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Abstract. — We introduce an approach to modular interpolation in this paper. By using this

interpolation, we establish the modular inequalities for the Fourier transform, the Laplace trans-
form, the Hankel transform and the oscillatory integral operators. Moreover, we also obtain the

modular Fourier restriction theorem.
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1. Introduction

The main theme of this paper is the modular interpolation theory and its
application on the modular inequalities for the Fourier transform, the Laplace
transform, the Hankel transform and the oscillatory integral operators.

For the classical interpolation such as the Marcinkiewicz interpolation, the
norm of the function spaces is generated via the K-functional and the real inter-
polation functor. Therefore, the norm inequalities for operators are obtained.

Other than the norm inequalities, the modular inequalities also play an im-
portant role in Analysis. For instance, the modular inequalities for the Hardy–
Littlewood maximal function and the Fourier transform are obtained in [2, 19]
and [18], respectively. Furthermore, the modular inequalities for the Calderón
operators and the Hardy operators are established in [3].

There are several methods to obtain the modular inequalities. For instance,
the distributional inequalities [19] and the extrapolation [7, 8] can be used to
generate the modular inequalities.

In this paper, we use the idea of interpolation to obtain our modular inequal-
ities for the Fourier transform, the Hankel transform and the oscillatory integral
operators. We introduce an interpolation functor that generates the modular

rð f Þ ¼
Z

Fð f ðxÞÞ dx

instead of the norm of a function space. Therefore, as a result of the action
of this interpolation functor, we obtain modular inequalities instead of norm
inequalities.



The interpolation functor used in this paper is defined via the K-functional.
We obtain our results by applying our interpolation functor to Lebesgue spaces.
As a well known fact, the K-functional of a measurable function f under a
pair of Lebesgue spaces is given in term of the decreasing rearrangement of f
[17]. Therefore, our modular inequalities involves the decreasing rearrangement
of f .

Notice that one of the essential components for the interpolation theory is the
Hardy inequalities. The modular Hardy inequalities are established in [3, 4]. The
results in [3, 4] are also one of the main motivations of this paper.

There are some modular interpolation theories given in [3, 4, 20, 21]. On the
other hand, the results given in [3, 4, 20, 21] cannot be applied to the Fourier
transform. For instance, the validity of [3, Corollary 3.6] requires that the linear
operator T is bounded on Ll or L0 where L0 ¼ f f : jsupp f j < lg. Therefore,
[3, Corollary 3.6] does not apply to the Fourier transform.

In addition, some modular inequalities of the Fourier transform are obtained
in [18]. Notice that the results in [18] play special interest on linear operator of
strong type ð2; 2Þ and ð1;lÞ. Therefore, the results in [18] are not necessary
applied to some other transforms related to Fourier transform such as the Hankel
transform and the oscillatory integral operators. Especially, our method also
gives the modular Fourier restriction theorem.

Our method is based on the ideas from [13, 15]. The results obtained in
[13, 15, 16] show that we have the norm inequalities for the Fourier transforms,
the Hankel transform and the oscillatory integral operators on rearrangement-
invariant quasi-Banach function spaces. In this paper, we modify the method
given in [13] to obtain the corresponding modular inequalities.

This paper is organized as follows. In Section 2, we recall some basic facts
about r.i.q.B.f.s. and present the modular Hardy inequalities. Our modular inter-
polation theory is presented in Section 3. The modular estimates of the Fourier
transform, the Laplace transform, the Hankel transform, the oscillatory inte-
gral operators and the modular Fourier restriction theorem are established in
Section 4.

2. Definitions and preliminaries

Let Mð0;lÞ and MðRnÞ be the sets of Lebesgue measurable functions on ð0;lÞ
and Rn, respectively.

Let SðRnÞ and S 0ðRnÞ denote the class of Schwartz functions and tempered
distributions, respectively. Let Lp and Lpð0;lÞ be the Lebesgue spaces on Rn

and ð0;lÞ, respectively.
For any f a MðRnÞ and s > 0, write

df ðsÞ ¼ jfx a Rn : j f ðxÞj > sgj

and

f �ðtÞ ¼ inffs > 0 : df ðsÞa tg; t > 0:
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We call f and g are equimeasurable if df ðsÞ ¼ dgðsÞ for all s > 0. We write
f Qg if

Bf a gaCf ;

for some constants B;C > 0 independent of appropriate quantities involved in
the expressions of f and g.

Definition 2.1. A Lebesgue measurable function F : ½0;lÞ ! ½0;lÞ is called
a modular function if F is a non-decreasing function with limt!0þ FðtÞ ¼ 0.

The subsequent result is well known. We present the proof again for
completeness.

