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Abstract. — Comparison results for solutions to the Dirichlet problems for a class of non-

linear, anisotropic parabolic equations are established. These results are obtained through a semi-
discretization method in time after providing estimates for solutions to anisotropic elliptic problems

with zero-order terms.
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1. Introduction

In this work we prove comparison results for a class of nonlinear anisotropic par-
abolic problems whose model case is

qtu�
XN
i¼1

ðaijqxiuj
pi�2qxiuÞxi ¼ f ðx; tÞ in QT :¼ W� ð0;TÞ

uðx; 0Þ ¼ u0ðxÞ in W

uðx; tÞ ¼ 0 on qW� ð0;TÞ;

8>>>><
>>>>:

ð1:1Þ

where W is an open, bounded subset of RN with Lipschitz continuous boundary,
Nb 2, T > 0, ai > 0 and pi b 1 for i ¼ 1; . . . ;N such that their harmonic mean
p > 1 and the data f and u0 have a suitable summability.

Problem (1.1) provides the mathematical models for natural phenomena in
biology and fluid mechanics. For example, they are the mathematical description
of the dynamics of fluids in anisotropic media when the conductivities of the
media are di¤erent in di¤erent directions. They also appear in biology as a model
for the propagation of epidemic diseases in heterogeneous domains.

In the last years, anisotropic problems have been largely studied by many
authors (see e.g. [8, 13, 19, 21, 22, 25, 26, 27, 28, 29]). The growing interest has
led to an extensive investigation also for problems governed by fully anisotropic
grows condition (see e.g. [1, 2, 3, 14, 15]) and problems related to di¤erent type of
anisotropy (see e.g. [7, 10, 17, 18]).

We emphasize that, when pi ¼ pA 2 for i ¼ 1; . . . ;N the anisotropic di¤usion
operator in problem (1.1) coincides with the so-called pseudo-Laplacian operator,
whereas when pi ¼ 2 for i ¼ 1; . . . ;N it coincides with usual Laplacian.



Symmetrization methods in a priori estimates for solutions to isotropic para-
bolic problems were widely used (see e.g. [6], [12], [20], [23], [31], [36] and the bib-
liography starting with them).

As in the isotropic setting (see e.g. [33]), if w solves the stationary anisotropic
problem

�
XN
i¼1

ðaijwxi j
pi�2

wxiÞxi ¼ f ðxÞ in W

w ¼ 0 on qW;

8><
>:

rearrangement methods allows to obtain a pointwise comparison result for w
(see [15]). Namely,

w
$ðxÞa zðxÞ for a:e: W

$

;ð1:2Þ

where W
$

is the ball centered in the origin such that jW$j ¼ jWj, w$ is the sym-
metric rearrangement of a solution w to problem (1.1) and z is the radial solution
to the following isotropic problem

�divðLj‘zjp�2‘zÞ ¼ f $ðxÞ in W
$

z ¼ 0 on qW
$

;

�
ð1:3Þ

with L a suitable positive constant, p the harmonic mean of exponents p1; . . . ; pN
and f $ the symmetric decreasing rearrangement of f :

In the parabolic setting, the pointwise comparison (1.2) need not hold, never-
theless it is possible to prove for fixed t a ð0;TÞ, the following integral compari-
son result Z s

0

u�ðs; tÞ dsa
Z s

0

v�ðs; tÞ ds in ð0; jWjÞ;ð1:4Þ

where u� and v� are the decreasing rearrangement with respect to the space vari-
able of the solution u to problem (1.1) and of the solution v to the following iso-
tropic ‘‘symmetrized’’ problem

vt � divðLj‘vjp�2‘vÞ ¼ f $ðx; tÞ in Q$

T :¼ W
$ � ½0;T �

vðx; 0Þ ¼ u$

0ðxÞ in W
$

vðx; tÞ ¼ 0 on qW� ½0;T �;

8><
>:ð1:5Þ

respectively. We stress that in contrast to the isotropic case not only the
domain and the data of problem (1.5) are symmetrized with respect to the
space variable, but also the ellipticity condition is subject to an appropriate
symmetrization. Indeed the di¤usion operator in problem (1.5) is the isotropic
p-Laplacian.

