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ABSTRACT. — We introduce an approach to modular interpolation in this paper. By using this
interpolation, we establish the modular inequalities for the Fourier transform, the Laplace trans-
form, the Hankel transform and the oscillatory integral operators. Moreover, we also obtain the
modular Fourier restriction theorem.
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1. INTRODUCTION

The main theme of this paper is the modular interpolation theory and its
application on the modular inequalities for the Fourier transform, the Laplace
transform, the Hankel transform and the oscillatory integral operators.

For the classical interpolation such as the Marcinkiewicz interpolation, the
norm of the function spaces is generated via the K-functional and the real inter-
polation functor. Therefore, the norm inequalities for operators are obtained.

Other than the norm inequalities, the modular inequalities also play an im-
portant role in Analysis. For instance, the modular inequalities for the Hardy—
Littlewood maximal function and the Fourier transform are obtained in [2, 19]
and [18], respectively. Furthermore, the modular inequalities for the Calderén
operators and the Hardy operators are established in [3].

There are several methods to obtain the modular inequalities. For instance,
the distributional inequalities [19] and the extrapolation [7, 8] can be used to
generate the modular inequalities.

In this paper, we use the idea of interpolation to obtain our modular inequal-
ities for the Fourier transform, the Hankel transform and the oscillatory integral
operators. We introduce an interpolation functor that generates the modular

p(f) = / O(f (x)) dx

instead of the norm of a function space. Therefore, as a result of the action
of this interpolation functor, we obtain modular inequalities instead of norm
inequalities.
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The interpolation functor used in this paper is defined via the K-functional.
We obtain our results by applying our interpolation functor to Lebesgue spaces.
As a well known fact, the K-functional of a measurable function f under a
pair of Lebesgue spaces is given in term of the decreasing rearrangement of f
[17]. Therefore, our modular inequalities involves the decreasing rearrangement
of f.

Notice that one of the essential components for the interpolation theory is the
Hardy inequalities. The modular Hardy inequalities are established in [3, 4]. The
results in [3, 4] are also one of the main motivations of this paper.

There are some modular interpolation theories given in [3, 4, 20, 21]. On the
other hand, the results given in [3, 4, 20, 21] cannot be applied to the Fourier
transform. For instance, the validity of [3, Corollary 3.6] requires that the linear
operator T is bounded on L* or L° where L° = {f : |supp f| < oo}. Therefore,
[3, Corollary 3.6] does not apply to the Fourier transform.

In addition, some modular inequalities of the Fourier transform are obtained
in [18]. Notice that the results in [18] play special interest on linear operator of
strong type (2,2) and (1, 00). Therefore, the results in [18] are not necessary
applied to some other transforms related to Fourier transform such as the Hankel
transform and the oscillatory integral operators. Especially, our method also
gives the modular Fourier restriction theorem.

Our method is based on the ideas from [13, 15]. The results obtained in
[13, 15, 16] show that we have the norm inequalities for the Fourier transforms,
the Hankel transform and the oscillatory integral operators on rearrangement-
invariant quasi-Banach function spaces. In this paper, we modify the method
given in [13] to obtain the corresponding modular inequalities.

This paper is organized as follows. In Section 2, we recall some basic facts
about r.i.q.B.f.s. and present the modular Hardy inequalities. Our modular inter-
polation theory is presented in Section 3. The modular estimates of the Fourier
transform, the Laplace transform, the Hankel transform, the oscillatory inte-
gral operators and the modular Fourier restriction theorem are established in
Section 4.

2. DEFINITIONS AND PRELIMINARIES

Let .#(0,00) and .#(R") be the sets of Lebesgue measurable functions on (0, o)
and R", respectively.

Let #(R") and '(R") denote the class of Schwartz functions and tempered
distributions, respectively. Let L” and L?(0, c0) be the Lebesgue spaces on R”
and (0, o0), respectively.

For any f € .#(R") and s > 0, write

dr(s) = {x e R" : |f(x)] > s}
and

fr(t)=1inf{s > 0:dr(s) <t}, t>0.
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We call /" and g are equimeasurable if dy(s) = d,(s) for all s > 0. We write
f~gif

Bf <g < (f,

for some constants B, C > 0 independent of appropriate quantities involved in
the expressions of f and g¢.

