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ABSTRACT. — Comparison results for solutions to the Dirichlet problems for a class of non-
linear, anisotropic parabolic equations are established. These results are obtained through a semi-
discretization method in time after providing estimates for solutions to anisotropic elliptic problems
with zero-order terms.
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1. INTRODUCTION

In this work we prove comparison results for a class of nonlinear anisotropic par-
abolic problems whose model case is

N
o=y (o4|0ul" Pogu), = f(x,1) in Qr =Qx(0,T)
(1.1) =l
u(x,0) = up(x) in Q
u(x,t) =0 on dQ x (0,7),

where Q is an open, bounded subset of RY with Lipschitz continuous boundary,
N>2T>0,0,>0and p; >1fori=1,..., N such that their harmonic mean
p > 1 and the data f and u, have a suitable summability.

Problem (1.1) provides the mathematical models for natural phenomena in
biology and fluid mechanics. For example, they are the mathematical description
of the dynamics of fluids in anisotropic media when the conductivities of the
media are different in different directions. They also appear in biology as a model
for the propagation of epidemic diseases in heterogeneous domains.

In the last years, anisotropic problems have been largely studied by many
authors (see e.g. [8, 13, 19, 21, 22, 25, 26, 27, 28, 29]). The growing interest has
led to an extensive investigation also for problems governed by fully anisotropic
grows condition (see e.g. [1, 2, 3, 14, 15]) and problems related to different type of
anisotropy (see e.g. [7, 10, 17, 18]).

We emphasize that, when p; = p # 2 fori=1,..., N the anisotropic diffusion
operator in problem (1.1) coincides with the so-called pseudo-Laplacian operator,
whereas when p; =2 fori=1,..., N it coincides with usual Laplacian.
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Symmetrization methods in a priori estimates for solutions to isotropic para-
bolic problems were widely used (see e.g. [6], [12], [20], [23], [31], [36] and the bib-
liography starting with them).

As in the isotropic setting (see e.g. [33]), if w solves the stationary anisotropic
problem

N

_ Z(al_|wxi|ﬂifzwxl_)m — f(x) in Q

i=1
w=20 on 0Q,

rearrangement methods allows to obtain a pointwise comparison result for w
(see [15]). Namely,

(1.2) w*(x) < z(x) fora.e. Q%

where Q* is the ball centered in the origin such that |Q*| = |Q|, w* is the sym-
metric rearrangement of a solution w to problem (1.1) and z is the radial solution
to the following isotropic problem

—div(A|Vz|72Vz) = f*(x) inQ*
(1.3)
z=0 on 0Q*,
with A a suitable positive constant, p the harmonic mean of exponents py, ..., py

and f™* the symmetric decreasing rearrangement of f.

In the parabolic setting, the pointwise comparison (1.2) need not hold, never-
theless it is possible to prove for fixed ¢ € (0, T'), the following integral compari-
son result

(19) [ wiendos [(v@nds i

where u* and v* are the decreasing rearrangement with respect to the space vari-
able of the solution u to problem (1.1) and of the solution v to the following iso-
tropic “‘symmetrized” problem

v, — div(A|Vo|"2Vo) = f*(x,7) in Q} == Q* x [0, T]
(1.5) v(x,0) = uj(x) in Q*
v(x,1) =0 on 0Q x [0, T7,

respectively. We stress that in contrast to the isotropic case not only the
domain and the data of problem (1.5) are symmetrized with respect to the
space variable, but also the ellipticity condition is subject to an appropriate
symmetrization. Indeed the diffusion operator in problem (1.5) is the isotropic
p-Laplacian.