In order to obtain the integral comparison result (1.4) we will use the method
of semi-discretization in time. This approach was firstly used by ([36]) and ([6])
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and consists into approximating the solution of a parabolic problem with a
sequence of solutions to elliptic problems with zero-order terms. For this reason,
we first prove an integral comparison result for such elliptic problems and then,
passing to the limit, we obtain (1.4). We emphasize that integral comparison (1.4)
implies a priori estimates for any Lorentz norm of uð�; tÞ in terms of the same
norm of vð�; tÞ for any fixed t > 0. Moreover, we study the asymptotic behavior
of solution uð�; tÞ as the time variable t goes to infinity. The paper is organized as
follows. In Section 2 we recall some backgrounds on the anisotropic spaces and
on the properties of symmetrization. In Section 3 we prove an integral compari-
son result for elliptic anisotropic problems and the main results.

2. Preliminaries

2.1. Anisotropic spaces

Let W be an open, bounded subset of RN with Lipschitz continuous boundary,
Nb 2, and let 1a p1; . . . ; pN < l be N real numbers. We define the anisotropic

Sobolev space W 1;pi
0 ðWÞ as the closure of Cl

0 ðWÞ with respect to the norm

kuk
W

1; pi
0

ðWÞ ¼ kukL1ðWÞ þ kqxiukL pi ðWÞ for i ¼ 1; . . . ;N:

In this anisotropic setting, a Poincaré-type inequality holds (see [25]). If
u a W

1;pi
0 ðWÞ, for every qb 1 there exists a constant C, depending on jWj and q,

such that

kukLqðWÞ aCkqxiukLqðWÞ:ð2:1Þ

We set W 1;~pp
0 ðWÞ ¼

TN
i¼1 W

1;pi
0 ðWÞ with the norm

kuk
W

1;~pp
0

ðWÞ ¼
XN
i¼1

kqxiukL pi ðWÞð2:2Þ

and we denote its dual by ðW 1;~pp
0 ðWÞÞ0:

Moreover, we put L~ppð0;T ;W 1;~pp
0 ðWÞÞ ¼

TN
i¼1 Lpið0;T ;W 1;pi

0 ðWÞÞ equipped
with the following norm

kuk
L~ppð0;T ;W 1;~pp

0
ðWÞÞ ¼

XN
i¼1

�Z T

0

kuxik
pi
L pi ðWÞ dt

� 1
pi :ð2:3Þ

On denoting by p the harmonic mean of p1; . . . ; pN , i.e.

1

p
¼ 1

N

XN
i¼1

1

pi
;ð2:4Þ
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a Sobolev-type inequality tells us that whenever u belongs to W
1;~pp
0 ðWÞ, there

exists a constant CS such that

kukLqðWÞ aCS

XN
i¼1

kqxiukL pi ðWÞð2:5Þ

where q ¼ p� ¼ Np

N�p
if p < N or q a ½1;þl½ if pbN (see [35]). If in plus

p < N, inequality (2.5) implies the continuous embedding of the space W
1;~pp
0 ðWÞ

into LqðWÞ for every q a ½1; p��. On the other hand, the continuity of the embed-

ding W
1;~pp
0 ðWÞ � LpþðWÞ with pþ :¼ maxfp1; . . . ; pNg relies on inequality (2.1).

It may happen that p� < pþ if the exponents pi are not closed enough. Then
pl :¼ maxfp�; pþg turns out to be the critical exponent in the anisotropic
Sobolev embedding.

2.2. Symmetrization

A precise statement of our results requires the use of classical notions of rear-
rangement and of suitable symmetrization of a Young function, introduced by
Klimov in [32].

Let u be a measurable function (continued by 0 outside its domain) fulfilling

jfx a RN : juðxÞj > tgj < þl for every t > 0:ð2:6Þ

The symmetric decreasing rearrangement of u is the function u$ : RN ! ½0;þl½
satisfying

fx a RN : u
$ðxÞ > tg ¼ fx a RN : juðxÞj > tg$

for t > 0:ð2:7Þ

The decreasing rearrangement u� of u is defined as

u�ðsÞ ¼ supft > 0 : muðtÞ > sg for sb 0;

where

muðtÞ ¼ jfx a W : juðxÞj > tgj for tb 0

denotes the distribution function of u.
Moreover,

u
$ðxÞ ¼ u�ðoN jxjNÞ for a:e: x a RN :

Analogously, we define the symmetric increasing rearrangement u$ on replacing
‘‘>’’ by ‘‘<’’ in the definitions of the sets in (2.6) and (2.7). Moreover, we set

u��ðsÞ ¼ 1

s

Z s

0

u�ðrÞ dr for s > 0:

We refer to [11] for details on these topics.
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We just recall the following property of rearrangements which will be useful
in the following (see for example [6]):

