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ABSTRACT. — In this paper we deal with the approximation of SBV functions in the strong BV
topology. In particular, we provide three approximation results. The first one, Theorem A, concerns
general SBV functions; the second one, Theorem B, concerns SBV functions with absolutely con-
tinuous part of the gradient in L?, p > 1; and the third one, Theorem C, concerns SBV” functions,
that is, those SBV functions for which not only the absolutely continuous part of the gradient is in
L7, but also the jump set has finite # ¥ ~!-measure. The last result generalizes the previously known
approximation theorems for SBV? functions, see [5, 7]. As we discuss, the first and the third result
are sharp. We conclude with a simple application of our results.
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1. INTRODUCTION

SBYV functions, first introduced in [3], arise as a natural tool in order to study free
discontinuity problems, which are a wide class of variational problems appearing,
for instance, in image analysis, fracture mechanics and liquid crystals theory.
Typical energies involve bulk and surface densities and are often modeled by
integral functionals of the form

(L.1) F(u):/Qf(x,Vu)dx—i—/J g, utu,va) do N

Here, u is a scalar (or vectorial) function in SBV(Q), Vu is the absolutely con-
tinuous part of its gradient Du, J, and u* are the jump set and the traces of u
on both sides of J,, and v, is the approximate normal to J, (all the relevant
definitions are listed in Section 1.1).

Also in order to study functionals of the above type, it is clearly of primary
importance to have compactness and approximation results for SBV functions.
This paper deals with the question of the approximation. In the literature, there
are two approximation results, quite known, one due to Braides and Chiado Piat
in 1996 (see [5]), and the other by Cortesani and Toader in 1999 (see 7], see also
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the weaker result obtained in the earlier paper [9]); they both deal with the SBV”
functions, which are the SBV functions for which Vu belongs to L?, and the jump
set J, has finite #V~! measure, see Section 1.1. Let us summarize the results in
the following statement.

THEOREM 1.1 (Braides—Chiado Piat [5], Cortesani-Toader [7]). Let Q C R be
a bounded set with Lipschitz boundary, let p > 1, and let u € SBV?(Q) n L*(Q).
Then:

[1 (Braides—Chiado Piat)] There exists a sequence u; € SBVF(Q) such that
luj — ul|lgy — 0 and Vu; — Vu in L?, for every j e N it is ||uj]| ;.. < ||u|;. and
u; € CY(Q\R)), being R; 2O Ju, some closed rectifiable set, and JfN_l(Ju/.AJu)
— 0.

[2 (Cortesani—Toader)] There exists a sequence u; € SBV?(Q) such that u; — u
in L' and Vu; — Vu in L?, and for every je N it is |jujl| ;. < ||ull -, Jy
is polyhedral (i.e., the intersection of Q with a finite union of (N —1)-
dimensional simplexes), and u; € C* (Q\J,,) " W= (Q\J,). Moreover,

: + - N-1
(1.2) hmsup/Jﬂ@g(x, w' ;s vy) dA

jo0
S/ B glx,u™ u=,v)daN !
Jun G

for every open set Q' CC Q and every u.s.c. function g : Qx Rx Rx SV -
[0, c0) such that g(x,a,b,v) = g(x,b,a,—v) forall x € Q, a,b € R, v € sh-1,

The above results suffice for many applications, nevertheless they are still not
sharp; in fact, roughly speaking, one would like to find a sequence u; converging
to u in the strong BV topology and in L? of the absolute continuous part of the
gradient, with the functions u; having a regular jump set and being smooth out
of the jump set. Instead, in [5] there is no information on the shape of the jump
set, while in [7] the BV convergence fails. In addition, both results are valid in
SBV? and not in SBV; this means that one assumes a higher integrability of
Vu and the finiteness of the .#V~!'-dimensional measure of the jump set. As
we will discuss in Section 1.2, there are good practical reasons to do that;
moreover, the L” assumption on Vu is actually satisfied in many applications
(however, in Section 6 we will deal with a situation for which this is not the
case). Nevertheless, for some important functionals of the form (1.1) there is
no guarantee that minimizers (or at least minimizing sequences) have finite
measure of the jump set, and in fact for such functionals a lot is still not known.
For these reasons, it appears desirable to have approximation results dealing
with completely general SBV functions, or with SBV functions having abso-
lutely continuous part of the gradient in L?, with no constraint about the mea-
sure of the jump set; we will call for brevity SBVZ the space of such functions
(see also Section 1.1).
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In this paper, we contribute to give an answer to these questions. More
precisely, we present three approximation results, respectively for SBV, SBV/,
and SBV? functions; the last one generalizes Theorem 1.1. Our results read as
follows.

THEOREM A (Approximation in SBV). Let Q C RY be an open set, and let
u € SBV(Q). Then, there exists a sequence of functions u; € SBV(Q) and of com-
pact, C', manifolds with (possibly empty) C! boundary M; CC Q, such that
Jy S My gy, AN (TN\y) =0, and

lluy — ”||BV(Q) —0, ue C%(Q\J_w)~

THEOREM B (Approximation in SBVZ). Let Q CRY be a local extension
domain (see Definition 4.4), and let u € SBV? (Q). Then, there exists a sequence
of functions u; € SBVF(Q) and of compact, C' manifolds with (possibly empty)
C! boundary M; CC Q, such that J,, € M; but N1 (M\J,;) = 0 and

(1.3) [t — ullgyiq) — 0, ;€ C*(Q\J,), Vy oo Vu.
TueEOREM C (Approximation in SBV?). Let Q C RY be an open set with locally
Lipschitz boundary, and let u € SBV?(Q). Then, there exists a sequence of func-
tions u; € SBV?(Q) and of compact, C', manifolds with (possibly empty) C'
boundary M; CC Q, such that J,, € M; but A"~ (M)\J,,) = 0 and

(1.4) lu; — ullgy) — 0, € COC‘(Q\JT,/),
Vu; — Vu, #N1(J1,AT,) — 0.
T @) '

Notice that the only difference between the approximations given for SBV?
and for SBV”_ functions consists in the validity of the convergence # V! (S \ )
— 0 (actually, the convergence of # "~ '(J,\J,,) to 0 in Theorem C is a direct
consequence of the BV convergence). However, as we will discuss in Section
1.2, this is a substantial difference, and it is precisely the lack of this conver-
gence making Theorem B still not sharp. We remark that, in Theorems B
and C, since the jump sets J,, are contained in the compact, cl, (N —1)-
dimensional manifolds A, then in particular they are essentially closed, that is,
AN (T \Ty) = 0.

