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Abstract. — A synoptic account is presented of a revised Zanaboni procedure for Saint-Venant’s

principle. Modifications required for conservative and dissipative coupled systems are illustrated by

application to piezoelectricity and thermoelasticity.
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1. Introduction

Saint-Venant’s principle, first introduced in 1853 [30] and 1856 [31], states that
for an elastic body in equilibrium subject to zero body force, the e¤ect of self-
equilibrated specified surface loads on an otherwise free boundary does not per-
sist in the bulk of the body. The detailed spatial distribution of the loads a¤ects
the stress and other elastic fields only in the neighbourhood of the load surface.
The principle, used as pragmatic guidance by structural engineers and others to
simplify calculations, evolved from Saint-Venant’s empirical experience.

The imprecise expression of the original statement compromises its use for
computer aided and other calculations. Indeed, the history of the subject is
characterised by attempts both to rigorously define the principle and to establish
an equally rigorous mathematical proof of its validity. In any given problem, the
measure adopted for the solution (i.e., the function space to which it belongs),
geometry, and type of boundary data should be unambiguously defined since
they are likely to a¤ect decay rates. It is also legitimate to enquire whether the
principle applies only to elastic materials. Observation suggests that appropriate
versions are ubiquitous regardless of geometry and constitutive assumptions.

The principle’s validity was early challenged by Boussinesq who appealed to
known solutions to boundary value problems including those for the half-space.
On the other hand, exact solutions especially for the semi-infinite solid and
hollow cylinder and the half-strip, notably by Dougall, Synge, Gregory, Horvay,
Stephen and co-workers, and in particular Grioli [6], confirm the principle and
suggest that decay rates are exponential for cylinders and algebraic for cones.
V. Mises and Sternberg extend the study of exact solutions using Green’s func-



tions. Their results show that the depth of penetration of the self-equilibrated
boundary loads depends upon the size of the load region and the type of load.

That the principle is not restricted to bodies of particular geometry was rec-
ognised by Southwell and Goodier who used the strain energy of subregions
as a measure of average behaviour. The notion of using the strain energy was
significantly developed by Toupin [29] who constructed a di¤erential inequality
for volume measures of the strain energy on a cylinder and estimated correspond-
ing decay rates. Further related developments are due to Fichera, Oleinik, and
Weck. Di¤erential inequalities were also used by Berdichevsky [1] to obtain esti-
mated decay rates for regions whose cross-sections are perpendicular to a given
direction and which may become unbounded with increasing distance along this
direction. They are therefore more general than cylindrical regions. Sternberg
and Knowles explain how the minimum strain energy principle can be used in
Saint-Venant’s problem to distinguish the solution in the interior of a cylinder
that persists due to non-self-equilibrated resultant loads distributed over the
ends. Numerous contributions, especially by Payne and co-workers, demonstrate
how Saint-Venant’s principle may be regarded as the decay component in a
Phragmén–Lindelöf principle.

The comparative success of treatments based upon di¤erential inequalities
initiated by Toupin obscures an equally promising procedure introduced by
Zanaboni in a series of Lincei publications [35, 36, 37]. Although the strain energy
is again employed, the technique is not limited to regions of any special geometry.
Unlike Southwell and Goodier, Zanaboni’s method produces less vague conclu-
sions. It fails, however, to establish meaningful decay estimates. A world war
combined with somewhat outmoded arguments may have contributed to its
subsequent neglect. The present aim, however, is to reassess Zanaboni’s method
and to provide a simplified derivation of a key component in his argument. This
considerably broadens the range of accessible problems as illustrated by selected
examples considered in later sections.

Surveys of the general literature devoted to Saint-Venant’s principle including
that cited above may be found in the comprehensive reviews by Maissonenuve
[23]. Horgan and Knowles [12], Horgan [10, 11] and the concise account by
Rionero [27].

Zanaboni’s treatment of Saint-Venant’s principle is outlined in Section 2
which also briefly comments on his mainly algebraic proof that involves conver-
gence of monotone sequences. The geometry of regions, including an intuitive
description of elongated regions, is contained in Section 3, while Sections 4 and
5 employ the simple examples of heat conduction and the dielectric to demon-
strate essential points of the revised procedure. Section 6 illustrates how the pro-
cedure may be extended to coupled conservative systems by application to linear
piezoelectricity. Although a slightly di¤erent type of monotone sequence is gen-
erated, standard properties may be adapted to discuss convergence. Section 7
considers the coupled dissipative system of linear thermostatics. Modifications
required in the construction of the relevant fundamental inequality require a
non-standard application of an embedding inequality derived in Section A.
Nevertheless, the monotone sequence that occurs in piezoelectricity is recovered
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and in consequence the same convergence argument can be used. Section 8 con-
cludes the paper with remarks on some open problems.

The same Cartesian system of rectangular coordinates is employed through-
out. Scalar, vector and tensor quantities are not typographically distinguished,
while the usual conventions are adopted of summation over repeated indices,
and a subscript comma to indicate partial di¤erentiation. Roman subscripts are
in the numerical range 1; 2; 3. Only ellipitc problems are studied and therefore a
suitably smooth solution is always assumed to exist.

2. Zanaboni’s procedure for Saint-Venant’s principle

The emperical nature of Saint-Venant’s original statement of the principle was
reformulated by Zanaboni in a form which may be paraphrased as (cp, [35, 36,
37]):

The stored energy in those parts of an elongated linear elastic body in equilib-
rium that are increasinlgy remote from the load surface tends to zero at a rate
independent of the self-equilibrated applied surface load and its distribution, but
dependent upon the composition of the body and its geometry.

