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Abstract. — We prove that there are no networks homeomorphic to the Greek ‘‘Theta’’ letter

(a double cell) embedded in the plane with two triple junctions with angles of 120 degrees, such
that under the motion by curvature they are self-similarly shrinking. This fact completes the classifi-

cation of the self-similarly shrinking networks in the plane with at most two triple junctions, see
[5, 7, 18].
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1. Introduction

Recently, the problem of the evolution by curvature of a network of curves in the
plane got the interest of several authors [3, 7, 11, 12, 15–19]. It is well known,
after the work of Huisken [8] in the smooth case of the hypersurfaces in the
Euclidean space and of Ilmanen [9, 10] in the more general weak settings of vari-
folds, that a suitable sequence of rescalings of the subsets of Rn which are evolv-
ing by mean curvature, approaching a singular time of the flow, converges to a so
called ‘‘blow-up limit’’ set which, letting it flow again by mean curvature, simply
moves by homothety, precisely, it shrinks down self-similarly toward the origin of
the Euclidean space.

This procedure and the classification of these special sets (possibly under some
hypotheses), called shrinkers, is a key point in understanding the asymptotic
behavior of the flow at a singular time.

Dealing with the evolution of a single curve in the plane, it is easy to see that
any C2 curve g : I ! R2 which moves by curvature, self-similarly shrinking, must
satisfy the following ‘‘structural’’ equation (which is actually an ODE for g)

k þ g? ¼ 0;ð1:1Þ

where k is the vector curvature of the curve at the point g and g? denotes the nor-
mal component of the position vector g. Introducing an arclength parameter s on
the curve g, we have a unit tangent vector field t ¼ d

ds
g, a unit normal vector field



n which is the counterclockwise rotation of p=2 in R2 of the vector t and the cur-
vature vector given by k ¼ kn ¼ d 2

ds2
g, where k is then simply the curvature of g.

With these notations, the above equation can be rewritten as

k þ 3g j n4 ¼ 0:ð1:2Þ

It is then known, by the work of Abresch–Langer [1] and independently of
Epstein–Weinstein [6], that the only complete, embedded, self-similarly shrink-
ing curves in R2 without end-points, are the lines through the origin and the unit
circle (they actually classify all the closed, embedded or not, self-similarly shrink-
ing curves in the plane).

The same equation k þ g? ¼ 0 (that is, k þ 3g j n4 ¼ 0) must be satisfied by
every curve of a network in the plane which self-similarly shrinks to the origin
moving by curvature (see [14, 15], for instance). Moreover, for ‘‘energetic’’ rea-
sons, it is natural to consider networks with only triple junctions and such that
the three concurring curves (which are Cl) form three angles of 120 degrees
between each other – ‘‘Herring’’ condition – such networks are called regular.
In such a class, the embedded shrinking regular networks (without self-
intersections) play a crucial role, indeed, they ‘‘reasonably’’ arise as blow-up
limits of the motion of networks without self-intersections (this is still a conjec-
ture for a general network, but there holds for networks with at most two triple
junctions – see the end of the section).

Our goal in this paper is to complete and describe the classification of the
complete, embedded, self-similarly shrinking regular networks in the plane with
at most two triple junctions, after the contributions in [5, 7, 18].

If one consider networks with only one triple junction, the only complete,
embedded, regular shrinkers are given (up to rotations) by the ‘‘standard triod’’
and the ‘‘Brakke spoon’’ (first described in [4]), as in Figure 2. Actually, the loop
of the Brakke spoon is the only possible shape for a region of every regular
shrinker (with any number of triple junctions) bounded by a single curve (and
the curve ‘‘exiting’’ by such region is straight).

About networks with two triple junctions, it is not di‰cult to show that the
possible topological shapes for a connected, complete, embedded, regular net-
work without end-points, are the ones depicted in Figure 3.

