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1. Introduction

In the following, G always denotes a finite group.
The purpose of this survey paper is to show how the embedding of cer-

tain types of subgroups of G can determine the structure of G. The subgroup
embedding properties we are going to consider are natural extensions of the
permutability.

Recall that a subgroup H of a group G is said to be permutable in G if H per-
mutes with all subgroups of G, i.e. HK is a subgroup of G for all subgroups K of
G. Clearly H is permutable in G if and only if H permutes with every p-subgroup
of G for every prime p (see for instance [7, Theorem 1.2.2]).

Sometimes, the requirement for a subgroup is not to permute with all
p-subgroups for all primes p, but just only with the maximal ones, that is,
the Sylow p-subgroups for all primes p. This embedding property, called
S-permutability, was introduced and studied by Kegel in [19].

Definition 1. A subgroup H of G is said to be S-permutable in G if H per-
mutes with every Sylow p-subgroup of G for every prime p.

It is clear that normal subgroups are always permutable and permutable sub-
groups are S-permutable. One of the earliest results about S-permutable sub-
groups is due to Kegel, who proved in [19] that every S-permutable subgroup is
subnormal (see [7, Theorem 1.2.14(3)]). Clearly the extent to which a subnormal
subgroup can di¤er from being S-permutable, permutable or normal is of inter-
est and so the description of the groups in which normality, permutability and
S-permutability is transitive could help.



Definition 2.

1. A group G is a T-group if normality is a transitive relation in G, that is, if
every subnormal subgroup of G is normal in G.

2. A group G is a PT-group if permutability is a transitive relation in G, that is, if
H is permutable in K and K is permutable in G, then H is permutable in G.

3. A group G is a PST-group if S-permutability is a transitive relation in G,
that is, if H is S-permutable in K and K is S-permutable in G, then H is
S-permutable in G.

According to Kegel’s result, G is a PST-group (respectively a PT-group) if and
only if every subnormal subgroup is S-permutable (respectively permutable) in G.

Note that T implies PT and PT implies PST. On the other hand, PT does not
imply T (non-Dedekind modular p-groups) and PST does not imply PT (non-
modular p-groups). The reader is referred to [7, Chapter 2] for basic results about
these classes of groups. Other characterisations based on subgroup embedding
properties can be found in [5, 9].

Agrawal ([7, 2.1.8]) characterised soluble PST-groups. He proved that a
soluble group G is a PST-group if and only if the nilpotent residual in G is an
abelian Hall subgroup of G on which G acts by conjugation as power automor-
phisms. In particular, the class of soluble PST-groups is subgroup-closed.

Let G be a soluble PST-group with nilpotent residual L. Then G is a PT-group
(respectively T-group) if and only if G=L is a modular (respectively Dedekind)
group ([7, 2.1.11]).

Another interesting and less restrictive class of groups containing all nilpotent
groups is the class of T0-groups which has been studied in [1, 10, 8, 25, 27].

Definition 3. A group G is called a T0-group if the Frattini factor group
G=FðGÞ is a T-group.

A theorem of Ragland ([25]) shows that soluble T0-groups are closely related
to PST: every soluble T0-group G is supersoluble and its nilpotent residual L is a
Hall subgroup. If L is abelian, then G is a PST-group.

We now describe an example of a soluble T0-group which is not a PST-group.
It also shows that the class of all soluble T0-groups is not subgroup-closed.

Example 4 ([10]). Let G ¼ 3a; x; y j a2 ¼ x3 ¼ y3 ¼ ½x; y�3 ¼ ½x; ½x; y�� ¼
½y; ½x; y�� ¼ 1; xa ¼ x�1; ya ¼ y�14. Then H ¼ 3x; y4 is an extraspecial group of
order 27 and exponent 3. Let z ¼ ½x; y�, so za ¼ z. Then FðGÞ ¼ FðHÞ ¼ 3z4 ¼
ZðGÞ ¼ ZðHÞ. Note that G=FðGÞ is a T-group so that G is a T0-group. The max-
imal subgroups of H are normal in G. Let K ¼ 3x; z; a4. Then 3xz4 is a maximal
subgroup of 3x; z4, the Sylow 3-subgroup of K . Note that FðKÞ ¼ 1 and so K
is not a T0-subgroup of G. Note that also G is a soluble group which is not a
PST-group.