DEFINITION 2.1. A Lebesgue measurable function @ : [0, c0) — [0, c0) is called
a modular function if ® is a non-decreasing function with lim, ¢+ ®(7) =

The subsequent result is well known. We present the proof again for
completeness.

PROPOSITION 2.1. Let ® be a modular function. For any f € 4 (R"), we have
@1 | orrma= [ ermpa

PROOF. Let f = ZJZ 1@y (x) be a simple function where E; N E; = 0 when
i#j and a; >a; when i < j. We find that f*(¢) = Zj]il A im,_,.m;) (1) Where
m; = Y7, |Ei|. Consequently, ‘

[Se) N N
| ot wd =Y o) —m-) = > o@)e = [ olsmha

J=1 Jj=1

For general f € /(R ) there exists a family of non-negative simple function
J; such that f; 1 |f|. In view of [I, Chapter 2, Proposition 1.7], we also have
S 1 f*. As ®@ is non-decreasing, we have (D(]j) T@(|f]) and O(f*) T (7).

The monotone convergence theorem yields (2.1). O

A modular function ® is said to satisfy the /A, condition if there exists a
constant C > 0 such that

D(21) < CP(r), t>0.

We write ® € A\, if it satisfies the A\, condition.
Therefore, whenever ® € A,, we have

(22) ®(a+b) < ®(2max(a, b)) < Cmax(D(a), ®(b)) < C(D(a) + D(b)).

A modular function ® is said to satisfy the V, condition if there exists a
constant 0 < H < 1 such that

O(t) < HD(21), t>0.

We write @ € V, if it satisfies the YV, condition.
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DEFINITION 2.2. Let 0 < p < oo and @ be a modular function. Define
D, (1) = O(¢'/7).

It is easy to see that whenever ® is a modular function, @, is also a modular
function. Furthermore, ®, € A, provided that ® € A,.

We are ready to state one of the crucial supporting result for our modular
interpolation theory, the modular Hardy inequalities. We first recall the defini-
tions of two Hardy type operators used in [3].

Let 0 < a,b < co. For any f € .4[0, o0), write

11

[
(23) Suf () =75 [ 0505,

(24 S () = [ S5

We now present the modular inequalities for the Hardy type operators S,
and S,.

THEOREM 2.2. Let 0 < a < 1 and ® be a modular function. There exist constants
B, C > 0 such that for any decreasing nonnegative function f,

o0 o0
(2.5) / O(S,.f(1)dt < B/ O(Cf (1)) dt
0 0
if and only if there exist constants H, D > 0 such that

(2.6) Iz /tq)(y) dy < HO(Dt), V> 0.

1
0 ya+

For the proof of the above result, the reader is referred to [3, Theorems 2.1
and 2.3].

THEOREM 2.3. Let a > 1 and ® be a modular function. There exists a constant
C > 0 such that for any decreasing nonnegative function f,

(2.7) /Ow (S, /(1)) dr < c/om O(f (1)) dt

if and only if ® € A\, and there exists a constant B > 0 such that

(2.8) z"/otq)(w dy < BO(t), Vit>0.

ya+l -
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When ©(7) =7, 1 < p < oo, we find thatif a < p

‘O P 1
! <y)dy:t"—: tr.
a+1
0oy p—a p-—a

We see that @(¢) = ¢ fulfills (2.6) and (2.8) if and only if a < p.

THEOREM 2.4. Let 0 < b < o0 and ® be a modular function. There exists a
constant C > 0 such that for any decreasing nonnegative function f,

(2.9) / DS, f (1)) dt < C/ D(f (1)) dt
0 0
if and only if there exists a constant B > 0 such that
(2.10) zb/ ?,Efl) dy < BD(1), Vi > 0.
t

When ®(7) =17, 1 < p < oo, we find thatif b > p

“ @ 1P=b 1
zb/ ,Efl) dy =1’ = 1.
.y b—p b-p

Thus, () = 7 satisfies (2.10) if and only if b > p.

