectors i, j, k
(k pointing vertically upwards). We suppose that L is uniformly heated from
below and salted, from below by r >0 and from above by m —r > 0 salts.
The equations governing the fluid motion, in the Boussinesq approximation,
are [30]:

Po(Vi +v-Vv) = —=Vp + pyvAv

—po|1 = A(T = To) + > _ 4,(C, — C,) | gk,
V-v=0,

T,+v-VT = kAT,

Cy+v-VCy =k,AC,, a=12,...,m,

with

po = constant density, x = (x, y,z), v = fluid velocity,
T = temperature, C, = salt S, concentration,
p = pressure, T, = reference temperature, g = —gk = gravity,



232 S. RIONERO

C, = reference salt S, concentration, v = kinematic viscosity,
= thermal expansion coefficient, A, = salt S, expansion coefficient,
k = thermal diffusivity, k, = salt S, diffusivity, «=1,2,...,m

To (2.1) we append the boundary conditions

T(X,%O,Z):Th (X yadt)_ w I >T,
(2.2) Cu(x,»,0,1) = Cyy, Culx,y,d,t)=C,,, a=12,....m
v.-k=0, onz=0,d,

and the stress-free boundary conditions. The boundary value problem (2.1)—(2.2)

admits the thermal conduction solution iy = (p,v, T, Cy, ..., C,,) given by
B — oT _ oC
V:O7 T:T[—vz, Cm:Ca,—T“Z,

ST=T,—T, 6C,=Cy,—GC,, oa=12_...m

(2:3) D) = B~ pogz |1 — A(Ti— To) + 3 Au(Cot — C)
=1
_PogZ2 AoT — iAaéCa , Do =const. > 0.
2d —
Setting
(2.4) p=p+n, v=v+u, T=T+0, C,=C,+®d,

introducing the non dimensional scalings

dZ

* «V * V2p0 * *
0s) t:t?, u=u 7 n=rn 2 x=x"d, 0=0"T7,
' VIOT| \% VOC,| \b
D, = 0D, T*= OF = (ol
¥ x e <Agkd3) ’ * (Aagkad3> ’
(2.1) (omitting the asterisks) reduces to
Plw+u-Vu=—Vr+Au+ (Ra - ZRa(Da)k,

o=1
(2.6) V-u=0,
0; 4+ Pu-VO = Rw+ AO,
P,(®y + Pu-VO,) = H,R,w+AD,, a=12,....m
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with
R* = % thermal Rayleigh number,

(2.7) R? = W salt S, Rayleigh number, H, = sgn(5C,),
P, = % fluid Prandtl number, P, = kﬁ salt S, Prandtl number.

o

To (2.6) the boundary conditions of the free-free or rigid-rigid or rigid-free or
free-rigid case have to be appended. Setting u = (u, v, w), the boundary condi-
tions to be taken are [1]

0 ..
U=v=w="0 == ®, =0, onrigid boundary;
0z
(2.8) ,
ou 0 0
WOy = Q =60=®, =0, onstress-free boundary.
0z 0z 0z2
We assume that:
i) the perturbations (Vz,u,v,w, 0, @, ..., ®,,) are periodic in the x and y direc-

tions, respectively of periods 2n/ay, 2n/a,;

il) Q=10,27/a,| x [0,2n/a,] x [0,1] is the periodicity cell;

i) u, v, w, 6, ®y,..., D, are such that together with all their first derivatives
and second spatial derivatives are square integrable in Q, V7 € R™ and can
be expanded in a Fourier series uniformly convergent in Q via complete
orthogonal sequences {¢,}, {¢,}, {#,} — according to the boundary case at
stark — with eigenvalues

(2.9) M <o < Iy <o

Let us denote by o7 (Q) the set of functions ¥ such that:

1) ¥:(x,7) e Qx RT = W¥(x,1) e R, ¥ € W>%(Q), Vte RT, ¥ is periodic in

. . 2m 2n .
the x and y directions of period —, — respectively;
a,’ a,
2) ¥, together with all the first derivatives and second spatial derivatives, can be

expanded in a Fourier series absolutely uniformly convergent in Q, V¢ € R™;
3) (\P)z:O = (\P);zl =0

and by #(Q) the set of eigenfunctions ¢ verifying 1)-2) and

I
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Since the sequence {sinnnz},_y, is a complete orthogonal system for L?(0,1)
under the boundary conditions [V]._, = [¥]._; = 0, by virtue of periodicity, it
turns out that V¥ € .o/(Q), there exists a sequence {¥,(x, y, )} such that

2. v ¥,
Y= ; Y, sinnnz, aa_t 2 % sinnnz,
(2.10) 2
AY = —a?¥, A‘P——az‘I’Jraa—lf,
Ay =0/ox? + 0% Joy?, @ =dl+ad?

the series appearing in (2.10) being absolutely uniformly convergent in Q. Anal-

ogously, since the sequence {cosnmnz}, . is a complete orthogonal system

. op op .
for L?(0,1) under the boundary conditions {a—w] = [a—¢] =0, by virtue
Z1:=0 Z]:=1

of periodicity, it turns out that Vg € %4(Q), there exists a sequence {@,(x, y,1)}

= ¢, cosnnz, 3 i cosnnz,
2 Z Z ot
n= n=1

Q)|e\

2.11)
Ap=—a’p, Ap=— Z &,p, cosnnz.

n=1
We end by remarking that:
1) Setting

ov  Ou

the horizontal components of u are given by

1 /0*w o 1 /0*w o
(2.13) ”_E(axaﬁ@)’ v__2(6y62_5>
and — in view of u = 37wy, &, = 22— % it foliows that
Cem=lTR R T 0y dy

(G ) a5 R

(2.14) dyoz  Ox
1
V-ou,= (;Alwn + W"); =0

ii) on the free boundary w, 0, ®, € .o/(Q) and u,v € B(Q);
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iii) on the rigid boundary

_6w_0

(2.15) W= =

requires a different basis {¢,} given in [1].

3. LINEARIZATION PRINCIPLE

Let us introduce the linear system (0. =1,2,...,m)

oa o
197 _ -
P Au+(R0 ;Rﬂ)a)k,
Voa=0,
(31) aA R ~
— = Rw + Af,
ot
Px%—HmRuW—i—A(D“, a=1,2,

(32) Ji=b=w=0=0,=0, 2=12,...,m,
a:ﬁ:wza—wzé:@:o, a=1,2,....m,
z

235

on stress-free boundary,

on rigid boundary.

We denote by || - || and <-,-> the L?(Q)-norm and the scalar product respectively

and introduce the energy

m

|
(3.3) E=5 Pl + 1007+ D (@)
a=1

of (2.6), (2.8) solutions and the energy

L
(3.4) E=3

m

a2 A2 2

PG+ 1007+ D (1D
a=1

of (3.1)—(3.2) solutions with

2 2 2 2
(3:5) ([l = {lael| =+ {[ol] = =+ [wll,

)

)

~112 ~A12 A2 A2
@l = {lzl}™ + [[oll = + ]l
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Denoting by O, O the quadratic forms

—(IIvul’* + vl + Zp—nvcb ?

)
(3.6) 0= <2R0 Z( 1, R(I)a,w>
)

~(Iva)> + |vo)? +Z v,
(3.7)

(«f
I

+ <2Ré . Z (1 - ?“)Rafi)a,fv>,
pos o

it follows that the time derivatives of E and E respectively along (2.6), (2.8) and
(3.1)—(3.2) are given by

(3.8) —=0 =—=0.

Then the following linearization principle holds.

THEOREM 3.1. Let

(3.9) (Cif)(x_m <0,

for arbitrary (admissible) initial data. Then

(3.10) (dE

E)<0’ Vi > 0.