Figure 1. The only complete, embedded, self-similarly shrinking curves in R2: lines
through the origin and the unit circle.
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Then, looking for shrinkers with one of these structures, by the cited work of
Abresch and Langer [1], it follows that any unbounded curve of such shrinkers
must be a piece of a halfline from the origin, going to infinity. Then, di¤erentiat-
ing in arclength s the equation k ¼ �3g j n4, we get the ODE for the curvature
ks ¼ k3g j t4. Suppose that at some point k ¼ 0, then it must also hold ks ¼ 0 at
the same point, hence, by the uniqueness theorem for ODEs we conclude that k is
identically zero and we are dealing with a piece of a straight line, as 3x j n4 ¼ 0
for every x a g. Notice that, if a curve g contains the origin, at such point its cur-
vature is zero by the equation k þ 3g j n4 ¼ 0, hence it must be straight.

Now, if a regular shrinker had the topological shape of the first drawing on
the top of Figure 3, the four unbounded curves should be halflines, which implies
that the two triple junctions should coincide with the origin, which is a contradic-
tion (the curve g5 should be a non trivial segment between the triple junctions),
thus, such a shape is excluded.

Then, by an argument of Hättenschweiler [7, Lemma 3.20], if a regular
shrinker contains a region bounded by a single curve, the shrinker must be a
Brakke spoon, that is, no other triple junctions can be present. This excludes the
possibility for a regular shrinker also to have a shape like the second one in the
first row of Figure 3 or the two in the second row.

It remains to discuss the last two cases: one is the ‘‘lens/fish’’ shape and the
other is the shape of the Greek ‘‘theta’’ letter (or ‘‘double cell’’). It is well known
that there exist unique (up to a rotation) lens-shaped or fish-shaped, complete,
embedded, regular shrinkers which are symmetric with respect to a line through
the origin of R2 (see [5, 18]).

It was instead unknown whether regular Y-shaped shrinkers (or simply
Y-shrinkers) exist, with numerical evidence in favor of the conjecture of non-
existence (see [7]). We are going to show that this is actually the case.

Theorem 1.1. There are no regular Y-shrinkers.

As a consequence, we have the following classification result.

Theorem 1.2. The shrinkers of Figure 4 (‘‘lens’’ and ‘‘fish’’) are the only (up to
rotations) complete, embedded, self-similarly shrinking regular networks in the
plane with two triple junctions.

Figure 2. A standard triod and a Brakke spoon.
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We conclude this discussion mentioning that the main motivation for this
problem is given by the fact that for an evolving network with at most two triple
junctions, the so called multiplicity-one conjecture holds (see [14]), saying that any
limit shrinker of a sequence of rescalings of the network at di¤erent times is again

Figure 4. A lens-shaped and a fish-shaped shrinker.

Figure 3. The possible topological shapes of a complete, connected, embedded network
with two triple junctions.
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a ‘‘genuine’’ embedded network without ‘‘double’’ or ‘‘multiple’’ curves (curves
that in such convergence go to coincide in the limit). This is a key point in the
singularity analysis (actually, in general, for mean curvature flow), together with
the classification of these limit shrinkers, which is complete after our result Theo-
rem 1.1, for such ‘‘low complexity’’ networks, thus leading to a detailed descrip-
tion of their motion in [13].

To show Theorem 1.1 we first analyze the geometric properties that a hypo-
thetical Y-shrinker must satisfy, reducing the proof of non-existence to show that
a certain parametric integral is always smaller than p=2, for every value of the
parameter. The proof of such estimate, mixing some approximation techniques
and numerical computations based on interval arithmetic, is shown in full detail
in [2].

2. Basic properties of shrinking curves

Consider a shrinking curve g : I ! R2 parametrized in arclength s, where I � R

is an interval. We denote with R : R2 ! R2 the counterclockwise rotation of
90 degrees. Then, the relation

gss ¼
d 2g

ds2
¼ k ¼ �3g j n4 ¼ � g

����R�dgds�
� �

gives an ODE satisfied by g. It follows that the curve is smooth and it is not dif-
ficult to see that for every point x0 a R2 and unit velocity vector t0, there exists a
unique shrinking curve (solution of such ODE) parametrized in arclength, pass-
ing at s ¼ 0 through the point x0 with velocity t0, defined for all s a R.