Lemma 2.1. If f , g are measurable functions defined in W, thenZ r

0

ð f þ gÞ�ðsÞ dsa
Z r

0

f �ðsÞ þ g�ðsÞ ds; Er a ½0; jWj�:

In this paper we will consider an N-dimensional Young function (namely an
even convex function such that Fð0Þ ¼ 0 and limjxj!þlFðxÞ ¼ þlÞ of the fol-
lowing type:

FðxÞ ¼
XN
i¼1

aijxij pi for x a RN with ai > 0 for i ¼ 1; . . . ;N:ð2:8Þ

We denote by Fx : R ! ½0;þl½ the symmetrization of F introduced in [32].
It is the one-dimensional Young function fulfilling

FxðjxjÞ ¼ F�$�ðxÞ for x a RN ;ð2:9Þ

where F� is the Young conjugate function of F given by

F�ðx 0Þ ¼ supfx � x 0 �FðxÞ : x a RNg for x 0 a RN :

So Fx is the composition of Young conjugation, symmetric increasing rear-
rangement and Young conjugate again. Easy calculations show (see e.g. [15]),
that

FxðjxjÞ ¼ Ljxjp;ð2:10Þ

where p is the harmonic mean of exponents p1; . . . ; pN defined in (2.4) and

L ¼ 2pðp� 1Þp�1

pp

P
N

i¼1
p

1
pi

i ðp 0
i Þ

1
p 0
iGð1þ 1=p 0

i Þ

oNGð1þN=p 0Þ

2
664

3
775

p

N�YN
i¼1

a
1
pi

i

�p

Nð2:11Þ

with oN the measure of the N-dimensional unit ball, G the Gamma function and
p 0
i ¼

pi
pi�1 with the usual conventions if pi ¼ 1.

We recall that in the anisotropic setting a Polya–Szegö principle holds (see
[15]). Let u be a weakly di¤erentiable function in RN satisfying (2.6) and such

that
PN

i¼1 ai

Z
RN

qu
qxi

��� ���pi dx < þl, then u$ is weakly di¤erentiable in RN and

L

Z
RN

j‘u$jp dxa
XN
i¼1

ai

Z
RN

qu

qxi

����
����
pi

dx:ð2:12Þ
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3. Main results

We deal with a class of nonlinear parabolic problems subject to general growth
conditions and having the form

ut � divðaðx; t; u;‘uÞÞ ¼ f ðx; tÞ in QT :¼ W� ð0;TÞ
uðx; 0Þ ¼ u0ðxÞ in W

uðx; tÞ ¼ 0 on qW� ð0;TÞ;

8<
:ð3:1Þ

where W is an open, bounded subset of RN with Lipschitz continuous boundary,
Nb 2, a : QT � R� RN ! RN is a Carathéodory function such that, for a.e.
ðx; tÞ a QT , for all s a R and for all x; x 0 a RN ,

(H1) aðx; t; s; xÞ � xb
PN

i¼1 aijxij
pi with ai > 0;

(H2) jajðx; t; s; xÞja b½jsjp=p
0
j þ jxjj pj�1� with b > 0 Ej ¼ 1; . . . ;N;

(H3) jajðx; t; s; xÞ � ajðx; t; s 0; xÞja gjxj j pj�1js� s 0j with g > 0 Ej ¼ 1; . . . ;N;
(H4) ðaðx; t; s; xÞ � aðx; t; s; x 0ÞÞ � ðx� x 0Þ > 0 with xA x 0.

Moreover, we assume that

(H5) f a
PN

i¼1 L
p 0
i ð0;T ;W �1;p 0

i ðWÞ þ L2ðWÞÞ and u0 a L2ðWÞ.

Here, 1a p1; . . . ; pN < l and p denotes the harmonic mean of p1; . . . ; pN ,
defined in (2.4), such that p > 1.

Definition 3.1. We say that a function u a L~ppð0;T ;W 1;~pp
0 ðWÞÞBCð0;T ;L2ðWÞÞ

is a weak solution to problem (3.1) if for all t a ð0;TÞ
Z
W

uðx; tÞjðx; tÞ dxþ
Z t

0

Z
W

ð�uðx; tÞjtðx; tÞ þ aðx; t;u;‘uÞ �‘jðx; tÞÞ dx dtð3:2Þ

¼
Z
W

u0ðxÞjðx;0Þ dxþ
Z t

0

Z
W

f ðx; tÞjðx; tÞ dx dt

for any j a W 1;2ð0;T ;L2ðWÞÞBL~ppð0;T ;W 1;~pp
0 ðWÞÞ:

Since AðuÞ ¼ �divðaðx; t; u;‘uÞÞ is a pseudomonotone and coercive operator
acting between L~ppð0;T ;W 1;~pp

0 ðWÞBL2ðWÞÞ and
PN

i¼1 L
p 0
i ð0;T ;W �1;p 0

i ðWÞ þ
L2ðWÞÞ, it is well-known (see [30] and [8]) that there exists a unique weak solution
to problem (3.1).

