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Number Theory — Integral points on the complement of the branch locus of pro-
jections from hypersurfaces, by Andrea Ciappi, communicated on November
11, 2016.1

Abstract. — We study the integral points on PnnD, where D is the branch locus of a projection

from a hypersurface in Pnþ1 to a hyperplane H UPn. We extend to the general case a result by
Zannier (whose approach we follow) and we also obtain a sharper bound that yields, in some cases,

the finiteness of integral points. The results presented are e¤ective and the proofs provide a way to
actually construct a set containing all the integral points in question. Thus, there are concrete appli-

cations to the study of Diophantine equations, more precisely to the problem of finding integral
solutions to equations F ðx0; . . . ; xnÞ ¼ c, where c is a given nonzero value and F is a homogeneous

form defining the branch locus D, i.e. a discriminant.
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1. Introduction

The study of integral points on varieties defined in a projective space as the com-
plement of certain divisors is related to several Diophantine problems and it is a
recurring and interesting problem in number theory. For the definition of integral
points, for the concept of sets of S-integral points and quasi-S-integral points and
for the connections with Diophantine equations we rely on [7] and [10].

Given an a‰ne variety V � Pn, we can consider its closure V in Pn and its
divisor at infinity D ¼ VnV . Many valuable thorems about integral points on V
have been proved in the last century, but the majority of them requires the split-
ting of the divisor D in several components in order to be applied. There is a stan-
dard technique to bypass this requirement that consists in lifting integral points
by means of a finite cover of the variety V , unramified except possibly above
points in D and such that the pull-back of D has more components than D itself.
However, this method seldom applies if dimV > 1 because, in general, the pull-
back of D does not split as desired.

A remarkable exception to this is a result by Faltings, who proved the finite-
ness of integral points on the complements of certain irreducible singular curves
in P2. In this case, the divisor D is the branch locus of a suitable projection from
a smooth surface described in detail in the original paper [3]. The problem was
also studied by Zannier who proved a similar result in [9] applying arithmetic
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considerations from [2] (and hence ultimately relying on the Schmidt’s Subspace
Theorem) to the same geometric setting introduced by Faltings. Zannier obtained
the same conclusions under di¤erent hypotheses and, moreover, he proved that
the fact that the projected surface has non-negative Kodaira dimension is a su‰-
cient condition for the finiteness of integral points on P2nD. Later, both results
were improved by Levin in [5], where the theorem is proved even for surfaces
with negative Kodaira dimension.

In [9] Faltings’ principle is also applied to the simpler case of a projection
taken from a hypersurface in Pnþ1 and it leads to a bound for the dimension of
any set of integral points on the complement in Pn of the branch locus of the pro-
jection. The analysis presented here will be similar but more general, as we will
make no restrictive assumption on the projection. This will require some more
care but it will also lead to stronger conclusions and more applications.

The geometric setting of the problem is described in detail in the second sec-
tion of this paper along with the statement of our main result, proved in the third
section. The fourth section contains some details, remarks and corollaries while
in the last section we provide some examples and we observe that the results we
have presented (which are e¤ective, see §4) have a concrete application in the
study of Diophantine equations F ðx0; . . . ; xnÞ ¼ c for certain homogeneous irre-
ducible forms F and non-zero values c (see also Proposition 2).

2. Setting of the problem

Let k be a number field and S a finite set of places of k which includes all the
infinite ones. Let X and H be, respectively, an irreducible hypersurface of degree
m and a hyperplane in the projective space Pnþ1, both defined over k. Let Q be a
point in Pnþ1nH and consider the projection f of X from the point Q to HUPn.

Without any loss of generality we suppose Q ¼ ð0 : . . . : 0 : 1Þ and that H is
defined by Xnþ1 ¼ 0. The projection f, takes then the form

f: X ! Pn

ðx0 : . . . : xn : xnþ1Þ 7! ðx0 : . . . : xnÞ:

If Q a X then fðQÞ is not defined unless we consider a blow-up. However, for our
purposes, it will su‰ce to consider the restriction fjXnQ which, with a slight abuse
of notation, will still be denoted by f.

Let f a k½X0; . . . ;Xnþ1� be a homogeneous irreducible polynomial of degree m
defining X; we may view it as a univariate polynomial in Xnþ1 with coe‰cients in
k½X0; . . . ;Xn�

f ðX0; . . . ;Xn;Xnþ1Þ ¼
Xd
l¼0

flðX0; . . . ;XnÞX d�l
nþ1 ;

where d ¼ degXnþ1
f is the greatest integer such that the coe‰cient of X d

nþ1 is not
identically zero and every fl is a homogeneous polynomial of degree m� d þ l
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(or the null polynomial). We suppose d > 1 and we remark that the geometrical
request Q B X implies d ¼ m, deg fl ¼ l when fl is not the null polynomial and
f0 a k� (this being the case discussed in [9]).