Let us note also that, in Theorem A, one can decide that the jump sets J,, of
the functions u; coincide # N-1_g e. with the C! manifolds M;, but in this case it
is no more true that they are contained in J,. Moreover, in Theorems B and C,
one can remove the assumption of Q to be locally an extension domain, or a
set with Lipschitz boundary, but then the L? convergences in (1.3) and (1.4)
become L[ convergences, see Theorem 4.7. We underline that our Definition
4.4 of extension domains is even weaker than the usual one, we only require
W1r(Q) to be dense in W 1(Q). In our three results we do not need to assume
that u is bounded; however, if u e L*(Q), then we can always assume that
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lujl| o < |lu|, forevery j e N: this is an immediate consequence of Lemma 3.2.
We remark that an approximation result for SBV functions, similar to our
Theorem A, was also proved in [13]. Finally, through the paper we consider for
simplicity of notations the case of scalar functions; however, the case of vector-
valued functions is identical.

As an immediate application of the approximation result in SBV, we will
consider in Section 6 a representation formula for the total variation recently
obtained in [11] for functions u € SBV(Q) for which " (J,) = 0, and we show
that the same formula still holds in general, with no additional assumptions on
the jump set. The case of a general function in BV(Q) with non trivial Cantor
part is also discussed.

1.1. Definitions and notations. Here we briefly give all the definitions and nota-
tions used in this paper, most of which are standard: one can refer for instance to
the book [4] for a complete account of the subject. Given an open set Q C R”,
the space of the functions of bounded variation is given by the set BV(Q) of
all the L' functions over Q whose distributional derivative Du is a finite Radon
measure. For any function u € BV(Q), one denotes by Vu € L'(Q) the abso-
lutely continuous part (with respect to the Lebesgue measure) of Du, and D*u
the singular part. Hence, Du = Vu" + D*u, and u € W'(Q) if and only if
D*u =0. The measure D*u does not charge # " '-negligible sets; moreover,
one further decomposes D*u = D/u + D‘u, where D’u is called jump part and
D¢u Cantor part. While the Cantor part Du does not charge " ~!-finite sets,
the jump part D/u is concentrated on a (N — 1)-dimensional set J,, called the
Jjump set, which is countably rectifiable: this means that there exist countably
many sets M;, i € N, each one being a C' image of the unit ball of RV, so
that # Y1 (J,\ U;cn M:) = 0. In addition, for every point x € J,, there exist a
direction v, = v,(x) € S¥!, and two numbers u" = u*(x) # u~ = u~(x), such
that

lim lu(y) —u™|dy = lim lu(y) —u"|dy =0,
r—0 Bi; (x,7) r—0 B, (x,7)

where B (x,r) are the two half-balls defined by

BE(xr) = {yeRY:[y—x| <r(y—x)-vZ 0}
Moreover, one has D/u = (u* —u~)#¥~1_J,: this explains why this part of
the derivative is called “jump part”. In particular, the strictly positive quantity
|ut(x) —u~(x)| is called “jump”. We recall that a sequence {u;} C BV(Q) con-
verges strictly to u if

[l = ull L1y + [ [Djul () — |Du|(Q)] — 0.

Note that this also trivially implies that Du; = Du;. We will say that a sequence
{u;} C BV(Q) converges to u in the BV sense if it converges in the strong
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norm topology:

[luj — “||BV(Q) — 0.

The space SBV(Q) of the special functions of bounded variation is given by
the set of all BV functions u for which the Cantor part D‘u of the derivative
vanishes, thus Du = Vu " + D/u. Despite the elementary definition, this space
is extremely important, since it is the natural space in which functions live in
several applications. It is important to notice that SBV(Q) is not a closed sub-
space of BV(Q) in the strict topology, because the strict limit of a bounded
sequence of SBV functions can have a non-trivial Cantor part in the derivative,
which can arise both from the absolutely continuous part and from the jump
part of the derivatives. Also for this reason, in many applications one con-
siders the space SBV”(Q), see for instance [5, 6, 7]: given some p > 1, the space
SBV?(Q) is defined as the space of the SBV functions u for which the quantity
lullgy + IVl » + # N1 (J,) < co is finite. As an immediate consequence of
the well-known compactness Theorem for SBV functions (see [4, Theorem 4.8]),
one obtains that limits of sequences in SBV” for which the above quantity is
uniformly bounded remain in SBV”. Basically, the higher integrability of the
absolutely continuous parts of the gradients prevents them to create Cantor part
in the limit, while the boundedness of the measures of the jump sets prevents the
jump parts to create Cantor part in the limit.

For reasons that will be discussed in the next section, we will also be interested
in an intermediate space between SBV and SBV”, that is, the space of SBV func-
tions u for which the higher integrability Vu € L? holds, but no constraint on the
measure of J, is assumed. Through this paper, we will denote by SBV’  this
space. Notice that, as discussed above, this is not a closed subspace of SBV in
the strict topology.

1.2. A brief discussion of our results and a comparison with Theorem 1.1. In
this section we make a general discussion about the approximating issue in
SBV, and then we comment our three results, and we compare them with
Theorem 1.1.

First of all, let us consider a function u € SBV: the best approximation that
one can hope to get, is to write # as a BV limit of SBV functions u;, each of
them having a “nice” jump set J,, and being smooth outside of Q\J,,. Notice

that the BV convergence of u; to u immediately implies that #"~! (Ju\Jy,)
converges to 0 as soon as J, has finite measure (otherwise it is of course infinite
for every j, since "~ (Jy;) 1s finite). On the other hand, it could be in principle
possible that s#V~! (Ju;\Ju) does not converge to 0, and this quantity could even
blow up: it is enough that the functions u; have a very large part of the jump
set where the jump |u™ — u~| is very small. With this considerations at hand,
Theorem A appears completely satisfactory; in fact, not only we have that
%N_I(Ju/.\Ju) converges to 0, but also that J,, is a subset of J,.

As discussed above, not many applications use the space SBV, which is a non-
closed subspace of BV (even though, we consider an application in Section 6). In
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order to roughly understand the reason, let us consider again a functional as in
(1.1); to keep the discussion simple, we restrict ourselves to the particular case
(still very general) of a Mumford-Shah-like functional of the form