Our aim is to obtain a comparison between concentrations of the solution u to
problem (3.1) and the solution v to problem (1.5), which has a unique weak solu-
tion v a Lpð0;T ;W 1;p

0 ðWÞÞBCð0;T ;L2ðWÞÞ.
In this section we adopt the following convention: if hðx; tÞ is defined in QT ,

we denote by h�ðs; tÞ the decreasing rearrangement of h with respect to x for t
fixed.
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Theorem 3.2. Assume that (H1)–(H5) hold. Let u be the weak solution to prob-
lem (3.1) and v be the solution to problem (1.5), then we haveZ s

0

u�ðs; tÞ dsa
Z s

0

v�ðs; tÞ ds x a ð0; jWjÞ for a:e: t a ð0;TÞ:ð3:3Þ

The following result is a slight extension of Theorem 3.2 when the datum in
problem (1.5) is not the rearrangement of datum f of problem (3.1), but it is a
function that dominates f .

Corollary 3.3. Assume the same hypothesis of Theorem 3.2. Let u be the weak
solution to problem (3.1) and v be the solution to the following problem

vt � divðLj‘vjp�2‘vÞ ¼ ~ff ðx; tÞ in Q$ :¼ W
$ � ð0;TÞ

vðx; 0Þ ¼ ~uu0ðxÞ in W
$

vðx; tÞ ¼ 0 on qW� ð0;TÞ:

8><
>:ð3:4Þ

where ~ff ¼ ~ff
$

and ~uu0 ¼ ~uu$

0 are functions such that for a.e. t a ð0;TÞZ s

0

f �ðs; tÞ dsa
Z s

0

~ff �ðs; tÞ ds for s a ½0; jWj�

and Z s

0

u�
0 ðsÞ dsa

Z s

0

~uu�
0 ðsÞ ds for s a ½0; jWj�;

respectively. Then we haveZ s

0

u�ðs; tÞ dsa
Z s

0

v�ðs; tÞ ds x a ð0; jWjÞ for a:e: t a ð0;TÞ:

Using Corollary 3.3 it is possible to prove the following estimates of the solu-
tion uð�; tÞ to problem (3.1) in term of the solution vð�; tÞ to problem (3.4).

Corollary 3.4. Assume the same hypothesis of Corollary 3.3. If u is the weak
solution to problem (3.1) and v is the solution to problem (3.4), then we have

kuð�; tÞkL p; qðWÞ a kvð�; tÞkL p; qðW$Þ for t > 0;

where 1a p < l, 1a qal and

khkL p; qðWÞ ¼

Z jWj

0

ðs 1
ph��ðsÞÞq ds

s

" #1
q

if 1a p < þl; 1a q < l

sup
s A ð0; jWjÞ

s
1
ph��ðsÞ if 1a p < þl; q ¼ l:

8>>>><
>>>>:
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Let us consider a weak solution u a L
~pp
locð0;þl;W 1;~pp

0 ÞBCð0;þl;L2ðWÞÞ to
the following problem

ut �
XN
i¼1

ðaijqxiuj
pi�2

qxiuÞxi ¼ 0 in ð0;þlÞ �W

uðt; xÞ ¼ 0 on ð0;þlÞ � qW;

uð0; xÞ ¼ u0ðxÞ in W;

8>>>><
>>>>:

ð3:5Þ

with pi such that p ¼ 2:
As a consequence of Theorem 3.2 we study the asymptotic behavior of solu-

tion u to problem (3.5) as time variable t goes to infinity. Proceeding as in [34], it
is possible to show that all the solutions to problem decay exponentially to zero
as time goes to infinity.