PrROOE. Let 7 e R'. Then at ¢t = 7 it follows that

dE

m 1
(3.11) <E)(,:f> = Q= = —(IIVull® + Vo> + ;E Hvapm\lz)([:r)

v <2R9(r) - Z (1 = %)Racba(r), w(f)>-

Then, on choosing

(3.12) (ﬁ)(z 0 = =u(7), (é)(tz()) =0(1), ((i)oc)(t=0) = D,(1),
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it follows that (in view of (3.9) for any initial data)

(3.13) Q=) = Q=)

and hence (3.10) immediately follows.
REMARK 3.1. We remark that:
i) denoting by u,, én, (i)m the Fourier components of , é, (i)a and denoting by

m
—1ya 112 n 112 T 2
PVIHu,,H + 10| +ZP1”®m”

a=1

. 1
14 E =~
(3.14) :

)

the L2(Q)-energy of W, 0,, ®,,, it follows that

E = Ena
n=1

dE, . ) - A B

(3.15) =0, = —(IVi > + VO, + > 5 Ve )
a=1 "%
. m fo . A
+ <2R0n - ; (1 - E)Raq)acna Wn>
and hence
dE,

(3.16) ( dt )(t:O) <0

for any initial data Vn € N, implies (3.10);
ii) u,, 0,, O,, are governed — in view of the linearity of (3.1) — by

on A & .
1 N oAa .
P = Ad, + (RHn ; RaCI)a,,>k,
( ) V. ﬁn = 0,
a[” = Rw, + A0,
P, a(;“” = H,R,Wop + ADy,, o=1,2,....m
with
o, 0, . A 5
Un _ O _ w, =0, = ®,, =0, on stress-free boundary,
(3.18) 0z 0z .
ly = By = Wy = 2% — @ —d,, =0, on rigid boundary.
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iil) i, 0, in view of (2.10) are of type
(3.19) W, = Wa(x, »,0)9,(2)
and it follows that (Poincare inequality)
(3.20) (P, A, <~ |1
iv) (3.17); implies
Oty 1 00y

(3.21) P! r = A, P71 = Aby,

then, by virtue of (3.20)3, one obtains

(3.22) %Pr_l(HﬁnHz +[18all?) < = (]l + [18a1%) < 05
V) setting

(.23 =g | P4 1P 3 Pl

then

(3.24) (dj;")(lo) <0,

Vn e N and for any initial data, implies (3.9) for any initial data;
vi) equations governing wy, 6,, ®,, can be reduced to

OAW N U .
1 n . N
P = A (R@,, ; Ra(I)W,> + AAV,,
(325) a011 _ an + Aén,
ot
(i)om A T
Poc a@t = HotRoan + A(Docn

where (3.25) is the third component of the double curl of (3.17);.

S. RIONERO

REMARK 3.2. In view of theorem 3.1, one is led to find conditions, necessary
and sufficient, for guaranteeing (3.9). As matter of fact, these conditions
require that the eigenvalues of (3.1)—(3.2) have, Vn € N, negative real part.
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Then the solutions of the system are given, Vn € N, by functions of type
Ju = expl(an + iby)t)gn(x, y,z) and of type F, = t?[exp(ay, + ib,)t|gn(x,y) with
a, <0and ¢g=1,2,..., according to a, + ib, is a double, triple, ... root of the
spectral equation. Denoting by f, and F, the complex conjugate of f, and F),, it
follows that

1d . - 1d, .
__<ﬁlafn>_§dt 2n ng” = ape 2” gn” <O
-~ 2
20) G| =alal
3 5 <En P >} =l e gl =0

Hence (3.9) is verified for any initial data. Therefore, the necessary and sufficient
conditions guaranteeing that the eigenvalues of (3.1) have, Vn € N, negative real
part — in view of theorem 3.1 — are necessary and sufficient for guaranteeing
that Q, along the solutions of (2.6), is negative definite. Vice-versa, conditions
guaranteeing that Q is negative definite are only sufficient to guarantee that
(3.1)-eigenvalues have, Vn € N, negative real part. These conditions can be too
restrictive and not able to put in evidence the stabilizing effect of skew-symmetric
terms appearing in (2.6), but giving a zero contribution to Q,. This happens,
for instance, when L rotates uniformly about z. Then in (2.6); appears the term
Zu x k, with 7 (Taylor number) positive constant and, in view of u-u x k =0,
does not give any contribution to Q. Further this happens also in MHD con-
vection [13].