F) = [ vl + /Jug<|u+<x>—u-<x>|>,

where p > 1 and ¢ is a positive, increasing, l.s.c. function. When studying the
problem of minimizing this functional in SBV (under suitable assumptions), it is
of course not restrictive to consider BV functions for which Vu belongs to L7,
hence the functions belonging to the space that we denote by SBVZ . On the other
hand, depending on the function g, it is not obvious whether or not it is restric-
tive to assume also that the measure of the jump set is finite, that is, to consider
functions in the space SBV”. This is of course not a problem for the original
Mumford-Shah case, corresponding to g = 1, or more in general for functions
for which lim,_+ ¢g(¢) > 0, because in this case any function with finite energy
belongs to SBV”. Otherwise, for instance for the important case when g(7) = 7
with some ¢ > 0, restricting oneself to the space SBV? might change the min-
imizers; and actually, the fact that the space SBV/_ is not closed in BV (while so
is SBV”, as said) is the main reason why much less is known for functionals of
this last type. For instance, it is not clear if, for these functionals, the minimizers
(if any) should belong to SBV? or not. This clarifies the need of an approximation
result for the space SBVZ | and we give a partial answer in the present paper
with Theorem B: as far as we know, this is the first approximation result for
SBV functions with higher integrability of Vu but without any constraint on the
measure of the jump set. Unlike Theorem A, one can still not say that our result
is completely satisfactory. Indeed, in our result we get an approximating sequence
which converges in the BV sense and in the L” sense of the absolutely contin-
uous parts of the gradients, and which is done by functions which have the
nicest possible jump set, and which are smooth outside. However, the informa-
tion that #V ’I(Juj\Ju) — 0 is missing, and this can create troubles in some
cases. To understand that, consider once again the case of g(7) = ¢7: if ¢ < 1,
then the convergence of u; to u provided by our Theorem B does not imply that
F(u;) — F(u), and this is of course unsatisfactory. Notice that, instead, the con-
vergence of F(u;) to F(u) is an immediate consequence of the BV convergence if
g > 1 (at least when the functions u; are equi-bounded, as one usually has in the
applications): for functionals of this type, then, the claim of our result seems to be
enough for the applications.

Let us finally consider the case of the SBV? functions. As discussed above, not
for all functionals this is the “right” space to consider. However, our Theorem C
seems again to be completely satisfactory, since we obtain also the convergence
missing in Theorem B, compare (1.4) with (1.3).

To conclude, we can make a quick comparison between our results and those
of Theorem 1.1. As already said, for several applications the results of Theorem
1.1 are enough; nevertheless, in [5] there is no information about the possible
shape of the jump sets of the functions u;, except the fact that they are con-
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tained in a closed rectifiable set; analogously, in [7] the strong BV convergence
fails. Notice that, since the jump sets of the approximating functions in [7] are
polyhedral (i.e., a finite union of (N — 1)-dimensional simplexes), hence in gen-
eral disjoint from the jump set of u, then of course there is no possibility to
have strong BV convergence in that result. We also underline that, in our result,
the jump set is a compact C! manifold: hence, it is the disjoint union of finitely
many C! images of (N — 1)-dimensional simplexes; obtaining the disjointness,
which is not ensured by the result of [7], requires some care, and it is done in
Lemma 5.2. A last comment can be done about the strategy of the proof. In
[5, 7] the authors use the well-known existence and regularity results for the
Mumford-Shah functional, see for instance [8]. Our strategy is instead quite
different; more precisely, given a function u € SBV(Q), we single out a compact
subset K of the jump set J, contained in a C' manifold, and we construct a
smooth function in Q\K having the same upper and lower traces of u on K by
means of a simple mollification argument with variable kernel; this is enough to
conclude in the case of SBV functions, Theorem A, while a careful modification
is needed to treat the cases of SBV” or SBV” functions, in order to get also the
L? convergence of the Vu;.

2. MOLLIFICATION WITH VARIABLE KERNEL

In our construction to prove Theorem A we will make use of a mollification with
a variable kernel. Even though this is a well established technique, in this section
we collect the relevant definitions and the properties that we are going to need, in
order to keep our presentation self-contained.

Through this section, we will consider a given compact set K CC Q, and we
will write D = K U 0Q. Then, we arbitrarily fix a “regularized distance function™
from D, that is, a function 6 : Q — R such that

dist(x, D)
2

Do, <1, <Jd(x) < dist(x,D) VxeQ,

and that 0 € C*(Q\D). Moreover, we also take a function f € C*([0,0))
satisfying

(2.1) FY0)=0vjeN, 0< f(r)<1Vre (0,+x),
0<f'(t) <1Vte|0,+0).

Given a number 0 < o < 1 and a vector y € B(1), we define the “generalized
translation” as the function

T5.(x) = x = af (6(x)) y-

Here, and in the following, we denote by B(x, r) the ball with center x and radius
r > 0, and we simply write B(r) in place of B(0,r). Notice that, by the properties



376 G. DE PHILIPPIS, N. FUSCO AND A. PRATELLI

(2.1) and the choice of 0 < ¢ < 1, one has 75, : Q — Q, and Ty, is the identity
on D. Since

DT5y(x) = 1d — af '(6(x)) y ® Do (x),

(observe that f”(d(x))Dd(x) is continuous on the whole Q by construction), keep-
ing in mind that det(Id + ¢ ® b) = 1 + a - b and recalling again (2.1) and the fact
that o < 1 and that |y| < 1 we obtain

(2.2) det DT, ,(x) =1 —af'(0(x))y-Dé(x) =1 -0 > 0.

In particular 7Ty , is a local diffeomorphism, and since a quick look at the def-
inition ensures that it is a bijection from Q onto itself, it is also a global dif-
feomorphism. Finally, we fix a smooth positive function p € C(B(1)), such that
/ p = 1. We are then ready to give the definition of the mollification with
B(1)

variable kernel, for a Llloc function and for a Radon measure. Notice that both
definitions reduce to the standard mollification if 77 , is replaced by the standard
translation 7, (x) = x — y.

DEFINITION 2.1. Let f, o and p as above. For any u € L\ (Q) we define

() = / u(Toy (x))p(y) dy = / u(x — af (5(x))y)p(y) dy.
B(1) B(1)

Instead, for any Radon measure u e .#(Q), we let u, € .#(Q) be the unique
measure such that

/ o(x) dyt (x)
Q

= [ ([ ol e det(DT, J2) due) o)y forall p e Cu(@)
B(1) VJa

that is,
0= /B (l)(Taj;)#[det(DT;}.)u}p(y) dy.

It is very simple to deduce from the definition that, if x = ud %", then u, =
u, d ", as well as that u, = u if the measure u is concentrated on K; moreover,
if ; = p then (y;), = u,. Before proving the main properties of u,, we need to
make a simple observation about the density (in the strict sense) of smooth func-
tions in BV.

LEmMMA 2.2. Let u e BV(Q) be such that D*u is concentrated on a compact
set K CC Q and Vu belongs to L?(Q) for some 1 < p < 0. Then, there exists a
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sequence of smooth functions u; : Q — R such that u; — u strictly, and for every
& > 0 one has that Du; — Du strongly in L?(Q\K,), being K, the e-neighborhood
of K.

PROOF. First of all, assume that Q = R”. In this case, it is immediate to observe
that the sequence u * p;/; is as needed, where p,; is a standard smooth kernel
concentrated in the ball of radius 1/;.

Let us now consider the general situation of an open set Q. Let A; and A, be
two open sets such that K CC 4; CC 4, CC Q. By means of a smooth cut-off
function, we can write u = u; + u», being u; € BV(Q) supported in A, with
Vuy € LP(Q), while uy € W?(Q) is supported in Q\A;. By Meyers and Serrin
Theorem, we can take a sequence u, ; of smooth functions converging to u,
strongly in W!7(Q). Instead, concerning u;, we can extend it by 0 outside of
A», getting a function in BV(R"), and then we find the sequence u; ; with a
convolution as before. If we now let u; = u; ; 4 u> ;, this sequence is clearly as
requested, since in the set 4>\A4; both the convergences of u; ; and u, ; to uy
and u, are strong in W17, O

PRrROPOSITION 2.3. Let | < p < 0, u € L?(Q), u be a Radon measure, and let
uy and u, be as in Definition 2.1 for some 0 < o < 1/2. Then

(i) u, € C*(Q\K).
(i) The following estimates hold.:

(2.3) [t llLoi) < 2Mull Loy 151(€2) < 2]p| ().