Corollary 3.5. Assume the same hypothesis of Theorem 3.2. If l is the smallest
eigenvalue of the following Sturm–Lionville problem

�w 00ðrÞ þ n� 1

r
w 0ðrÞ ¼ lwðrÞ in ð0;RWÞ

w 0ð0Þ ¼ wðRWÞ ¼ 0

8<
:ð3:6Þ

and u is a non-zero solution to problem (3.5), then we have

kuðt; �ÞkL2ðWÞ a e�ltkuð0; �ÞkL2ðWÞ for t > 0:

In order to prove Theorem 3.2 we use the well-known discretization’s method.
To this purpose, we divide ½0;T � into M subintervals

0 ¼ t0 < t1 < � � � < tM ¼ T

with tiþ1 � ti a dðMÞ, where dðMÞ ! 0 as M ! þl. So one can approximate
the solution u to problem (3.1) by the sequence fuMgM of functions defined in
terms of the initial datum u0 and the weak solution to the elliptic problem

�divðamðx;U ;‘UÞÞ þ U

tmþ1 � tm
¼ f mðxÞ þ um�1

tmþ1 � tm
in W

U ¼ 0 on qW;

8<
:ð3:7Þ

where

amðx; s; xÞ ¼ 1

tmþ1 � tm

Z tmþ1

tm

aðx; t; s; xÞ dt

f mðxÞ ¼ 1

tmþ1 � tm

Z tmþ1

tm

gðx; tÞ dt:
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More precisely,

uMðx; tÞ ¼ u0ðxÞ if t a ½0; t1½
umðxÞ if t a ½tm; tmþ1½ and 1amaM � 1;

�
ð3:8Þ

where u0ðxÞ coincides with u0ðxÞ for x a W, and umðxÞ for 1amaM � 1
denotes the weak solution to problem (3.7).

Analogously, the solution v to problem (1.5) can be approximated by the
sequence fvMgM of functions

vMðx; tÞ ¼ v0ðxÞ if t a ½0; t1½
vmðxÞ if t a ½tm; tmþ1½ and 1amaM � 1;

�
ð3:9Þ

where v0ðxÞ agrees with u$

0ðxÞ for x a W, and vmðxÞ for 1amaM � 1 is the
weak solution to the elliptic problem

�divðLj‘V jp�2‘VÞ þ V

tmþ1 � tm
¼ ð f mÞ$ðxÞ þ vm�1

tmþ1 � tm
in W

$

V ¼ 0 on qW
$

:

8<
:ð3:10Þ

At this point to prove Theorem 3.2, we begin by checking a comparison result
for elliptic problem (3.7) that we will present in the next subsection.

3.1. Comparison result for elliptic problem

In the present subsection we focus our attention to the following class of aniso-
tropic elliptic problems

�divðaðx;w;‘wÞÞ þ lwðxÞ ¼ gðxÞ in W

w ¼ 0 on qW;

�
ð3:11Þ

where W is a bounded open subset of RN with Lipschitz continuous boundary,
Nb 2, a : W� R� RN ! RN is a Carathéodory function such that for a.e.
x a W, for all s a RN and for all x; x 0 a RN

(A1) aðx; s; xÞ � xb
PN

i¼1 aijxij
pi with ai > 0;

(A2) jajðx; s; xÞja b½jsjp=p
0
j þ jxjj pj�1� with b > 0 Ej ¼ 1; . . . ;N;

(A3) jajðx; t; s; xÞ � ajðx; t; s 0; xÞja gjxjj pj�1js� s 0j with g > 0 Ej ¼ 1; . . . ;N
(A4) ðaðx; s; xÞ � aðx; s; x 0ÞÞ � ðx� x 0Þ > 0 for xA x 0.

Moreover

(A5) l > 0 and g a ðW 1;~pp
0 ðWÞÞ0.

Here 1a p1; . . . ; pN < l and p is the harmonic mean of p1; . . . ; pN ,
defined in (2.4), such that p > 1:
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We are interested in proving a comparison result between the concentration of
the solution w a W

1;~pp
0 ðWÞ to problem (3.11) and the solution z a W

1;p
0 ðW$Þ to the

following problem

�divðLj‘zjp�2‘zÞ þ lzðxÞ ¼ g$ðxÞ in W
$

z ¼ 0 on qW
$

:

�
ð3:12Þ

For this kind of results see also [4] and [5].
We emphasize that under our assumptions there exists a unique bounded

weak solution (by a slight modification of classical results see e.g. [19], [12] and
see [8] as regard the uniqueness).