Di¤erentiating in arclength the equation k ¼ �3g j n4, we get the ODE for
the curvature ks ¼ k3g j t4. Suppose that at some point k ¼ 0, then it must also
hold ks ¼ 0 at the same point, hence, by the uniqueness theorem for ODEs, we

Figure 5. A hypothetical Y-shrinker.
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conclude that k is identically zero and we are dealing with a line L which, as
3x j n4 ¼ 0 for every x a L, must contain the origin of R2.

So we suppose that k is always nonzero and, by looking at the structural equa-
tion k þ 3g j n4 ¼ 0, we can see that the curve is then strictly convex with respect
to the origin of R2. Another consequence (by the uniqueness theorem for ODE) is
that the curve must be symmetric with respect to any critical point (maximum or
minimum) of its curvature function. Notice that if the curve is not a piece of a
circle, the critical points are all nondegenerate and isolated (if the curve has
bounded length, their number is finite).

Computing the derivative of jgj2,

djgj2

ds
¼ 23g j t4 ¼ 2ks=k ¼ 2

d log k

ds

we get k ¼ Cejgj
2=2 for some constant C a R, that is, the quantity

E ¼ EðgÞ :¼ ke�jgj2=2;ð2:1Þ

that we call Energy, is constant along the curve. Equivalently, 3g j n4e�jgj2=2 is
constant. A solution g has positive energy if k > 0, so that g runs counterclock-
wise around the origin, g has negative energy if k < 0, so that g runs clockwise
around the origin, g has energy zero if k ¼ 0, so that g is a piece of a straight
line through the origin.

We consider now a new coordinate y ¼ arccos3e1 j n4; this can be done for the
whole curve as we know that it is convex (obviously, y is only locally continuous,
since it ‘‘jumps’’ after a complete round).

Di¤erentiating with respect to the arclength parameter we have dy
ds
¼ k and

ky ¼ ks=k ¼ 3g j t4; kyy ¼
1

k

dky

ds
¼ 1þ k3g j n4

k
¼ 1

k
� k:ð2:2Þ

Multiplying both sides of the last equation by 2ky we get d
dy
½k2

y þ k2 � log k2� ¼
0, that is, the quantity

E :¼ k2
y þ k2 � log k2

is constant along all the curve. Notice that such quantity E cannot be less than 1
(if kA 0), moreover, if E ¼ 1 we have that k2 must be constant and equal to one
along the curve, which consequently must be a piece of the unit circle centered at
the origin of R2.

As Eb 1, it follows that k2 is uniformly bounded from above and away from
zero, hence, recalling that k ¼ Eejgj

2=2, the curve g is contained in a ball of R2

(and it is outside some small ball around the origin).
Since we are interested in the curves of a nontrivial connected, compact

(Y-shaped), regular network, there will be no unbounded lines or complete circles
and all the curves of the network will be images of a closed bounded interval,
once parametrized in arclength.
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Resuming, either g is a segment or k2 > 0, the equations (2.2) hold, the Energy
E ¼ ke�jgj2=2 and the quantity E ¼ k2

y þ k2 � log k2 b 1 are constant along the
curve, where y ¼ arccos3e1 j n4. Moreover, the curve is locally symmetric with
respect to the critical points of the curvature, hence the curvature kðyÞ is oscillat-
ing between its maximum and its minimum.

Suppose now that kmin < kmax are these two consecutive critical values of k.
It follows that they are two distinct positive zeroes of the function k2

y ¼ E þ
log k2 � k2, when E > 1, with 0 < kmin < 1 < kmax.

We have then that the change Dy in the angle y along the piece of curve
delimited by two consecutive points where the curvature assumes the values kmin

and kmax is given by the integral

Dy ¼ IðEÞ ¼
Z kmax

kmin

dkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � k2 þ log k2

p :ð2:3Þ

Proposition 2.1 (Abresch and Langer [1]). The function I : ð1;þlÞ ! R
satisfies

(1) limE!1þ IðEÞ ¼ p=
ffiffiffi
2

p
,

(2) limE!þl IðEÞ ¼ p=2,
(3) IðEÞ is monotone decreasing.