In particular, the map u — u, is linear and continuous in L?.

(iii) One has ||uy — ull ;) — 0 as 0 — 0 and, if u e C(Q), then |[u; — ul| ;.o
— 0 as o — 0 for every Q' cC Q.

(iv) If u € BV (Q), then u, € BV (Q) and

(2.4) Du, = (Du), + o&°,

where &7 is a Radon measure such that £°1_K = 0 and |£7|(Q) < 2|Du|(Q).
Moreover,

(2.5) Du,_K =Dul_K.

Finally, if Vu € L?(Q) and J, is contained in K, then

Vu, — Vu.
Lr(Q)

PRrOOF. Point (i) follows from the fact that for x € Q\K

1 X—z

()= —— "),
o) (af (6(x))" /B<x,af<é<x>>) u(z)p(af (5(X))) -
and by the smoothness of / on R", p on B(1), and J in Q\K.
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To prove point (ii), we start with an L? function u. By Jensen inequality,
Fubini Theorem and the change of variable z = T, ,(x), also keeping in mind
that 75 ,(Q) = Q, we have

(2.6) /Q p ()| dx < /Q / T DI (0) s

-/ N [ (T 1 )t

- / / ju(2)|? det DT, L (2) d=p(y) dy
B(1) Jo ’

< [|det DT, ) 1 gy 1| Lr@)

Since by (2.2) for ¢ < 1/2 we have HdetDT(;Jl, o) < (11— o)~' <2, inequality
(2.3) for an L? function follows from (2.6). More in general, calling K, the
e-neighborhood of K, it is clear by construction that 7, ,(x) might belong to
K> only if x belongs to K;, thus we also have that

P P
(27) / OIS A

Let us now consider a Radon measure g, and let u; be a sequence of L' functions
such that u; d ¥ N = 1. As noticed above, we get that

(), dL" = (w;d L"), = p,,

thus the estimate (2.3) for the measure u follows from the same estimate for the
functions u;.

Concerning point (iii), we note that the second part is an immediate con-
sequence of the uniform continuity of u on compact sets and of the fact that
175,y — Id|[ () — 0 as ¢ — 0. The fact that [ju; —ul|; ,q) — 0, then, follows
by the density of C°(Q) in L?(Q) and by (2.3) exactly as in the classical case.

Let us now prove point (iv). We first assume that u € C*(Q), then we get

Dug(x) = / (Du(T5,y(x)) = af "(6(x)) Du(Ty,,(x)) - yD3(x))p(y) dy,
B(1)
so that (2.4) holds with

(2.8) £ = —f'(6(x))Do(x) / Du(T,,(x)) - yp(y) dy.

B(1)

Notice that in the present case, also by (2.1), the measure &£° is actually a smooth
function. Moreover, £ K = 0 because for every x € K one has d(x) =0 and
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so f'(d(x)) =0, and since 0 < f” < 1 and ||Dd||;.. <1, we have

(2.9) E7(¥)] < /B(l) |Du(T5,,(x)|p(y) dy = |Dul,(x),

so that applying part (ii) above to the function |Du| we get
E71(Q) < [ [Dul,llpr < 2| [Dul [| 1 = 2| Dul(Q).
In conclusion, (2.4) of point (iv) holds if « is a smooth function.

Let instead now u € BV(Q) be a generic function, and let u; € BV(Q) n C™(Q)
be a sequence such that u; * u in the strict BV sense (with the additional prop-
erty granted by Lemma 2.2 if D*u is concentrated on K and Vu € L”). First
of all, note that (u;), — u, in L' by part (ii), hence D(;), — Du, in the sense
of distributions. Since for every j we have D(y;), = (Du;), + o</ according to

(2.4), and since as already noticed Du; =~ Du implies (Du;), = (Du),, we have
to check the weak™® limit of &7 for j — oo. Let us then take a bounded and
continuous function ¢ € Cy(Q,R"), with compact support: applying (2.8) to
each smooth function u;, we get

0> = [ 6o oo | | DUl () spl)dy) s
= [ 3 (L P 0epDa) - o) ) o) s
- : w (2 £ (S(T) (= 1,
= [, » ([ purrorenna )

(T, (2)) det(DT,,,) ' (2) dz ) ply) dy
Z/B(l)% (/QD”,/'(Z)Q(J’aZ)dZ)P(y)dy
=/QDuj(Z)-(/B(1) y9(y,2)p(y) dy) dz,
where for any y € B(1) we have set

(2.10)  g(y,2) = ['O(T, (2))D(T, }(2)) - 0(T, }(2)) det(DT,,) ™ (2).

By construction, g is a continuous, compactly supported, scalar function, with
llgll,~ < 2|l¢|l,~ and of course depending on ¢, so we can define

2.11) hz) = / | o) s
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and the calculations above give

—¢&; &7, 0> = / Duj(z) - h(z) dz = {Duj,hy — {Du,h).

Since the map ¢ +— / is easily seen to be linear and continuous, we have a mea-

*

sure ¢7 such that £7 % £°. Summarizing, we have shown that for any u € BV(Q)
there is a measure ¢7 such that (2.4) holds true, and this also implies that
us € BV(Q). Moreover, since &7 = £, the validity of [£7|(Q) < 2[Du|(Q) is
straightforward, since we know it for every ¢/ and u;. In order to prove that
E°L K =0, let us take a function ¢ € Cy(Q) supported in the e- neighborhood
K, of K. Thus o( ay(z)) = 0 whenever the distance between 7 (z) and K
is bigger than ¢. On the other hand, if it is smaller, then 6(7’; }( z)) < &, and this
implies that /7 (6(7, ( ))) < el f"]l, - Recalling the definitions (2.10) and (2.11),

we deduce that ||h||Lq < |gll;= < 2|l f"|| <@l ;. Recalling that {(—&°, ¢ =
{Du,hy and sending ¢ — 0, we have obtained that £°|_ K = 0. In other words,
we have now proved the validity of (2.4).

Let us pass now to show (2.5). By (2.4) we have Du,|_ K = (Du),L_K, so to
obtain (2.5) we have to show
(2.12) (Du),L_K = Dul_K.