4. BASIC LEMMAS FOR LOWER ESTIMATES OF THE INSTABILITY THRESHOLD

Setting
(4.1) 0" = RO, @ =R,D,

(3.25) in view of (3.20) omitting the stars, becomes

L 0AW, R Z, . N
P,, ! 6[ - A] (0;1 - ;q)om> + AAWm
20,
(4.2) ot
P,

= R%W, + A0,

0Dy,

M — R, + AD,,, a=1,2,...,7,
0
0D,
ot

P, _—ngﬁAd)m, a=r+1,...,m,




with
W, = 9,, = d?om =0, Vne N, on stress-free boundary,
(43) Wy A .
== 0,=®,, =0, VneN, onrigid boundary.
zZ

The following basic Lemmas hold.

LeEMMA 4.1. Let

(4.4) Pj=max(P;, P;), i#je{l,2,...,n}
and let us associate to

od;,, H:R? 1.
=—= An _A(Dina
o P T

00, HiR} [
=— An _A(I) )
ot Pj Wn + Pj n

(4.5)

under the boundary conditions (4.3), the auxiliary system

D; R? _
oD;, _ HR; T LACI),»,,,
(4.6) ot P; Pj
' 00, HR? -
— = - _n _A(I)h7
6Z P] e + Pl] J

under the boundary conditions

(4.7) oW s = o -
Wy === 0, = ©y, = ©;,0, Vn e N, on rigid boundary
VA
Then
d = 2, = 2
(4.8) ([ anI” + 1D )| <0,
dt (1=0)

for any initial data, implies

d . -
(4.9) ~(1Dull* + 197 | <0,
dt (1=0)

for any initial data.

S. RIONERO
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PRrOOF. It easily follows that

MG
=2 <r§°>,Hf"Z ‘53)+H%3’2<T>}£>>;<||V<T>§,?>||2+||V<T>},?)||2> 7
@10 g, Tt l 2 ! ’
19l 10|
—2 <w,s°>,H;,’ff2 <i>§,?>+H§f"2<i>},?’>—,%||vd>§,?>|2—,%,|V<i>}3>||2 ,
with
(4.11) SO = (e, V€ (9,0, B, D, D, ;).
On choosing
(4.12) =, 0, =0, )=o)

in view of (4.10) and (4.4), (4.9) immediately follows.
LeEMMA 4.2. Let

d _
(4.13) — ([P + Dul?)] <0,
dr ' (1=0)

for any initial data. Then
d = 2 = 2
(4.14) 7 U Pinll™ + 1@5]17) <0,

for any initial data.
PRrROOF. Setting

_ _ _ _ HR?> _  HR?_
(4.15) Ujjn = @iy + Oy, Vi = ;)‘-’ e
J i

(4.6) can be substituted by the equivalent system

@U,“n I‘I,‘R-2 H‘R‘z 1 =
J :( — L )Wn-l-—AUijn,
(4.16) o P B Fi
Vin |
i’ __AVI]m

ot _Pl]
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under the zero boundary conditions for z = 0,1 implied by (4.7). In view of
(4.16),, V appears to be an independent field and since

d, - 2 2 Y 2
4.1 — I Vimll” = ——%~ iinll s
(4.17) gVl == 197l

(4.13) guarantees that the initial energy of (4.16) is negative for any initial data.
Then the energy of (4.6) decays if decays the energy of (4.16);, i.e. of

0

with

H.R?> HR?
4.19 R,--:P,-»( ke —f)
( ) y y Pi + P]

5. ProorF oF (1.1)

Starting from (4.2), by successive applications of Lemma 4.2, a “sequence of
stability auxiliary systems” can be obtained such that the stability of one system
of this sequence — implied by the request that all the eigenvalues have negative
real part — in view of (3.26), guarantees that, for any initial data, the L-energy
decreases and tends to zero exponentially.

We now apply the procedure of Lemma 4.2 to the salts salting L from below.
Letr>1

(51) PlzzmaX(Pl,Pz), ¥Y=0 +

and associate to (4.2) the auxiliary system

OAW, o m.o_
Pr_] a?} :AAwn"f'Al(gn_\Pln_zq)om>7
=3
0, _ _
W = Rz"Vn + Agn,
(5-2) Paa(;);n:RivT/n+A(T)m, d=1.2.
a&)m =
P, at‘ :—ROZ(W,,—Q—A(DW, ao=r+1,...,m
0P, R? R3\ _ |
— (22 AP
ot (P] Pz)wn—’_Plz >
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under the boundary conditions

i, =0, =¥y, = D,, =0, on stress-free boundary;
(5.3) i,

=i, = 0, = P, = ®,, =0, on rigid boundary.