This may be contrasted with a somewhat less precise version due to Southwell
[33]:

The e¤ect of a system of forces statically equivalent to zero force and zero cou-
ple (distributed over part of the surface) has negligible magnitude at distances
which are large compared to the linear dimensions of that part.

In order to prove his assertion, Zanaboni developed a procedure consisting of
two main steps:

1. A fundamental inequality.
2. Convergence properties of monotone bounded sequences.

Zanaboni’s derivation of decay estimates is less convincing than that devised,
for example, by Berdichevsky [1], although there are certain common features.
This aspect is beyond the intended scope of the present paper and is not discussed
further.

Zanaboni applied his method to linear elastic bodies in equilirbrium in the
absence of body force and subject to self-equilibrated loads distributed over a
part (the load surface) of an otherwise traction-free smooth boundary. Within
this context, his derivation of the fundamental inequality in part relies upon the
minimum strain energy principle of linear elasticity, but as originally presented
the argument is unfamiliar if not arcane. Limited elucidation is o¤ered in books
by Biezanno and Grammel [4] and by Fung [5], although that by Robinson
[28] provides an alternative proof based upon Dirichlet’s principle. Gurtin [7],
Maisonneuve [23] and the survey by Horgan and Knowles [12] also refer to
Zanaboni’s contributions.
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Here, we provide a transparent proof of Step 1 that involves a comparatively
easy integration by parts supplemented as required by appropriate standard
inequalities and embedding theorems. The new treatment first introduced in [19]
for linear elasticity, is applied in Section 4 to heat conduction. The intrinsic
simplicity of the argument facilitates its transposition to several other linear
(coupled) conservative and ‘‘dissipative’’ elliptic systems. In addition to linear
nonhomogeneous anisotropic compressible elasticity [19], incompressible iso-
tropic linear elasticity, certain semi-linear elliptic equations and the p-Laplacian
operator are among applications that can be successfully treated [14]. Non-linear
elasticity is also considered in [19], having earlier been discussed by Locatelli [22,
21]. A variant of the present approach establishes the corresponding Zanaboni
version of Saint-Venant’s principle for selected theories of plastic behaviour [18].
The Zanaboni formulation, however, is not universally valid. Counterexamples
are presented in [20] which also contains further illustrative examples. Other
well-known counterexamples to the traditional Saint-Venant principle are due to
Toupin [29] and Ho¤ [8]. Horgan [9] and Stephen [34] employ examples to show
that very slow decay rates may render the principle inappropriate for composite
materials. As already mentioned, determination of precise or estimated decay
behaviour remains elusive by Zanaboni’s procedure since it is di‰cult to ascribe
precise meaning to terms such as ‘‘su‰ciently remote’’. Consequently, Zanaboni’s
approach should presently be regarded as leading to a qualitative rather than a
quantative description of spatial stabllity.

3. Geometry

Let Wn � R3, n ¼ 1; 2; 3; . . . denote members of an infinite sequence of succes-
sively embedded regions such that

W1 � W2 � W3 � � � � � Wn � � � � :ð3:1Þ
where

lim
n!l

jWnj ! l;ð3:2Þ

and jWnj is the diameter of the region Wn. The sequence can include, for example,
a family of increasing regions exterior to a bounded region, a family interior to
a cone of semi-vertical angle 0 < aa p=2 or a family of thick plates. Present
concern, however, is with a family of elongated regions, which may be roughly
described as regions whose dimension in a specific (curvilinear) direction is signif-
icantly larger than in other directions. For simplicity, it is supposed that plane
cross-sections oblique to the specified direction have area uniformly bounded
below by a positive constant, and are simply-connected, a property inherited by
each region Wn. Elongated regions can be contained in an semi-infinite helix or in
entangled non-contiguous knotted curvilinear cylinders. Elongated regions that
are multiply-connected or whose cross-sections collapse to zero require separate
treatment. Exterior regions, however, appear amenable to the arguments devel-
oped here.
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The surface qWn of Wn, n ¼ 1; 2; . . . is assumed to be smooth and to possess a
unit outward vector normal whose Cartesian components are generically denoted
by ni. Other assumptions imposed on certain parts of the surface qWn are stated
where necessary. All surfaces qWn, n ¼ 1; 2; . . . intersect in a common non-empty
connected set G, known as the load surface, which satisfies

jAG � qWnB qWnþ1; n ¼ 1; 2; 3; . . . :ð3:3Þ

Furthermore, Sn designates that part of the surface qWn that intersects the interior
of Wnþ1; that is

Sn ¼ qWnnðqWnþ1B qWnÞ:ð3:4Þ

4. Heat conduction

We illustrate our approach to the basic steps in Zanaboni’s procedure by a
boundary value problem for steady heat conduction. The example of the aniso-
tropic dielectric considered in Section 5 further illustrates the technique. Another
example is the incompressible fluid.