In order to obtain the integral comparison result (1.4) we will use the method
of semi-discretization in time. This approach was firstly used by ([36]) and ([6])
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and consists into approximating the solution of a parabolic problem with a
sequence of solutions to elliptic problems with zero-order terms. For this reason,
we first prove an integral comparison result for such elliptic problems and then,
passing to the limit, we obtain (1.4). We emphasize that integral comparison (1.4)
implies a priori estimates for any Lorentz norm of u(-,#) in terms of the same
norm of v(-, ¢) for any fixed # > 0. Moreover, we study the asymptotic behavior
of solution u(-, 7) as the time variable 7 goes to infinity. The paper is organized as
follows. In Section 2 we recall some backgrounds on the anisotropic spaces and
on the properties of symmetrization. In Section 3 we prove an integral compari-
son result for elliptic anisotropic problems and the main results.

2. PRELIMINARIES
2.1. Anisotropic spaces

Let Q be an open, bounded subset of RY with Lipschitz continuous boundary,
N >2 andlet1 < py,..., py < oo be N real numbers. We define the anisotropic
Sobolev space WO1 P1(Q) as the closure of Cj°(Q) with respect to the norm

el iy = Iy + 1Ol gy Fori=1,...,N.

In thls anisotropic setting, a Poincaré-type inequality holds (see [25]). If
ue W P1(Q), for every ¢ > 1 there exists a constant C, depending on |Q| and ¢,
such that

(2.1) ull Loy < Clloxull Lo

We set W, 7(Q) = NY, Wy " (Q) with the norm

N
(22) el iy = D 10t ey
i=1

and we denote its dual by ( WO1 7 Q).
Moreover, we put LP(0,T; Wy 7 (Q)) =N, L?(0,T; W, (Q)) equipped
with the following norm

N T 1
23) el 77y = D |l ar)
On denoting by p the harmonic mean of py, ..., py, i.e.

N o
N2

(2.4)

“s\l'—‘
2|~
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a Sobolev-type inequality tells us that whenever u belongs to WO1 7 (Q), there
exists a constant Cg such that

N
(2.3) lull Loy < Cs D 10w tll i
i=1
where g = p* :NNfﬁ if p<N or ge[l,+oo] if p>N (see [35]). If in plus

P < N, inequality (2.5) implies the continuous embedding of the space WO1 Q)
into L4(Q) for every ¢ € [1, p*]. On the other hand, the continuity of the embed-
ding Wol"”(Q) C LP+(Q) with p, :=max{p,..., py} relies on inequality (2.1).
It may happen that p* < p, if the exponents p; are not closed enough. Then
Do :=max{p*, p,} turns out to be the critical exponent in the anisotropic
Sobolev embedding.

2.2. Symmetrization

A precise statement of our results requires the use of classical notions of rear-
rangement and of suitable symmetrization of a Young function, introduced by
Klimov in [32].

Let u be a measurable function (continued by 0 outside its domain) fulfilling

(2.6) [{x e RY : |u(x)| > t}| < +oo for every ¢ > 0.

The symmetric decreasing rearrangement of u is the function u* : RY — [0, + oo
satisfying

(2.7) {(xeRY :u*(x) >t} = {x e RY : |u(x)| > 1}* fort>0.
The decreasing rearrangement u* of u is defined as

u*(s) =sup{t > 0: p,(t) >s} fors>0,
where

w,(t) ={xeQ: |u(x)| >t} fort>0

denotes the distribution function of u.
Moreover,

u*(x) = u*(wy|x|Y) forae xeRY.

Analogously, we define the symmetric increasing rearrangement u* on replacing
“>” by “<” in the definitions of the sets in (2.6) and (2.7). Moreover, we set

u(s) = l/0 u*(r)dr fors>0.

N

We refer to [11] for details on these topics.
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We just recall the following property of rearrangements which will be useful
in the following (see for example [6]):

Lemma 2.1. If f, g are measurable functions defined in Q, then

/ " e) () ds< / ) Lt (s)ds, Yre o, |
0 0

In this paper we will consider an N-dimensional Young function (namely an
even convex function such that ®(0) = 0 and lim¢__,, ®(¢) = +o0) of the fol-
lowing type:

N
(2.8) D(¢) = Zoc,-|f,»|p" for ¢ € RY witho; >0fori=1,...,N.
i1

We denote by @, : R — [0, +oo[ the symmetrization of ® introduced in [32].
It is the one-dimensional Young function fulfilling

(2.9) @, (|¢]) = D...(&) for & e RY,
where @, is the Young conjugate function of ® given by
@.(&) =sup{¢-&' - @) : e RV} for &' e RY.