In view of lemmas 4.1-4.2 and remark 3.2, the stability of the null solution of
(5.2) — guaranteed by the negativity of the real part of the eigenvalues — implies
the stability of the null solution of (4.2). System (5.2)—(5.3) governs the onset of
convection in L filled by a fluid mixture with m — 1 components and salted from
below by r — 1 salts. Applying to (5.2) the procedure of lemma 4.2, one obtains a
fluid mixture with m — 2 components with L salted from below by r — 2 salts.
Therefore — by successive applications of the procedure of lemma 4.2 — one
arrives to

0AW _ m o
1 n —
Pr ot - AAWn + Al <9n - Zln - Z (Docn);
oa=r+1
20,
= R%*W, + A0,
(54) o _
0Z1, 5 AZy,
pu— !@ n 5
ot r P,
a&)an Ri — A(Dxn -
a1 ——Ewn P, ao=r+1,...,m
with
r R2 -
(55) ,@1:maX(P1,P2,...,P,.), E%%:Z?“’ Zl:zq)tx
o=1 "% =1

under the boundary conditions implied by (5.3). Starting from (5.4), with the same
procedure applied successively to the salts salting L from above, one arrives to

0AW,

P! vy

= AAW, 4+ A (0, — Z1y — Z2y),

On_ Row, + AD,,
ot
6Zln
ot
0Z
ot

AZ,,

P

AZ>,
Py ’

2 —
=R Wy +

2 —
= =AW, +

with

(57) 92 :maX(P;~+1,~-;Pm)7 ,@% = Z _a Z2 = Z (Da
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and successively to

P! aAa;_”” — AAW, + AV (B, — ),
(5.8) aét” = R*W, + A0,

Do _ (o - Ay, + A2,
with
(5.9) ? =max(Py,...,Py), ¥= zm:d)x,

under the boundary conditions implied by (5.3).

6. PROOF OF (1.2) VIA AN AUXILIARY VIRTUAL BENARD PROBLEM

To (5.8) we associate the system

A_n — n NT
pil a;” = AAT, + Ay (6, — P,),
a0, 1 -
6.1 " — R*w, + —AG,
(6.1) = W+ 5 A0,
0%, 1
7: (%%-%%)W’n—FEAIPn,
which is equivalent to
Aiv, -
p1? = AN, + Ay (0~ ),
(6.2) i(é —W,) = (R* = %} — #)w +A(é -7,
. ot n n) — 1 2)Wn P* n n)y
J an ad2\0 ANT A an aa2\0 ANT
a[(dfl — R3)0n — R, :E[(ﬂl — R7)0n — R7Y,].

Setting

0'=0-) ®,=0-¥, ¥ =(% —%)0-RY,
(6.3) a1
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one is reduced to investigate the stability of the null solution of

1 0Aw,

a0
p "= P*(R* — A7 + %5)w, + A0},
T

= AAw, + A0,

under the boundary conditions

w, =0, =0, on stress-free boundary,

(6.5) ow,
oz

=w, =0, onrigid boundary

System (6.4)—(6.5) is an auxiliary Bénard problem since (6.4)—(6.5) governs the
onset of convection in L, filled by a virtual fluid .# having P* as Prandtl number,
heated from below or above according to (R> — %7 + #3) is positive or nega-
tive. In the case R> — 9?12 + 9?% > 0, introducing the auxiliary thermal Rayleigh
number given by R?> = P*(R> — %} + %#3) the critical values of R?, as shown in
(1], is given by P.(R> — %7 + #3) =y, hence (1.3) immediately follows. We
remark that (1.3) continues to hold also for R?> — %7 + %3 < 0. For the sake of
simplicity, we give the proof in the free-free case.
In that case one has
(6.6)

{ ¢, =sinnnz, w, =Wwysinnnz, 0, =0, sinnnz,

A=—¢, AA=¢
and (6.4) becomes

~ 2 B
aawn = =P G+ a_P:H;ja
(6.7) v S
20

= P.(R* — R} + R}, — &,0;.

