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1. Introduction

The role of the principle of virtual works of analytical mechanics, in formulat-
ing Levi-Civita’s parallel transport of Riemannian geometry, has already been
emphasized in [12], to which the reader is referred for a more comprehensive his-
torical contextualization. In [12] the subject is covered mostly at the descriptive
level; this note deepens instead a more particular aspect of the matter, namely
a technical reconstruction of Levi-Civita’s original argument to generate this
important idea of di¤erential geometry, followed by its reformulation in today’s
language to enlighten its links to the modern formalism.

Tullio Levi-Civita wrote in the introduction to [14] that his initial motiva-
tion was the simplification of the calculation methods for the curvature of a
generic Riemannian manifold, involving Riemann’s symbols. To this end, a pre-
liminary geometric examination of the question enabled him to work out an idea
of parallelism on a Riemannian manifold. This idea turned out to be necessary to
compute the manifold curvature by the methods available at the time, basically
centered on vectorial circuitations along suitable infinitesimal closed contours
(among which are the so-called geodesic parallelogrammoids), lying on the given
manifold.

In pursuing this program for the computation of the curvature (which will
lead to the so-called Levi-Civita’s geometric characterization of Riemannian cur-
vature2, Levi-Civita devotes the first fourteen sections of his memoir – i.e., most
of the whole paper – to introduce and explain the new concept of parallelism

1Presented by S. Gra‰.
2Cf. [23], Ch. 8, pp. 316–317.



upon an arbitrary Riemannian manifold Vn with dimension nb 2, embedded in
some ordinary Euclidean space RN , denoted by SN . After that, he applies this
geometric idea to simplify the computation of the Riemannian curvature. His
main aim is to clarify the pioneering Riemann ideas on the curvature of metric
manifolds, sketched in the 1854 Habilitationschrift. He succeeds in this task by
means of an analogical-conceptual transcription of the initial purely geometric
question into a suitable analytical mechanics framework.

Levi-Civita devotes the last two sections (17 and 18) of [14], just to make
explicit what he deemed implicitly present in the original Riemann memoir, and
accomplishes this task through suitable geometrical tools, primarily his notion
of parallelism. Actually in these sections of [14], Levi-Civita uses his notion of
parallelism on a generic Riemannian manifold to clarify and determine more
easily the covariant behaviour of Riemann’s symbols as well as the curvature
of a Riemannian manifold with a generic metric. This is pursued by means of
that usual method based on infinitesimal geodesic parallelogrammoids and com-
mutation properties of the related first-order infinitesimal displacement operators
(see later).

The main purpose of the present note is to clarify, by going through the tech-
nical formal steps of Levi-Civita’s construction of the notion of parallelism, that
analytical mechanics had a primary, central role in the development of this idea.
Its influence is twofold: first on the intuition and then in guiding the analytical
treatment of the question, which enabled him to obtain the local di¤erential
equations of parallelism. In what follows, we reconstruct and explain (adding
the necessary details) the crucial points of the original Levi-Civita’s procedure,
which involves concepts and methods of analytical mechanics and, at the same
time, of di¤erential geometry, and conclude with a short reformulation of the
main concept in todays’ language.

2. A brief recall on the principle of virtual works

In this section, the principle of virtual works is recalled; we refer to [12] for a rel-
evant historical discussion. To stay as close as possible to Levi-Civita’s original
formulation, also for the sake of a methodological coherence, here his famous
treatise on rational mechanics [16] is followed, almost verbatim.3

The fundamental equations of dynamics for a general system of Nb 1 mate-
rial points of mass mi, subjected to preassigned active forces ~FFi and constraint
reactions ~RRi, are written as

ð~FFi �mi~aaiÞ þ ~RRi ¼~00; i ¼ 1; 2; . . . ;N;ð1Þ

where �mi~aai, i ¼ 1; . . . ;N, are the inertial forces. These equations are the formal
statement of the so-called D’Alembert’s principle, which formally reduces any
dynamical problem to a static one if the active forces ~FFi, are replaced by the

3As already mentioned, the object of this paper is a detailed technical reconstruction of the orig-
inal Levi-Civita’s argument in [14]. Therefore, all also his related works are textually followed.
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e¤ective forces4 ~FFi �mi~aai, i ¼ 1; . . . ;N. This principle, which may be stated in
many equivalent forms, is a key principle of analytical mechanics, together the
principle of virtual works.