Each of the previously introduced regions Wn is occupied by the same inhomo-
geneous anisotropic heat conduction material whose symmetric non-negative
heat conduction tensor k has Cartesian components kij that satisfy

kijðxÞ ¼ kjiðxÞ; x a Wn; n ¼ 1; 2; . . . ;ð4:1Þ
0a kijðxÞxixj; x a Wn; n ¼ 1; 2; . . . ;ð4:2Þ

where x a R3.
Let yðnÞðxÞ denote the positive temperature in the region Wn. With respect

to the same Cartesian set of rectangular coordinates, the system of Dirichlet
boundary value problems we study in the absence of heat sources is given by

ðkijðxÞyðnÞ; i ðxÞÞ; j ¼ 0; x a Wn;ð4:3Þ

yðnÞðxÞ ¼ Q; x a G;ð4:4Þ
¼ 0; x a qWnnG:ð4:5Þ

where the same scalar quantity Q is specified for each Wn and accordingly is
independent of n.

Dirichlet data is adopted for simplicity.
Spatial behaviour appropriate to the system (4.3)–(4.5) is described in terms of

the bilinear function defined by

VWn
ðf;cÞ ¼

Z
Wn

kijf; ic; j dx;ð4:6Þ

where fðxÞ, cðxÞ are di¤erentiable scalar functions.
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The thermal energy UWn
in the region Wn is contained as a special case of VWn

so that we have

UWn
ðyðnÞÞ ¼ VWn

ðyðnÞ; yðnÞÞ:ð4:7Þ

In particular, it is assumed that

UW1
ðyð1ÞÞ < l:ð4:8Þ

As mentioned, the first step in the procedure is to establish a fundamentel
inequality subseqeuently used to generate a convergent bounded monotone
sequence. An integration by parts and appeal to (4.4) yields

VWn
ðyðnÞ; yðnþ1ÞÞ ¼

Z
Wn

ðkijyðnÞyðnþ1Þ
; j Þ; i �

Z
Wn

yðnÞðkijyðnþ1Þ
; j Þ; i

¼
Z
G

Qnikijy
ðnþ1Þ
; j dSð4:9Þ

¼
Z
G

yðnþ1Þnikijy
ðnþ1Þ
; j

¼ UWnþ1
ðyðnþ1ÞÞ;ð4:10Þ

upon recalling the symmetry kij ¼ kji.
On the other hand, an application of Schwarz’s inequality and the arithmetic

mean-geometric mean inequality (Young’s inequality) leads to

VWn
ðyðnÞ; yðnþ1ÞÞa ½UWn

ðyðnÞÞUWn
ðyðnþ1ÞÞ�1=2ð4:11Þ

a
1

2
UWn

ðyðnÞÞ þ 1

2
UWn

ðyðnþ1ÞÞ:

Elimination of the bilinear function VWn
ðyðnÞ; yðnþ1ÞÞ between (4.10) and (4.11)

gives

UWnþ1
ðyðnþ1ÞÞa 1

2
UWn

ðyðnÞÞ þ 1

2
UWn

ðyðnþ1ÞÞ;

which upon rearrangement becomes the required fundamental inequality:

UWnþ1nWn
ðyðnþ1ÞÞ þUWnþ1

ðyðnþ1ÞÞaUWn
ðyðnÞÞ:ð4:12Þ

For the moment, the non-negative first term on the left of (4.12) is discarded,
which leads to the recursive generation of the bounded monotone non-increasing
sequence given by

0aUWnþ1
ðyðnþ1ÞÞaUWn

ðyðnÞÞa � � �UW1
ðyð1ÞÞ < l;ð4:13Þ
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which is therefore convergent. Consequently, for e > 0 there exists n0 such that

UWn
ðyðnÞÞ �UWm

ðyðmÞÞa e; n0 a n < m:ð4:14Þ

Insertion of inequality (4.14) into (4.12) yields

UWnþ1nWn
ðyðnþ1ÞÞaUWn

ðyðnÞÞ �UWnþ1
ðyðnþ1ÞÞð4:15Þ

a e; n0 a n;

which represents the mathematical expression of Zanaboni’s version of Saint-
Venant’s principle.

For the particular problems under consideration, it is worth repeating that
apart from a smooth surface, the regions Wn must satisfy condition (3.2). This is
a vital restriction. The application of convergence properties requires in the limit
an infinite number of regions Wn. But the condition

lim
n!l

jWnj < l:

implies that in the limit jWnþ1nWnj must tend to zero, which in turn implies
a similar behaviour for the corresponding thermal energy and (4.15) becomes
automatically satisfied. The property that Wn in the limit is an elongated region
is essential to avoid a nugatory result.

Pointwise estimates of the solution yðnÞ may be obtained provided that the
heat conduction tensor is convex. That is, for n ¼ 1; 2; . . . , we replace (4.2) by

k0xixi a kijxixj; x a Wn;ð4:16Þ

where k0 is a prescribed positive constant independent of n, and x a R3.
In addition, a constraint is imposed on the regions Wnþ1nWn. We stipulate that

each point x a Wnþ1nWn is at the centre of a sphere SðxÞ completely contained
in Wnþ1nWn. Let Gðz; yÞ be the Green’s function of second kind for SðxÞ and
equation (4.3). Then for z; y a SðxÞ we have

½yðnþ1ÞðzÞ�2 ¼
Z
SðxÞ

y
ðnþ1Þ
; i ðyÞG; iðz; yÞ dy

" #2

ð4:17Þ

a

Z
SðxÞ

y
ðnþ1Þ
; i ðyÞyðnþ1Þ

; i ðyÞ dy
Z
SðxÞ

G; iðz; yÞG; iðz; yÞ dy

aC1UWnþ1nWn
ðyðnþ1ÞÞ;

where C1 is a computable positive constant. The estimate (4.15) then implies for
n0 a n that

jyðnþ1ÞðxÞja e; x a Wnþ1nWn:ð4:18Þ
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A similar conclusion that does not involve the explicit introduction of Green’s
functions may be established by methods developed in [25, 2].