For the proofs of Theorems 2.3 and 2.4, the reader is referred to [3, Theorem
4.2 (iii)] and [3, Theorem 4.5 (iii)], respectively.

In addition, Theorems 2.2, 2.3 and 2.4 are special cases of the general results
in [3, Theorems 2.1, 2.3, 4.2 and 4.5].

Note that whenever ® satisfies

(2.11) O(st) <rd(zr), V>0

for some 1 < s* < r, then @ fulfills (2.6). In fact, (2.11) gives

“®(y) - /Sil‘d)(y) 0 / UGN
dy — dv = Sldt
/Oya+1 3% Z SHuyaJrl Y [:Z:OO Sflu(si[)u—s-l

2 Lt d(t 0 i o]
<Y (L) [ Sas s (LYo [
< Cu “®(u)

for some C > 0 because @ is non-decreasing. Hence, @ satisfies (2.6).
Similarly, when ® satisfies

(2.12) O(st) <rd(r), Ve>0
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for some 1 < r < s, then @ fulfills (2.10). Precisely, we have

OC o0 _su
= z/lybﬂ /
o

ST z<> /—

u

< Cu~"®(u)

which assures the validity of (2.10).

3. MODULAR INTERPOLATION

We recall the definition of the K-functional from [1, Section 3.1] and [27, Section
1.3.1]. The following definition involves the notion of compatible couple of quasi-
normed spaces, for brevity, we refer the reader to [27, Section 1.2] for the defini-
tion of compatible couple of quasi-normed spaces.

DerINITION 3.1. Let (X, X;) be a compatible couple of quasi-normed spaces.
For any f € Xy + X, the K-functional is defined as

K(f,t, Xo, X1) = inf{{| follx,, + el filly, - /= o+ /1}
where the infimum is taking over all f = f; + f; for which f; € X;, i =0, 1.
The following is the modular interpolation functor used in this paper.

DEFINITION 3.2, Let 0 < 0,r < oo and ® be a modular function. Let (Xp, X;)
be a compatible couple of quasi-normed spaces on R". The modular interpolation
functor py, v, ,, 1s defined by

r0,®
«© 1 1
P ol = [ RUTKCS Yo X))
We are now ready to present the modular interpolation theorem for linear
operators.

THEOREM 3.1. Let 0 < 0,r < o0 and ® be a modular function. If (X, X1) and
(Yo, Y1) are compatible couples of quasi-normed spaces on R" and T is a linear
operator such that

17711y, < Cllf g i=0,1.

Then, we have
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*© 1 1
(3.1) / (K (TS, b, Yo, V1)) dt
0

0 ~—0 * 17(;? (—r)_L 1
<G C ; O(Cy, "Cit7K(f,17, X0, X1)) dt.

ProoOF. In view of the definition of the K-functional, we find that

K(1f,t, Yo, Y1) <inf{|| Tfolly, + el TShilly, : f = So+ /i, fi € Yi,i = 0,1}
< CoK(f, C1Cy'1, Xo, X1).

Multiplying /~'/" and then applying the modular P(Xy. X1), ,, O both sides of
the above inequality, we obtain h

o0 o0
/ O(t 7K (TS, 17, Yo, Y1)) di < / O(Cot 7K (f, C1Cy 10, Xo, X1)) dt.
0 0
Next, by using the change of variable = CJC’s, we obtain

/ Ot K (TS, 17, Yo, Y1) dt
0

" 00 -4 4 1 1
s/ CICTD(C, " Cls K (f, 51, Xo, X)) ds.
0
Thus, we establish (3.1). O

To apply the above result, we have to show that the expression in the right
hand side of (3.1) gives the modular

(3.2) p(f) = / ®(1f () d.

This is precisely the result of the following theorem which asserts that the
modular (3.2) can be generated by the K-functional of Lebesgue spaces.