So @, is the composition of Young conjugation, symmetric increasing rear-
rangement and Young conjugate again. Easy calculations show (see e.g. [15]),
that

(2.10) D, (¢]) = Al¢l,
where p is the harmonic mean of exponents py, ..., py defined in (2.4) and

N L L]
2i(p— 1yt | PP T+ 1P| v 1
pP onyU(1+N/p’) (-= %; )

(2.11) A=

with @y the measure of the N-dimensional unit ball, I the Gamma function and
pl= # with the usual conventions if p; = 1.

We recall that in the anisotropic setting a Polya—Szegd principle holds (see
[15]). Let u be a weakly differentiable function in R" satisfying (2.6) and such
that Zz]il i

Ou
5X[

pi
dx < +oo, then u* is weakly differentiable in R and

R N

~ N
(2.12) A/ Vi dx < :ai/ Ou
RY -1 JRY

pi
dx.
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3. MAIN RESULTS

We deal with a class of nonlinear parabolic problems subject to general growth
conditions and having the form

u(x,0) = up(x) in Q

u, — div(a(x, t,u,Vu)) = f(x,t) in Qr:=Qx (0,7T)
(3.1)
{ u(x,t) =0 on 0Q x (0,T),

where Q is an open, bounded subset of RY with Lipschitz continuous boundary,
N=>2 a:0rxRxRY - R" is a Carathéodory function such that, for a.e.
(x,1) € Qr, for all s € R and for all ¢, & € RY,

(H1) a(x,t,5,&) - &= S0, 0]&]” with o; > 0;

(H2) |a;(x, 1,5, )l < Bllsl”" + 15 ”] with > 0% = 1,.

(H3) l|aj(x,t,5,&) —a;(x, 1,5 é)\ <& |"/ Ys — | with y > 0 V] =1,...,N
(H4) (a(x,1,s,&) —a(x,t,s, é ) - (E—¢") >0 with € # ¢,

Moreover, we assume that
(H5) fe SN L0, T; w='71(Q) + L2(Q)) and uy € L*(Q).

Here, 1 < py,...,py < o0 and p denotes the harmonic mean of py,..., py,
defined in (2.4), such that p > 1.

DEFINITION 3.1. We say that a function u € L?(0, T; W, ?(Q)) n C(0, T; L*(Q))
is a weak solution to problem (3.1) if for all 7 € (0, T

(3.2) / u(x,t)p xtdx+// u(x, 7). (x,7) + a(x,t,u,Vu) - Vo(x, 7)) dx dt

:/Quo(x)go(x,O) dx+/0 /Qf(x,f)(p(x,r) dxdr

for any p € W20, T; LA(Q)) n LP(0, T; W, 7(Q)).

Since A(u) = —div(a(x, t,u,Vu)) is a pseudomonotone and coercive operator
acting between LP(0,T; W, 7(Q)nL*Q)) and YN, L 0, T; W~ LPi(Q) +
L*(Q)), it is well-known (see [30] and [8]) that there exists a unique weak solution
to problem (3.1).

Our aim is to obtain a comparison between concentrations of the solution u to
problem (3.1) and the solution v to problem (1.5), which has a unique weak solu-
tion v € L7(0, T; Wy (Q)) n C(0, T; L2(Q)).

In this section we adopt the following convention: if i(x, ) is defined in Qr,
we denote by h*(g,t) the decreasing rearrangement of & with respect to x for ¢
fixed.
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THEOREM 3.2. Assume that (H1)—(H5) hold. Let u be the weak solution to prob-
lem (3.1) and v be the solution to problem (1.5), then we have

(3.3) /Su*(a,z)dag/sv*(a,t)da x€(0,1Q]) forae. 1 € (0,T).
0 0

The following result is a slight extension of Theorem 3.2 when the datum in
problem (1.5) is not the rearrangement of datum f of problem (3.1), but it is a
function that dominates f.