As a consequence IðEÞ > p=2.

We write now the curve g in polar coordinates, that is, gðsÞ ¼ ðrðsÞ cos fðsÞ;
rðsÞ sin fðsÞÞ, then, the arclength constraint and the shrinker equation (1.2)
become

r2s þ r2f2
s ¼ 1;ð2:4Þ

r2fs þ rrssfs � 2r2s fs � r2f3
s � rrsfss ¼ 0;

moreover,

cosðangle between g and gsÞ ¼
g � gs
jgj jgsj

¼ rs:ð2:5Þ

Notice that shrinking curves with positive energy have fs > 0 everywhere, indeed,
either fs is always di¤erent by zero or the curve is a segment of a straight line
through the origin of R2.

The curvature and the Energy E ¼ ke�jgj2=2 are given by

k ¼ r2fs; E ¼ r2fse
�1

2r
2ð2:6Þ

and, when the energy is positive, it will be useful to consider also the quantity
F :¼ �logðEÞ, that is,

F ¼ �logðEÞ ¼ 1

2
r2 � logðr2fsÞ:ð2:7Þ
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Since 0 < rfs a 1, by equation (2.4), one has

Fb
1

2
r2 � logðrÞb 1

2
:

Let us assume that g is a shrinking curve with k > 0 (the assumption on the
sign of k is not restrictive, up to a change of orientation of the curve). Then,
by the definition of the Energy (2.1), it is immediate to see that the points
where k attains its maximum (resp. minimum) coincide with the points where
r attains its maximum (resp. minimum). Thus, at any extremal point of k there
hold ky ¼ 0, rs ¼ 0 and also rfs ¼ 1, by equation (2.4), hence, by equation (2.6),
we have k ¼ r. Then, computing E and F at such point (clearly, ky ¼ 0), we
get

E ¼ k2 � 2 log k and F ¼ k2=2� log k;

that is, E ¼ 2F ¼ log
�
1
E2

�
.

Since the Energy and the quantity F are constant, this relation must hold
along all the curve g and F ¼ r2min=2� log rmin ¼ r2max=2� log rmax.

Since the function mðtÞ ¼ t2=2� log t is strictly convex with a minimum value
1=2 at t ¼ 1, to each value of Fb 1

2 , there correspond two values rminðFÞ and
rmaxðFÞ which are the admissible (interior) minimum and maximum of r on g,
with rminðFÞ < 1 < rmaxðFÞ if F > 1

2 . It follows easily that rmax : ð1=2;þlÞ
! ð1;þlÞ is an increasing function and rmin : ð1=2;þlÞ ! ð0; 1Þ is a decreas-
ing function. Viceversa, the quantity F can be seen as a decreasing function of
rmin a ð0; 1� and an increasing function of rmax a ½1;þlÞ.

Let smin; smax a R with smin < smax be two consecutive (interior) extremal
points of r (hence, also of k) such that rðsminÞ ¼ rminðFÞ, rðsmaxÞ ¼ rmaxðFÞ.
Since at the interior extremal points of r the vectors g, gs must be orthogonal, it
follows that the quantity considered in formula (2.3) satisfies

Dy ¼
Z smax

smin

fsðsÞ ds :¼ IðFÞ;ð2:8Þ

that is, the integral IðFÞ is the variation of the angle f on the shortest arc such
that r passes from rmin to rmax.

Then, by the above discussion, IðFÞ ¼ IðEÞ ¼ Ið2FÞ and we can rephrase
Proposition 2.1 in terms of the integral IðFÞ as follows.

Proposition 2.2. The function I : ð1=2;þlÞ ! R satisfies

(1) limF!ð1=2Þþ IðFÞ ¼ pffiffi
2

p ,
(2) limF!þl IðFÞ ¼ p

2 ,
(3) IðFÞ is monotone decreasing.