THEOREM 3.2. Let 0 < py < p1 < o0 and © be a modular function. Suppose that
D e Ay, ©,, satisfies

t
(3.3) t/o ul) 4 < o, (K, Vi 0

y2

for some constants H,K > 0 and @), satisfies

(3.4) t/ “’f}_gﬂdy < B®, (1), V>0
t

for some B > 0.
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Let r = py and
1 1 1

0~ P pr
Then, there exist constants C, D > 0 such that
c/ O(f(x))dx < / O( K (f, 1, L, L)) dt
n O

<D R"(I)(f(x))dx.

(3.5)

ProoOF. The Holmstedt formulas for the K-functionals of Lebesgue spaces [17]

state that
o0 1

K(f,6, L7, L) ~ (/Otﬂ(f*(s))l’()ds)%ﬂ(/[ﬂ (/" (5)" ds)"ll.

Therefore,

(K (f, 10, L LY
N z%(/ot(f*(s))l’o ds)”l_°+ z"ll</tx(f*(s))f" ds)#

Consequently, (2.2) gives
| ok L i)
0
0 ! t L
<D O(Et ™ / “(s)) ds)" ) dt
(] (e ([ vwra))

= [Co(erH([Curema)T)a)

<D OCC(DFU(SI((f*)pO)(t))dZ—FD/OOO q)l’l(gl((f*)pl)(l‘))dt:I+[[

for some constants D, E > 0 because ® is non-decreasing and ® € A;.
Since @ satisfies (3.3) and (/)" is non-increasing, we find that

1<p "o, )Md=b [ o wyd=b [ o)

for some D > 0.
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Similarly, as @ fulfills (3.4), we obtain

m<p ["o, (=0 [ o wyd=p [ oo

n

for some D > 0.
Therefore, ® € A\, yields

(3.6) /OOC DK, L LYy di <D | ®(f(x))dx

R"

for some D > 0.
For the reverse inequality, since /™ is non-increasing and ® is non-decreasing,
we have

n

> C/OOCCD(f*(z))dz: c/ D(f(x)) d.

Finally, (3.6) and (3.7) yield (3.5). O

Notice that even though we present our results for Lebesgue spaces on R”,
they are still valid for Lebesgue spaces on o-finite measures such as L?(0, o).
For brevity, we skip the details.

In view of the estimates after Theorems 2.3 and 2.4, we find that if py < p
and p < py, ©(¢) = ¢? fulfills (3.3) and (3.4), respectively. Therefore, the function
O(1) = >, axt™ where py < g < p; and a; > 0, 1 < k < n, satisfies (3.3) and
(3.4).

4. MODULAR ESTIMATES

In this section, we use the results obtained in the previous section to establish
several modular inequalities on the Fourier transform, the Laplace transform,
the Hankel transform and the oscillatory integral operators. Especially, we also
have the modular Fourier restriction theorem at the end of this section.

4.1. Fourier transform

For any f € '(R"), let Zf denote the Fourier transform of f.

THEOREM 4.1. Let ® be a modular function. Suppose that ® € /\,, ® satisfies

t
(4.1) z/ q))g)dyst)(Kt), V>0
0
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for some constants H, K > 0 and ®, satisfies

o0
®
(4.2) z/ Z(Zy) dy < BO(1), V>0
t Y

for some B > 0. Then, there exists constant C > 0 such that

N

(43) | osEn @)% <c [ orwa

PROOF. It is well known that the Fourier transform is bounded from L' to L*
and from L? to L?.

From the assumptions on ®, we are allowed to apply Theorem 3.2 with
po = 1and p; =2. We obtain 0 = 2 and

(4.4) Cl/n(]?(f(x))dxs /OOO O 'K (f, 2, L', LY)) dr

< Co [ () s

for some Cy, Cy > 0.
The definition of the K-functional and the Holmstedt formulas [17] yield

12

K(Zf,1, L7, L) = (K(Ff, 1 L% L") ~ z(/ ((9"f)*(s))2ds)%.