We consider the discriminant of f in respect of Xnþ1, a polynomial in
k½X0; . . . ;Xn� that we shall denote by D ¼ DðX0; . . . ;XnÞ. Its zeroes are exactly
the ramification points of f, insofar as Q does not belong to X, and in this case
D ¼ 0 is the defining equation for the branch locus D. On the other hand, if
Q a X, there are points in Pn where the polynomial f0 vanishes: they may or
may not belong to fðXÞ or to fD ¼ 0g, but their preimages under f surely have
cardinality di¤erent from d. Hence, we define D as the union of the zero loci of f0
and D.

We also consider a set T made by the points ðx0 : . . . : xnÞ a Pn such that
f ðx0; . . . ; xn;XÞ, as a polynomial in k½X �, has exactly one root or none at all.
If, for example, we require one root with multiplicity d, we must have
f0ðx0; . . . ; xnÞA 0 and we look for a factorization

Xd
l¼0

flðx0; . . . ; xnÞX d�l ¼ f0ðx0; . . . ; xnÞ � ðX � aÞd

for some a ¼ aðx0; . . . ; xnÞ a k. We then turn the above requirement in d
equations

flðx0; . . . ; xnÞ ¼ f0ðx0; . . . ; xnÞ �
d

l

� �
ð�aÞ l l ¼ 1; . . . ; d

and we observe that, in particular, we must have f1 ¼ �daf0 or, equivalently,
�a ¼ f1=ðdf0Þ. This leads to the following relations among the polynomials:

f0A 0

fl ¼
d

l

� �
f l
1

d lf l�1
0

El ¼ 2; . . . ; d:

8><
>:ð1Þ

We denote by T0 the set of points in Pn satisfying (1). We define in an analogous
way the sets T1; . . . ;Td�1 consisting, respectively, of the points in Pn whose
preimages via f are made by single points with multiplicity, respectively,
d � 1; d � 2; . . . ; 1. For example, the points in T1 will satisfy f0 ¼ 0, f1A 0
and

fl ¼
d � 1

l � 1

� �
f l�1
2

ðd � 1Þ l�1
f l�2
1

El ¼ 3; . . . ; d:

Finally, we have T ¼ T0 A � � �ATd , where the last two sets involved are Td�1 ¼
f f0 ¼ � � � ¼ fd�2 ¼ 0; fd�1A 0g and the complement of fðXÞ in Pn, Td ¼
f f0 ¼ � � � ¼ fd�1 ¼ 0; fd A 0g.

We can now state our main result:
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Theorem 1. Assuming the hypotheses and notations discussed above in this sec-
tion, the Zariski closure of any set of quasi-S-integral points for PnnD has dimen-
sion less than or equal to dimT0 þ 1.

This constitutes an improvement of Theorem 2.1 in [9] in two ways: it is more
general because the hypotheses on the centre of projection Q (and thus on the
leading coe‰cient f0ðX0; . . . ;XnÞ) have been removed and the bound provided is
sharper as it is in terms of the dimension of T0 (which is a subset of T). More-
over, not only it is possible that dimT0 < dimT , but T0 may be the empty set
even if the degree d is small (compared to n), yielding a finiteness result for the
integral points (see §4).

3. Proof of Theorem 1

We will make use of the following well-known fact (for a proof, see Proposition
2.3 in [9]):

Proposition 2. Let L � Pn be an e¤ective divisor defined by a form L a
k½X0; . . . ;Xn� and let S be a set of quasi-S-integral points for the a‰ne variety
PnnL. Then there exists a finite set of places S 0 � S of k such that each point of
S has projective coordinates ðx0 : . . . : xnÞ with xi a OS 0 and Lðx0; . . . ; xnÞ a O�

S 0 .

In order to give more emphasis to the underlying ideas and techniques lead-
ing to the result, we postpone the discussion of the ‘‘low degrees’’ case. More
precisely, during the proof we will make the assumption that the degree d ¼
degXnþ1

f ðX0; . . . ;Xnþ1Þ is greater than or equal to 4. We will go back to that
point in the next section (paragraph ‘‘Low degrees’’) and complete the proof for
d ¼ 2 and d ¼ 3.

First step – Let S be a set of quasi-S-integral points for PnnD. By the above
Proposition 2 there exists a finite set S 0 � S, made up of places of k, such that
for every point in S there are projective coordinates ðx0 : . . . : xnÞ such that every
xi belongs to OS 0 and Dðx0; . . . ; xnÞ a O�

S 0 ; we choose P a S and projective coordi-
nates ðx0 : . . . : xnÞ for it so that the properties we just mentioned are satisfied.