It is proved in [8] that a soluble T0-group G is a PST-group if and only if all
subgroups of G are T0-groups.
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Another interesting extensions of the permutability which have been study
intensively in recent years are the semipermutability and S-semipermutability
introduced by Chen in [12].

Definition 5. A subgroup H of a group G is said to be semipermutable
(respectively, S-semipermutable) provided that it permutes with every subgroup
(respectively, Sylow subgroup) K of G such that gcdðjHj; jK jÞ ¼ 1.

Unfortunately semipermutable subgroups are not subnormal in general. It is
enough to consider a Sylow 2-subgroup of the symmetric group of degree 3.

Note that if D is an S-permutable p-subgroup of a group G, then D is sub-
normal in G and so its normal closure DG is a p-group. In particular, if p is
consists of a single prime p, then DG is nilpotent. Moreover, if D is normal
p-subgroup of G, the following statements are pairwise equivalent:

• D is S-semipermutable in G.

• D is S-permutable in G.

• D is normalised by O pðGÞ.

Isaacs [18] showed that remnants of above results survive in the case of
S-semipermutable subgroups.

Theorem 6. Let D be an S-semipermutable subgroup of a group G. Then DG

has a nilpotent Hall p 0-subgroup. Also, if p consists of a single prime, then DG is
soluble.

The second statement of the above result is a direct consequence of the
following.

Theorem 7 ([17]). Let p be a prime and D a nilpotent subgroup of G. If D

permutes with every Sylow p-subgroup of G, then O p 0 ðDGÞ is soluble.

Therefore, the normal closure of an S-permutable nilpotent Hall subgroup of
G is soluble.

It is known that S-semipermutability is not transitive. Hence it is natural to
consider the following class of groups.

Definition 8. A group G is called a BT-group if S-semipermutability is a
transitive relation in G, that is, if H is S-semipermutable in K and K is
S-semipermutable in G, then H is S-semipermutable in G.

This class was introduced and characterized by Wang, Li and Wang in [28].
Further contributions were presented in [1].

The following important theorem shows that soluble BT-groups form a sub-
class of PST-groups:

Theorem 9 ([28]). Let G be a group with nilpotent residual L. The following
statements are equivalent:
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1. G is a soluble BT-group;
2. every subgroup of G of prime power order is S-semipermutable;
3. every subgroup of G of prime power order is semipermutable;
4. every subgroup of G is semipermutable;
5. G is a soluble PST-group and if p and q are distinct primes not dividing the

order of L with Gp a Sylow p-subgroup of G and Gq a Sylow q-subgroup of G,
then ½Gp;Gq� ¼ 1.

The following example describes a soluble PST-group which is not a
BT-group.

Example 10. Let L be a cyclic group of order 7 and A ¼ C3 � C2 be the auto-
morphism group of L. Here C3 (respectively, C2) is the cyclic group of order 3
(respectively, 2). Let G ¼ ½L�A be the semidirect product of L by A. Let
L ¼ 3x4, C3 ¼ 3y4 and C2 ¼ 3z4 and note that ½3y4x; 3z4�A 1. Now G is a
PST-group by Agrawal’s theorem, but G is not a BT-group by Theorem 9.

We want to continue to extend the knowledge of the S-semipermutability by
considering the e¤ect of imposing S-semipermutability to some subgroups of the
Sylow subgroups.

2. S-permutability of subgroups of prime power order

We say that a group a group G is a MS-group if the maximal subgroups of all the
Sylow subgroups of G are S-semipermutable in G. One of the aims of this section
is to characterise MS-groups.

Unfortunately not every subgroup of an MS-group is an MS-group as the
group G in Example 4 shows: G is an MS-group, but K is not an MS-group.

The first remarkable fact concerning the structure of an MS-group was proved
by Ren in [26]. He showed that every MS-group is supersoluble.

Note that Ren’s theorem is a consequence of a more general result proved by
Li, Qiao, Su and Wang in [23].

Theorem 11. Let p be a prime dividing the order of a group G and P a Sylow
p-subgroup of G. Assume that d is a power of p such that 1 < d < jPj. If all sub-
groups H of P with order d and all cyclic subgroups of P of order 4 (if P is a non-
abelian 2-group and d ¼ 2) are S-semipermutable in G, then G is p-supersoluble.