Although the above proof is given for Dirichlet data, it may easily be extended
to Neumann data subject to appropriate normalistions. It must be observed that
it has not been possible so far to derive precise estimates of the rate at which the
energy functions decay to zero with distance from the heated surface G. This
is in contrast to treatments based upon di¤erential inequalities for special
geometries.

5. The anisotropic dielectric

In the absence of electric charge and other sources, Maxwell’s equations imply
tthat the electric vector field E ðnÞðxÞ, x a Wn is the gradient of a scalar function
fðnÞðxÞ such that

E
ðnÞ
i ðxÞ ¼ f

ðnÞ
; i ðxÞ; x a Wn:ð5:1Þ

We also have that E ðnÞðxÞ is related to the electric displacement vector field
DðnÞðxÞ by

D
ðnÞ
i ðxÞ ¼ kijðxÞE ðnÞ

j ðxÞ ¼ kðxÞijf
ðnÞ
; j ðxÞ; x a Wn;ð5:2Þ

where without confusion we let kðxÞ be the symmetric non-negative dielectric
tensor satisfying (4.1) and (4.2).

In the absence of sources, the electric displacement is solenoidal so that

D
ðnÞ
i; i ¼ 0; x a Wn:ð5:3Þ

We suppose that the electric displacement vector field is specified on qWðnÞ and
consequently the system of boundary value problems is given by

ðkijfðnÞ
; i Þ; j ¼ 0; x a Wn;

qfðnÞ

qn
¼ Q; x a G;

¼ 0; x a qWnnG;

where Q, assigned the new meaning of surface charge density, is prescribed inde-
pendently of n, and the conormal derivative on qWn is generically specified by

qfðnÞ

qn
¼ njkijf

ðnÞ
; j ; x a qWn:ð5:4Þ

The boundary value problems to be treated are therefore similar to those
encountered in Section 4. An analogous procedure leads to conclusions corre-
sponding to (4.15). The argument, however, used to derive (4.18) cannot be
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followed to obtain a pointwise estimate for E ðnþ1Þ which requires an estimate for
the gradient of fðnþ1Þ. Instead, we appeal to the mean value theorem for fðnþ1ÞðxÞ
given, for instance, by [3, eqn (3.2)]. In the notation of Section 4, and subject
to the convexity condition (4.16) and the pointwise bound (4.17), we proceed as
follows

qfðnþ1ÞðxÞ
qxi

" #2
¼

Z
SðxÞ

fðnþ1ÞðyÞ qF ðx; yÞ
qxi

dy

" #2

a

Z
SðxÞ

fðnþ1Þfðnþ1Þ dy

Z
SðxÞ

� qF ðx; yÞ
qxi

�2
dy

aC2

Z
Wnþ1nWn

kijf
ðnþ1Þ
; j f

ðnþ1Þ
; j dy;

where Fðx; yÞ is the Levi function corresponding to our problem (see, for exam-
ple [24]), and C2 is a computable positive constant independent of n.

6. Piezoelectricity

The treatment of Sections 4 and 5 is extended to the coupled conservative system
of linear piezoelectricity. Each of the embedded regions Wn � Wnþ1, n ¼ 1; 2; . . .
defined in Section 3 is composed of the same piezoelectric material in equilibrium
under zero body-force and zero electric and other sources. The boundary condi-
tions are homogeneous except on the common non-empty load surface G.

The electric field vector E ðnÞðxÞ in Wn satisfies the boundary value problem
specified in Section 5 except that the dielectric tensor is now supposed to be
convex in the sense of condition (4.16).

Components of the symmetric stress tensor and the elastic displacement vector
in Wn are denoted by s

ðnÞ
ij ðxÞ and u

ðnÞ
i ðxÞ respectively, while the corresponding

linear symmetric strain tensor eðnÞðxÞ has components

e
ðnÞ
ij ðxÞ ¼ 1

2
ðuðnÞi; j ðxÞ þ u

ðnÞ
j; i ðxÞÞ; x a Wn:ð6:1Þ

We consider the following system of boundary value problems derived from
the equilibrium theory of linear piezoelectricity. The dielectric components are
included for completeness.

s
ðnÞ
ij ¼ cijkle

ðnÞ
kl þ mijkf

ðnÞ
;k ; D

ðnÞ
i ¼ kijf

ðnÞ
; j ; x a Wn;ð6:2Þ

s
ðnÞ
ij; j ¼ 0; D

ðnÞ
i; i ¼ ðkijfðnÞ

; j Þ; i ¼ 0; x a Wn;ð6:3Þ

u
ðnÞ
i ¼ hi; x a GM ;ð6:4Þ

¼ 0; x a qWnnGM ;ð6:5Þ
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qfðnÞ

qn
¼ Q; x a GE ;ð6:6Þ

¼ 0; x a qWnnGE ;ð6:7Þ

where the conormal derivative in (6.6) and (6.7) is defined in (5.4), hiðxÞ and QðxÞ
are functions prescribed independently of n, and jAGM � G, jAGE � G, or
equivalently G ¼ GM AGE , are the load surfaces. The symmetric nonhomogene-
ous elastic tensor cðxÞ and the symmetric nonhomogeneous dielectric tensor kðxÞ
are supposed convex (positive-definite) so that for all Wn, n ¼ 1; 2; . . . , we have

cijkl ¼ cklij ¼ cjikl ; kij ¼ kji;ð6:8Þ

and

c0xijxij a cijklxijxkl ; Exij ¼ xji;ð6:9Þ
k0xixi a kijxixj; xi a R3;ð6:10Þ

where c0 and k0 are prescribed positive constants.
Specification of the boundary value problems is completed by requiring the

components of the dielectric permeability tensor to be symmetric in the first pair
of indices, and bounded in the sense that

m2 ¼ max
EWn

mijkmijk < l:ð6:11Þ

Let wðxÞ be a vector field with corresponding strain components denoted by

eijðwÞ ¼
1

2
ðwi; j þ wj; iÞ;

and for scalar function cðxÞ define the elastic and electric energies on Wn to be