0

Since (Z/)" is non-increasing, we have

! 1
CUK(Ff 4,1 L) = Do / (F) () ds)" = D (71)"(7")
0
for some D > 0. e
Applying the modular / ®(-) dt on both sides of the above inequality, we
0

obtain
/OC Ot 'K(Ff, 2, L7, 1Y) dt > /3C oDt (7)) (7)) dt
0 0

o0
> c/ o( (7)) di
0
for some C > 0 because ® € A\,. By using the change of variable s = ¢~!, we find
that

(4.5) /O : O K(Ff, 5, L7 L)) dt > C /O . @(s(ff)*(s))@

2

Therefore, Theorem 3.1, (4.4) and (4.5) give (4.3). O
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When ®(7) =7, 1 < p < 2, conditions (4.1) and (4.2) are fulfilled and (4.3)
becomes

A S;((g’ff)*(.g))p_ _ A SP*Z((ﬁf)*(S»pdS < C\/R” |f(x)|1’dx
Thus, we have

1S Lo < CIA o

for some C > 0 where L?"? denote the Lorentz space. As 1 < p <2, in view
of the embedding L?? — L? [1, Chapter 4, Proposition 4.2], we recover the
Hausdorff-Young inequality

1Zf L < ClA N i

for some C >0 when 1 < p <2.

Therefore, Theorem 4.1 can be considered as the modular Hausdorff-Young
inequality.

Similar to the discussion at the end of Section 3, when 1 < ¢; < 2 and @; > 0,
1 < k < n, the function ®(7) = Y_;_, axt% satisfies (4.1) and (4.2). Consequently,
we have the corresponding modular Hausdorff—Young inequality.

The reader is referred to [18] for some other results on the modular inequal-
ities of the Fourier transform.

4.2. Laplace transform

Forany 1 < p < oo, let L?(0, o0) denote the Lebesgue space on (0, o0).
For any f € .#(0, «0), the Laplace transform of f is given by

Pf(s) = /0 C et ar

It is easy to see that % : L'(0, 00) — L*(0, o) is bounded. According to [10,
p. 189], £ is bounded on L?(0, o0). Thus, similar to the modular estimate of the
Fourier transform, we obtain the modular estimate of the Laplace transform.

THEOREM 4.2. Let ® be a modular function. Suppose that ® € /\,, ® satisfies

t
(4.6) ¢ / (Dy(zy ) dy < HO(KD), Vi >0
0

for some constants H, K > 0 and ®, satisfies

(4.7) z/ q)zy(zy) dy < BDy(1), ¥1>0
t
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for some B > 0. Then, there exists constant C > 0 such that

@8) | osten e <c [ etrmha

Since the proof of the above theorem follows from the proof of Theorem 4.1,
for simplicity, we leave it to the reader.

4.3. Hankel transform

We study the Hankel transform and its generalizations in this subsection.

Let o > —% and v, u € R. The operator % is defined by

(49) 22,500 = [ " () () dy.

where J,(r) is the Bessel function of the first kind.

The family of operators {%” } contains a number of operators used in
harmonic analysis. If we denote the Fourier transform of f(|x|) by Zf(|¢]),
then

7 5-1
(4.10) F1(¢) = @022}, 1 (D).
In [11], for any o> —1, the operator %, ,, | is called as the Hankel
transform. ~
In [6], Z| 5,1 = #, is named as the Fourier—Bessel transform of order o.
Moreover,

Hof = 201 = [ 1000400

is the so-called Hankel transform of order o.
We recall the L” — L7 estimates of £, from [9, Theorem 1.1].

THEOREM 4.3. Let p,ve R, o > —% and 1 < p < q < 0. The operator %", is
bounded from L?(0, ) to L1(0, ) if and only if '

1 1 1 1
4.11 =1l—-———-, and —oa—1+4+—<v<-—max{y0}.
411w e p 3 {u, 0}

In view of the assumptions from the previous result, we have 1 < p < ¢ and
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Therefore, the conditions in Theorem 4.3 impose a range for . That is, u fulfills
—1 < u < 1. Furthermore, for any fixed yx, we have

<—4-=1—-4n

< |-
Q=

1
P
Since 1 < p < ¢, we also have

2 1
—>—+4+-=1—pu

1
P P 9
Therefore, the conditions in Theorem 4.3 show that i and p satisfy

1 2
4.12 — << —,
(4.12) e

We are now ready to obtain the modular inequalities for the family of opera-
tors {Z,}.