COROLLARY 3.3. Assume the same hypothesis of Theorem 3.2. Let u be the weak
solution to problem (3.1) and v be the solution to the following problem

v, — div(A|Vo"2Vo) = f(x,1) in Q% :=Q* x (0, T)
(34) v(x,0) = iy (x) in Q*
v(x, ) =0 on 0Q x (0,T).

where f = f* and ity = ugy are functions such that for a.e. t € (0,T)

/Sf*(a,t)das /Sf*(a,t)do fors € [0,]Q]]
0 0

and

/Sug(g) do < /S[zg(o") do  forse[0,)Q],
0 0

respectively. Then we have

/ u*(o,t)do < / v¥(a,t)da  x € (0,|Q) fora.e.te (0,T).
0 0

Using Corollary 3.3 it is possible to prove the following estimates of the solu-
tion u(-, 1) to problem (3.1) in term of the solution v(-, ) to problem (3.4).

COROLLARY 3.4. Assume the same hypothesis of Corollary 3.3. If u is the weak
solution to problem (3.1) and v is the solution to problem (3.4), then we have

(s Ol oy < WG Dl praqry  Sor t>0,

where 1 < p < oo, 1 <¢g < o0 and

1

I 1 ds ‘
/ (ssh™(s)?—| fl1<p<+w,1<g< o
hl| =4 L0 g
1Al L0

sup sth*™(s) if1<p<—+o0,q=o0.
s€(0,19)
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Let us consider a weak solution u € L? (0, +00; Wol’p) N C(0,+00; L*(Q)) to

loc
the following problem

N
= (o405 ul"2ou), =0 in (0,+0) x Q
(3.5) =
u(t,x) =0 on (0,+00) x 09,
u(0, x) = up(x) in Q,

with p; such that p = 2.

As a consequence of Theorem 3.2 we study the asymptotic behavior of solu-
tion u to problem (3.5) as time variable ¢ goes to infinity. Proceeding as in [34], it
is possible to show that all the solutions to problem decay exponentially to zero
as time goes to infinity.

COROLLARY 3.5. Assume the same hypothesis of Theorem 3.2. If J. is the smallest
eigenvalue of the following Sturm—Lionville problem

20+ = ) in (0, Ra)
£/(0) = (Ra) = 0

and u is a non-zero solution to problem (3.5), then we have

(3.6)

(2, )| 20y < € H][u(0, )| 2y for 1> 0.

In order to prove Theorem 3.2 we use the well-known discretization’s method.
To this purpose, we divide [0, 7] into M subintervals

O=to<ty <---<ty=T
with #;41 — t; <6(M), where 6(M) — 0 as M — +oo. So one can approximate

the solution u to problem (3.1) by the sequence {uy},, of functions defined in
terms of the initial datum u, and the weak solution to the elliptic problem

U un!
—div(a"(x, U,VU —_— =" —— InQ
(37) IV(a (X7 ' )) N tm-‘rl - Zm f <X) * tm-‘rl - tm n
U=0 on 0Q),
where
1 b1
a”(x,s,&) = —/ a(x, t,s, &) dt
Imt1 — Im b

1 U1
PAe p—— / g(x, 1t
t'"

tm+1 — I
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More precisely,

0 .
(3.8) up(x,t) = u(x) ?f re 0.l
u(x) iftetytp[andl <m< M —1,

where u°(x) coincides with up(x) for x e Q, and u”(x) for 1 <m< M —1
denotes the weak solution to problem (3.7).