WWn
ðwÞ ¼

Z
Wn

cijkleijðwÞeklðwÞ dx;

UWn
ðcÞ ¼

Z
Wn

kijc; ic; j dx:

Moreover, we suppose that the respective energies are bounded on Wn; that is

WWn
ðuðnÞÞ < l; n ¼ 1; 2; . . .ð6:12Þ

UWn
ðfðnÞÞ < l; n ¼ 1; 2; . . .ð6:13Þ

The electric field is uncoupled from the elastic fields, and therefore the results
of Section 5 indicate that the electric energy satisfies the inequality

UWnþ1nWn
ðfðnþ1ÞÞaUWn

ðfðnÞÞ �UWnþ1
ðfðnþ1ÞÞ:
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Consequently, the term on the left vanishes for su‰ciently large n in accordance
with Zanaboni’s version of Saint-Venant’s principle.

The fundamental inequality appropriate to linear piezoelectricity is expressed
in terms of a linear combination of the elastic and electrical energies given by

EWn
ðw;cÞ ¼ WWn

ðwÞ þLUWn
ðcÞ;ð6:14Þ

where the positive constant L is chosen to satisfy

L ¼ gd2; d2 ¼ m2

c0k0
;ð6:15Þ

and the positive constant g satisfies

4g > 1:ð6:16Þ

Derivation of the fundamental inequality also involves the following bilinear
form

IWn
ðuðnÞ; fðnÞ; uðnþ1Þ; fðnþ1ÞÞ ¼

Z
Wn

s
ðnþ1Þ
ij e

ðnÞ
ij dxþL

Z
Wn

D
ðnþ1Þ
i f

ðnÞ
; i dx:ð6:17Þ

Integration by parts and use of (6.2)–(6.7) leads to

IWn
ðuðnÞ; fðnÞ; uðnþ1Þ; fðnþ1ÞÞ

¼
Z
GM

njs
ðnþ1Þ
ij u

ðnÞ
i dS þL

Z
GE

njkijf
ðnÞ
; i fðnþ1Þ dS

¼
Z
Wnþ1

s
ðnþ1Þ
ij e

ðnþ1Þ
ij dxþL

Z
Wnþ1

kijf
ðnþ1Þ
; i f

ðnþ1Þ
; j dx

¼
Z
Wnþ1

½cijkleðnþ1Þ
ij e

ðnþ1Þ
kl þ mijke

ðnþ1Þ
ij f

ðnþ1Þ
;k � dx

þL

Z
Wnþ1

kijf
ðnþ1Þ
; i f

ðnþ1Þ
; j dxð6:18Þ

¼ IWnþ1
ðuðnþ1Þ; fðnþ1Þ; uðnþ1Þ; fðnþ1ÞÞ:ð6:19Þ

A lower bound for the last expression is obtained by application of Schwarz’s
inequality to the second term on the right of (6.18). We have

e

Z
Wnþ1

mijke
ðnþ1Þ
ij f

ðnþ1Þ
;k dxa

Z
Wnþ1

e
ðnþ1Þ
ij e

ðnþ1Þ
ij dx

Z
Wnþ1

mijkmijkf
ðnþ1Þ
;p fðnþ1Þ

;p dx

� �1=2

a
m2

c0k0
WWnþ1

ðuðnþ1ÞÞUWnþ1
ðfðnþ1ÞÞ

� �1=2
:
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In consequence, Young’s inequality applied to (6.19) gives for arbitrary posi-
tive constant a1 to be chosen,

IWn
ðuðnÞ; fðnÞ; uðnþ1Þ; fðnþ1ÞÞb

�
1� a1d

2

�
WWnþ1

ðuðnþ1ÞÞð6:20Þ

þL
�
1� d

2a1L

�
UWnþ1

ðfðnþ1ÞÞ:

The next step in the derivation of the fundamental inequality is to construct an
upper bound for the bilinear function (6.17). Standard inequalities give