Proposition 2.1. Let F be a modular function. For any f a MðRnÞ, we have
Z l

0

Fð f �ðtÞÞ dt ¼
Z
Rn

Fðj f ðxÞjÞ dx:ð2:1Þ

Proof. Let f ¼
PN

j¼1 ajwEj
ðxÞ be a simple function where Ej BEi ¼ j when

iA j and ai b aj when ia j. We find that f �ðtÞ ¼
PN

j¼1 ajw½mj�1;mjÞðtÞ where
mj ¼

P j
i¼1 jEij. Consequently,

Z l

0

Fð f �ðtÞÞ dt ¼
XN
j¼1

FðajÞðmj �mj�1Þ ¼
XN
j¼1

FðajÞjEjj ¼
Z
Rn

Fðj f ðxÞjÞ dx

For general f a MðRnÞ, there exists a family of non-negative simple function
fj such that fj " j f j. In view of [1, Chapter 2, Proposition 1.7], we also have
f �
j " f �. As F is non-decreasing, we have Fð fjÞ " Fðj f jÞ and Fð f �

j Þ " Fð f �Þ.
The monotone convergence theorem yields (2.1). r

A modular function F is said to satisfy the 42 condition if there exists a
constant C > 0 such that

Fð2tÞaCFðtÞ; t > 0:

We write F a 42 if it satisfies the 42 condition.
Therefore, whenever F a 42, we have

Fðaþ bÞaFð2maxða; bÞÞaCmaxðFðaÞ;FðbÞÞaCðFðaÞ þFðbÞÞ:ð2:2Þ

A modular function F is said to satisfy the t2 condition if there exists a
constant 0 < H < 1 such that

FðtÞaHFð2tÞ; t > 0:

We write F at2 if it satisfies thet2 condition.
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Definition 2.2. Let 0 < p < l and F be a modular function. Define

FpðtÞ ¼ Fðt1=pÞ:

It is easy to see that whenever F is a modular function, Fp is also a modular
function. Furthermore, Fp a 42 provided that F a 42.

We are ready to state one of the crucial supporting result for our modular
interpolation theory, the modular Hardy inequalities. We first recall the defini-
tions of two Hardy type operators used in [3].

Let 0 < a; b < l. For any f a M½0;lÞ, write

Sa f ðtÞ ¼
1

t1=a

Z t

0

f ðsÞs1=a ds
s
;ð2:3Þ

~SSb f ðtÞ ¼
1

t1=b

Z l

t

f ðsÞs1=b ds
s
:ð2:4Þ

We now present the modular inequalities for the Hardy type operators Sa

and ~SSb.

Theorem 2.2. Let 0 < aa 1 and F be a modular function. There exist constants
B;C > 0 such that for any decreasing nonnegative function f ,

Z l

0

FðSa f ðtÞÞ dtaB

Z l

0

FðCf ðtÞÞ dtð2:5Þ

if and only if there exist constants H;D > 0 such that

ta
Z t

0

FðyÞ
yaþ1

dyaHFðDtÞ; Et > 0:ð2:6Þ

For the proof of the above result, the reader is referred to [3, Theorems 2.1
and 2.3].

Theorem 2.3. Let a > 1 and F be a modular function. There exists a constant
C > 0 such that for any decreasing nonnegative function f ,

Z l

0

FðSa f ðtÞÞ dtaC

Z l

0

Fð f ðtÞÞ dtð2:7Þ

if and only if F a 42 and there exists a constant B > 0 such that

ta
Z t

0

FðyÞ
yaþ1

dyaBFðtÞ; Et > 0:ð2:8Þ
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When FðtÞ ¼ t p, 1a p < l, we find that if a < p

ta
Z t

0

FðyÞ
yaþ1

dy ¼ ta
t p�a

p� a
¼ 1

p� a
t p:

We see that FðtÞ ¼ t p fulfills (2.6) and (2.8) if and only if a < p.

Theorem 2.4. Let 0 < b < l and F be a modular function. There exists a
constant C > 0 such that for any decreasing nonnegative function f ,

Z l

0

Fð ~SSb f ðtÞÞ dtaC

Z l

0

Fð f ðtÞÞ dtð2:9Þ

if and only if there exists a constant B > 0 such that

tb
Z l

t

FðyÞ
ybþ1

dyaBFðtÞ; Et > 0:ð2:10Þ

When FðtÞ ¼ t p, 1a p < l, we find that if b > p

tb
Z l

t

FðyÞ
ybþ1

dy ¼ tb
t p�b

b� p
¼ 1

b� p
t p:

Thus, FðtÞ ¼ t p satisfies (2.10) if and only if b > p.
For the proofs of Theorems 2.3 and 2.4, the reader is referred to [3, Theorem