Analogously, the solution v to problem (1.5) can be approximated by the
sequence {vy},, of functions

O (x) ifrel0,n]
v"(x) ifte€ [ty typ[andl <m < M —1,

(3.9) om(x, 1) = {

where v(x) agrees with uj(x) for x € Q, and v"(x) for 1 <m < M — 1 is the
weak solution to the elliptic problem

_ V vmfl
—div(AIVV)P V) 4+ —— = (f")*(x) +——— inQ*
(310) ( | | ) tm+l —Im (f ) ( ) tm+1 —Im

V=0 on 0Q*.

At this point to prove Theorem 3.2, we begin by checking a comparison result
for elliptic problem (3.7) that we will present in the next subsection.

3.1. Comparison result for elliptic problem

In the present subsection we focus our attention to the following class of aniso-
tropic elliptic problems

(3.11) { ;diV(a(x’ w, V) + 2w(x) = g(x) inQ

=0 on 0Q,

where Q is a bounded open subset of R with Lipschitz continuous boundary,
N>2 a:QxRxRY - RY is a Carathéodory function such that for a.e.
x € Q, for all s € RY and for all &, & e RY

(A1) a(x,s,&)- &> SN oyl&|” with o > 0;

(A2) |a](x 5,8)| < BlsIPP +|&|P ]w1th/3> 0%j=1,...,N;

(A3) |aj(x,t,s,¢&) — a](xZS f)\<y|f|”/ |s — ’|withy>OVj:1,...,N
(A4) (a(x,s,&) —a(x,s,E) - (E— é)>0forf;£f

Moreover

(A5) 4> 0and g e (W, 7(Q))".
Here 1< py,...,py < oo and p is the harmonic mean of py,..., pn,
defined in (2.4), such that p > 1.
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We are mterested in proving a comparison result between the concentratlon of
the solution w € W (Q) to problem (3.11) and the solution z € W 7(Q*) to the
following problem

(3.12) { —div(A|Vz|??Vz) + Jz(x) = g*(x) in Q*
z=0 on 0Q*.

For this kind of results see also [4] and [5].

We emphasize that under our assumptions there exists a unique bounded
weak solution (by a slight modification of classical results see e.g. [19], [12] and
see [8] as regard the uniqueness).

THEOREM 3.6. Assume that (A1)—(AS) hold. If w is the weak solution to problem
(3.11) and z is the weak solution to problem (3.12), then we have

/Ow*(a)das/oz*(a)da, Vs € [0,]Q]].

PrOOF. We choose the functions w, . : Q — R defined as

0 if lwx)| <=
Wi r(X) = { (Jw(x)| — 7)sign(w(x)) ifr<|w(x)| <t+kK
K sign(w(x)) if 74K < |w(x)|

for any fixed 7 and x > 0, as test function in problem (3.11) and by (Al), we get

aW Pi

1 '
3.13 - oc,-/ —| dx
( ) K,-Zzl <|w|<t+K 0x;
1

< —/ a(x,w,Vw) dx
K Je<|wl<tic

— 1/<| . (Aw(x) 4+ g(x))(|w(x)| — 7) sign(w(x)) dx

K

+ /I - ’(/lw(x) + g(x)) sign(w(x)) dx.

Arguing as in [15], we can apply Polya—Szego principle (2.12) to function w ;
continued by 0 outside Q taking into account (2.8) and (2.10). We obtain

ow|” - oWy |V _
3.14 %i ——| dx=) I dx > A/ Vw* |”dx
( ) Z /<|W<T+K 0x; P 0x; RV | "=T|
=A IVw* |7 dx.

K,T
*
T<wg  <t+K
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By (3.13) and (3.14), letting x — 0 we get

4 AlVw*|)? dx < / (lg(x)| + Alw(x)]) dx fora.e. > 0.

dt wr>t [w|>t

Using Coarea formula and Hélder’s inequality, we can write

d _ 1 i B
(< [ 10w ) = Nodu, (P (i) 7 forae. o> 0
wr>t

where u,,(t) = [{x € Q : |w(x)| > 7}|. By Hardy—Littlewood inequality we obtain
(3.15) ANFp, ()7 (—p,(2)) 7)
#4,(7)
< / (Aw*(s) +¢*(s))ds fora.e.z>0.
0

Putting
W(s):/ iw*(0)do and g(s):/ g () do Vs € [0,)Q],
0 0

relation (3.15) gives

(=, (0))7

1

1< o
ANy, (T)¥)"

(7 (o (2) + 4 (1, ()] forae. z>0,

namely,

316) 1= ——OATT )+ S ()T forae. > 0.