The principle of virtual works, in turn, states that the total work of the reac-
tions ~RRi is, in case of smooth constraints and virtual displacements compatible
with them, non-negative for any irreversible virtual displacement, and zero for
any reversible virtual displacement.5 If the smooth constraints are bilateral,
(expressed, for example, by r equalities which define a smooth manifold of codi-
mension r), all compatible virtual displacements are reversible, and the virtual
work of constraint reactions is zero. Hence, the principle of virtual works reads

dF ¼
X
i

~RRi � d~PPi ¼ 0;ð2Þ

where d~PPi is the (non-zero) first-order virtual displacement of the point of appli-
cation of ~RRi. Relation (2) is also said to be the symbolic equation of statics.6

From (1) and (2), it follows Lagrange’s principle of virtual work which states a
finite system of material points is in equilibrium when the active forces ~FFi acting
on the system satisfy7

dL ¼
X
i

~FFi � d~PPi ¼ 0;ð3Þ

where d~PPi is the (non-zero) first-order infinitesimal displacement of the applica-
tion point of ~FFi. Thus, if a system is at equilibrium, the virtual work of all active
forces ~FFi will vanish for any virtual displacement. Relation (3) is also said to be
the symbolic equation of dynamics.8

If the constraints are holonomic, and expressed as equalities in the intrinsic
parameters of the system9, then the vanishing of the virtual work of the con-
straint reactions assumes a well-known geometrical meaning. If, in particular,
the material point is constrained to lie upon a smooth surface (or a smooth
curve), then the reaction is perpendicular to the surface (curve), while every
(non-zero) first-order virtual displacement lies on the tangent plane (tangent line)
of the surface (curve). In this case, the constraint reaction makes no work.10

4Cf. [16], Vol. I, Ch. XV, Sec. 1, No. 2; Vol. II, Part I, Ch. V, Sec. 3, Nos. 18–20.

5Cf. [16], Vol. I, Ch. XV; Vol. II, Part I, Ch. V, Sect. 3, Nos. 18–21; [18], Vol. I, Ch. XIV, Sect. 2,
Nos. 4–8; Vol. II, Ch. V, Sect. 3, Nos. 17–19; [1], Vol. II, Ch. V, Sect. 1, No. 4; [2], Ch. I, Sects. 1–2;

[9], Vol. 1, Ch. XIII, Sect. 4.
6Also said to be D’Alembert–Lagrange principle as reformulated by Lagrange (cf. [3], Ch. IV), or

general equation of virtual work (cf. [4], Vol. I, Ch. XV, Sect. 318; [13], Vol. I; [24]). See also the
references quoted in the previous footnote.

7Cf. [10], Ch. 1, Sect. 1.4, Eqs. (1.43)–(1.45); [25], Part I, Ch. 6, p. 210; Part III, Ch. 12, p. 441.
8Cf. [16], Vol. II, Part I, Ch. V, Sect. 3, No. 20.

9Cf. [16], Vol. I, Ch. VI, Sects. 1 and 3.
10Cf. [16], Vol. I, Ch. XV, Sec. 1, No. 3-a).
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This latter instance will be emblematic in the following historical inquiry,
when it will be discussed how and why the symbolic equation of dynamics (3) is
so crucial in developing Levi-Civita’s notion of parallel transport on a Rieman-
nian manifold. This will bring back into consideration, again following Levi-
Civita, a conceptual mechanical analogy concerning this example.

3. Levi-Civita’s parallel transport: a technical reconstruction

As already mentioned, the present investigation basically consists in a detailed
formal analysis of the original sources related to the question. Therefore, in this
section, I strictly follow the original paper of Levi-Civita, i.e., [14], and other
related works by Levi-Civita himself. Starting from the historical considerations
of [12], my intention is, here, to reconstruct technically the pathway followed by
Levi-Civita in reaching his notion of parallelism, through a detailed explicitation
of those points in which he uses arguments of analytical mechanics.