Then we consider the equation f ðx0; . . . ; xn;X Þ ¼ 0 which has d distinct roots
in Q since P B D. We shall denote them by a1; . . . ; ad and we consider the number
field k 0 they generate over k, which depends on P: it has bounded degree and it
is unramified except at places above S 0. Hermite’s Theorem then implies that
there are at most a finite number of number fields with these properties, hence
there exists a number field k 00 such that it contains all the roots ai regardless of
the chosen point P. Finally, we may define a finite set S 00 constituted by places
of k 00 that contains the extension of S 0 to a set of places of k 00 and such that
the polynomials fiðX0; . . . ;XnÞ have coe‰cients in Ok 00;S 00 and Ok 00;S 00 has class
number 1.

We remark that proving the theorem after enlarging k or S is a stronger con-
clusion than the original claim and that, even if we consider sets with an infinite
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number of quasi-S-integral points, the number of required enlargements is finite.
Thus, we assume in this proof k ¼ k 00 and S ¼ S 00.

Second step – We can now consider the usual factorization of the discriminant

Dðx0; . . . ; xnÞ ¼ f 2d�2
0

Y
1ai< jad

ðai � ajÞ2

which is valid because f0ðx0; . . . ; xnÞA 0 since P B D. Every root can be written
as a product ai ¼ mid

�1
i with mi and di coprime S-integers. We also note that every

polynomial diX � mi divides f ðx0; . . . ; xn;X Þ in OS½X �, hence d1 . . . dd divides f0
in OS. It follows that Dðx0; . . . ; xnÞ is divisible in OS by

Q
iAjðdjmi � dimjÞ and,

since the discriminant is an S-unit, we deduce that every factor djmi � dimj belongs
to O�

S .
We define xij :¼ djmi � dimj and we consider the identity

xi1x23 þ xi2x31 þ xi3x12 ¼ 0

where i a f4; . . . ; dg and every summand is clearly in O�
S . Since we just produced

solutions to the homogeneous S-unit equation, we may apply some finiteness
result (see [6] or [10]) and obtain that, for example, the ratios xi2x31=xi1x32 lie in
a finite set independent of the chosen point P. In order to write down algebraic
relations among the roots ai, we observe that we have just proved that for certain
values ci ¼ ciðPÞ in a fixed finite set, we have

ci ¼
xi2x31

xi1x32
¼ ðai � a2Þða3 � a1Þ

ðai � a1Þða3 � a2Þ
i a f4; . . . ; dg

and if we put c2 :¼ 0 and c3 :¼ 1 we have analogous relations for i ¼ 2 and i ¼ 3.
After some easy manipulations, we can write the following expressions for the
roots:

ai ¼

a1ða2 � a3Þci þ a2ða3 � a1Þ
ða2 � a3Þci þ a3 � a1

i ¼ 2; . . . ; d

a4ða2 � a3Þc4 þ a3ða4 � a2Þ
ða2 � a3Þc4 þ a4 � a2

i ¼ 1:

8>>><
>>>:

ð2Þ

Finally, we can split S into finitely many subsets such that the ci are fixed for
every point in a given subset. Arguing separately with each subset we may then
assume that the ci do not depend on P.

Third step – We pause to outline how we will make use of the information
obtained so far. We are going to define a quasi-projective variety in Pnþ4 and its
projection on Pn will lead to the sought relation between S and T0. Intuitively,
nþ 1 coordinates are required to define a point in S � Pn and four values are
required to express all the roots ai, see (2) above. The polynomials that we
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are about to introduce are defined following the relations (2) and then consider-
ing Viète’s formulae to provide a link between the roots ai and the polynomials
fi: they are essential in the definition of the quasi-projective variety above
mentioned.

We start by defining some auxiliary polynomials in k½Y1;Y2;Y3;Y4�:

aiðY1;Y2;Y3;Y4Þ ¼
Y1ðY2 � Y3Þci þ Y2ðY3 � Y1Þ i ¼ 2; . . . ; d

Y4ðY2 � Y3Þc4 þ Y3ðY4 � Y2Þ i ¼ 1

�

biðY1;Y2;Y3;Y4Þ ¼
ðY2 � Y3Þci þ Y3 � Y1 i ¼ 2; . . . ; d

ðY2 � Y3Þc4 þ Y4 � Y2 i ¼ 1

�

AlðY1;Y2;Y3;Y4Þ ¼
X

1ai1<���<ilad

ai1ðY1;Y2;Y3;Y4Þ . . . ail ðY1;Y2;Y3;Y4Þ

�
Y

1ajad
jAi1;...; il

bjðY1;Y2;Y3;Y4Þ l ¼ 1; . . . ; d

BðY1;Y2;Y3;Y4Þ ¼
Yd
i¼1

biðY1;Y2;Y3;Y4Þ:

If, as before, P ¼ ðx0 : . . . : xnÞ a S is the point in question and f ðx0; . . . ; xn;
X Þ has roots a1; . . . ; ad , we observe that, because of (2),

aiða1; a2; a3; a4Þ
biða1; a2; a3; a4Þ

¼ ai i ¼ 1; . . . ; d:ð3Þ

Furthermore, since the coe‰cients of a polynomial can be expressed as the prod-
uct of the leading coe‰cient and the corresponding symmetric function calcu-
lated in its roots, we have for l ¼ 1; . . . ; d

flðx0; . . . ; xnÞ ¼ ð�1Þ l f0ðx0; . . . ; xnÞ �
Alða1; a2; a3; a4Þ
Bða1; a2; a3; a4Þ

:ð4Þ

After these remarks, we are ready to define and study a projective variety
V � Pnþ4 given by the common zero locus of the d polynomials

Bfl � ð�1Þ l f0Alð5Þ

where B and Al belong to k½Y1;Y2;Y3;Y4�, f0 and fl are in k½X0; . . . ;Xn� and l
ranges from 1 to d.