As a consequence IðFÞ > p
2 for all F > 1

2 .
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3. The proof of Theorem 1.1

The proof of Theorem 1.1 is based on the following lemma whose proof can be
found in [2].

Lemma 3.1. Let g be a shrinking curve, parametrized counterclockwise by
arclength, with positive curvature and let ðs0; s1Þ be an interval where s 7! rðsÞ is
increasing. If rsðs0Þb 1

2 , namely, if the angle formed by the vectors gðs0Þ and
gsðs0Þ is a p

3 , then Z s1

s0

fsðsÞ ds <
p

2
:ð3:1Þ

Similarly, if s 7! rðsÞ is decreasing on ðs0; s1Þ and rsðs1Þa� 1
2 , namely the angle

formed by the vectors gðs1Þ and gsðs1Þ is b 2p
3 , then the same conclusion holds.

Remark 3.2. Proving estimate (3.1) is equivalent to show thatZ s1

s0

ysðsÞ ds <
2p

3
;ð3:2Þ

where yðsÞ is the angle formed by e1 ¼ ð1; 0Þ and the normal vector nðsÞ. Indeed,
clearly Z s1

s0

ysðsÞ dsa
Z s1

s0

ysðsÞ ds;
Z s1

s0

fsðsÞ dsa
Z s1

s0

fsðsÞ ds;

where kðs1Þ ¼ kmax, and s0 is the maximum sa s0, assuming it exists, such that
the angle formed by the vectors gðsÞ and gsðsÞ equals p

3 and the map s 7! rðsÞ is
increasing on ðs; s1Þ. Then one observes (by elementary angle geometry) thatZ s1

s0

ysðsÞ ds ¼
Z s1

s0

fsðsÞ dsþ
p

6
:

The integral in (3.2) can be expressed as beforeZ s1

s0

ysðsÞ ds ¼
Z kðs1Þ

kðs0Þ

dkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � k2 þ log k2

p ;

hence it is bounded by IðEÞ, defined in formula (2.3) (because, in general,
kmina kðs0Þa kðs1Þa kmax). We know that IðEÞ < pffiffi

2
p , but being 2p

3 < pffiffi
2

p , esti-

mate (3.2) is not a direct consequence of Proposition 2.1.
Even if such integral is well studied, we found it easier to prove estimate (3.1)

than to show thatZ s1

s0

ysðsÞ ds ¼
Z kðs1Þ

kðs0Þ

dkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � k2 þ log k2

p <
2p

3
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and this is the reason for our introduction and computation in polar coordinates
ðr; fÞ.

We assume now that a Y-shrinker exists, described by three embedded shrink-
ing curves gi : ½si; si� ! R2, parametrized by arclength, expressed in polar coordi-
nates by gi ¼ ðri cosðfiÞ; ri sinðfiÞÞ, for i a f1; 2; 3g. The two triple junctions will
be denoted with A, B and the three curves intersect each other only at A and B
(which are their endpoints) forming angles of 120 degrees. Since the shrinker
equation (1.1) is invariant by rotation, we can assume that the segment AB is
contained in the straight line fðx; qÞ : x a Rg with qb 0 and we let A ¼ ðxA; qÞ,
B ¼ ðxB; qÞ with xA < xB.

We begin with some preliminary elementary lemmas. To simplify the nota-
tion, in all this section we will denote the arclength derivative d

ds
with 0.

Lemma 3.3. For all i a f1; 2; 3g, the curve gi is either a straight line or such
that Z si

si

f 0
i ðsÞ ds

�����
�����< 2p:

Proof. Without loss of generality, assume that all g1, g2, g3 start at B and end at
A, namely giðsiÞ ¼ B, giðsiÞ ¼ A, for i a f1; 2; 3g.