In [14], Sect. 1, Levi-Civita begins with the consideration of two arbitrary
directions ~aa, ~aa 0 standing out from two infinitesimally close points P, P 0 of a
generic Riemannian manifold Vn, embedded in a N-dimensional Euclidean space
SN (i.e., RN ) of suitable dimension N. Thinking Vn immersed into SN , we may
consider ~aa and ~aa 0 in SN ; the Euclidean geometry condition of parallelism means
that the two directions~aa,~aa 0 are parallel if and only if

angleðd~aa; ~ff~aa; ~ff Þ ¼ angleðd~aa 0; ~ff~aa 0; ~ff Þð4Þ

for any arbitrarily fixed direction ~ff issued from both P and P 0, according to the
equipollence relation in SN .

Then Levi-Civita underlines that this parallelism condition, in Vn, a priori
depends on the path joining P and P 0 on Vn; the independence of the path holds
only in ordinary Euclidean spaces (which are flat). Now, condition (4) has to be
specified. This will be done by analyzing the geometric behavior of~aa issued from
P, assumed to remain parallel (in SN ) according to (4), when P moves towards P 0

along a generic curve of Vn with endpoints P and P 0. This (synthetic) geometrical
view generates the (analytical) notion of parallelism in Vn, if interpreted in terms
of analytical mechanics.

Levi-Civita considers11 indeed a generic metric on an arbitrary finite-
dimensional manifold Vn

ds2 ¼
Xn

i; j¼1

aik dxi dxj:ð5Þ

Then he embeds Vn in a Euclidean space SN with dimension Nða nðnþ 1Þ=2Þ
large enough. Hence Vn may be described by the system of equations12

yn ¼ ynðx1; . . . ; xnÞ; n ¼ 1; 2; . . . ;N;ð6Þ

11Cf. [7], Ch. XXV.
12Cf. [14], Eq. (1), p. 4.

296 g. iurato



where the yn are (Cartesian) coordinates in SN , while the xk are intrinsic (equiv-
alently, Lagrangian – see below) coordinates on Vn.

Now remark that the system (6) may be thought of as the configuration space
of a constrained mechanical system with n degrees of freedom subjected to N
smooth holonomic bilateral constraints, which identifies a di¤erentiable mani-
fold structure of dimension n. This is the central point of the mechanical inter-
pretation of Levi-Civita’s parallelism notion, the unique possible within this
formal framework: the shift from a point on Vn to another infinitesimally close
is performed through (6), in corresponding conceptual analogy with a holonomic
mechanical system13 of material points with unitary mass, whose lagrangian
coordinates are ðx1; . . . ; xnÞ and whose kinetic energy T has by (5) the form
2T dt2 ¼

P
i; j aij dxi dxj.

For the sake of simplicity, Levi-Civita identifies any unit vector in SN , i.e.,
a direction in SN , with a unit vector ~aa having direction cosines an, n ¼ 1; . . . ;N,
and similarly any auxiliary direction of SN is identified by the unit vector ~ff , with
direction cosines fn, n ¼ 1; 2; . . . ;N; both vectors are supposed to stand out or
issue from an arbitrarily fixed point P of Vn, and immersed into SN . Therefore,
the direction cosines of both unit vectors ~aa and ~ff are computed with respect to
SN . All that is possible because Vn is embedded in the ambient space SN , so that
each direction belonging to Vn also belongs to SN .

The point P may be thought of as a unit-mass material point performing a
motion along an arbitrary smooth curve C lying on Vn, parameterized by the
curvilinear (or natural) abscissa s as in (5), so that an ¼ anðsÞ, n ¼ 1; 2; . . . ;N.
Let xi ¼ xiðsÞ, i ¼ 1; 2; . . . ; n be the intrinsic parametric equations of C. Then C,
thought as embedded in SN via (6), is represented also by the parametric equa-
tions yn ¼ ynðsÞ, n ¼ 1; 2; . . . ;N. Indeed xi ¼ xiðsÞ, i ¼ 1; 2; . . . ; n yields

yn ¼ ynðx1ðsÞ; . . . ; xnðsÞÞ; n ¼ 1; 2; . . . ;N:ð7Þ

Clearly in the analog constrained system considered above, C is a trajectory in
the manifold of the admissible configurations Vn, parameterized by time t accord-
ing to the parametric equations xn ¼ xnðtÞ, n ¼ 1; 2; . . . ;N, with t a Rþ.