Since our main interest is focused on S � Pn, we are going to consider the
projection of V to Pn by taking the first nþ 1 coordinates. To ensure that the
projection is well-defined we have to remove points with nothing but zeroes in
the first nþ 1 coordinates. In addition, we are going to ignore points that belong
to V regardless of the first nþ 1 coordinates, only because the Yi have special
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values. Furthermore, we would like, at some point, to get rid of the zeroes of
f0ðX0; . . . ;XnÞ in Pn, because they cannot be in T0. We accomplish these goals
by defining in Pnþ4 the varieties

U0 :¼ fðz0 : . . . : zn : y1 : y2 : y3 : y4Þ a V : z0 ¼ � � � ¼ zn ¼ 0g
U1 :¼ fðz0 : . . . : zn : y1 : y2 : y3 : y4Þ a V : Bðy1; y2; y3; y4Þ ¼ 0 and

Alðy1; y2; y3; y4Þ ¼ 0 El ¼ 1; . . . ; dg
U2 :¼ fðz0 : . . . : zn : y1 : y2 : y3 : y4Þ a V : f0ðz0; . . . ; znÞ ¼ 0g
U :¼ U0 AU1 AU2

and a quasi-projective variety which is the complement of U in V :

W :¼ VnU :

Finally, we consider the projection from W to Pn:

p: W ! Pn

ðz0 : . . . : zn : y1 : y2 : y3 : y4Þ 7! ðz0 : . . . : znÞ:

Fourth step – Once again we look at P ¼ ðx0 : . . . : xnÞ a S and we observe
that:

• ðx0 : . . . : xn : a1 : a2 : a3 : a4Þ a V because of (4)

• there exists i a f0; . . . ; ng such that xi A 0 since P a Pn, hence ðx0 : . . . : xn :
a1 : a2 : a3 : a4Þ B U0

• Bða1; a2; a3; a4ÞA 0 because the roots ai are all pairwise distinct, hence
ðx0 : . . . : xn : a1 : a2 : a3 : a4Þ B U1

• ðx0 : . . . : xn : a1 : a2 : a3 : a4Þ B U2 because f0ðx0; . . . ; xnÞA 0 (since P B D).

It follows that ðx0 : . . . : xn : a1 : a2 : a3 : a4Þ actually belongs to W , whence
S � pðWÞ.

We investigate now what happens to W when intersected with the hyperplane
fY2 ¼ Y3g � Pnþ4. First of all we notice that

aiðy1; y2; y2; y4Þ
biðy1; y2; y2; y4Þ

¼ y2 i ¼ 1; . . . ; d

for every choice of y1, y2 and y4 and, subsequently, we have

Alðy1; y2; y2; y4Þ
Bðy1; y2; y2; y4Þ

¼
X

1ai1<���<ilad

ai1
bi1

. . .
ail
bil

¼ d

l

� �
yl
2 l ¼ 1; . . . ; d:

From the defining equations of V and the ones displayed above, we have
for every point ðz0 : . . . : zn : y1 : y2 : y2 : y4Þ a W B fY2 ¼ Y3g the following
relation:
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flðz0; . . . ; znÞ ¼ ð�1Þ l f0ðz0; . . . ; znÞ
Alðy1; y2; y2; y4Þ
Bðy1; y2; y2; y4Þ

ð6Þ

¼ ð�1Þ l f0ðz0; . . . ; znÞ
d

l

� �
yl
2

which is valid for l ¼ 1; . . . ; d. In particular, we get f1 ¼ �df0y2 and therefore

flðz0; . . . ; znÞ ¼ f0ðz0; . . . ; znÞ
d

l

� �� f1ðz0; . . . ; zn
df0ðz0; . . . ; znÞ

�l
l ¼ 1; . . . ; d:

Then, recalling the defining equations (1) for T0, we have just proved that
pðW B fY2 ¼ Y3gÞ � T0.

We draw a diagram to help us clarify the role of the auxiliary objects we
introduced in the proof:

W W B fY2 ¼ Y3g???yp

???yp

S R��! pðW Þ R��! pðW B fY2 ¼ Y3gÞ R��! T0

R�����!