Keeping in mind Definition 2.1, for any function ¢ € C,(Q) we have

(D), p) = / | CTldeDT D p3p(y) dy
-/ | CQeUDT D po T op()

— [ Dupy+ Duget, -0
B(1)

+ {(det(DT, }) = 1)Du,p o T, | >)p(y) dy

—Dupy+ [ (DupaT,l -9
B(1)

+{(det(DT, ) — 1)Du,p o T, | >)p(y) dy
Let us now again restrict our attention to the case when ¢ is supported in K.
Since by construction the function g o T, ! is concentrated on K>, and more-

over for every x € K one has g o Taf; (x) — p(x) = p(x) — p(x) = 0, then we can
evaluate '

[<(Du),,¢> — {Du, )|
< [loll L (21 Du| (K2 \K) + ||det(DT, ) = 1| 1o ()| Dl (K2e)).
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By sending ¢ to 0, since ||det(D7, ) — Ul =k, goes to 0 by (2.2), we obtain
(2.12). '

To conclude the proof, let us now assume that the jump set J, is contained
in K, and that the function Vu belongs to L”(Q): we have to prove that Vu,
converges to Vu in L?(Q). Recalling (2.4) and by linearity, we have

(2.13) Du, = (Du), + &% = (Vud &Y + D*u), + a&°
= (Vu), d2" + (D*u), + a&’.

By point (iii) we know that (Vu), converges to Vu in L?(Q), and on the other
hand since D*u is concentrated in K then (D*u), = D*u is also concentrated
in K. As a consequence, to deduce that Vu, converges in L?(Q) to Vu when
o — 0, it is enough to observe that the measures &° are actually functions,
uniformly bounded in L?(Q).

To do so, we fix some ¢ — 0, and we consider the situation in Q\K,: keep-
ing in mind that &7 = ¢%, applying the estimate (2.9) to each function u;, and
recalling (2.7) and Lemma 2.2, we derive that

1€°1

Lr(Q\K,) = lijnlglf 17 k) < lijrgglf I'1Du;l 4]l 100k,

< 2 lim inf 1D Lo\, )
< 2||\Vull Lok, ,) < 21IVelll Loy-
By letting ¢ to 0, recalling also that 7 K = 0, we deduce that
(2.14) ”faHLp(Q) = 2||V“||Lp(9)
and, as noticed above, this uniform estimate in L?(Q) concludes the proof. O

An immediate corollary of the above proposition is the following result, which
basically says that in all the converge results in SBV (or SBV”, or SBV” ), the
smoothness of the approximating functions out of their jump sets comes for free.

COROLLARY 2.4. Let u € SBV(Q) be a function with Vu € L?(Q) and J, C K
for some compact set K CC Q and p > 1. Then, for every ¢ >0, there exists
u € SBV(Q) with D*ut = D*u and

Ji=Ju, e CT(K), |lu—illgyq +IVu—Vit],,q <e

If. in addition, Q has finite measure and ue WH*(Q\K), then also i€
W= (Q\K).

ProOOF. We apply Proposition 2.3 to the function u, finding the BV functions u,.
By the proposition, each function u, belongs to C* (Q\K), so the measure D*u, is
concentrated on K; recalling (2.13) and the fact that £7_ K = 0, we derive that
D*u, = (D*u), = D*u, which also implies that J, = J,. Moreover, points (iii)
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and (iv) ensure that u, — u and Vu, — Vu in L?(Q), so to obtain the first part of
the thesis it is enough to set # = u, for some o = g(¢) small enough.

Let us now suppose that u e WH*(Q\K). Since Du, = Vu, + D*u, with
D*u, = D*u concentrated in K, we have to show that Vu, € L*(Q). By (2.13),
Vu, = (Vu), + &%, and by Definition 2.1 it is obvious that |(Vu)||,. <
[Vull - (q)- To conclude, it is then enough to observe that the functions ¢” are
uniformly bounded in L*(Q); but in fact, since the estimate (2.14) is true for
every ¢ and every p, by letting p — oo we directly find that [|£7||,.. < 2||Vul|,..
for every o. The functions u, are then also in W!*(Q\K), and the proof is
concluded. O

We want now to prove that the traces of u, on K coincide with those of u:
recall that a function u is said to have right and left traces u*(xy) with respect to
a vector v € SV at a point xo, if

lim lu(x) — u*(xo)| dx = 0.
=0 J B (xo.1)

We can then prove what follows.

LEMMA 2.5. Let ue L'(Q) be a function, and let xo € K be a point such that
u admits right and left traces with respect to a vector v.e SY=1. Then, for any
o < 1/2 we have that u, admits the same traces at x.

ProoOF. Without loss of generality, we assume that xo = 0, that the traces are
ut(xo) =1 and u (xo) =0, and we denote B*(r) = BF(0,r). It is enough to
show that

(2.15) lim lug — 1] = 0.

r—0 B*(r)
Let us take any r such that B(2r) = B(0,2r) CC Q, and let us define v the restric-

tion of u to B(2r), extended to 0 outside, and w the function given by w =1 in
B (2r) and 0 outside. By the definition of the left and right traces we have that

o =Wl lu—=u" Nl @ + v —u"llis @)
PN B rv

— 0.

r—0

Hence, by (ii) of Proposition 2.3, one has also

|vs — WaHLI(Q)
rN

— 0.

r—0

Moreover, by construction and since xy € K, for every x € B(r) we have that
T, ,(x) € B(2r); as a consequence, recalling Definition 2.1, we get that u, = v,
in B(r), then the last inequality implies

|us — Wa||L1<B+<r))

(2.16) N

— 0.
r—0
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We have then to evaluate [ws —1|[,1(5+(). Keeping in mind that w=1 on

B*(2r) and 0 outside, and recalling the definition of w,, we immediately obtain
that 0 < w, < 1 everywhere. Let now x € B*(r): as already noticed, for every

y € B(1) one has T, ,(x) € B(2r); in particular, if T, ,(x) € B*(2r) for each
y € B(1) one has w,(x) = 1. By the properties of f and J we get

|T5,(x) = x| = [af (0(x)) y| < f(0(x)) < f(r)-

Summarizing, we know that 0 <w,(x) <1 for every x € B¥(r), and that
we(x) = 1 if the whole ball B(x, f(r)) is contained in B"(2r), that is, for every
x € B (r) which does not belong to the set

{xeBT(r):x-v< f(r)}.