To find a generic unit direction issuing from an arbitrary point P of C, Levi-
Civita di¤erentiates14 the parametric representation (7) with respect to the natu-
ral abscissa s

y 0
n ¼

Xn

i¼1

qyn

qxi
x 0
i ; n ¼ 1; 2; . . . ;N;ð8Þ

and obtains the direction cosines with respect to SN (i.e., y 0
n), while x 0

i , i ¼
1; . . . ; n are the direction cosines of the same unit direction but with respect to Vn.

Then he considers, at some point P of C, an arbitrarily fixed direction ~aa of

Vn through P, whose direction cosines are xðiÞ, i ¼ 1; 2; . . . ; n with respect to Vn,

13Cf. [16], Vol. II, Part I, Ch. V, Sect. 9, No. 63; Vol. II, Part II, Ch. XI, Sect. 4, No. 15.
14Cf. [14], (4), p. 5.
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and an, n ¼ 1; 2; . . . ;N with respect to SN ; by the identification y 0
n ! an (in SN ),

x 0
i ! xðlÞ (in Vn), from (8) it also follows15

an ¼
Xn

l¼1

qyn

qxl
xðlÞ; n ¼ 1; 2; . . . ;N:ð9Þ

an, n ¼ 1; . . . ; n is thus a linear form on xðlÞ, i.e., on the direction cosines of~aa with
respect to Vn.

When P moves along C, animated its motion on Vn, ordinary parallelism in
SN implies the equality of the angle between~aa and an auxiliary direction ~ff arbi-
trarily fixed in SN , according to the Euclidean condition (4) (of synthetic geome-
try). Now, starting from this stance, Levi-Civita gradually introduces an intrinsic
notion of parallelism in Vn, considering two nearby points P and P 0 of C, lying
on Vn, with P moving towards P 0 along C, never leaving Vn. Therefore, con-
sidering the arbitrarily fixed direction ~ff of SN , with direction cosines fn (in SN ),
the cosine of the angle between ~ff and~aa in SN , is given by

cosðd~ff ;~aa~ff ;~aaÞ ¼
XN
n¼1

an fn:ð10Þ

Then Levi-Civita considers an infinitesimal variation ds of the natural
abscissa s on Vn along C. This implies that the cosine (10) undergoes the follow-
ing first-order variation16

d½cosðd~ff ;~aa~ff ;~aaÞ� ¼ ds
XN
n¼1

a 0
nðsÞ fn:ð11Þ

Now, the ordinary parallelism in SN between the two directions ~aaðsÞ (in P)
and ~aaðsþ dsÞ (in P 0), as expressed by (4), would require (11) to vanish when ~ff
varies arbitrarily in SN , implying an to be constant or uniform, and vice versa.
Levi-Civita introduces the key argument which leads to the notion of parallelism
on Vn exactly at this point. Since, indeed, his main purpose is the computation of
the curvature of the Riemannian manifold Vn, his approach to the problem is first
an intuitive one, namely he works out initially a geometrical intuition, and then

15Cf. [14], Eqs. (7), p. 6.
16As for this first-order variation, the arbitrariness with which ~ff may be fixed entails that such

an auxiliary direction – defined, as an ordinary vector, according to the equipollence relation in SN –
may be considered as independent of s, at least locally in P a Vn (i.e., in TPðVnÞ – see later). Instead,

the direction~aa a priori depends on s as it varies with the motion of P along C on Vn, even in a neigh-
borhood of P. The equipollence relation as settled in SN , locally restricted to a neighborhood of

P a Vn and defined at varying of all the curves Cð� VnÞ passing by P, will led to the individuation
(and, later, to the modern definition) of the so-called tangent space TPðVnÞ to Vn in P. In [14], Levi-

Civita considers ~ff as belonging only to TPðVnÞ, and not to the whole of SN as in (4), to get his
notion of parallelism on Vn.
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carries on its analytical formulation within the framework of absolute di¤erential
calculus.