Assume, by contradiction, that g1 is a curve with positive energy and curva-
ture such that Z s1

s1

f 0
1ðsÞ dsb 2p:

Then there exist s1; t1 a S1 such thatZ s1

s1

f 0
1ðsÞ ds ¼ 2p;

Z s1

t1

f 0
1ðsÞ ds ¼ 2p:

Since g1 does not intersect itself, one has ðr1ðs1Þ � r1ðs1ÞÞðr1ðs1Þ � r1ðt1ÞÞ > 0.
Assume, without loss of generality, that

r1ðs1Þ < r1ðs1Þ; r1ðt1Þ > r1ðs1Þ:

Now consider the triple junction at the point B, the straight line r passing through
B and the origin, and let H1 and H2 be the open half-planes in which r divides R2,
where H1 is the one containing g 01ðs1Þ. Since the three curves g1, g2, g3 form angles
of 2p

3 at B, at least one among g 02ðs2Þ and g 03ðs3Þ belongs to H2. Without loss
of generality, let g 02ðs2Þ a H2. Since f 0

2 never vanishes, the curve g2 cannot reach
the endpoint A without crossing the curve g1 at some interior point, which is a
contradiction. r

Lemma 3.4. Let S ¼ ½s; s� and g : S ! R2 be a shrinking curve parametrized by
arclength, expressed in polar coordinates by g ¼ ðr cosðfÞ; r sinðfÞÞ. Assume that
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f 0ðsÞ > 0 in S and

0 < Da p; where D :¼
Z s

s

f 0ðsÞ ds:

Let L be the straight line passing through the two points gðsÞ, gðsÞ and H1 and H2

be the two closed half-planes in which L divides the plane R2. Then the arc gðSÞ is
entirely contained in H1 or H2.

Moreover, if D < p and gðSÞ � H1, then the origin of R2 belongs to the interior
of H2.

Proof. By the assumption f 0 > 0, we have k > 0 and the arc gðSÞ is con-
tained in the cone C :¼ ffðsÞa fa fðsÞg, which is convex by the assumption
0 < Da p. Since the curvature is positive, the closed set T delimited by the arc
gðSÞ and by the two line segments joining the origin with gðsÞ and gðsÞ is a convex
subset of R2, hence, the line segment joining gðsÞ with gðsÞ is contained in T,
which implies the thesis. r

Coming back to our Y-shrinker, because of its topological structure, one of
the curves is contained in the region delimited by the other two, moreover the
curvature of both these two ‘‘external’’ curves is always non zero, otherwise any
such curve is a segment of a straight line passing through the origin, then the 120
degrees condition at its endpoints would imply that it must be contained in the
region bounded by the other two curves, hence it could not be ‘‘external’’. Notice
that, on the contrary, the ‘‘inner’’ curve could actually be a segment for the
origin.

We call g2 the ‘‘inner’’ curve and, recalling that the origin of R2 is not over the
straight line through the two triple junctions A and B, parametrizing counter-
clockwise the three curves, that is f 0

i > 0 (in the case that the ‘‘inner’’ curve g2 is
not a segment), we call g1 the ‘‘external’’ curve which starts at B. By Lemma 3.3,

g1 reaches the point A after f1 changes of an angle D ¼
Z s1

s1

f 0
1ðsÞ ds < 2p equal to

the angle dBOABOA, which is smaller or equal than p. Hence, by Lemma 3.4, all
such curve g1 stays over the straight line passing for the two triple junctions A
and B.

We call g3 the other extremal curve, hence since f1; f3 > 0, we have

g1ðs1Þ ¼ g3ðs3Þ ¼ B; g1ðs1Þ ¼ g3ðs3Þ ¼ A:

Because of the shrinker equation (1.2), all the three curves are convex with
respect to the origin. This implies that the origin is contained in the interior of
the bounded area A13 enclosed by g1 and g3 (if the origin belongs to g1 or g3
such curve is a segment and cannot be ‘‘external’’, as we said before), which
also contains g2 � A13. We let A12 be the region enclosed by the curves g1 and
g2 and we split the analysis into two cases.
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Case 1. The origin does not belong to the interior of A12.
Since the curve g2 is convex with respect to the origin, by the same argument

used above for g1, it is contained in the upper half-plane determined by the
straight line for the points A and B.