The null solution of (6.7) is stable if and only if

a2

6.8 Z_p.—
(6.8) < Pén

(R* — A7 +#3) >0

and, in view of

2 2.2\3
(6.9) min @ ETT)
(n,a?)eNxR™ a

a2

37(n=1)
(a* + n’n?) ] 27 4
(

a’=n?/2)

(1.3) immediately follows for 7 < %3.
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7. A BETTER LOWER ESTIMATE OF Rc VIA A BINARY AUXILIARY
VIRTUAL CONVECTION PROBLEM

Condition (1.3) is sufficient for inhibiting the onset of convection since

' R? R?
1 R? . " R? < Re¢.
1) N I

R
oa=r+1 P*
Better estimates of R can be obtained via (5.8)—(5.9) and (5.6)—(5.7). We here
confine ourselves to provide a bigger lower estimate of R¢ via the binary vir-
tual auxiliary convection system (5.8)—(5.9), in the free-free case for #7 < %3.
Setting

a’ a’
_Prfn _Pr
&n S
(72> Gy = R? 75,, 0
¢
R — R 0 -2
1 2 P
(5.8)—(5.9) becomes
p Wy Wy
(7.3) | O Zi| O
¥, ¥,
The eigenvalues of %, are the roots of
(7.4) 22— T2 4 Toph — 13, =0,

with I, (s = 1,2,3), characteristic (invariants) values of (7.2) given by (see [38]—
[39] and [12], pp. 386-387)

Ilnfzxmz (1+r 45

1-3 = 0

) —P<, P, "
Iy = E /]vns/hnp = ‘ R2 7 + én
S#p —Sn 0 T
(75) —Pg, —Pm 2

resn In 1 +Pl‘ é’ 2 2 2

+ =P, |1+ L+ (R — R5)— R,

PrIp _% A @P,)nn I

3
I, = det %, = H Jns = AP,

s=1

R2 ( 2)_é‘|
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2

with 7, = 9" Since for A7 < A3, (1.2) is symmetrizable, the eigenvalues are real
n

and instability occurs via the steady state associated to the lowest value of R?
such that

&
(7.6) det %, = a®P, | R* — (R} — %#3) — =0,
i.e. at
27
(7.7) Rzzgf_@2+z%
Since
27 41 27 41
P < P, :»9212—995+Zn4ﬁ< Ry — B3 +7 4@,

(7.7) for # < P, guarantees stability also for

5027 41 p 27 41

R} 7%§+Zn4z <R*< 7} 7%§+—n4§.

8. PROOF OF PROPERTY 4

Let (1.5) holds. Then in any ball of the L’-phase space there exists a path along
which the energy E increases and tends to infinity exponentially. This instability
result is implied by the following Lemma.

LEMMA 8.1. Let
(8.1) Py =min(P;, P;), i#je{l,2,....,n}

and let us associate to

&, _ HR} 1
e = W+ — A(Dma
(82) ot P; P;
== An A(Dna
ot E‘w TP Y

under the boundary conditions (4.3), the auxiliary system

oo;, HR2 1
= AD;
o P ot Py
8.3
(8:3) 0P, _ HR2 1
/ o5 AD

o P TR
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under the boundary conditions

wy,=0,=®; =0, =0, VneN,on stress-free boundary,

(8.4) ow, . . . ..
wr = Er 0, =@, =2, =0, VneN,onrigid boundary.
z
Then
d * (2 * (2
implies
d a2 502
(8.6) 27 U2l + 112 7) >0

on the same data.

PRrROOF. It easily follows that

d * (12 * (12
MR

HR12 * fl/l{]2
=2@np® BV men+wa :
(8.7) ., (t=1)
ol 2 o 2
ALl
(t=1)
H;R? H.R? .
= 2| ( Wy 5 Dy + — LDy, me W%W
P; P; P; -
Therefore
(8.8) Wa(t) = wi(z),  Du(r) = (),

(VOi) (g = (VD;,) —r),  ViE (1,2,...,0),

in view of (8.1), (8.4) implies (8.6).