The usual way to determine the curvature of a Riemannian manifold Vn con-
sists in computing the circuitation of a given vector around a suitable infinitesi-
mal closed path entirely lying on the given manifold, usually a ‘‘parallelogram-
moid’’ whose sides are first-order infinitesimal geodetic traits, drawn around an
arbitrary point P of Vn. By definition, this vector is rotated, all around the circuit,
in a parallel way to itself. After a complete circuitation, once the departure point
is recovered, the deviation angle between initial and final directions in the coin-
ciding final and initial points, provide a (first-order) computation of the curvature
of Vn.

A preliminary notion of parallelism on a generic Riemannian manifold is thus
needed to determine its curvature; it is exactly to this end that Levi-Civita, mak-
ing appeal to analytical mechanics, gives a first geometrical sketch to the solution
of this formal problem. In this geometrical view of the question, Levi-Civita con-
siders only circuitations of a generic applied vector (as, for instance, ~aa) whose
application point P never leaves Vn.

This circuitation therefore takes place in a neighborhood of P on Vn. In Levi-
Civita’s geometrical intuition, its main purpose should be, so to speak, ‘‘to feel
the shape of Vn’’, i.e., its distortion, bending, deformation, and so on. An intu-
itive way to accomplish this end, is to warrant the circuitating vector ~aa to stay
always related, during the circuitation (which is a composition of sequential shifts
along infinitesimal traits of smooth curves on Vn usually, geodesic curves), with
some intrinsic geometric entity characterizing Vn – i.e., TPðVnÞ. Therefore the
above considerations should a fortiori hold along each of these infinitesimal curve
traits.

A Riemannian manifold is characterized by the property to be locally iso-
morphic to an Euclidean space SN ; hence the tangent space of Vn at some
point P, denoted17 TPðVnÞ, is just that geometric entity characterizing the
local di¤erentiable structure underlying any Riemannian manifold. Therefore,
the Euclidean condition (11) will have an intrinsic meaning related only to
Vn when the variability of ~ff is restricted from the whole of SN to TPðVnÞ,
thus guaranteeing the above required reference of ~aa to Vn along its motion
on Vn. This intrinsic geometrical restriction, in particular, should hold for
(11).

At the same time, the restriction ~ff a TPðVnÞ also guarantees that the infinites-
imal motion of~aa along C ‘‘smooths out’’ Vn, thereby ‘‘feeling’’ its local curvature.
This is the key geometric intuition of Levi-Civita in order to constructively define
a notion of parallelism on a generic Riemannian manifold. The analytic formula-
tion of this geometric idea represents the precise point where Levi-Civita intro-
duces analytical mechanics into play. More precisely, through the principle of
virtual works in its deepest geometric aspect.

17Here, we use a modern notation for the tangent vector space to a Riemannian manifold, not

yet used by Levi-Civita in his 1917 memoir, in which he simply speaks of ‘‘a lying of SN tangent in
P to Vn’’ ([14], p. 2).
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Hence Levi-Civita claims that, to this end, the directions ~ff must be exactly
those compatible with the constraints18 (6), if one assumes valid the formal anal-
ogy which considers P as a (unit-mass) material point subjected to the smooth

constraints (6). Accordingly, ~ff must lie on TPðVnÞ, that is to say, ~ff must be cor-
related, in this mechanical analogy, with (non-zero) first-order displacements
compatible with the constraints (6). Under these conditions, if we wish to define
a vectorial displacement (of~aa) intrinsically related to (or correlated with) Vn, then
we should require that, while P moves along C on Vn, the direction ~aa must be
transported, along Cð� VnÞ, always in such a way that ~ff a TPðVnÞ, that is to
say, compatibly with the smooth constraints (6).