THEOREM 4.4. Let —1 < pu <1, > —% and ® be a modular function on (0, ).
Let v € R satisfy v < § — max{u,0}.
Suppose that there exist 1% <qgo<po < 1% such that —o— 141 <v. If
, u # @
D e Ay, ®y satisfies

t

D
(4.13) t/o %dy < H®, (Kt), Vt>0
for some constants H, K > 0 and ®,, satisfies

(4.14) z/ (D”;—Sy)dy < B®, (1), ¥1>0
t

for some B > 0. Then, there exists constant C > 0 such that

[e0] d o]
@4.15) | o @ )G sc [ ot e
0 ' 0
PrOOF. Let p, ¢, satisfy
1 1 1 1
4.16 Sl and —=1-——pu
( ) P1 Po : qn 90 :

Notice that p; < ¢;.
Since % < ﬁ, we find that % > 1 — u. Thus,

1 1 1
—>l—-———pu=—.
Po Po D1
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That is, py < pi. Similar, as % < qlo, we also have

1 1 1
—>1l—-———u=—.
40 q0 q1

That is, ¢o < ¢1.
Theorem 4.3 guarantees the boundedness of %" : L%(0,00) — L7(0, c0)
and &, : L(0,0) — L"(0, o).

Let 15 = % — ﬁ and r = qo. Theorem 3.2 yields that

(4.17) Dl/oocd)(f(x))dxs /Oﬁ DK (f, 15, L9(0, 50), L7 (0, 00))) dr

< DO/OOO D(f(x)) dx.

for some Dy, Dy > 0.
Next, we find that

K(L} f 1, L0, 00), LP(0, 00)) = tK(Ly . f 71, L7 (0, 00), L7 (0, 0)).

The Holmstedt formulas give

10

K(L7,f 11,L(0,0), L7 (0, 0)) > Ci( / (2, (5)" ds)"

for some C > 0.
As (£, f)" is non-increasing and (4.16) gives

V1

I 1 1 I 1 1 1 1 1

_— _— = _ = = - — — = —1’

r 0 p g g po pr Po DI
we find that

R 100,20, 00,000) = ([T (#0007 )

> Cr N (L) ()

for some C > 0.
Therefore,

/ O(HK( L2, L0, o0), L7 (0, o0))) di
0 ,

” n—1 o *r —1
2/0 O(Cr (L), f) (1)) dt.
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By using the change of variable s = ¢~!, we obtain

(4.18) /0 O(HK(L2, S, 1 L9 (0, 00), L (0, o0))) di

o0 i d
> [ o 05,

Therefore, Theorem 3.1, (4.17) and (4.18) yield (4.15). O

_ Particularly, we have the modular inequality for the Fourier—Bessel transform

Hy, =L} 5, 1 In view of Theorem 4.4, if there exist 715 < ¢o < po < 115,

then for any @ € A, satisfying

t
@
t/o %dysH%(Kz), >0

FDpy ()
z/t ”J“}—zdysBd)po(t), >0

for some H, K, B > 0, there exists constant C > 0 such that

) s2+2“~'*sis : X)) dx
| o ehn G < c [ ot

4.4. Oscillatory integral operators

Let a(x, y) € C°(R" x R"). We call ¢ € C*(R" x R") the phase function asso-
ciated with a(x, y) if there is an open cone I' C R"\{0} such that suppya C T’
and for any (x,0) e R" x T’

d(x,20) = Ap(x,0), 1>0
and d¢ # 0 where d¢ denotes the differential of ¢ with respect to all of the

variables, see [24, Section 0.5].
We say that ¢ satisfies the non-degeneracy condition if

2
det(ajj;;k) # 0

on the support of a(x, y).
The oscillatory integral operator associated with a(x, y) € C°(R" x R") and
¢ € C*(R" x R") is given by

(T2 (x) = / eHDa(x, ) f(x)dy, &> 0.

n
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The reader is referred to [24, 25] for the studies and applications of oscillatory
integral operators.