IWn
ðuðnÞ; fðnÞ; uðnþ1Þ; fðnþ1ÞÞð6:21Þ

¼
Z
Wn

½cijkleðnÞij e
ðnþ1Þ
kl þ mijke

ðnÞ
ij f

ðnþ1Þ
;k � dxþL

Z
Wn

kijf
ðnÞ
; i f

ðnþ1Þ
; j dx

a

Z
Wn

cijkle
ðnÞ
ij e

ðnÞ
kl dx

Z
Wn

cijkle
ðnþ1Þ
ij e

ðnþ1Þ
kl dx

� �1=2

þ m2

Z
Wn

e
ðnÞ
ij e

ðnÞ
ij dx

Z
Wn

f
ðnþ1Þ
; i f

ðnþ1Þ
; i dx

� �1=2

þL

Z
Wn

kijf
ðnÞ
; i f

ðnÞ
; j dx

Z
Wn

kijf
ðnþ1Þ
; i f

ðnþ1Þ
; j dx

� �1=2

a
1

2a2
WWn

ðuðnþ1ÞÞ þ 1

2
ða2 þ a3dÞWWn

ðuðnÞÞ

þL

2

� 1

a4
þ d

a3L

�
UWn

ðfðnþ1ÞÞ þ a4L

2
UWn

ðfðnÞÞ;

where a2, a3, a4 are arbitrary positive constants to be determined.
Elimination of the bilinear function between (6.20) and (6.21) generates the

inequality

�
1� a1d

2

�
WWnþ1

ðuðnþ1ÞÞ � 1

2a2
WWn

ðuðnþ1ÞÞ þL
�
1� d

2a1L

�
UWnþ1

ðfðnþ1ÞÞð6:22Þ

�L

2

� 1

a4
þ d

a3L

�
UWn

ðfðnþ1ÞÞ

a
1

2
ða2 þ a3dÞWWn

ðuðnÞÞ þ a4L

2
UWn

ðfðnÞÞ:

We note (6.15), and set
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a1d ¼
ð1þ 4gÞ

4g
;

a2 ¼
4g

e1ð4g� 1Þ ;

a3d ¼ a4 ¼
2ð1þ 4gÞ
e1ð4g� 1Þ ;

where

0 < e1 < 1:

This choice of a1, a2, a3; and a4 is selected for simplicity, and may not be optimal.
Insertion into (6.22), subsequent rearrangement, and introduction of Defini-

tion (6.14), leads to the fundamental inequality for linear piezoelectricity:

2e1WWnþ1nWn
ðuðnþ1ÞÞ þ 4Le1

ð1þ gÞ
ð1þ 4gÞUWnþ1nWn

ðfðnþ1ÞÞð6:23Þ

þ 2ð1� e1ÞEWnþ1
ðuðnþ1Þ; fðnþ1ÞÞ

a
16gð6gþ 1Þ
e1ð4g� 1Þ2

EWn
ðuðnÞ; fðnÞÞ:

Quantities WWnþ1nWn
ðuðnþ1ÞÞ and UWnþ1nWn

ðfðnþ1ÞÞ are positive-definite by as-
sumption, and in accordance with the procedures of Sections 4 and 5, may be
discarded from (6.23) to obtain the inequality

0aEWnþ1
ðuðnþ1Þ; fðnþ1ÞÞa qEWn

ðuðnÞ; fðnÞÞ;ð6:24Þ

where

q ¼ 8gð6gþ 1Þ
ð1� e1Þe1ð4g� 1Þ2

:ð6:25Þ

It is easy to show that q > 1. Inequality (6.24) recursively generates

EWnþ1
a qEWn

a q2EWn�1

a ..
.

a qnþ1�rnEWrn
rn ¼ 1; 2; . . . ðnþ 1Þ;

a ..
.

a qnEW1
;

in which the arguments of EWn
ðuðnÞ; fðnÞÞ are omitted for convenience.
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We conclude that the terms

qnþ1�rnEWrn
ð6:26Þ

form a monotone decreasing bounded below sequence in rn for each n. Our
choice of arbitrary constants ai, i ¼ 1; 2; 3; 4, as mentioned, gives q > 1 and
consequently, terms in the sequence corresponding to large n and small rn may
become arbitrary large. On the other hand, assumptions (6.12) and (6.13) imply
that all terms are bounded above and below for su‰ciently large rn irrespective of
n. Accordingly, for e > 0 and nb n0, where n0 is su‰ciently large, there exists a
non-negative infinum En such that

En a qn�rnEWrnþ1
ðuðrnþ1Þ; fðrnþ1ÞÞð6:27Þ

a qnþ1�rnEWrn
ðuðrnÞ; fðrnÞÞ

aEn þ e; n0 a rn a ðnþ 1Þ:

Set n0 a rn ¼ n, ðnþ 1Þ to respectively obtain from (6.27) the bounds

En a qEWn
ðuðnÞ; fðnÞÞaEn þ e;

En aEWnþ1
ðuðnþ1Þ; fðnþ1ÞÞaEn þ e;

which upon insertion into (6.23), and for convenience upon selecting e1 ¼ 1=2
and 1 < 4g < 2, yields for su‰ciently large n

EWnþ1nWn
ðuðnþ1Þ; fðnþ1ÞÞa qEWn

ðuðnÞ; fðnÞÞ � EWnþ1
ðuðnþ1Þ; fðnþ1ÞÞð6:28Þ

aEn þ e� En

¼ e:

The last inequality immediately establishes the following Proposition that
represents Zanaboni’s version of Saint-Venant’s principle for the coupled system
of linear piezoelectricity on the elongated regions described in Section 3.

Proposition 6.1. Subject to the stated conditions and for su‰ciently large n, we
have

lim
n!l

EWnþ1nWn
ðuðnþ1Þ; fðnþ1ÞÞ ¼ 0:ð6:29Þ

As a corollary, we deduce from the Proposition in conjunction with Definition
(6.14), that besides the electric energy, the mechanical energy likewise tends to
zero in regions su‰ciently remote from the load surface GM .