Since a rough estimate ensures that the volume of this set is less than
on_1rV71f(r), we obtain

we — 1 o ‘
| |JVL1(B ) SwNilf(V)'
r r

Putting this inequality together with (2.16), and keeping in mind that f(r)/r
goes to 0, when r — 0, since f'(0) = 0, we derive the validity of (2.15), and this
concludes the proof. O

3. THE PROOF OF THEOREM A
This section is devoted to show Theorem A.

PrROOF OF THEOREM A. Let us fix a small quantity ¢. Then, since the jump set
Ju of uis (N — 1)-rectifiable, we can find a compact, C' manifold M with C'
boundary and a compact set K, C J, n M satisfying

(3.1) |Dul(J\K,) < 5
actually, M can be chosen as a finite union of C! images of the closed unit disk in
RV

Let us now consider the functions u, defined in Section 2 with K = K. First
of all, by Proposition 2.3 we know that every u, is a BV function in €, of class
C™ in Q\K; this implies that every u, belongs to SBV(Q). Moreover, since K
is contained in the jump set J, of u, by Lemma 2.5 we obtain that J,, = K up
to (N — 1)-negligible subsets. Hence, #"~!(J, \J,.) = 0. Therefore, keeping in
mind (3.1), we see that to conclude the proof we have to show that, for ¢ small
enough, [[u — us|| 5y ) < & Since by (iii) in Proposition 2.3 we already have that

Uy T; u for ¢ — 0, we are reduced to check only that, for ¢ small enough,
LN(Q

(3.2) |Du — Du,s|(Q) < e.
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y (2.4), we know that Du, = (Du), + o&°, with |£7|(Q) < 2|Du|(Q), thus
= (Vu?" + Dul_K + Dul_(J\K)), + o&°.

Moreover, as already noticed after Definition 2.1, x, = u for every measure u
concentrated on K; therefore, by linearity we can rewrite the last equality as

Du, = (Vu), %" + Dul_K + (DulL_(J,\K)), + o&°.
We derive, thanks to (2.3), (iv) of Proposition 2.3 and (3.1),

[ Du — Dug |(Q) < [|Vie = (Vi) [| 1) + [Dul (LAK)| ()
+[(DuL (J\K)),|(Q) + alc”|(€2)
< ||V — (Vu), || ) + 3I1DuL (. \K)|(Q) + 20| Dul(Q)

3
<||Vu— (Vu), HLI +48+20|Du|( ).

By (iii) of Proposition 2.3 the validity of (3.2) for ¢ « 1 immediately follows,
hence the proof is concluded. O

REMARK 3.1. As an immediate application of Lemma 2.5 we have that, if u
admits an inner trace on d€, then the same is true for u, (hence for every func-
tion u; of Theorem A) and the two traces coincide.

A quick look to the above construction ensures that, if the function u is in L™,
then the same is true for every function u;, and in fact [|u;| ;) < ||u||L, We
want now to observe something much stronger, which will be useful in the sequel
namely, that starting from every sequence {u;} as in Theorem A, one can con-
struct by smooth truncation a new sequence {i;}, still approximating u, satisfying
the L* bound. This is a straightforward consequence of the next general result,
which we can directly prove for SBV or SBV” functions. Notice that, instead of
giving two different results for the case of an SBV or of an SBV” | function, we
present a single claim for a function u € SBV with Vu € L? for some p=1:of
course, these functions are simply the SBV functions if p =1, and the SBVZ,
functions if p > 1.

LeEMMA 3.2. Let u e SBV(Q) n L*(Q) be a function such that Vu € L?(Q) for
some p > 1. Then, for every ¢ > 0 there exists 6 > 0 with the following property:
whenever v € SBV(Q) is a function satisfying

(3.3) [t = vllgyq) + IV = Vol p(q) <3,
there is a modification © € SBV(Q) of v such that

Jo=doy N8l <llulles = Sllpyiqy + Ve — Vel

LP(Q) < E&.

In addition, if v e C*(Q\J,), then the same is true for v.
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PrOOF. Without loss of generality, let us assume that ||ul|,.. = 1. Let moreover
0 < 1 « 1 be two fixed constants, depending on « and ¢, to be specified later, and
let7: R — (—1—2n,1+ 2#y) be a smooth function satisfying

0<7'(1)<1VieR, t(tf)=tV—-1-np<t<Il+y.

Given now a function v € SBV(Q) satisfying (3.3), we define w = 7o v. Notice
that of course w € SBV(Q), J,, = J,, and if v € C*(Q\J,) the same is true for w.

We want to estimate the deviation between w and u; first of all, it is obvious
that

(34) ||W—u||L1(Q) < ||U—M||L1(Q) <.

Let us now concentrate ourselves on the singular parts of Du and Dw; this is very
easy in the set J,AJ,, since

(3.5)  |D°u— D*w|(J,AJ,) = |D’u — D*w|(J,\Jy) + |D°u — D*w|(J,\Jy)
= [D*u|(Ju\J,) + [DW[(J,\Ju)
< [DYUl(TA) + D]\ )
= |D*u — D*v|(J,\Jy) + |D*u — D*v|(J,\J.,)
= |D*u — D*v|(J,AJ,) < 0.

Keep now in mind that J, is countably rectificable; as a consequence, we can
write J, = GuU H in such a way that G is a finite union of Lipschitz (N — 1)-
dimensional graphs, while |D*u|(H) < 5. Since, on Lipschitz sets, the trace oper-
ator for BV functions is continuous with respect to the strong BV convergence
(see [4, Theorem 3.86]), there exists a constant C such that

(3.6) Hfi”L}/N_I(G) < Cllf lpve)

for every function f € BV(Q), where f* are the two traces of f on the two
sides of G. Notice that C only depends on the set G, hence on u and 7, but not
on o.

We can then now evaluate D’u — D*w on the set J, nJ,. Within the set H we
simply have

(3.7)  |D*u—D*w|(Jy,nJy,nH) < |D*u|(H) + |D*w|(H)
< [D*u|(H) + [D*v[(H)
< 2|D*u|(H) + |lv — ullgy(q) < 21 +0.

Instead, concerning the set J, nJ, n G, we have to further subdivide it. More
precisely, we write J, nJ, n G = Gy U G, where G is the subset done by all the
points where both the traces v* are in (—1 — 7,1 +7), and G, are the remaining
points. In G}, we have by construction D*w = D*v; instead, since for every x € G,
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one has either [v"(x)| > 1475 or |v~(x)| = 1 +#, so in particular at least one
between |v" — u'| and [v~ — u~| is bigger than 7, by (3.6) we deduce

o N—1 - -
W%N (Gy) < ||U+_“+||L1 L (G) +||U —u ||L}N7](Gz)

< 2Clv = ullgy(q) <2C9.

Moreover, the jump |(w —u)"

So we get

— (w—u)"| is clearly at most 4 + 47 everywhere,

|D*u — D*w|(J, nJ, 0 G) = |D*u — D*v|(G)) + |D*u — D*w|(G>)
8+38
<o+ @A +4n) NGy <o+ 4’—7 ST e

Putting this estimate together with (3.5) and 3.7), we obtain

(3.8) D% — D*Wwl(Q) < 27+ 30 + o 5.

Finally, we have to estimate Vu — Vw: calling 4 = {x € Q: [v(x)| > 1 + 7}, we
have that Vw = Vv on Q\ 4, while |Vw| < |Vv| on 4. Moreover, |u—v| > 7 in
A, hence n|A| < |lv—ull;1q) <0, that is, |[4] <J/n. Whatever 7 is, up to take
o small enough we have then that the measure |A4| is as small as we wish; in
particular, since Vu € L?(Q), we can take J so small that |[Vul|,,, <#. Con-
sequently, we can evaluate

VW = Vul[ Lo q) < Vo = Vull Ly + (VW = Vil 4
<O+ VWl Loy + 1IVull o4
<O+ [IVoll gy + [IVull o4
<0+ 2[|Vul| g + IV = Voll Lo 4
<20+ 2.