(Neo )71, (2)) ¥

Integrating equation (3.16) between 0 and 7, we have that

y o

(3.17) t<(No})PAT [ o V[ (o) +%(o)Tds fort >0,
()

and so

., Q=
(3.18) w'(s) < (Nol) AT [ o %[# (o) + %(a)]F1da forse [0,]Q.

S

Deriving (3.18), we have that

=1

(3.19)  (—w*(s)) < (No}) P A Tis V[ (s) + 9(s)]7T forae. s e [0,]Q.
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Now let us consider problem (3.12). We recall that the solution z of (3.12) is
unique and the symmetry of data assures that z(x) = z(|x|), i.e. z is positive and
radially symmetric. Moreover, putting s = wy|x|" and x(s) = z((s/a)N)l/ Ny we
get for all s € [0, |Q|]

_ p/N' s
A ()P (5) = W | @+ @)do
N

It is possible to show (see Lemma 3.2 of [24]) that the above integral is posi-
tive and this assure that z(x) = z*(x). By the property of z we can repeat
arguments used to prove (3.19), replacing all inequalities by equalities, we
obtain

1

(320)  (=z*(s)) = (Nok) 7 A Fis [ Z(s) + %(s))7T forae. s e [0, |Q]),

with
(3.21) Z(s) = /OS;LZ*(J) do Vse 0,0,

where z is the solution to problem (3.12). From now on, the proof is a slight mod-
ification of the proof of Theorem 5.1 of [16] that we recall for the convenience of
the reader. We define

H(s) = /Os[w*(a) —z%(g)]lda, s€l0,|Q]
and we have
H'(|Q)=0 and H(0)=0.
We will show that
H(s) <0 Vsel0,]Q].
We proceed by contradiction and we suppose that there exists § such that

H(5) = max H(s) > 0.
(5) max (s)

We are considering two cases: § = || and § < |Q].
i) If § = |Q|, then there exists s; in [0, |Q|] such that
(3.22) H(s;))=0 and H(s) >0 Vse (s1,|Q]].

Hence, choosing s in (s1, |Q|] and using (3.19) and (3.20), we get
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w*(s) = — ‘Q‘iw*(a) do

s do

< (nw}/m / “ — ( /0 ”[g*(f) — Jw*(7)] dr)é do

7

< (new)/m7' / “ 0-75%'( /0 U[g*(r) — 2% (1)] dffda
\Q\i

z
s do

“(o)do = z*(s)

in contrast to (3.22).
i) If § < |Q], there exist 51,5, € [0,]|Q]] such that

(3.23) H(s;) =0, H(s)>0 in(s;,s2) and H'(s) <0.

Hence, choosing s in (s, s2) and using (3.19) and (3.20), we obtain
* * § d *

w(s) — w*(s2) :—/ —w*(0)do

5 do

< (nwnl/”)ﬁl/ o‘%(

K
= —/Siz*(a) do=z"(s) — z%(s2)
- . do - 2)s

S—
Q
<
*
—
5
N—
|
N
N
*
—
)
Pt
QU
Q
N———
~i|=
1N
Q

and being H'(sy) = w*(s2) — z*(s2) < 0, we get
w*(s) < z*(s) in (s1,52)

in contrast to (3.23). O

We are interested in a slight extension of Theorem 3.6 when the datum in

problem (3.12) is not the rearrangement of datum g of problem (3.11), but it is a
function that dominates g.