Finally, we consider the Zariski closure of S and we readily have that its dimen-
sion is less than or equal to dimT0 þ 1. This completes the proof for db 4. r

4. Remarks and details

E¤ectivity – A noteworthy feature of Theorem 1 is its e¤ectivity. This is a conse-
quence, essentially, of the fact that we obtained a finiteness result during the sec-
ond step of the proof without the help of Schmidt’s Theorem or other ine¤ective
conclusions from Diophantine approximation. Instead, we used results about S-
unit equations and it is known that a finite and complete set of non-proportional
representatives can be e¤ectively found (for example via Baker’s theory, see [1]).
Therefore it is possible to determine all the auxiliary objects introduced in the
proof, assuming X is given, and we may actually exhibit the set pðW Þ contain-
ing S.

We must point out that the set of solutions depends naturally on k and S and
that they might have been enlarged with the application of Proposition 2. Thus,
an explicit notion of quasi-S-integral points is also required to have a unique
determination for the solutions of the S-unit equation: in other words, we are
required to specify an a‰ne model for PnnD.

We also remark that another result of crucial importance in the proof is
Hermite’s Theorem, which is e¤ective as well.

Analysis of the results – We would like to study the dimension of T0, once the
geometric setting is specified, and to compare it to the dimension of T . Obviously
we have dimT0 a dimT , as T0 � T , but it is not hard to see that equality holds
very often. In fact, T is the disjoint union of its d þ 1 subsets Ti, each of them
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defined by an inequality and d � 1 equations (save Td which is defined by d equa-
tions) and dimT ¼ maxfdimTigi¼0;...;d .

In order to study the di¤erence between dimT and dimT0, it may be useful
to have explicit conditions for the sets Ti. We see that a point ðx0 : . . . : xnÞ a Pn

belongs to Ti if and only if the following conditions are satisfied (we denote
fjðx0; . . . ; xnÞ simply by fj):

fl ¼ 0 El < i

fi A 0

ðd � iÞ l�i
f l�i�1
i fl ¼ d�i

l�i

� �
f l�i
iþ1 Elb i þ 2:

8><
>:ð7Þ

We observe that if there is l < i such that fl divides fi in k½X1; . . . ;Xn� we have
Ti ¼ j. So, if we ask Q B X we have f0 a k� and so, for every i ¼ 1; . . . ; d, we
have f0 j fi, whence Ti ¼ j for ib 1 and T ¼ T0.

Finally, we point out that the expected bound provided by Theorem 1 for
the dimension of any set of quasi-S-integral points for PnnD is n� d þ 2. In
fact, unless the polynomials fi satisfy some special relations, the dimension of
T0 is lowered by one by every condition in (1), with the exception of the condition
f0A 0.

Finiteness conditions – If T0 is the empty set we obtain, as a result, the finiteness
of the integral points for PnnD. In order to find when T0 ¼ j, we have to check
if the vanishing of the d � 1 polynomials (see conditions (1))

riðX0; . . . ;XnÞ :¼ d if i�1
0 fi �

d

i

� �
f i
1

implies f0 ¼ 0. In other words, we want to check if the variety defined by the

polinomials ri is contained in the variety defined by f0, i.e. if
Td

i¼2 VðriÞ � Vð f0Þ
and this is equivalent to solve the radical membership problem f0 a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3r2; . . . ; rd4

p
.

This can be e‰ciently done computing a reduced Gröbner basis for the ideal
3r2; . . . ; rd ; 1� Yf04 in the ring k½X0; . . . ;Xn;Y �: if we get f1g then T0 ¼ j and
the number of integral points for PnnD is finite.

On the other hand, an easily verifiable su‰cient condition ensuring T0 ¼ j
could find some interesting applications. Suppose that there are i; j a f1; . . . ; dg
such that the polynomial fi is the null polynomial and fj vanishes only if f0
does. Then, recalling conditions (1) for the set T0, we get f0A 0 and f1 ¼ 0; this
happens trivially if i ¼ 1 and comes from the equation d if i�1

0 fi ¼ d
i

� �
f i
1 otherwise.

This yields the condition fl ¼ 0 for every lb 1, hence fj must vanish and this
contradicts the requirement f0A 0. Hence T0 ¼ j.

Corollary 3. Notation being as in Section 2, suppose that there are i; j a
f1; . . . ; dg such that fiðX0; . . . ;XnÞ is the null polynomial and fjðX0; . . . ;XnÞ ¼ 0
implies f0ðX0; . . . ;XnÞ ¼ 0. Then every set of quasi-S-integral points for PnnD is
a finite set.

On the complement of fD ¼ 0g – We state and prove a more general version
of Theorem 1 which allows for the points of Pn where the leading coe‰cient of
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f ðX0; . . . ;Xnþ1Þ as a polynomial in Xnþ1 vanishes. In other words, we investigate
the quasi-S-integral points on the complement of the divisor defined by the
discriminant.