7. Thermoelastostatics

We study linear thermoelastostatics as an example of a coupled ‘‘dissipative’’
system in equilibrium. The main modification to the developements outlined in
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Sections 4 and 6 is the replacement of Young’s inequaltiy in the derivation of the
fundamental inequality by a suitably adapted Poincaré embedding inequality.
This is necessary in order to treat the thermal coupling term which combines
the linear elastic strain with temperature and not with the temperature spatial
gradient. The related embedding inequality is stated and its proof sketched in
the Appendix.

Only the main components of the arguments are discussed. A complete
account may be found in [13].

The geometry is that defined in Section 3. Each of the embedded regions
Wn � Wnþ1, n ¼ 1; 2; . . . is respectively occupied by the same inhomogeneous
linear anisotropic compressible thermoelastic material. Furthermore, each region
Wn is in equilibrium under zero body-force and no heat sources. Zero Dirichlet
boundary conditions are specified on each qWn except on the common surface of
intersection G which is subject to prescribed displacement on part jAGM � G
and prescribed temperature on part jAGH � G, where G ¼ GM AGH : The cor-
responding traction boundary value problem with Neumann thermal boundary
conditions may also be considered for suitably normalised solutions.

Without confusion, the same notation as before is largely retained, so that
yðnÞðxÞ denotes the positive temperature in Wn, while the corresponding displace-
ment vector and linear strain tensor are given by uðnÞ and eðnÞ respectively.

The system of boundary value problems to be investigated is given by

ðcijklðxÞeðnÞkl ðxÞ þ bijðxÞyðnÞðxÞÞ; j ¼ 0; x a Wn;ð7:1Þ
ðkijðxÞyðnÞ; i Þ; j ¼ 0; x a Wn;ð7:2Þ

u
ðnÞ
i ðxÞ ¼ hiðxÞ; x a GM ; yðnÞðxÞ ¼ QðxÞ; x a GH ;ð7:3Þ

u
ðnÞ
i ðxÞ ¼ 0 x a qWnnGM ; yðnÞðxÞ ¼ 0; x a qWnnGH ;ð7:4Þ

where the prescribed functions hiðxÞ and QðxÞ are independent of n. It is further
supposed that the symmetric nonhomogeneous elasticity tensor cðxÞ and sym-
metric heat conduction tensor kðxÞ are convex and therefore satisfy conditions
corresponding to (6.9)–(6.10).

In addition, we require that the symmetric heat coupling tensor bðxÞ is
bounded in the sense that

b2 ¼ max
EWn

bijbij < l;ð7:5Þ

and that the mechanical and thermal energies in Wn are bounded for all n.
Conseqeuntly, we assume that for n ¼ 1; 2; 3; . . . there holdsZ

Wn

cijkle
ðnÞ
ij e

ðnÞ
kl dx < l;ð7:6Þ

Z
Wn

kijy
ðnÞ
; i y

ðnÞ
; j dx < l:ð7:7Þ
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In analogy with the treatment of Section 6, the appropriate fundamental
inequality is derived in terms of the quadratic form

EWn
ðuðnÞ; yðnÞÞ ¼

Z
Wn

cijkle
ðnÞ
ij e

ðnÞ
kl dxð7:8Þ

þL

Z
Wn

kijy
ðnÞ
; i y

ðnÞ
; j dx;

where the positive constant L now satisfies

L ¼ gd2; d2 ¼ b2C

4c0k0
; 1 < 4g;

and C is the positive constant appearing in tbe generalised Poincaré inequality
of Proposition A.1.

Derivation of the fundamental inequality again involves a bilinear form
defined to be

IWn
ðu; y;w; fÞ ¼

Z
Wn

ðcijkleijeklðwÞ þ bijeijfÞ dxð7:9Þ

þL

Z
Wn

kijy; if; j dx;

where we recall that

eij ¼
1

2
ðui; j þ uj; iÞ;

eijðwÞ ¼
1

2
ðwi; j þ wj; iÞ:

Integration by parts gives

IWn
ðuðnÞ; yðnÞ; uðnþ1Þ; yðnþ1ÞÞ ¼ IWnþ1

ðuðnþ1Þ; yðnþ1Þ; uðnþ1Þ; yðnþ1ÞÞ:ð7:10Þ

The coupling term occurring in the integral on either side of (7.10) is bounded
as follows. We consider only the left hand term. The right hand term is treated
similarly. We have

e

Z
Wn

bije
ðnþ1Þ
ij yðnÞ dxð7:11Þ

a

Z
Wn

e
ðnþ1Þ
ij e

ðnþ1Þ
ij dx

Z
Wn

bijbijy
ðnÞyðnÞ dx

� �1=2

a

� b2C

c0ko

�1=2 Z
Wn

cijkle
ðnþ1Þ
ij e

ðnþ1Þ
kl dx

Z
Wn

kijy
ðnÞ
; i y

ðnÞ
; j dx

� �1=2
;

where the embedding inequality (A.3) is employed.
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Inequality (7.11) is next used to bound respectively from above and below the
bilinear forms on the left and right of (7.10). Alternative manipulations to those
of Section 6 lead to the relations

EWnþ1
ðuðnþ1Þ; yðnþ1ÞÞa ½ð1� e2ÞEWn

ðuðnþ1Þ; yðnþ1ÞÞ þ e3EWn
ðuðnÞ; yðnÞÞ�;ð7:12Þ

where the computable positive constants e2, e3 satisfy

0 < e2 <
1

2
< e3 < 1:

Rearrangement of (7.12) yields the required sequence of fundamental inequal-
ities, namely