By the 120 degrees condition it follows that the angle b at B formed by the
vector ð1; 0Þ and g 01 is at most p

3 . Similarly, also the angle a at A formed by the
vector ð1; 0Þ and g 01 is at most p

3 . By the convexity of the region delimited by
g2 and g3 containing the origin and again the 120 degrees condition at B, it is
then easy to see that the angle at B formed by the vectors g1 and g 01 is less or
equal than p

3 and analogously, the angle at A formed by g1 and g 01 is greater
or equal than 2p

3 .
Hence, by equality (2.5), it follows

r 0
1ðs1Þb

1

2
> 0; r 0

1ðs1Þa� 1

2
< 0:

As a consequence, there is a point of maximum radius s�1 a ðs1; s1Þ such that
r1ðs�1 Þb r1ðsÞ for all s a ðs1; s1Þ.

The vector g1ðs�1 Þ forms an angle sb p
2 with ð1; 0Þ or ð�1; 0Þ. Assume that

the angle between g1ðs�1 Þ and ð1; 0Þ is greater or equal than p
2 (the other case is

analogous, switching A and B). We extend the curve g1 (still parametrized by
arclength) ‘‘before’’ the point B till it intersects the x-axis at some ~ss1 a s1 (this
must happen because f1ðsÞ > 0 everywhere also on the extended curve) and we
consider the (non relabeled) curve g1 defined in the interval L1 ¼ ½~ss1; s�1 �. Calling
b0 the angle formed by the vectors g 01ð~ss1Þ and ð1; 0Þ, by convexity and the fact that
the angle b at B formed by the vector ð1; 0Þ and g 01 is at most p

3 , we have that
b0 a ba p

3 . Hence, by equality (2.5), we have r 0
1ð~ss1Þb 1

2 > 0.
Considering now the function s 7! r1ðsÞ on the interval L1 ¼ ½~ss1; s�1 �, since

r 0
1ð~ss1Þ > 0 and s�1 is a maximum point for r1, either r1 is increasing on L1, or r1
has another maximum and then a minimum in the interior of L1 (notice that the
map r1 cannot be constant on an interval, otherwise g1 would be an arc of a circle
centered at the origin, which is impossible since r1 is not constant). But we know
from formula (2.3) and Proposition 2.1 that the angle f1 must increase more than
p
2 to go from a minimum to a maximum or viceversa (we can apply such proposi-
tion since g1 is not an arc of a circle). SinceZ s�

1

~ss1

f 0
1ðsÞ dsa p;

there cannot be a maximum, then a minimum, then a second maximum in L1.
It follows that r1 is increasing in such interval.

This, combined with the fact that b0 a
p
3 and that the angle s is at least p

2 ,

that is,

Z s�
1

~ss1

f 0
1ðsÞ dsb p

2 , is in contradiction with Lemma 3.1. Therefore, this case

cannot happen.
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Case 2. The origin belongs to the interior of A12.
Being the region A12 convex (by the shrinker equation (1.2), since it contains

the origin), the curve g2 (which is oriented counterclockwise) goes from A to B.
The fact that g 02 and g 03 form angles of 2p

3 at the points A and B implies that:

(i) the angle in A formed by the vectors g3ðs3Þ and g 03ðs3Þ and the angle in B
formed by the vectors g2ðs2Þ and g 02ðs2Þ are both less or equal than p

3 ;
(ii) the angle in B formed by the vectors g3ðs3Þ and g 03ðs3Þ and the angle in A

formed by the vectors g2ðs2Þ and g 02ðs2Þ are both greater or equal than 2p
3 .

In particular, by equality (2.5), it follows

r 0
2ðs2Þa� 1

2
< 0; r 0

2ðs2Þb
1

2
> 0; r 0

3ðs3Þb
1

2
> 0; r 0

3ðs3Þa� 1

2
< 0:ð3:3Þ

Hence, the function s 7! r3ðsÞ has a maximum at some point s�3 a ðs3; s3Þ, while
the function s 7! r2ðsÞ has a minimum at some point s�2 a ðs2; s2Þ.