Theorem 4. Notations being as in Section 2, if d > 4 then the Zariski closure
of any set S of quasi-S-integral points for PnnfD ¼ 0g has dimension less than or
equal to dimðT0 AT1Þ þ 1.

Moreover, if f0ðx0; . . . ; xnÞA 0 (resp. f0ðx0; . . . ; xnÞ ¼ 0) for every
ðx0 : . . . : xnÞ a S, we have that the dimension of the Zariski closure of S is less
than or equal to dimT0 þ 1 (resp. dimT1 þ 1).

Proof. Let S be a set of quasi-S-integral points for PnnfD ¼ 0g and consider a
point P ¼ ðx0 : . . . : xnÞ a S. As before, we look at the polynomial f ðx0; . . . ; xn;
X Þ which has d or d � 1 roots: we denote these pairwise distinct roots by
a1; . . . ; ad�1 and, in case, ad . The first thing we observe is that f0ðx0; . . . ; xnÞ
and f1ðx0; . . . ; xnÞ cannot be both equal to zero for otherwise we would have
Dðx0; . . . ; xnÞ ¼ 0. Again, we can apply Proposition 2 and enlarge k and S to
ensure that every point of S has projective coordinates with entries in OS and
that D has values in O�

S .
If f0ðx0; . . . ; xnÞA 0 we follow the proof of Theorem 1 until we get the rela-

tions (2) among the roots. If f0ðx0; . . . ; xnÞ ¼ 0 we consider the discriminant
Dd�1ðxÞ of the polynomial f ðx0; . . . ; xn;X Þ a k½X � of degree d � 1 and we
observe that

DðxÞ ¼ f1ðxÞ2Dd�1ðxÞ ¼ f1ðxÞ2d�2
Y

1ai< jad�1

ðai � ajÞ2

and in a similar way we find relations among the d � 1 roots like those in (2).
Now we can split S into finitely many subsets such that the ci’s are fixed and
that f0 is either zero or non-zero for every point in a given subset. Arguing sepa-
rately with each subset we may then assume we have d (or d � 1) values ci that do
not depend on P.

We will handle these subsets in a di¤erent way depending on whether f0
vanishes or not. We have already seen in the proof of Theorem 1 how to proceed
in the second case and we define a quasi-projective variety W � Pnþ4 just as
before. On the other hand, if f0 vanishes, the path is the same but we need to
slightly modify the polynomials A1; . . . ;Ad�1 and B in an obvious way to deal
with the fact that we have only d � 1 roots. For l ¼ 1; . . . ; d � 1 we define

A 0
l ðY1;Y2;Y3;Y4Þ ¼

X
1ai1<���<ilad�1

ai1ðY1;Y2;Y3;Y4Þ . . . ail ðY1;Y2;Y3;Y4Þ

�
Y

1ajad�1; jAi1;...; il

bjðY1;Y2;Y3;Y4Þ

B 0ðY1;Y2;Y3;Y4Þ ¼
Yd�1

i¼1

biðY1;Y2;Y3;Y4Þ:
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Then, we consider the projective variety V 0 defined as the intersection of the
zero loci of f0ðx0; . . . ; xnÞ and the d � 1 polynomials

B 0ðY1;Y2;Y3;Y4Þ flþ1ðX0; . . . ;XnÞ � ð�1Þ l f1ðX0; . . . ;XnÞA 0
l ðY1;Y2;Y3;Y4Þ

with l ranging from 1 to d � 1. We define U 0
0 exactly like U0 in the proof of

Theorem 1 and we denote by U 0
1 and U 0

2, the set of points in V with coordi-
nates ðz0 : . . . : zn : y1 : . . . : y4Þ such that, respectively, B 0ðy1; y2; y3; y4Þ ¼ 0
and f1ðz0; . . . ; znÞ ¼ 0. Finally, we define a set U 0 :¼ U0 AU 0

1 AU 0
2 and its

complement in V , the quasi-projective variety W 0 :¼ V 0nU 0. We notice that
W BW 0 ¼ j.

If we consider the projection p : W AW 0 ! Pn on the first nþ 1 coordi-
nates, we observe that the subsets we have split S in are contained either in
pðWÞ or in pðW 0Þ and therefore S � pðW AW 0Þ. As in the proof of Theorem
1, we have pðW B fY2 ¼ Y3gÞ � T0 and, in a similar way, pðW 0B fY2 ¼ Y3gÞ
� T1. Remembering that W BW 0 ¼ j as well as T0BT1 ¼ j, we can conclude
as follows:

dim �SSa dimðpðWÞA pðW 0ÞÞ
a dimððpðWÞA pðW 0ÞÞB fY2 ¼ Y3gÞ þ 1

¼ dimððpðWÞB fY2 ¼ Y3gÞA ðpðW 0ÞB fY2 ¼ Y3gÞÞ þ 1

a dimðT0 AT1Þ þ 1: r

We remark that in Theorem 4 there is an additional hypothesis on the degree
d because when da 4 the proof of Theorem 1 (see next paragraph, Low degrees)
actually uses integrality with respect to D (i.e. that f0ðx0; . . . ; xnÞ a O�

S when
ðx0; . . . ; xnÞ a SÞ and not just that f0ðx0; . . . ; xnÞA 0.