We now obtain the modular estimate of oscillatory integral operators.

THEOREM 4.5. Let ® be a modular function. Suppose that ® € N\,, @ satisfies
(4.1) and (4.2). Then, there exists constant C > 0 such that for any A > 0,

(4.19) /O " o(s(T, f)*(s))g < / ("1 (x)) dx.

PRrROOF. In view of [24, Theorem 2.1.1], for any 4 > 0, we have

IT:f 12 < B2 £l

for some £ > 0. Moreover, we also have

1T < HI Sl
for some H > 0 [24, p. 56].
Letr=1and é =1- % = % By applying Theorem 3.1 with Xy = L', X; = L?,
Yo=L*, Y, = L2 Cy=E and C; = H/.""?, we find that
(4.20) / O K(Tf, 3, L, L)) di
0

o0
< cm/ OBA"TK(f, 5, LY, L)) dt.
0

for some B, C > 0.
Similar to the proof of Theorem 4.1, Theorem 3.2 gives with py =1 and
p1 = 2, we obtain 0 = 2 and

(4.21) Do/nd)()u”f(x))dx < /OT OGRS, e, LY L)) di

<Dy [ 01 () ds

for some Dy, Dy > 0.
Furthermore, similar to (4.5), we also have

(4.22) /030 O 'K(T,f 15, L”, L)) di > /0@ O(Ds(T,f)"(s)) ﬁ

Consequently, (4.21) and (4.22) yield (4.19). O
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When ®(7) = t7, 1 < p < 2, conditions (4.1) and (4.2) are satisfied and we find
that

PL / (B2 (x))dx = 1) /R )P dx

for some B, C > 0.
Hence, (4.19) becomes

| sty or = [Ty oy as et [ rwra

Consequently, we obtain

1
I T f s < CA7 | fll

for some C > 0.
In view of the embedding L?"? — L’ we get

ITof Nl < CL 7N Sl

which recovers the L? estimates of oscillatory integral operators [24, Corollary
2.1.2].

4.5. Fourier restriction

The Fourier restriction theorem plays a significant role in the estimates of solu-
tions of partial differential equations, especially, on the wave equation and the
Schrodinger equation. The reader is referred to [26] and [25, Chapter VIII,
Sections 5.18-5.20] for details.

As an application of our modular interpolation functor, we now obtain the
modular Fourier restriction theorem.

THEOREM 4.6. Let M C R" be a compact manifold of dimension n — 1 whose
Gaussian curvature is nonzero everywhere. Let ® be a modular function. Suppose
that ® € A\,, O satisfies

t
(4.23) ¢ / (Dy(f ) dy < HOKD), ¥i>0
0

for some constants H, K > 0 and ®, satisfies

n+3

o0 (D2n+2(y)
(4.24) ‘ / Iy < BOua(t), Vi>0
t Y
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for some B > 0. Then, there exists constant C > 0 such that

(4.25) | o S < [ ot

Sn—1

where (1)), denote the non-increasing rearrangement of Zf with respect to the
Lebesgue measure on M.

PROOF. For any 1 <p < oo, let L?(M) be the Lebesgue space on M. In
view of [25, Chapter IX, Proposition 2.1], the operators % : L' — L*(M) and

2n+2

F : L3 — L*(M) are bounded.
Let r = 1 and 0 = 222 Theorem 3.2 yields

n—1

2n42

13 )) dt

C/nd)(f(x))dx < /Owd)(t'K(f, s, LV L

SB/"d)(f(x))dx

for some B, C > 0.
Next, recall that the Holmstedt formulas [17] give
K(Zf 135, L7 (M), L*(M)) = (5K (Ff 1755, L*(M), L* (M)

n=1

<[ @ra)

Therefore,

_n+3

/ " O K (S, 5, L (M), L(M))) di > / " oD () dr
0 0

11

>E / (133 (FF) L, (7)) di
0

for some constants £, D > 0 because @ € Alz.
By using the change of variable s = ¢ »1, Theorem 3.1 gives (4.25). |
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