If s�3 is the only point of maximum of r3 in the interval ½s3; s3�, then the func-
tion r3 is strictly monotone on each of the two subintervals ½s3; s�3 � and ½s�3 ; s3�,
moreover, Z s�

3

s3

f 0
3ðsÞ dsþ

Z s3

s�
3

f 0
3ðsÞ ds ¼

Z s3

s3

f 0
3ðsÞ dsb p;

since the origin is ‘‘below’’ the segment AB. Thus, at least one of the two integrals
on the left-hand side is greater or equal than p

2 and, by Lemma 3.1, this is not
possible. As a consequence, there must be another point of maximum radius
s��3 a ðs3; s3Þ (notice that the maximum points cannot be an interval, otherwise
g3 would be an arc of a circle centered at the origin, hence with r 0

3 ¼ 0, against
relations (3.3)). Hence, between these two points of maximum radius there is a
minimum point s�3 . Without loss of generality, we assume that s3 < s�3 < s�3 <
s��3 < s3.

We observe that there cannot be a third maximum point for r3 (hence also
another minimum point) in the interval ½s3; s3� because, by Proposition 2.2, each
of the four angles at the origin formed by the segment connecting the origin with
two consecutive of the five extremal points for r3 on g3 is greater than p

2 and, by

Lemma 3.3, there holds

Z s3

s3

f 0
3ðsÞ ds < 2p. Moreover, also the case of two mini-

mum points and two maximum points for r3 in the interval ½s3; s3� is not possible,
because of the sign of the derivative r 0

3 at the endpoints in relations (3.3). Hence,
we conclude that s�3 , s

�
3 , s

��
3 are the only extremal points for r3 in the interval

½s3; s3�.
Now consider the quantities F2, F3 of the curves g2, g3, respectively, given by

formula (2.7). By relations (3.3), the curves g2 and g3 are not the unit circle (they
would have r 0

2 or r
0
3 equal to zero everywhere), therefore F2;F3 >

1
2 . If we draw

the line from the origin to g3ðs�3Þ, this must intersect g2 in an intermediate point,
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implying that the minimal radius of the curve g2 is smaller than the minimal
radius of the curve g3. By the discussion about the value of the quantity F in
relation with the extremal values of r at the end of Section 2, we have F2 > F3.
Then, if a maximum of r2 is taken in the interior of g2, it must be larger than
the maximal radius of g3 (which is taken in the interior of g3), which is not pos-
sible as g2 is contained in the region bounded by g3 and the segment AB. From
this argument we conclude that there are no points of maximal radius in the
interior of g2, thus, the only extremal point for r2 in the interval ½s2; s2� is the min-
imum point s�2 .

Defining the angle

a :¼
Z s2

s2

f 0
2ðsÞ ds ¼

Z s3

s3

f 0
3ðsÞ ds;

by formula (2.8) and the symmetry of the curve g3 with respect to the straight line
through the origin and the point g3ðs�3Þ of minimum distance, we have

IðF3Þ ¼
Z s�

3

s�
3

f 0
3ðsÞ ds ¼

Z s��
3

s�
3

f 0
3ðsÞ ds <

a

2

while, since g2 does not contain any interior point of maximum radius,

IðF2Þ > max

Z s�
2

s2

f 0
2ðsÞ ds;

Z s2

s�
2

f 0
2ðsÞ ds

( )
b

a

2
:

Thus, IðF2Þ > IðF3Þ and F2 > F3, which is in contradiction with the monoto-
nicity of the function I given by Proposition 2.2. Hence, also this case can be
excluded.

Since we excluded both cases, our hypothetical Y-shrinker cannot exist and we
are done with the proof of Theorem 1.1.
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[16] R. Mazzeo - M. Sáez, Self-similar expanding solutions for the planar network

flow, Analytic aspects of problems in Riemannian geometry: elliptic PDEs, solitons
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