Low degrees – We now complete the proof of Theorem 1 by taking into account
the cases of d ¼ 2 and d ¼ 3. When d ¼ 2 we have two di¤erent roots a1 and a2
and we cannot apply results about S-unit equations: however we do not need
them, since it is enough to use the trivial relations a1 ¼ a1 and a2 ¼ a2. Namely,
we simply define the auxiliary polynomials A1ðY1;Y2Þ ¼ Y1 þ Y2 and A2ðY1;Y2Þ
¼ Y1Y2; then we consider the variety V � Pnþ2 defined by the polynomials

flðX0; . . . ;XnÞ � ð�1Þ l f0ðX0; . . . ;XnÞAlðY1;Y2Þ l ¼ 1; 2

and the quasi-projective variety

W :¼ Vnðf f0ðX0; . . . ;XnÞ ¼ 0gA fX0 ¼ � � � ¼ Xn ¼ 0g:

Subsequently, we consider the projection p : W ! Pn and everything will follow
as in the proof of Theorem 1: if ðx0; . . . ; xnÞ a S then ðx0; . . . ; xn; a1; a2Þ a W and
the points in pðW B fY1 ¼ Y2gÞ satisfy the defining relations for T0.

When d ¼ 3 the trivial relations considered above are no more su‰cient to
conclude, yet we lack the four di¤erent roots that enabled us to use results about
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the S-unit equation. If the hypersurface X is defined in Pnþ1 by the polynomial

f ðX0; . . . ;Xnþ1Þ ¼ f0X
3
nþ1 þ f1X

2
nþ1 þ f2Xnþ1 þ f3;

where fi a k½X0; . . . ;Xn� for i ¼ 0; 1; 2; 3, let us suppose that deg f0 b 2 and put
d :¼ deg f0 � 1. We will introduce a subsidiary dimension and we consider the
hypersurface Z � Pnþ2 defined by

gðX0; . . . ;Xn;Z;Xnþ1Þ ¼ Z dX 4
nþ1 þ f0X

3
nþ1 þ f1X

2
nþ1 þ f2Xnþ1 þ f3:

We keep the notations previously introduced, adding a superscript X or Z when
a definition is related to the hypersurface (or relative polynomial and projection
map) considered. We approach the problem thinking that HXUPn, H

ZUPnþ1

and HXUHZB fZ ¼ 0g.
We arbitrarily choose a set of quasi-S-integral points S for HXnDX and

we must prove that the dimension of its Zariski closure is less than or equal
to dimTX

0 þ 1. For every point ðx0 : . . . : xnÞ a S � HX we consider a point
ðx0 : . . . : xn : 0Þ a HZ and we denote the set of all these points by S 0. Namely,
we define

S 0 ¼ fðx0 : . . . : xn : 0Þ a HZ : ðx0 : . . . : xnÞ a Sg:

It turns out that S 0 is a set of quasi-S-integral points for the complement
HZnfDZ ¼ 0g, since

DZðx0; . . . ; xn; 0Þ ¼ f0ðx0; . . . ; xnÞ2 � DXðx0; . . . ; xnÞ

and both factors on the right-hand term are non-zero because for every point
ðx0 : . . . : xnÞ a S we have ðx0 : . . . : xnÞ B DX. Now we parallel the proof of
Theorem 4 to get that the dimension of the Zariski closure of S 0 is less than or
equal to dimTZ

1 þ 1. In fact, from the last displayed equation and denoting the
roots of the polynomial f by a1, a2, a3, we obtain

DZðx0; . . . ; xn; 0Þ ¼ f0ðx0; . . . ; xnÞ6
Y

1ai< ja3

ðai � ajÞ2ð8Þ

¼
Y

1ai< ja3

ð f0ðx0; . . . ; xnÞðai � ajÞÞ2

which implies ðai � ajÞ a O�
S for every i; j a f1; 2; 3g such that iA j. This leads

to a non-trivial fixed algebraic relation among the three roots and we outline
the conclusion, since it follows similarly to what happens in the proof given
for db 4. In fact, ða1 � a2; a2 � a3; a3 � a1Þ is a non-degenerate solution of the
S-unit equation x1 þ x2 þ x3 ¼ 0 and we can write a3 ¼ ða1 � a2Þcþ a1 with c
in a finite set independent of the point chosen in S. Less auxiliary polynomials
and only two variables are needed to define the variety V :
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a1ðY1;Y2Þ ¼ Y1; a2ðY1;Y2Þ ¼ Y2; a3ðY1;Y2Þ ¼ ðY1 � Y2Þcþ Y1