At this point, still inside the above geometric framework provided by analyti-
cal mechanics, Levi-Civita, in looking at the formal aspect of (11), glimpses a
kind of ‘‘physical work’’ in SN made by some ‘‘active forces’’19, whose Cartesian
components formally correspond to a 0

nðsÞ, as applied to the (unit-mass) material
point P moving along C with respect to the smooth constraints (6) which identify
Vn as a holonomic mechanical system. Hence, in this mechanical analogy, Levi-
Civita sees in (11) the formal expression of the principle of virtual works accord-
ing to (3), if we replace fn a TPðVnÞ with some quantities, say dyn, proportional to
(non-zero) first-order virtual displacements compatible with smooth constraints
(6). This replacement is formally allowed as these latter displacements dyn, by def-
inition, lie on TPðVnÞ.

Therefore, with the identification20 ~FF !~aa, d~PP ! ~ff , assumed in (3), hence
with the further replacement of ~ff ¼ ð fnÞ a TPðVnÞ (in SN ) with dyn (in Vn),
the assumption dL ¼ 0 entails that the Euclidean parallelism condition on
Vnð,! SNÞ, expressed by the vanishing of (11), reduces to

XN
n¼1

a 0
nðsÞdyn ¼ 0;ð12Þ

for any (non-zero) variation dyn, that is, ‘‘for any admissible first-order displace-
ment compatible with the constraints’’ (6), as Levi-Civita writes textually in [14],
p. 7. Under suitable mechanical interpretation of the a 0

nðsÞ, for instance consider-
ing them as a kind of generic mechanical action in SN generated by some poten-
tial anðsÞ, (12) is a formulation of the virtual work principle in SN related to the
smooth bilateral holonomic system defined by (6), hence to analytical mechanics
on a Riemannian manifold.21

18Cf. [14], p. 7.
19Cf. [17], p. 120.

20We cannot consider the correspondence ~RR !~aa instead of ~FF !~aa, because, a priori, not always
~aa is normal to Vn as required by reactions to smooth constraints. Therefore, in applying the principle

of virtual works in this pattern analogy of Levi-Civita, we should take into account the symbolic
equation of dynamics (as involving active forces ~FF ), rather than the symbolic equation of statics

(as involving reactions ~RR).
21Cf. [27], Ch. V; [22], Ch. V; [26], Ch. II; [19], Ch. VI, Sect. I, Nos. 87–89, 92; [3], Ch. IV; [5],

Part II, Ch. V, Sect. 6; [11], Ch. 3, Sect. 2, No. 2.6.; [20], Ch. 15; [8], Ch. 1, Sects. 1.9–12, Ch. 4; [25],
Part III, Ch. 12.
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Nevertheless, the condition (12) is still related to SN as in it still figures the
dimension N of SN , not the intrinsic dimension n of Vn, and the Cartesian coor-
dinates yn of SN , not the intrinsic ones xk of Vn. Levi-Civita solved also this for-
mal problem as follows. To get an intrinsic form, from (6), one first has22

dyn ¼
Xn

k¼1

qyn

qxk
dxk; n ¼ 1; 2; . . . ;N;ð13Þ

where dxk, k ¼ 1; . . . ; n, is an arbitrary (non-zero) first-order virtual displacement
on TPðVnÞ (with respect to Vn). Hence (12) reduces to23

XN
n¼1

a 0
nðsÞ

qyn

qxk
¼ 0; k ¼ 1; 2; . . . ; n:ð14Þ

These N conditions, in the intrinsic variables (or Lagrangian coordinates) xk,
express the parallelism of the direction~aa moving along C on Vn. To obtain then
a fully intrinsic relation in Vn, it is necessary to involve only the parameters of Vn,
eliminating any reference to SN .

To this end, one replaces the direction cosines anðsÞ (in SN ) with their expres-
sion given by (9), which involve only the intrinsic direction cosines xðiÞðsÞ (in Vn).
Omitting the algebraic details, one finally deduces24

dxðiÞ

ds
þ

Xn

j; l¼1

G i
jl

dxj

ds
xðlÞ ¼ 0; i ¼ 1; 2; . . . ; n;ð15Þ

where G i
jl are the Christo¤el symbols of the second kind in the intrinsic coordi-

nates xk (of Vn), defined as follows25

G i
jl ¼

Xn

k¼1

aik
�qakl
qxj

þ qajk

qxl
� qajl

qxk

�
; i; j; l ¼ 1; 2; . . . ; n:ð16Þ

kaikk is the coe‰cient matrix of the reciprocal form of (5). The (15) are the
so-called (intrinsic) Levi-Civita’s equations of parallelism on a Riemannian man-
ifold Vn, equipped with a generic metric of the type (5).