The above result has been extended by Berkovich and Isaacs in [11].

Theorem 12. Fix an integer eb 3, and let P be a noncyclic Sylow p-subgroup
of a group G with jPj > pe ¼ d. If every noncyclic subgroup of order d is
S-semipermutable in G, then G is p-supersoluble.

This theorem is a consequence of the following results proved recently by
Miao, the first author, Esteban-Romero and Li in [24].
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Theorem 13. Let P a SylpðGÞ and let d be a power of p such that 1a d < jPj.
Assume that HBO pðGÞ is S-semipermutable in G for all noncyclic subgroups H
of P with jHj ¼ d. Then either jPBO pðGÞj > d, or PBO pðGÞ is cyclic, or else
G is p-supersoluble.

Theorem 14. Fix an integer eb 3, and let P be a normal p-subgroup of a group
G with jPj > pe ¼ d. Assume that HBO pðGÞ is S-semipermutable in G for all
noncyclic subgroups H of P with jHj ¼ d. Then P is contained in ZUðGÞ, the super-
soluble hypercentre of G.

From now on we prepare the way for the characterisation of MS-groups. The
following result is the first step.

Theorem 15 ([10]). Let G be an MS-group with nilpotent residual L. Then:

1. if N is a normal subgroup of G, then G=N is an MS-group.
2. L is a nilpotent Hall subgroup of G;
3. G is a soluble T0-group.

The following notation is needed in the presentation of the next theorem
which characterises MS-groups. Let G be a group whose nilpotent residual L is
a Hall subgroup of G. Let p ¼ pðLÞ and let y ¼ p 0, the complement of p in the
set of all prime numbers. Let yN denote the set of all primes p in y such that if
P is a Sylow p-subgroup of G, then P has at least two maximal subgroups. Fur-
ther, let yC denote the set of all primes q in y such that if Q is a Sylow q-subgroup
of G, then Q has only one maximal subgroup, or, equivalently, Q is cyclic.

Theorem 16 ([6]). Let G be a group with nilpotent residual L. Then G is an
MS-group if and only if G satisfies the following:

1. G is a T0-group.
2. L is a nilpotent Hall subgroup of G.
3. If p a p and P a SylpðGÞ, then a maximal subgroup of P is normal in G.
4. Let p and q be distinct primes with p a yN and q a y. If P a SylpðGÞ and

Q a SylqðGÞ, then ½P;Q� ¼ 1.
5. Let p and q be distinct primes with p a yC and q a y. If P a SylpðGÞ and

Q a SylqðGÞ and M is the maximal subgroup of P, then QM ¼ MQ is a nilpo-
tent subgroup of G.

The group given in Example 4 is an MS-group which is not a PST-group.
Example 17 presents an example of a soluble PST-group which is not an
MS-group (see [10]).

Example 17. Let C ¼ 3x4 be a cyclic group of order 192, D ¼ 3y4 a cyclic
group of order 32, and E ¼ 3z4 is a cyclic group of order 2 such that D� Ea

AutðCÞ. Then G ¼ ½C�ðD� EÞ is a soluble PST-group and G is not an MS-group
since ½3y24x; z�A 1.
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There are MS-groups which are not BT-groups either.
Two questions that seem natural are

1. When is a soluble PST-group an MS-group?
2. When is a soluble PST-group which is also an MS-group a BT-group?

Using Theorem 16 we are able to answer the first question and provide a
partial answer to the second.

Theorem 18 ([6]). Let G be a soluble PST-group. Then G is an MS-group if and
only if G satisfies 4 and 5 of Theorem 16.

Theorem 19 ([6]). Let G be a soluble PST-group which is also an MS-group.
If yC is the empty set, then G is a BT-group.

A set Z of Sylow subgroups of a group G is a complete set of Sylow subgroups
of G if Z contains exactly one Sylow subgroup for each prime dividing the order
of G; Z is called a Sylow basis of G if the Sylow subgroups in Z are pairwise per-
mutable. Sylow basis were introduced and studied by Hall (see [13]. They play a
central role in the study of soluble groups as their existence characterises solubil-
ity ([13, Chapter I, Sections 3 and 4]).