A1ðY1;Y2Þ ¼ a1 þ a2 þ a3; A2ðY1;Y2Þ ¼ a1a2 þ a1a3 þ a2a3

A3ðY1;Y2Þ ¼ a1a2a3

The variety V is defined by the three polynomials

flðX0; . . . ;XnÞ � ð�1Þ l f0ðX0; . . . ;XnÞAlðY1;Y2Þ l ¼ 1; 2; 3:

and we define the variety U as in the first part of this proof to obtain the quasi-
projective variety W . As in the end of the proof of Theorem 4, the dimension of
the Zariski closure of the set S 0 is less than or equal to dimTZ

1 þ 1. The sought
conclusion follows observing that S 0US and TZ

1 UTX
0 .

We are left with the cases of deg f0 ¼ 0 and deg f0 ¼ 1 and we observe that the
former has already a solution in [9], since we can assume f0 ¼ 1 without loss
of generality. If deg f0 ¼ 1, we follow the proof given in this subsection for
deg f0 b 2 with the di¤erence that the hypersurface Z � Pnþ1 will be defined by
the polynomial

gðX0; . . . ;Xn;Z;Xnþ1Þ ¼ ZX 4
nþ1 þ f 20 X

3
nþ1 þ f0 f1X

2
nþ1 þ f0 f2Xnþ1 þ f0 f3:

Everything goes as before with the exception of (8) that becomes

DZðx0; . . . ; xn; 0Þ ¼ f0ðx0; . . . ; xnÞ8DXðx0; . . . ; xnÞ

¼ f0ðx0; . . . ; xnÞ2
Y

1ai< ja3

ð f0ðai � ajÞÞ2

and the same conclusion follows. r

5. Applications and examples

The primary way to apply the results presented in the previous sections is to
consider Diophantine equations F ðX0; . . . ;XnÞ ¼ c, where F is a polynomial
expressing the discriminant of another polynomial f ðX0; . . . ;Xn;Xnþ1Þ seen as
a univariate polynomial in Xnþ1 and c is a non-zero element of the number field
in question. Considering the hypersurface defined in Pnþ1 by the polynomial
f ðX0; . . . ;Xn;Xnþ1Þ, Theorem 1 provides information on the dimension of the
set of solutions in terms of the dimension of the set T0. Moreover, the set that
actually bounds the integral points is pðWÞ and we can find an explicit descrip-
tion for it following the proof of the theorem given in Section 3. It is important
to remark that maybe dim pðW Þ < dimT0, so, when a specific hypersurface is
given, sometimes it is worth to write down the equations for the quasi-projective
variety W and to study its projection on Pn (even if the numbers ci have not been
calculated).
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Example – Let X � P3ðkÞ be the nonsingular hypersurface defined by

XT 3 þ X 2T 2 � X 4

9
þ Y 4

27
� Z4

27
a k½X ;Y ;Z;T �:

We consider the projection of X from the point ð0 : 0 : 0 : 1Þ to the hyperplane
fT ¼ 0gUP2 and we investigate the integral points in P2nD, where D is the
ramification divisor of the projection. By Corollary 3, we may immediately con-
clude that any set of quasi-S-integral points for P2nD is finite. We also exhibit
the discriminant of the polynomial defining the hypersurface (seen as a univariate
polynomial in T), since it is the relevant polynomial as it concerns applications to
Diophantine equations:

DðX ;Y ;ZÞ ¼ X 2

27
ð3X 4 � Y 4 þ Z4ÞðX 4 þ Y 4 � Z4Þ:

Trinomials – When the hypersurface X is defined by a trinomial

f ðX0; . . . ;Xnþ1Þ ¼ aX d
nþ1 þ bX r

nþ1 þ c

where a, b and c are polynomials in k½X0; . . . ;Xn�, there is an explicit general for-
mula for the discriminant of f . It can be calculated in many ways (see, for exam-
ple, [8] or [4]) and, if d and r are coprime, it simplifies to the following:

D ¼ ð�1Þ
1
2dðd�1Þ

ad�r�1cr�1ðd darcd�r þ ð�1Þd�1ðd � rÞd�r
rrbdÞ:

If, for example, we consider X � P3 defined by the trinomial (in respect
of T)

ZT 4 þ 4XZT þ 27ðX 5 � Y 5 þ Z5Þ a k½X ;Y ;Z;T �;

we have the discriminant

DðX ;Y ;ZÞ ¼ 2839Z3ðX 5 � Y 5 þ Z5Þ2ðX 5 � Y 5 þ Z5 � X 4ZÞ:

and, therefore, the complement in P2 of the divisor D is the set

fðx : y : 1Þ a P2 : y
5A 1þ x5; y5A 1� x4 þ x5g:

We can easily see that T0 ¼ fð0 : z i : 1Þ a P2 : i ¼ 0; . . . ; 4g, where z is a fifth root
of 1, so dimT0 ¼ 0 and the dimension of any quasi-S-integral set for P2nD is at
most 1.
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