4.2 (iii)] and [3, Theorem 4.5 (iii)], respectively.
In addition, Theorems 2.2, 2.3 and 2.4 are special cases of the general results

in [3, Theorems 2.1, 2.3, 4.2 and 4.5].
Note that whenever F satisfies

FðstÞa rFðtÞ; Etb 0ð2:11Þ

for some 1 < sa < r, then F fulfills (2.6). In fact, (2.11) gives

Z u

0

FðyÞ
yaþ1

dy ¼
X0

i¼�l

Z s iu

s i�1u

FðyÞ
yaþ1

dy ¼
X0

i¼�l

Z u

s�1u

FðsitÞ
ðsitÞaþ1

si dt

a
X0

i¼�l

� r

sa

�i Z u

s�1u

FðtÞ
taþ1

dta
X0

i¼�l

� r

sa

�i
FðuÞ

Z u

s�1u

1

taþ1
dt

aCu�aFðuÞ

for some C > 0 because F is non-decreasing. Hence, F satisfies (2.6).
Similarly, when F satisfies

FðstÞa rFðtÞ; Etb 0ð2:12Þ
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for some 1 < r < sb, then F fulfills (2.10). Precisely, we have

Z l

u

FðyÞ
ybþ1

dy ¼
Xl
i¼1

Z s iu

s i�1u

FðyÞ
ybþ1

dy ¼
Xl
i¼1

Z u

s�1u

FðsitÞ
ðsitÞbþ1

si dt

a
Xl
i¼1

� r

sb

�i Z u

s�1u

FðtÞ
tbþ1

dta
Xl
i¼1

� r

sb

�i
FðuÞ

Z u

s�1u

1

tbþ1
dt

aCu�bFðuÞ

which assures the validity of (2.10).

3. Modular interpolation

We recall the definition of the K-functional from [1, Section 3.1] and [27, Section
1.3.1]. The following definition involves the notion of compatible couple of quasi-
normed spaces, for brevity, we refer the reader to [27, Section 1.2] for the defini-
tion of compatible couple of quasi-normed spaces.

Definition 3.1. Let ðX0;X1Þ be a compatible couple of quasi-normed spaces.
For any f a X0 þ X1, the K-functional is defined as

Kð f ; t;X0;X1Þ ¼ inffk f0kX0
þ tk f1kX1

: f ¼ f0 þ f1g

where the infimum is taking over all f ¼ f0 þ f1 for which fi a Xi, i ¼ 0; 1.

The following is the modular interpolation functor used in this paper.

Definition 3.2. Let 0 < y; r < l and F be a modular function. Let ðX0;X1Þ
be a compatible couple of quasi-normed spaces on Rn. The modular interpolation
functor rðX0;X1Þr; y;F is defined by

rðX0;X1Þr; y;Fð f Þ ¼
Z l

0

Fðt�1
rKð f ; t1y;X0;X1ÞÞ dt:

We are now ready to present the modular interpolation theorem for linear
operators.

Theorem 3.1. Let 0 < y; r < l and F be a modular function. If ðX0;X1Þ and
ðY0;Y1Þ are compatible couples of quasi-normed spaces on Rn and T is a linear
operator such that

kTf kYi
aCik f kXi

; i ¼ 0; 1:

Then, we have
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Z l

0

Fðt�1
rKðTf ; t1y;Y0;Y1ÞÞ dtð3:1Þ

aC y
0C

�y
1

Z l

0

FðC1�y
r

0 C
y
r

1t
�1

rKð f ; t1y;X0;X1ÞÞ dt:

Proof. In view of the definition of the K-functional, we find that

KðTf ; t;Y0;Y1Þa inffkTf0kY0
þ tkTf1kY1

: f ¼ f0 þ f1; fi a Yi; i ¼ 0; 1g
aC0Kð f ;C1C

�1
0 t;X0;X1Þ:

Multiplying t�1=r and then applying the modular rðX0;X1Þr; y;F on both sides of
the above inequality, we obtain

Z l

0

Fðt�1
rKðTf ; t1y;Y0;Y1ÞÞ dta

Z l

0

FðC0t
�1

rKð f ;C1C
�1
0 t

1
y;X0;X1ÞÞ dt:

Next, by using the change of variable t ¼ C y
0C

�y
1 s, we obtain

Z l

0

Fðt�1
rKðTf ; t1y;Y0;Y1ÞÞ dt

a

Z l

0

C y
0C

�y
1 FðC1�y

r

0 C
y
r

1s
�1

rKð f ; s1
y;X0;X1ÞÞ ds:

Thus, we establish (3.1). r

To apply the above result, we have to show that the expression in the right
hand side of (3.1) gives the modular

rð f Þ ¼
Z

Fðj f ðxÞjÞ dx:ð3:2Þ

This is precisely the result of the following theorem which asserts that the
modular (3.2) can be generated by the K-functional of Lebesgue spaces.