Since this estimate holds for any p > 1, in particular the case p =1 and the
estimates (3.8) and (3.4) give

8+ 8y
W —ullgyia) = lw —ull 1) + [Du— Dw|(Q) < 47 + 65 + —— p o,
from which we further deduce

[t = wligyq) + Vi = VWl o) <67]—|—85+ p Tcs.

We are finally in position to conclude, by defining v = ﬁw. In fact, it is clear
that o € SBV(Q), that J; = J,, = J,, that ||9]|,. <1 = |ju|,~, and that © belongs
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to C*(Q\J,) as soon as so does v. Moreover,

2n

W —llgyq) + [IVW = Vol ) = T+ 21

(HWHBV(Q) + HVWHLP(Q))a
so we finally conclude the proof by evaluating

[[u = Bllgyiq) + Ve = Vol Lo
< 2([lu = wllgy(q) + [IVu = Vw|

Lr@) T 20([ullgyq) + [IVull o)

16 + 167
< 125+ 160 +TC5+ 2n([[ullgyq) + [IVull L) <,

where the last inequality holds true as soon as # has been chosen small enough
depending on u and ¢, and 6 small enough depending on 7 (recall that C depends
on u and # but not on 9). O

In the lemma above, we have considered the situation of a bounded function
u € SBV. Now we notice that, in fact, for our purposes it is always admissible
to assume that an SBV function is bounded: this is a very simple observation,
which will be useful later.

LeMMA 3.3. Let Q C RY be an open set, and let u e SBV(Q) be a function
with Vu € L?(Q) for some p > 1. Then, for every ¢ > 0 there exists a function
u, € SBV(Q) n L*(Q) such that

(3.9) lu —wellgyiq) + IVt = Vite| | o) < &, Ju, € o

Proor. Keep in mind that J, is countably rectifiable, hence it is contained, up
to # "V~ !-negligible subsets, in the union of C! compact manifolds M;, i € N.
Moreover, as already observed, by [4, Theorem 3.88] we know that the two traces
¥ : BV(Q) — L'(M,) on the two sides of each manifold M; are continuous. As
a consequence, we can select a big constant K such that

(3.10) etll 21 ) + IVl pr gy + VUl oag) + [D°ul(Bi) < e,
where we call

Ax ={x e Q: |u(x)| > K}, Bgx= U{x € M;, max{|t;" (x)],|z; (x)|} = K}.
ieN

With such a choice of K, we then let u, be the standard truncation of u at level
K, that is, u,(x) = sgn(u(x)) min{ K, |u(x)|}. It is clear that u, € SBV(Q) and that
Vu, € L?(Q), as well as that J, C J,. Since, on the other hand, D*u, = D*u on
J.\Bk and |D*u,| < |D*u| on Bk, then (3.9) comes directly from (3.10) since

[t — vl gy (o) + IVt = Vite|| ()

< ll 1 agy + 1IVUll L1 ag) + 1Dl (Bk) + [[Vutl[ oy - O
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4. THE PROOF OF THEOREM B

This section is devoted to the proof of Theorem B; before doing that, we present
three simple technical results. The first one is an extension lemma for smooth
sets with a C! crack.

LEMMA 4.1. Let A C RY be a smooth, bounded, open set, and let H CC A be
a compact, (N — 1)-dimensional, connected, C' manifold, with (possibly empty)
C! boundary. Then, there exists a constant C, depending only A and on H, such
that for any three functions g € L'(0A) and g* € L'(H), there exists a function
@ € WU (A\H) whose trace on 0A coincides with g and whose two traces on (the
two sides of ) H are g* and g~, satisfying

(4.1) ||€”||W1~1(A\H) = C(HgHLl((";A) + ||g+||L1(H) + ”g_HLl(H))'

If moreover g € C'(0A4) and g* € C'(H) with g* = g~ on 0H, then there exists
a function y € WL *(A\H), again with g as trace on 0A and g* as traces on H,
satisfying

(4.2) ||¢HW1«C~(A\H) = C(Hch‘(aA) + ||g+||C1(H) + ”g_HCl(H))'

PROOF. Since H is a C' manifold with C! boundary, we can find an open,
Lipschitz set 4y CC A, contained in a small neighborhood of H, with the
property that its boundary A4, consists of two parts, H* and H~, so that H*
and H~ are two C' manifolds with disjoint interiors and with the same (N — 2)-
dimensional boundary 0H " = 0H~ = 0H. This is a very simple geometrical fact,
Figure 1 depicts the situation for the two possible cases, namely, when H has
non-empty boundary (H;) and when it has empty boundary (H>).

As a consequence, we can find a diffeomorphism @ : A\H — A\ Ay,
bi-Lipschitz up to the boundary for the geodesic distance, which is the identity
in a neighborhood of 04, and such that the images of (the two sides of ) H under
® are H" and H™.

The standard extension result for Lipschitz sets ensures that there exists a
constant C, depending only on 4 and on Ay, thus actually only on 4 and on
H, such that for any two maps g € L'(0A4) and gy € L'(0A,) there exists a func-
tion v € W1(4\A4y) whose traces on 04 and 04, coincide with g and g respec-
tively and such that

(4.3) HU”WU(A\AO) =< C1<||g||L1(6A) + HQOHLl(BAo))'
- . A o ,,,,,J——J**i*"f—rw ) A
// B ,,H 1 \\\\ // - /{V,;j;::f]zl\ri/r// h \
[ — / - H;y ;‘
‘ | | J— ‘
o Hy Ve /
N ~_ e H2+ QG = J S

Figure 1. Construction in Lemma 4.1: the shaded parts on the right are 4.



ON THE APPROXIMATION OF SBV FUNCTIONS 389

To obtain the searched ¢, then, it is then enough to define go as g* o ® ' on H*
and as g~ o @' on H~, and then simply set ¢ = v o ®; the validity of (4.1) comes
directly from (4.3) and by the fact that ® is bi-Lipschitz up to the boundary.

A similar argument can be done to find the searched function y when g, g™
and g~ are C'. In fact, the function defined on d(A4\A4,), which equals g on 04
and gy on 94, is C' by construction, so there exists a function w € W (4\4,)
with g and g as traces, for which

wllwe gy < Crlllgllcraa + gollcron))-

Thus, defining = wo ®, we get a W!* function on A\H with g, g™ and g~
as traces and satisfying the estimate (4.2). O

Our second preliminary lemma is the estimate of how much a continuous
function changes (in the BV sense) if we substitue its value in a ball with the
average value on the ball itself. We will use the following notation: given a
continuous function ¢ on an open set U, and given a ball B compactly contained
in U, we set ¢y as the function

o(x) if x e U\B,

(44 P5(x) = ]ng(y) dy if x e B.