They are first-order ordinary di¤erential equations for the direction cosines
xðiÞ of the arbitrary direction ~aa, standing out from P, which is transported,
along a curve C on Vn, up to the infinitesimal nearby point P 0, where a par-
allel direction ~aa 0 (to ~aa) issues, with new direction cosines xðiÞ þ dxðiÞ such that

22Cf. [14], unnumbered equation before eqs. (8), p. 7.
23Cf. [14], Eq. (8), p. 7.

24Cf. [14], Eq. (Ia), p. 8.
25Cf. [6], Ch. II.
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(by (15))

dxðiÞ þ
Xn

j; l¼1

G i
jl dxjx

ðlÞ ¼ 0 i ¼ 1; 2; . . . ; n:ð17Þ

The equations (15), identify a (regular) linear system of ordinary di¤erential

equations for xðiÞ, i ¼ 1; . . . ; n. The standard existence and uniqueness theorems
make possible to determine a (unique) direction parallel to every other preas-
signed. This is the starting point for each possible notion of connection of di¤er-
ential geometry; its coe‰cients are G i

jl of (17).
This last point can be reformulated in modern notations as follows.
If the smooth curve C has parametric equations x : ½0; 1� ! Vn, then Levi-

Civita’s local parallel transport along C, expressed by the di¤erential forms (17),
establishes an isomorphism between the tangent spaces TxðtÞðVnÞ, t a ½0; 1� (if
P a C is identified by xðtÞ), of the tangent bundle TðVnÞ ¼:

S
P AVn

TPðVnÞ (with
disjoint union), placed at infinitesimal nearby points of Vn. Levi-Civita’s global
parallel transport along C, as expressed by the ODE system (15), is the isomor-
phism, denoted ‘C, defined by

‘C : Txð0ÞðVnÞ ! Txð1ÞðVnÞ:ð18Þ

Hence (15) yields, from the preassigned initial direction ðxð1Þð0Þ; . . . ; xðnÞð0ÞÞ, the
final direction ðxð1Þð1Þ; . . . ; xðnÞð1ÞÞ as the solution to (15). This solution exists
and is unique by the well-known theorems of existence and uniqueness for the
regular system of first-order ordinary di¤erential equations (15). Therefore, one
says that the vector xð0Þ a Txð0ÞðVnÞ is parallel (in the sense of Levi-Civita) to
the vector xðtÞ ¼: ‘Cðxð0ÞÞ a TxðtÞðVnÞ, along Cð� Vn), for every t a �0; 1� arbi-
trarily fixed. Upon variation of C in the set of all possible smooth curves C of
Vn, ‘C identifies a linear connection on Vn, denoted ‘, which generalizes the usual
notion of directional derivative of ordinary Euclidean space to general Rieman-
nian manifolds.26

Thus, the formal deduction of the intrinsic conditions (15) (or (17)), character-
izing Levi-Civita’s notion of parallel transport of the generic direction~aa along an
arbitrary curve27 Cð� VnÞ as a function of its directional parameters x1; . . . ; xn
with respect to Vn, basically relies on the symbolic equation of dynamics (3).
This yields the parallelism conditions (14), whence (15). We can say that the
power of Levi-Civita’s discovery is to put into relation infinitesimally nearby
points of a Riemannian manifold Vn by means of a linear isomorphism (i.e.,
‘C) ‘connecting’ the related (linear) tangent spaces at Vn. This construction,
deeply rooted in analytical mechanics, and never considered before, became
therefore a milestone of di¤erential geometry.

26Cf. [20], Part I, Ch. 1, Sect. 1.1.
27Levi-Civita also consideres (in [14], Sect. 7) the particular case where C is a geodetic curve of

Vn, but this has not been neither the general case considered in [14] in deducing the main equations
(17) nor the initial motivation of his 1917 memoir.
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