Starting from (4.2), by successive applications of Lemma 8.1, a sequence
of instability auxiliary systems can be obtained. The instability of one system
of this sequence — implied by the existence of an eigenvalue with positive real
part — in view of (3.26) with a, > 0, guarantees the existence of a path, in any
ball centered at the origin of the L’-phase space, along which the L’-energy
increases exponentially and in view of Lemma 8.1 — in any ball (centered at the
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origin) each previous system has a path along which its L’-energy increases
exponentially. In fact, by successive applications of Lemma 8.1, following —
mutatis mutandis — the procedure of section 5, one obtains the auxiliary system
(analogous to (5.8))

OAW?

PR A A0 ),
(8.9) aaa; R*w! + A0,

o s AY

no__ _ g * n

ot (‘@1 e22)"‘)11—'— P ’
with
(8.10) Z* =min(Py,...,P,), ¥ =) @

To (8.9) we associate the system

0Aw;
P! at =AAw; + A (0, —P)),
(8.11) 6; R*w *+P A0},
v, .1 .
=" L= (A7 — ﬂg)wn—f—p—*A‘Pn,
which is equivalent to
A *
p1f 6‘:" = AAW" + A(0F — ),
a * * 2 ap 2 * A * *
(8.12) 50 =¥ = (R = 7 = Ao 50, — ),
0 2\ o 2 Ao 2\ 2ar+
S = A0, R = (A - A0, — R,

via the (6.3), with P, at the place of P, and 1_3: = P,.P,, one is reduced to investi-
gate for the instability of the null solution of

—i* aAa;v" = AAw, + A0,
(8.13) P,
20"

&= P.(R* — A7 — A3)w, + AO,
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under the boundary conditions (6.5). System ((8.13), (6.5)) is an auxiliary virtual
Bénard problem governing the onset of convection in L filled by a virtual fluid .,
having P, as Prandtl number, heated from below or from above according to
(R* — %7 + %#3) is positive or negative. Then, via remarks analogous to the which
ones of Sect. 6, one easily obtains the instability condition (1.4).

9. DISCUSSION AND COMMENTS

1) The onset of convection in a m-component, Vm € N, Navier—Stokes fluid
mixture, filling a horizontal layer L-heated from below and salted partly
from above and partly from below — is investigated;

2) Since the difficulties of providing, in closed simple form, the instability thresh-
old R¢ grow drastically with m, the problem of finding simple useful estimates
of R¢ to be used not only by theoreticians but also for experimentalists, arises;

3) A linearization principle in the L2-energy norm is obtained;

4) For any m € N it is shown that exist two virtual auxiliary fluid mixtures with
m — 1 components which instability thresholds give, respectively, a lower and
an upper estimate of R¢;

5) Exist two virtual auxiliary Bénard problems which instability thresholds give,
respectively, a lower and an upper estimate of Rc such that, according to
(1.2)—(1.4), one has

m m 2
(9.1) ZP—+—<RC<Z ZI;“JrPl,

o=r+1 o=r+1
and hence
"\ R? "\ R’ o .

(9.2) RP<) —2 =+ l, inhibits convection,

o=1 "%  g=rt1° * P,
while

r R2 m R2 y
(9.3) R® > Z?“ - Z F“ + =, guarantees convection;

o=1 "%  og=r+1" % P

6) For

m 2
$5-55

(9.3) is verified YR? (i.e. irrespective of the temperature gradient) and guaran-
tees the onset of “cold convection™ [40];

7) Looking for symmetries and skew-symmetries hidden in (3.25) — as done in
[12] in the free-free case — one can obtain, only for particular values of the
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Prandtl numbers, conditions guaranteeing stability which generally does not
appear to be more convenient of (9.2);

8) As far as we know, (9.1)—(9.4) are new in the existing literature;

9) (9.1)—(9.4) appear to be of interest not only for theoreticians but also for the
experimentalists investigating natural phenomena and/or industrial processes
related to the onset of convection.
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INdAM.
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