Theorem 3.6. Assume that (A1)–(A5) hold. If w is the weak solution to problem
(3.11) and z is the weak solution to problem (3.12), then we haveZ s

0

w�ðsÞ dsa
Z s

0

z�ðsÞ ds; Es a ½0; jWj�:

Proof. We choose the functions wk; t : W ! R defined as

wk; tðxÞ ¼
0 if jwðxÞja t;

ðjwðxÞj � tÞ signðwðxÞÞ if t < jwðxÞja tþ k

k signðwðxÞÞ if tþ k < jwðxÞj

8<
:

for any fixed t and k > 0, as test function in problem (3.11) and by (A1), we get

1

k

XN
i¼1

ai

Z
t<jwj<tþk

qw

qxi

����
����
pi

dxð3:13Þ

a
1

k

Z
t<jwj<tþk

aðx;w;‘wÞ dx

¼ 1

k

Z
t<jwj<tþk

ðlwðxÞ þ gðxÞÞðjwðxÞj � tÞ signðwðxÞÞ dx

þ
Z
jwj>tþk

ðlwðxÞ þ gðxÞÞ signðwðxÞÞ dx:

Arguing as in [15], we can apply Polya–Szegö principle (2.12) to function wk; t

continued by 0 outside W taking into account (2.8) and (2.10). We obtain

XN
i¼1

ai

Z
t<jwj<tþk

qw

qxi

����
����
pi

dx ¼
XN
i¼1

ai

Z
RN

qwk; t

qxi

����
����
pi

dxbL

Z
RN

j‘w$

k; tj
p
dxð3:14Þ

¼ L

Z
t<w$

k; t<tþk

j‘w$

k; tj
p
dx:
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By (3.13) and (3.14), letting k ! 0 we get

� d

dt

Z
w$>t

Lj‘w$jp dxa
Z
jwj>t

ðjgðxÞj þ ljwðxÞjÞ dx for a:e: t > 0:

Using Coarea formula and Hölder’s inequality, we can write

�
� d

dt

Z
w$>t

j‘w$jp dx
�1

p
bNo

1
N

NmwðtÞ
1
N 0 ð�m 0

wðtÞÞ
� 1

p 0 for a:e: t > 0;

where mwðtÞ ¼ jfx a W : jwðxÞj > tgj. By Hardy–Littlewood inequality we obtain

LðNo
1
N

NmwðtÞ
1
N 0 ð�m 0

wðtÞÞ
� 1

p 0 Þpð3:15Þ

a

Z mwðtÞ

0

ðlw�ðsÞ þ g�ðsÞÞ ds for a:e: t > 0:

Putting

WðsÞ ¼
Z s

0

lw�ðsÞ ds and GðsÞ ¼
Z s

0

g�ðsÞ ds Es a ½0; jWj�;

relation (3.15) gives

1a
ð�m 0

wðtÞÞ
p

p 0

LðNo
1
N

NmwðtÞ
1
N 0 Þp

½WðmwðtÞ þ GðmwðtÞÞ� for a:e: t > 0;

namely,

1a
�m 0

wðtÞL
� 1

p�1

ðNo
1
N

NÞ
p

p�1ðmwðtÞÞ
p 0
N 0

½WðmwðtÞÞ þ GðmwðtÞÞ�
1

p�1 for a:e: t > 0:ð3:16Þ

Integrating equation (3.16) between 0 and t, we have that

ta ðNo
1
N

NÞ
�p 0

L
� 1

p�1

Z jWj

mwðtÞ
s� p 0

N 0 ½WðsÞ þ GðsÞ�
1

p�1 ds for t > 0;ð3:17Þ

and so

w�ðsÞa ðNo
1
N

NÞ
�p 0

L
� 1

p�1

Z jWj

s

s� p 0
N 0 ½WðsÞ þ GðsÞ�

1
p�1 ds for s a ½0; jWj�:ð3:18Þ

Deriving (3.18), we have that

ð�w�ðsÞÞ0 a ðNo
1
N

NÞ
�p 0

L
� 1

p�1s�
p 0
N 0 ½WðsÞ þ GðsÞ�

1
p�1 for a:e: s a ½0; jWj�:ð3:19Þ
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Now let us consider problem (3.12). We recall that the solution z of (3.12) is
unique and the symmetry of data assures that zðxÞ ¼ zðjxjÞ, i.e. z is positive and

radially symmetric. Moreover, putting s ¼ oN jxjN and KðsÞ ¼ zððs=oNÞ1=NÞ we
get for all s a ½0; jWj�

�LjKðsÞjp�2K 0ðsÞ ¼ s p=N
0

ðNo
16=N
N Þp

Z s

0

ðlK�ðsÞ þ g�ðsÞÞ ds:

It is possible to show (see Lemma 3.2 of [24]) that the above integral is posi-
tive and this assure that zðxÞ ¼ z$ðxÞ. By the property of z we can repeat
arguments used to prove (3.19), replacing all inequalities by equalities, we
obtain

ð�z�ðsÞÞ0 ¼ ðNo
1
N

NÞ
�p 0

L
� 1

p�1s�
p 0
N 0 ½ZðsÞ þ GðsÞ�

1
p�1 for a:e: s a ½0; jWj�;ð3:20Þ

with

ZðsÞ ¼
Z s

0

lz�ðsÞ ds Es a ½0; jWj�;ð3:21Þ

where z is the solution to problem (3.12). From now on, the proof is a slight mod-
ification of the proof of Theorem 5.1 of [16] that we recall for the convenience of
the reader. We define

HðsÞ ¼
Z s

0

½w�ðsÞ � z�ðsÞ� ds; s a ½0; jWj�

and we have

H 0ðjWjÞ ¼ 0 and Hð0Þ ¼ 0:

We will show that

HðsÞa 0 Es a ½0; jWj�:

We proceed by contradiction and we suppose that there exists s such that

HðsÞ ¼ max
½0; jWj�

HðsÞ > 0:

We are considering two cases: s ¼ jWj and s < jWj:

i) If s ¼ jWj, then there exists s1 in ½0; jWj� such that

Hðs1Þ ¼ 0 and HðsÞ > 0 Es a ðs1; jWj�:ð3:22Þ

Hence, choosing s in ðs1; jWj� and using (3.19) and (3.20), we get

316 a. alberico, g. di blasio and f. feo



w�ðsÞ ¼ �
Z jWj

s

d

ds
w�ðsÞ ds

a ðno1=n
n Þ�p 0

Z jWj

s

s�p 0
n 0
�Z s

0

½g�ðtÞ � lw�ðtÞ� dt
�p 0

p
ds

< ðno1=n
n Þ�p 0

Z jWj

s

s�p 0
n 0
�Z s

0

½g�ðtÞ � lz�ðtÞ� dt
�p 0

p
ds

¼ �
Z jWj

s

d

ds
z�ðsÞ ds ¼ z�ðsÞ

in contrast to (3.22).
ii) If s < jWj, there exist s1; s2 a ½0; jWj� such that

Hðs1Þ ¼ 0; HðsÞ > 0 in ðs1; s2Þ and H 0ðs2Þa 0:ð3:23Þ

Hence, choosing s in ðs1; s2Þ and using (3.19) and (3.20), we obtain

w�ðsÞ � w�ðs2Þ ¼ �
Z s

s2

d

ds
w�ðsÞ ds

a ðno1=n
n Þ�p 0

Z s

s2

s�p 0
n 0
�Z s

0

½g�ðtÞ � lw�ðtÞ� dt
�p 0

p
ds

< ðno1=n
n Þ�p 0

Z s

s2

s�p 0
n 0
�Z s

0

½g�ðtÞ � lz�ðtÞ� dt
�p 0

p
ds

¼ �
Z s

s2

d

ds
z�ðsÞ ds ¼ z�ðsÞ � z�ðs2Þ;

and being H 0ðs2Þ ¼ w�ðs2Þ � z�ðs2Þa 0, we get

w�ðsÞ < z�ðsÞ in ðs1; s2Þ

in contrast to (3.23). r

We are interested in a slight extension of Theorem 3.6 when the datum in
problem (3.12) is not the rearrangement of datum g of problem (3.11), but it is a
function that dominates g:

Corollary 3.7. Assume the same hypothesis of Theorem 3.6. Let z be the solu-
tion to the following problem

�divðLj‘zjp�2‘kÞ þ lzðxÞ ¼ ~ggðxÞ in W
$

z ¼ 0 on qW
$

;

�
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where ~gg ¼ ~gg$ is a function such thatZ s

0

g�ðsÞ dsa
Z s

0

~gg�ðsÞ ds for s a ½0; jWj�:

Then we have Z s

0

w�ðsÞ dsa
Z s

0

z�ðsÞ ds for s a ½0; jWj�:

Proof. The result follows reasoning as in the proof of Theorem 3.6. In this case,
instead of (3.16) we get

1a
�m 0

wðtÞL
1

p�1

ðNo
1
N

NÞ
p

p�1ðmwðtÞÞ
p 0
N 0

½WðmwðtÞÞ þ GðmwðtÞÞ�
1

p�1 for a:e: t > 0;

with GðsÞ ¼
Z s

0

~gg�ðsÞ ds. r

3.2. Proof of Theorem 3.2

Now we are in position to prove Theorem 3.2. We split the proof in three steps
using the notation introduced after Corollary 3.5.