Theorem 3.2. Let 0 < p0 < p1 al and F be a modular function. Suppose that
F a 42, Fp0 satisfies

t

Z t

0

Fp0ðyÞ
y2

dyaHFp0ðKtÞ; Et > 0ð3:3Þ

for some constants H;K > 0 and Fp1 satisfies

t

Z l

t

Fp1ðyÞ
y2

dyaBFp1ðtÞ; Et > 0ð3:4Þ

for some B > 0.
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Let r ¼ p0 and

1

y
¼ 1

p0
� 1

p1
:

Then, there exist constants C;D > 0 such that

C

Z
Rn

Fð f ðxÞÞ dxa
Z l

0

Fðt�1
rKð f ; t1y;Lp0 ;Lp1ÞÞ dtð3:5Þ

aD

Z
Rn

Fð f ðxÞÞ dx:

Proof. The Holmstedt formulas for the K-functionals of Lebesgue spaces [17]
state that

Kð f ; t;Lp0 ;Lp1ÞQ
�Z ty

0

ð f �ðsÞÞ p0 ds
� 1

p0 þ t
�Z l

ty
ð f �ðsÞÞ p1 ds

� 1
p1 :

Therefore,

t�
1
rKð f ; t1y;Lp0 ;Lp1Þ

Q t
� 1

p0

�Z t

0

ð f �ðsÞÞ p0 ds
� 1

p0 þ t
� 1

p1

�Z l

t

ð f �ðsÞÞ p1 ds
� 1

p1 :

Consequently, (2.2) gives

Z l

0

Fðt�1
rKð f ; t1y;Lp0 ;Lp1ÞÞ dt

aD
�Z l

0

F
�
Et

� 1
p0

�Z t

0

ð f �ðsÞÞ p0 ds
� 1

p0

�
dt

þ
Z l

0

F
�
Et

� 1
p1

�Z l

t

ð f �ðsÞÞ p1 ds
� 1

p1

�
dt
�

aD

Z l

0

Fp0ðS1ðð f �Þ p0ÞðtÞÞ dtþD

Z l

0

Fp1ð ~SS1ðð f �Þ p1ÞðtÞÞ dt ¼ I þ II

for some constants D;E > 0 because F is non-decreasing and F a 42.
Since F satisfies (3.3) and ð f �Þ p0 is non-increasing, we find that

I aD

Z l

0

Fp0ðð f �ðtÞÞ p0Þ dt ¼ D

Z l

0

Fð f �ðtÞÞ dt ¼ D

Z
Rn

Fð f ðxÞÞ dx

for some D > 0.
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Similarly, as F fulfills (3.4), we obtain

II aD

Z l

0

Fp1ðð f �ðtÞÞ p1Þ dt ¼ D

Z l

0

Fð f �ðtÞÞ dt ¼ D

Z
Rn

Fð f ðxÞÞ dx

for some D > 0.
Therefore, F a 42 yields

Z l

0

Fðt�1
rKð f ; t1y;Lp0 ;Lp1ÞÞ dtaD

Z
Rn

Fð f ðxÞÞ dxð3:6Þ

for some D > 0.
For the reverse inequality, since f � is non-increasing and F is non-decreasing,

we have

Z l

0

Fðt�1
rKð f ; t1y;Lp0 ;Lp1ÞÞ dtbC

Z l

0

F
�
t
� 1

p0

�Z t

0

ð f �ðsÞÞ p0 ds
� 1

p0

�
dtð3:7Þ

bC

Z l

0

Fð f �ðtÞÞ dt ¼ C

Z
Rn

Fð f ðxÞÞ dx:

Finally, (3.6) and (3.7) yield (3.5). r

Notice that even though we present our results for Lebesgue spaces on Rn,
they are still valid for Lebesgue spaces on s-finite measures such as Lpð0;lÞ.
For brevity, we skip the details.

In view of the estimates after Theorems 2.3 and 2.4, we find that if p0 < p
and p < p1, FðtÞ ¼ t p fulfills (3.3) and (3.4), respectively. Therefore, the function
FðtÞ ¼

Pn
k¼1 akt

qk where p0 < qk < p1 and ak > 0, 1a ka n, satisfies (3.3) and
(3.4).

4. Modular estimates

In this section, we use the results obtained in the previous section to establish
several modular inequalities on the Fourier transform, the Laplace transform,
the Hankel transform and the oscillatory integral operators. Especially, we also
have the modular Fourier restriction theorem at the end of this section.