Asaad and Heliel [2] introduced and studied the notion of a Z-permutable sub-
group, where Z is a complete set of Sylow subgroups of a group G. A subgroup
of G is called Z-permutable if it permutes with every member of a complete set Z
of Sylow subgroups of G. It is clear that S-permutability implies Z-permutability
but the converse does not hold in general. In fact, Z-permutable subgroups
are not subnormal in general, and subnormal Z-permutable subgroups are not
S-permutable either as the following example in [15] shows.

Example 20. Let E ¼ 3x; y4 be an extraspecial group of order 27 and
exponent 3. Let a be the automorphism of order 2 of E given by xa ¼ x�1,
ya ¼ y�1. Let G ¼ Ez 3a4 be the corresponding semidirect product. Then
Z ¼ fE; 3a4g is a complete set of Sylow subgroups of G. The subgroup
H ¼ 3x4 is Z-permutable, but it does not permute with the Sylow 2-subgroup
3ay4. Therefore, H is not S-permutable. However, H is a subnormal subgroup
of G. Note that G is a Z-MS-group but not an MS-group.

The structural impact of Z-permutability has been studied in [2, 14, 15, 16, 22,
21, 29, 20].

Next we are concerned with the role of a new subgroup embedding property in
the structural study of the groups. More precisely, we are interested in obtaining
global information about a group by assuming that the maximal subgroups
(respectively all subgroups) of the Sylow subgroups in Z are Z-S-semipermutable.

Definition 21. Let Z be a complete set of Sylow subgroups of a group G.
A subgroup A of G is said to be Z-S-semipermutable if A is S-permutative with
the members of Z, that is, if A permutes with all Sylow q-subgroups of Z for all
primes q not dividing jAj.
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A group G is said to be a Z-MS-group if every maximal subgroup of every
Sylow subgroup in Z is Z-S-semipermutable in G.

Example 20 shows that a Z-MS-group is not an MS-group in general. The
results above mentioned suggest a natural question: What is the structure of the
Z-MS-groups? The results in [4] show that surprisingly the structure is quite
similar to the one in the class MS despite the fact that the number of Sylow sub-
groups to play with is significantly lower. They also allow us to recover many of
the earlier results as particular cases.

At this point it should be noted that a group G is an Z-MS-group if and only
if every maximal subgroup of every Sylow subgroup in Z is Z-permutable. There-
fore, by [2, Theorem 3.1], G is supersoluble.

The following theorem gives more precise information.

Theorem 22. Let Z be a complete system of Sylow subgroups of a group G.
Assume that all maximal subgroups of every Sylow subgroup in Z are
Z-permutable. Then:

1. The nilpotent residual L of G is a Hall subgroup of G.
2. G is a supersoluble T0-group.

The following theorem provides a complete characterisation of Z-MS-groups.

Theorem 23. Let Z be a complete system of Sylow subgroups of a group G and
let L be the nilpotent residual of G. Then G is an Z-MS-group if and only if G
satisfies the following properties:

1. G is a soluble T0-group.
2. L is a nilpotent Hall subgroup of G.
3. If p a p and P a SylpðGÞBZ, then a maximal subgroup of P is normal

in G.
4. Let p and q be distinct primes with p a yN and q a y. If P a SylpðGÞBZ and

Q a SylqðGÞBZ, then ½P;Q� ¼ 1.
5. Let p and q be distinct primes with p a yC and q a y. If P a SylpðGÞBZ and

Q a SylqðGÞBZ and M is the maximal subgroup of P, then ½M;Q� ¼ 1.

Corollary 24. Let Z be a complete system of Sylow subgroups of a group G
and let L be the nilpotent residual of G. If G is a Z-MS-group and L is abelian,
then G is a soluble PST-group.

We bring the paper to a close characterising groups G in which all subgroups
of every Sylow subgroup in a complete system of Sylow subgroups Z of G are
Z-permutable ([3]).

Theorem 25. Let L be the nilpotent residual of a group G and let Z be a com-
plete set of Sylow subgroups of G. Then all the subgroups of Gp a Z, for all
p a pðGÞ, are Z-permutable if and only if G satifies the following conditions:
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1. G is a supersoluble T0-group.
2. L is an abelian Hall subgroup of G.
3. G is a soluble PST-group.
4. If p and q are distinct primes from pðGÞnpðLÞ with Gp and Gq contained in Z,

then ½Gp;Gq� ¼ 1.
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