Step 1 (A priori estimate). We want to obtain the following a priori estimate

sup
½0;T �

Z
W

juM j2 dxþ
XN
i¼1

ai

Z T

0

Z
W

jðuMÞxi j
pi dx dtaC;ð3:24Þ

for some constant C depending only on the data.
Let us consider um as test function in problem (3.7). It follows that

1

tmþ1 � tm

Z
W

ðjumj2 � umum�1Þ dxþ
Z
W

amðx;DumÞ �Dum dx ¼
Z
W

f mum dx:

Using (A1), we get

1

2

Z
W

ðjumj2 � jum�1j2 þ jum � um�1j2Þ dxþ ðtmþ1 � tmÞ
XN
i¼1

ai

Z
W

jum
xi
j pi dx

a ðtmþ1 � tmÞ
Z
W

j f mj jumj dx:

Summing on m, we obtain
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1

2

Z
W

juMðt; xÞj2 dxþ
XN
i¼1

ai

Z t

0

Z
W

jðuMÞxi j
pi dx dtð3:25Þ

a

Z t

0

Z
W

j fM j juM j dx dtþ
Z
W

ju0j2 dx:

We estimate the right hand side of (3.25) using Hölder inequality and Young
inequality

Z t

0

Z
W

j fM j juM j dx dta
Z t

0

k fMkðW 1;~pp
0

ðWÞÞ 0kuMk
W

1;~pp
0

ðWÞ dt

aC
XN
i¼1

Z t

0

k fMkðW 1;~pp
0

ðWÞÞ 0kaijðuMÞxi j kL pi ðWÞ dt

aCðeÞ
XN
i¼1

Z t

0

k fMk p 0
i

ðW 1;~pp
0

ðWÞÞ 0
dt

þ e
XN
i¼1

ai

Z t

0

Z
W

jðuMÞxi j
pi dx dt:

Taking e small enough and the supremum on t, we get (3.24).

Step 2. We prove that

Z s

0

ðumÞ�ðs; tÞ dsa
Z s

0

ðvmÞ�ðs; tÞ ds;ð3:26Þ

where um and vm are the solutions of problems (3.7) and (3.10), respectively.
We proceed by induction on m.
For m ¼ 1, by Lemma 2.1 we have that

Z s

0

�
f 1 þ u0

t1 � t0

��
ðsÞ dsa

Z s

0

ð f 1Þ�ðsÞ dsþ
Z s

0

ðu0Þ�ðsÞ
t1 � t0

ds;

and then, by Corollary 3.7 it follows that

Z s

0

ðu1Þ�ðsÞ dsa
Z s

0

ðv1Þ�ðsÞ ds; s a ½0; jWj�:

Now assuming (3.26) to hold for m ¼ n� 1, we will prove it for m ¼ n.
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Using Lemma 2.1 and the induction hypothesis, we getZ s

0

�
f n þ un�1

tn�1 � tn�2

��
ðsÞ dsa

Z s

0

ð f nÞ�ðsÞ dsþ
Z s

0

ðun�1Þ�ðsÞ
tn�1 � tn�2

ds

a

Z s

0

ð f nÞ�ðsÞ dsþ
Z s

0

ðvn�1Þ�ðsÞ
tn�1 � tn�2

ds:

So applying Corollary 3.7 we get (3.26) for m ¼ n.

Step 3 (Passing to the limit). Inequality (3.26) can be written asZ s

0

ðuMÞ�ðs; tÞ dsa
Z s

0

ðvMÞ�ðs; tÞ ds;ð3:27Þ

for t a ½0;T �, where uM and vM are defined by (3.8) and (3.9), respectively.
To conclude, after extracting a subsequence, the estimates (3.24) yield

uM * u weakly in L~ppð0;T ;W 1;~pp
0 ðWÞÞ;

vM * v weakly in Lpð0;T ;W 1;p
0 ðW$ÞÞ;

uM *
�
u weakly � in Llð0;T ;L2ðWÞÞ;

vM *
�
v weakly � in Llð0;T ;L2ðW$ÞÞ;

where u and v are the solutions to problems (3.1) and (1.5), respectively. Note
that the last assertion is a consequence of classical results contained in [30] thanks
to which we are able to pass to the limit in (3.27) as M ! þl and conclude the
proof. r
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