4.1. Fourier transform

For any f a S 0ðRnÞ, let Ff denote the Fourier transform of f .

Theorem 4.1. Let F be a modular function. Suppose that F a 42, F satisfies

t

Z t

0

FðyÞ
y2

dyaHFðKtÞ; Et > 0ð4:1Þ
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for some constants H;K > 0 and F2 satisfies

t

Z l

t

F2ðyÞ
y2

dyaBF2ðtÞ; Et > 0ð4:2Þ

for some B > 0. Then, there exists constant C > 0 such that

Z l

0

FðsðFf Þ�ðsÞÞ ds
s2

aC

Z
Rn

Fð f ðxÞÞ dx:ð4:3Þ

Proof. It is well known that the Fourier transform is bounded from L1 to Ll

and from L2 to L2.
From the assumptions on F, we are allowed to apply Theorem 3.2 with

p0 ¼ 1 and p1 ¼ 2. We obtain y ¼ 2 and

C1

Z
Rn

Fð f ðxÞÞ dxa
Z l

0

Fðt�1Kð f ; t12;L1;L2ÞÞ dtð4:4Þ

aC0

Z
Rn

Fð f ðxÞÞ dx

for some C1;C0 > 0.
The definition of the K-functional and the Holmstedt formulas [17] yield

KðFf ; t;Ll;L2Þ ¼ tKðFf ; t�1;L2;LlÞQ t
�Z t�2

0

ððFf Þ�ðsÞÞ2 ds
�1

2

:

Since ðFf Þ� is non-increasing, we have

t�1KðFf ; t
1
2;Ll;L2ÞbDt�

1
2

�Z t�1

0

ððFf Þ�ðsÞÞ2 ds
�1

2

bDt�1ðFf Þ�ðt�1Þ

for some D > 0.
Applying the modular

Z l

0

Fð�Þ dt on both sides of the above inequality, we
obtain

Z l

0

Fðt�1KðFf ; t
1
2;Ll;L2ÞÞ dtb

Z l

0

FðDt�1ðFf Þ�ðt�1ÞÞ dt

bC

Z l

0

Fðt�1ðFf Þ�ðt�1ÞÞ dt

for some C > 0 because F a 42. By using the change of variable s ¼ t�1, we find
that

Z l

0

Fðt�1KðFf ; t
1
2;Ll;L2ÞÞ dtbC

Z l

0

FðsðFf Þ�ðsÞÞ ds
s2

:ð4:5Þ

Therefore, Theorem 3.1, (4.4) and (4.5) give (4.3). r
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When FðtÞ ¼ t p, 1 < p < 2, conditions (4.1) and (4.2) are fulfilled and (4.3)
becomes

Z l

0

s
p

p 0 ððFf Þ�ðsÞÞ p ds
s
¼

Z l

0

s p�2ððFf Þ�ðsÞÞ p dsaC

Z
Rn

j f ðxÞj p dx:

Thus, we have

kFf kL p 0 ; p aCk f kL p

for some C > 0 where Lp 0;p denote the Lorentz space. As 1 < p < 2, in view
of the embedding Lp 0;p ,! Lp 0

[1, Chapter 4, Proposition 4.2], we recover the
Hausdor¤–Young inequality

kFf kL p 0 aCk f kL p

for some C > 0 when 1a pa 2.
Therefore, Theorem 4.1 can be considered as the modular Hausdor¤–Young

inequality.
Similar to the discussion at the end of Section 3, when 1 < qk < 2 and ak > 0,

1a ka n, the function FðtÞ ¼
Pn

k¼1 akt
qk satisfies (4.1) and (4.2). Consequently,

we have the corresponding modular Hausdor¤–Young inequality.
The reader is referred to [18] for some other results on the modular inequal-

ities of the Fourier transform.

4.2. Laplace transform

For any 1a pal, let Lpð0;lÞ denote the Lebesgue space on ð0;lÞ.
For any f a Mð0;lÞ, the Laplace transform of f is given by

Lf ðsÞ ¼
Z l

0

e�stf ðtÞ dt:

It is easy to see that L : L1ð0;lÞ ! Llð0;lÞ is bounded. According to [10,
p. 189], L is bounded on L2ð0;lÞ. Thus, similar to the modular estimate of the
Fourier transform, we obtain the modular estimate of the Laplace transform.