ð1� e2ÞEWnþ1nWn
ðuðnþ1Þ; yðnþ1ÞÞa e3EWn

ðuðnÞ; yðnÞÞð7:13Þ
� e2EWnþ1

ðuðnþ1Þ; yðnþ1ÞÞ:

The quantities EWn
are non-negative by assumption, and in consequence on

discarding the term on the left of (7.13), we conclude that

0aEWnþ1
ðuðnþ1Þ; yðnþ1ÞÞa e3

e2
EWn

ðuðnÞ; yðnÞÞ;ð7:14Þ

and by recursive application that the terms� e3

e2

�nþ1�rn
EWrn

ðuðrnÞ; yðrnÞÞ; rn ¼ 1; 2; . . . ðnþ 1Þ;ð7:15Þ

form a monotone decreasing bounded sequence in rn for each n. On setting
q ¼ e3=e2 > 1, expressions (7.13)–(7.15) become identical in type to (6.23)–(6.26).
The same conclusions therefore are valid and corresponding to Proposition 6.1
may be embodied in the following final result which represents the thermoelas-
tic version of Zanaboni’s formulation of Saint-Venant’s principle on elongated
regions.

Proposition 7.1. Subject to the stated conditions and for su‰ciently large n, we
have for linear thermoelastostatics the limiting behaviour

lim
n!l

EWnþ1nWn
ðuðnþ1Þ; yðnþ1ÞÞ ¼ 0:ð7:16Þ

As in Section 6, expression (7.8) immediately implies that both the mechanical
and thermal energies tend to zero in regions su‰ciently remote from the load
surface G.

8. Concluding remarks

It has frequently been commented that lack of appreciation and understanding,
and even neglect, of historical contributions can be inimical to future progress.
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Indeed, examination of old frontiers can a¤ord exciting new horizons that open
prospects of new frontiers.

An outstanding challenge to the approach described here is the derivation of
decay estimates for elongated regions from the fundamental inequality. It is also
of interest to extend the application of our procedure to non-elongated regions,
such as cones treated in [17, 26, 15, 1] by means of di¤erential inequalities, and
to elongated regions composed of fibre reinforced and functionally graded mate-
rials. Other open problems concern the Navier-Stokes equations and stochastic
processes. A preliminary incursion into time-dependent systems is undertaken in
[16] which explores the example of transient heat conduction. As mentioned
already, the innate simplicity of the approach suggests that these and other prob-
lems can be successfully treated.

A. Generalised Poincaré inequality

This Appendix is devoted to a statement and outline proof of an inequality
employed in Section 7 for the derivation of the fundamental inequaltiy required
in thermoelasticity to establish Saint-Venant’s principle. The regions Wn to which
the inequalities apply are defined in Section 3.

Proposition A.1. Let the continuously di¤erentiable scalar function vðxÞ be
defined on the region Wn and satisfy the boundary conditions

vðxÞA 0; x a GH ;ðA:1Þ
¼ 0; x a qWnnGH ;ðA:2Þ

where jAGH � qWn:
Then Z

Wn

v2 dxaC

Z
Wn

v; iv; i dx;ðA:3Þ

where C is a computable positive constant independent of n.

Proof. The proof, described in detail in [13], depends upon the decomposition
of Wn into disjoint regions W and Dn such that

Wn ¼ Dn AW; DnBW ¼ j;ðA:4Þ

where jAW � Wn is a fixed bounded region chosen independently of Wn. The
surface of W is such that

qW ¼ S1 AS2;ðA:5Þ

where GH � S2, and S1 is planar.
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Embedding inequalities are separately derived for Dn and W. First, we apply
the usual Poincaré inequality to each plane cross-section Dn of Dn chosen parallel
to the plane cross-section S1. The area jDnj of each cross-section, by hypothesis, is
bounded and consequently the Faber-Krahn inequality and integration over Dn

leads to Z
Dn

v2 dxa
D

j20p

Z
Dn

v; iv; i dx;ðA:6Þ

where j0 is the smallest positive zero of the Bessel function J0ð:Þ, and the constant
D is given by

D ¼ max
n

max
Dn ADn

jDnj:ðA:7Þ

The second component inequality is for the fixed region W and is derived in
[2] (see also [32]). It states that there exists a computable positive constant CW,
dependent on W such that Z

W

v2 dxaCW

Z
W

v; iv; i dx;ðA:8Þ

where vðxÞ now satisfies the boundary conditions

vðxÞA 0; x a GH AS1

¼ 0; x a qWnðGH AS1Þ;

Addition of inequalities (A.6) and (A.8) leads to (A.3) with

C ¼ max
� D

j20p
;CW

�
:
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[31] A. J. C. Barré de Saint-Venant, Mémoire sur les flexion des prismes, J. Math.
Pures Appl., 1 (1856), 89–189.

[32] V. G. Sigillito, Explicit a priori Inequalities with Applications to Boundary Value

Problems, Research Notes in Mathematics 13. London San Francisco Melbourne.
Pitman Publishing (1977).

[33] R. V. Southwell, An Introduction to the Theory of Elasticity, Oxford. Oxford
University Press (1941).

[34] N. G. Stephen, Decay rates for the compound circular cylinder, J. Strain Analysis for
Engineering Design, 26 (1991), 215–220.

[35] O. Zanaboni, Dimostrazione generale del principio del De Saint-Venant, Rend. Accad.
Lincei, 25 (1937), 117–121.

[36] O. Zanaboni, Valutazione dell’ errore massimo cui dà luogo l’applicazione del principio
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