COROLLARY 3.7. Assume the same hypothesis of Theorem 3.6. Let z be the solu-
tion to the following problem

{ —div(A|Vz)? V) + Jz(x) = §(x) in Q*
z=0 on 0Q*,
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where § = g* is a function such that

/Sg*(a) do < /Sg*(a) do forse[0,|Q]l.
0 0

Then we have

/sw*(a) do < /SZ*(O'> do  fors e [0,|Q]].
0 0

PRrOOF. The result follows reasoning as in the proof of Theorem 3.6. In this case,
instead of (3.16) we get

i, (DA
(NPT, ()7

1< (1, (1)) + G, (1)) for ace. 1> 0,

with 4(s) = /OSgN*(a) do. O

3.2. Proof of Theorem 3.2

Now we are in position to prove Theorem 3.2. We split the proof in three steps
using the notation introduced after Corollary 3.5.

Step 1 (A priori estimate). We want to obtain the following a priori estimate
N T
(3.24) sup/ |uM|2dx+Zoc,-/ / |(upr), |7 dxdt < C,
0,71JQ pa 0o Jo '

for some constant C depending only on the data.
Let us consider u™ as test function in problem (3.7). It follows that

1
7/(|um|2—umum_1)dx+/a’"(x,Dum)~Dumdx—/f’”u’"dx.
ImJo Q Q

tm+l -

Using (Al), we get
1
> /Q<lu’”|2 P Y (e - Z“l/ il

(tmst — / 177 [ dx.

Summing on m, we obtain
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1 s ul d _
3.25 —/ up (2, x)|" dx + oci/ / un ), |7 dx dt
(3.25) 5 ), (2:%)] ; AR

i
< / /|fM||uM|dxdt+/|uo|2dx.
0 Q Q

We estimate the right hand side of (3.25) using Hoélder inequality and Young
inequality

t i
| [ttt dsd s [l ol d

N r
SCE /0||fM|(Wolﬁ<Q>)/||ai|(uM)X,‘|||LI’f(Q)dl
i=1
N i /
=€ oy d
<0y AT

N i
+8Zai/ /|(uM)xi|”"dxdt.
i=1 0 JQ

Taking ¢ small enough and the supremum on 7, we get (3.24).

Step 2. We prove that

(3.26) /O ) (0, 0) do < /0 (6™ (0, 1) do,

where #™ and v™ are the solutions of problems (3.7) and (3.10), respectively.
We proceed by induction on m.
For m =1, by Lemma 2.1 we have that

/Os(fl +[1u_0t0)*(a)da < /o

and then, by Corollary 3.7 it follows that

S

(fl)*(a)d0+/A€(uo)*(0> dO',

o i—1

s s s .
/O(u) () do < /0 (') (0)do, se0,|Q]

Now assuming (3.26) to hold for m = v — 1, we will prove it for m = v.
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Using Lemma 2.1 and the induction hypothesis, we get

S

—1 K uv—l * o
(fv)*(o)da+/ 7( ) )da

S uV *
v —+ 7) g dO' < /
/o <f -1 —hH—2 (@) 0 0 -1 —hH-2

< /Os(f")*(a) da+/osm do.

ly-1 — b2
So applying Corollary 3.7 we get (3.26) for m = v.
Step 3 (Passing to the limit). Inequality (3.26) can be written as

(3.27) /OS(MM)*(O', t)do < /OS(UM)*(J, t)doa,

for ¢ € [0, T], where uy, and vy, are defined by (3.8) and (3.9), respectively.
To conclude, after extracting a subsequence, the estimates (3.24) yield

uy — u weakly in LP(0, T'; Wol’ (Q)),
vy — v weakly in L2(0, T; W, 7 (Q*)),
uy —u  weakly xin L7 (0, T; L*(Q)),
vy — v weakly xin L% (0, T; L*(Q)),

where u and v are the solutions to problems (3.1) and (1.5), respectively. Note
that the last assertion is a consequence of classical results contained in [30] thanks
to which we are able to pass to the limit in (3.27) as M — +co0 and conclude the
proof. O
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