Theorem 4.2. Let F be a modular function. Suppose that F a 42, F satisfies

t

Z t

0

FðyÞ
y2

dyaHFðKtÞ; Et > 0ð4:6Þ

for some constants H;K > 0 and F2 satisfies

t

Z l

t

F2ðyÞ
y2

dyaBF2ðtÞ; Et > 0ð4:7Þ
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for some B > 0. Then, there exists constant C > 0 such that

Z l

0

FðsðLf Þ�ðsÞÞ ds
s2

aC

Z l

0

Fðj f ðtÞjÞ dt:ð4:8Þ

Since the proof of the above theorem follows from the proof of Theorem 4.1,
for simplicity, we leave it to the reader.

4.3. Hankel transform

We study the Hankel transform and its generalizations in this subsection.
Let ab� 1

2 and n; m a R. The operator La
n;m is defined by

La
n;m f ðyÞ ¼ ym

Z l

0

ðxyÞnf ðxÞJaðxyÞ dy:ð4:9Þ

where JaðrÞ is the Bessel function of the first kind.
The family of operators fLa

n;mg contains a number of operators used in
harmonic analysis. If we denote the Fourier transform of f ðjxjÞ by Ff ðjxjÞ,
then

Ff ðjxjÞ ¼ ð2pÞn=2L
n
2�1
n
2;1�n f ðjxjÞ:ð4:10Þ

In [11], for any a > �1, the operator La
aþ1;�2a�1 is called as the Hankel

transform.
In [6], La

aþ1;�2a�1 ¼ ~HHa is named as the Fourier–Bessel transform of order a.
Moreover,

Ha f ¼ La
1
2;0

f ¼
Z l

0

f ðtÞðxtÞ
1
2JaðxtÞ dt

is the so-called Hankel transform of order a.
We recall the Lp � Lq estimates of La

n;m from [9, Theorem 1.1].

Theorem 4.3. Let m; n a R, ab� 1
2 and 1a pa qal. The operator La

n;m is
bounded from Lpð0;lÞ to Lqð0;lÞ if and only if

m ¼ 1� 1

p
� 1

q
; and �a� 1þ 1

p
< na

1

2
�maxfm; 0g:ð4:11Þ

In view of the assumptions from the previous result, we have 1a pa q and

1

p
þ 1

q
¼ 1� m:
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Therefore, the conditions in Theorem 4.3 impose a range for m. That is, m fulfills
�1a ma 1. Furthermore, for any fixed m, we have

1

p
a

1

p
þ 1

q
¼ 1� m:

Since 1a pa q, we also have

2

p
b

1

p
þ 1

q
¼ 1� m:

Therefore, the conditions in Theorem 4.3 show that m and p satisfy

1

1� m
a pa

2

1� m
:ð4:12Þ

We are now ready to obtain the modular inequalities for the family of opera-
tors fLa

n;mg.

Theorem 4.4. Let �1 < m < 1, ab� 1
2 and F be a modular function on ð0;lÞ.

Let n a R satisfy na 1
2 �maxfm; 0g.

Suppose that there exist 1
1�m

a q0 < p0 a
2

1�m
such that �a� 1þ 1

q0
< n. If

F a 42, Fq0 satisfies

t

Z t

0

Fq0ðyÞ
y2

dyaHFq0ðKtÞ; Et > 0ð4:13Þ

for some constants H;K > 0 and Fp0 satisfies

t

Z l

t

Fp0ðyÞ
y2

dyaBFp0ðtÞ; Et > 0ð4:14Þ

for some B > 0. Then, there exists constant C > 0 such that

Z l

0

Fðs1�mðLa
n;m f Þ

�ðsÞÞ ds
s2

aC

Z l

0

Fð f ðxÞÞ dx:ð4:15Þ

Proof. Let p1, q1 satisfy

1

p1
¼ 1� 1

p0
� m; and

1

q1
¼ 1� 1

q0
� m:ð4:16Þ

Notice that p1 < q1.
Since 1�m

2
< 1

p0
, we find that 2

p0
> 1� m. Thus,

1

p0
> 1� 1

p0
� m ¼ 1

p1
:
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That is, p0 < p1. Similar, as
1�m

2 < 1
q0
, we also have

1

q0
> 1� 1

q0
� m ¼ 1

q1
:

That is, q0 < q1.
Theorem 4.3 guarantees the boundedness of La

n;m : L
q0ð0;lÞ ! Lq1ð0;lÞ

and La
n;m : L

p0ð0;lÞ ! Lp1ð0;lÞ.
Let 1

y
¼ 1

q0
� 1

p0
and r ¼ q0. Theorem 3.2 yields that

D1

Z l

0

Fð f ðxÞÞ dxa
Z l

0

Fðt�1
rKð f ; t1y;Lq0ð0;lÞ;Lp0ð0;lÞÞÞ dtð4:17Þ

aD0

Z l

0

Fð f ðxÞÞ dx:

for some D1;D0 > 0.
Next, we find that

KðLa
n;m f ; t;L

q1ð0;lÞ;Lp1ð0;lÞÞ ¼ tKðLa
n;m f ; t

�1;Lp1ð0;lÞ;Lq1ð0;lÞÞ:

The Holmstedt formulas give

KðLa
n;m f ; t;L

q1ð0;lÞ;Lp1ð0;lÞÞbCt
�Z ty

0

ððLa
n;m f Þ

�ðsÞÞ p1 ds
� 1

p1

for some C > 0.
As ðLa

n;m f Þ
� is non-increasing and (4.16) gives

� 1

r
þ 1

y
� 1

p1
¼ � 1

q0
þ 1

q0
� 1

p0
� 1

p1
¼ � 1

p0
� 1

p1
¼ m� 1;

we find that

t�
1
rKðLa

n;m f ; t
1
y;Lq1ð0;lÞ;Lp1ð0;lÞÞbCt�

1
r
þ1

y

�Z t�1

0

ððLa
n;m f Þ

�ðsÞÞ p1 ds
� 1

p1

bCtm�1ðLa
n;m f Þ

�ðt�1Þ

for some C > 0.
Therefore,

Z l

0

Fðt�1
rKðLa

n;m f ; t
1
y;Lq1ð0;lÞ;Lp1ð0;lÞÞÞ dt

b

Z l

0

FðCtm�1ðLa
n;m f Þ

�ðt�1ÞÞ dt:

362 k.-p. ho



By using the change of variable s ¼ t�1, we obtain

Z l

0

Fðt�1
rKðLa

n;m f ; t
1
y;Lq1ð0;lÞ;Lp1ð0;lÞÞÞ dtð4:18Þ

b

Z l

0

FðCs1�mðLa
n;m f Þ

�ðsÞÞ ds
s2

:

Therefore, Theorem 3.1, (4.17) and (4.18) yield (4.15). r

Particularly, we have the modular inequality for the Fourier–Bessel transform
~HHa ¼ La

aþ1;�2a�1. In view of Theorem 4.4, if there exist 1
2þ2a a q0 < p0 a

1
1þa

,
then for any F a 42 satisfying

t

Z t

0

Fq0ðyÞ
y2

dyaHFq0ðKtÞ; t > 0

t

Z l

t

Fp0ðyÞ
y2

dyaBFp0ðtÞ; t > 0

for some H;K ;B > 0, there exists constant C > 0 such that

Z l

0

Fðs2þ2að ~HHa f Þ�ðsÞÞ
ds

s2
aC

Z l

0

Fð f ðxÞÞ dx:

4.4. Oscillatory integral operators

Let aðx; yÞ a Cl
0 ðRn � RnÞ. We call f a ClðRn � RnÞ the phase function asso-

ciated with aðx; yÞ if there is an open cone G � Rnnf0g such that suppy a � G
and for any ðx; yÞ a Rn � G

fðx; lyÞ ¼ lfðx; yÞ; l > 0

and dfA 0 where df denotes the di¤erential of f with respect to all of the
variables, see [24, Section 0.5].

We say that f satisfies the non-degeneracy condition if

det
� q2f

qxjqyk

�
A 0

on the support of aðx; yÞ.
The oscillatory integral operator associated with aðx; yÞ a Cl

0 ðRn � RnÞ and
f a ClðRn � RnÞ is given by

ðTl f ÞðxÞ ¼
Z
Rn

eilfðx;yÞaðx; yÞ f ðxÞ dy; l > 0:
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The reader is referred to [24, 25] for the studies and applications of oscillatory
integral operators.

We now obtain the modular estimate of oscillatory integral operators.

Theorem 4.5. Let F be a modular function. Suppose that F a 42, F satisfies
(4.1) and (4.2). Then, there exists constant C > 0 such that for any l > 0,

Z l

0

FðsðTl f Þ�ðsÞÞ
ds

s2
aCln

Z
Rn

Fðl�nf ðxÞÞ dx:ð4:19Þ

Proof. In view of [24, Theorem 2.1.1], for any l > 0, we have

kTl f kL2 aEl�n=2k f kL2

for some E > 0. Moreover, we also have

kTl f kLl aHk f kL1

for some H > 0 [24, p. 56].
Let r ¼ 1 and 1

y
¼ 1� 1

2 ¼ 1
2 . By applying Theorem 3.1 with X0 ¼ L1, X1 ¼ L2,

Y0 ¼ Ll, Y1 ¼ L2, C0 ¼ E and C1 ¼ Hl�n=2, we find that

Z l

0

Fðt�1KðTf ; t12;Ll;L2ÞÞ dtð4:20Þ

aCln

Z l

0

FðBl�nt�1Kð f ; t12;L1;L2ÞÞ dt:

for some B;C > 0.
Similar to the proof of Theorem 4.1, Theorem 3.2 gives with p0 ¼ 1 and

p1 ¼ 2, we obtain y ¼ 2 and

D0

Z
Rn

Fðl�nf ðxÞÞ dxa
Z l

0

Fðl�nt�1Kð f ; t12;L1;L2ÞÞ dtð4:21Þ

aD1

Z
Rn

Fðl�nf ðxÞÞ dx

for some D0;D1 > 0.
Furthermore, similar to (4.5), we also have

Z l

0

Fðt�1KðTl f ; t
1
2;Ll;L2ÞÞ dtb

Z l

0

FðDsðTl f Þ�ðsÞÞ
ds

s2
:ð4:22Þ

Consequently, (4.21) and (4.22) yield (4.19). r
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When FðtÞ ¼ t p, 1 < p < 2, conditions (4.1) and (4.2) are satisfied and we find
that

ln

Z
Rn

FðBl�nf ðxÞÞ dx ¼ Clnð1�pÞ
Z
Rn

j f ðxÞj p dx

for some B;C > 0.
Hence, (4.19) becomes

Z l

0

s
p

p 0 ððTl f Þ�ðsÞÞ p
ds

s
¼

Z l

0

s p�2ððTl f Þ�ðsÞÞ p dsaClnð1�pÞ
Z
Rn

j f ðxÞj p dx:

Consequently, we obtain

kTl f kL p 0 ; p aCln
1�p

p k f kL p

for some C > 0.
In view of the embedding Lp 0;p ,! Lp 0

, we get

kTl f kL p 0 aCl
� n

p 0k f kL p

which recovers the Lp estimates of oscillatory integral operators [24, Corollary
2.1.2].

4.5. Fourier restriction

The Fourier restriction theorem plays a significant role in the estimates of solu-
tions of partial di¤erential equations, especially, on the wave equation and the
Schrödinger equation. The reader is referred to [26] and [25, Chapter VIII,
Sections 5.18–5.20] for details.

As an application of our modular interpolation functor, we now obtain the
modular Fourier restriction theorem.

Theorem 4.6. Let M � Rn be a compact manifold of dimension n� 1 whose
Gaussian curvature is nonzero everywhere. Let F be a modular function. Suppose
that F a 42, F satisfies

t

Z t

0

FðyÞ
y2

dyaHFðKtÞ; Et > 0ð4:23Þ

for some constants H;K > 0 and F2 satisfies

t

Z l

t

F2nþ2
nþ3

ðyÞ
y2

dyaBF2nþ2
nþ3

ðtÞ; Et > 0ð4:24Þ
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for some B > 0. Then, there exists constant C > 0 such that

Z l

0

Fðs nþ3
2n�2ðFf Þ�MðsÞÞ ds

s
2n
n�1

aC

Z
Rn

Fð f ðxÞÞ dxð4:25Þ

where ðFf Þ�M denote the non-increasing rearrangement of Ff with respect to the
Lebesgue measure on M.

Proof. For any 1a pal, let LpðMÞ be the Lebesgue space on M. In
view of [25, Chapter IX, Proposition 2.1], the operators F : L1 ! LlðMÞ and

F : L
2nþ2
nþ3 ! L2ðMÞ are bounded.

Let r ¼ 1 and y ¼ 2nþ2
n�1

. Theorem 3.2 yields

C

Z
Rn

Fð f ðxÞÞ dxa
Z l

0

Fðt�1Kð f ; t n�1
2nþ2;L1;L

2nþ2
nþ3 ÞÞ dt

aB

Z
Rn

Fð f ðxÞÞ dx

for some B;C > 0.
Next, recall that the Holmstedt formulas [17] give

KðFf ; t
n�1
2nþ2;LlðMÞ;L2ðMÞÞ ¼ t

n�1
2nþ2KðFf ; t�

n�1
2nþ2;L2ðMÞ;LlðMÞÞ

Q t
n�1
2nþ2

�Z t
�n�1
nþ1

0

ððFf Þ�MðsÞÞ2 ds
�1

2

:

Therefore,

Z l

0

Fðt�1KðFf ; t
n�1
2nþ2;LlðMÞ;L2ðMÞÞÞ dtb

Z l

0

FðDt�
nþ3
2nþ2ðFf Þ�Mðt�n�1

nþ1ÞÞ dt

bE

Z l

0

Fðt� nþ3
2nþ2ðFf Þ�Mðt�n�1

nþ1ÞÞ dt

for some constants E;D > 0 because F a 42.
By using the change of variable s ¼ t�

n�1
nþ1, Theorem 3.1 gives (4.25). r
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