LEMMA 4.2. Let U be an open set, and B a ball compactly contained in U. Let
moreover p € WL (U) be a continuous function. Then, the function ¢y defined in
(4.4) belongs to SBV(U), its jump set satisfies J,, C 0B, and

(4.5) le = esllsvi) < Cllollwis):
where C' is a purely geometrical constant, not depending on ¢, U or B,

PROOF. Since the function ¢ coincides with the continuous, W!! function ¢ in
U\B and is constant in B, of course it belongs to SBV(U) with J,, C 0B, hence
we only have to deal with (4.5).

First of all, calling x = ][ @(y)dy, by the trace inequality and the Sobolev—
B
Poincare inequality we get that
/B o — | < Crllg = xllyriz = Crlle — xll s + Crll Dol 15

< Cr(Cp+ 1)[|1Dgl| 13-

Notice that both the constants C7r and Cp depend on the radius of the ball B;
nevertheless, if we define C) as the smallest constant such that for every ¢

/ o= = CilIDpl



390 G. DE PHILIPPIS, N. FUSCO AND A. PRATELLI

a trivial rescaling argument ensures that C; does not depend on the radius of B.
Then, keeping in mind that ¢ is continuous, we can evaluate

o — ¢sllgv() = Dol (0B) + (|0 — @pll g
= [ 1o =1+ llo = oallin + 1D0lLscs
< (Cr+ DIIDoll 115+ 2[loll 15 < (Cr+2) [0l i1 s),
hence (4.5) is established with the purely geometric constant C' = Cj + 2. O

Our last preliminary technical result allows to modify the jump set of a SBV
function, in order to make it more regular.

LEMMA 4.3. Let u e SBV(Q), and let M CC Q be a compact manifold, poly-
hedral or of class C!, such that J, C M. Then, for every 0 >0, there exists
a function ve SBV(Q) such that J, C M and #N~Y(M\J,) =0, satisfying
| = vllgyq) + lu = 0|l =) < 6. In addition, if u € SBVP(Q), then v e SBV’(Q)
and also ||Vu — Vvl ,q) <J. Finally, if u belongs to C*(Q\M), or to
W1(Q\M), then so does v.

PRrROOF. Let us assume, for a moment, that M is connected, and let us consider
a smooth open set 4 such that M cC A cC Q. Let ¢p* : M — R be a C' func-
tion with ¢ (x) =0 for every point x in the boundary of M, and ¢*(x) >0
for every other x € M, and let ¢~ : M — R be identically 0. By Lemma 4.1, we
get a function ¢ € W *(4\ M), whose trace at 04 is zero, while the traces on
the two sides of M are ¢ and ¢~ . In particular, extending ¢ by 0 outside of A4,
we have ¢ € SBV(Q) n W= (Q\M) with J, = M. By Corollary 2.4, we are
allowed to assume that ¢ € SBV(Q) n C*(Q\M) n W= (Q\M). We want to
define v = u + ¢p for a suitable, small .

Of course, whatever ¢ is, we have that v e SBV(Q), and v belongs to
SBV”(Q), or C*(Q\M), or W1*(Q\M), as soon as so does u. Moreover,
Jy CJyuJ, = M. The fact that [ju — v||gyq) + [[u — V]| »q) < is clearly true
for every ¢ small enough, as well as the fact that ||[Vu — Vv[|; ,q) < J, in case that
u € SBV”(Q). Therefore, to conclude we only have to find a small ¢ such that
HN N (M\T,) = 0.

But actually, any point x € M belongs to the jump set of v for all real ¢ except
one; as a consequence, the values of ¢ for which #V~!(M\J,) > 0 are only
countably many, and then the existence of some ¢ as required is obvious and
the proof is conclued when M is connected.

If M is not connected, by compactness it has anyway a finite number of
connected components M;; we can then consider disjoint, smooth sets 4; with
M; CC A; CC Q, and repeat in each of them the above argument, so that the
conclusion follows also in the general case. O
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We give now the definition of the extension domains that we are going to need
for Theorem B.

DEFINITION 4.4. Let Q C RY be an open set. We say that Q is a local extension
domain if W'7(Q) is dense in W1(Q).

Notice that this definition is even weaker than the usual one. In fact, given a
function u € W1(Q), we do not need a function & € W' !(R") which coincides
with u in Q, we only want to find a function v € W?(Q) such that ||v — u| wiiQ)
is arbitrarily small (by Meyers and Serrin Theorem, this requirement is of course
weaker). We are now ready to present the construction of the approximation
required by Theorem B.

PrOOF (OF THEOREM B). Let us take Q and u as in the claim, and let us fix
a very small constant ¢ < |[u[[gy(q). Notice that, thanks to Lemma 3.3, we can
assume that u € L*(Q). Moreover, we can also assume that the support of u
is bounded, that is, u(x) =0 for every x € Q with |x| big enough: to achieve
this, it is enough to multiply « by a smooth function # : RY — [0, 1] such that
n(x) =1 for |x| < Ry, #(x) =0 for |x| > Ry, ||Dnl|;. <1,and R, » R; » 1. We
aim to find a function u, € SBV”(Q) n C*(Q\J,,) satisfying

(4.6) [tz — ullgyio) <& |Vue — Vull ) <e

Moreover, we will find a compact, (N — 1)-dimensional manifold M, C! and
with C' boundary, such that Jy, 1s contained in M and coincides with it up to
AN~ negligible subsets. Of course, once we do so we will have concluded the
proof.

We start by selecting a sufficiently big constant K, depending on Q, u and ¢, so
that both properties

[ <
Vul” <
(|Vul>2K} 2r+27
&

&
(4.7) IVull Logr) < I ull L1 cry + 1Vl 1y < BYel

2||“||BV(Q)

VF CQ:|F| <
CO:ilF < =

hold, where C’ is the constant of Lemma 4.2. We also fix a small constant J,
depending on Q, u, ¢ and K, hence actually only on Q, u and ¢, satisfying

ne < £ g5 < & _ (2"
(4.8) (6+5C0 <3, (3K)"'s0 < . 5<g(1 (6> )

We will define several approximating functions trough successive refinements,
until we will reach the desired function u,. For the sake of clarity, we divide our
construction in some steps.
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Step I. The function vy € SBV(Q) from Theorem A.
First of all, we apply Theorem A to get a first approximation v; € SBV(Q) which
satisfies

(4.9) o1 — ”HBV <9,

and so that v; is C* in Q\J,;; moreover, there is a compact, C! manifold
M' cc Q, with C! boundary, which contains J,,. Notice that the choice u, = v;
does not work because Theorem A does not give information on [[Vor — Vul|
and we do not even know whether Vu; € L?(Q).

Step II. The function v, € SBV(Q) nC*(Q\M"), with C! traces on M’ coinciding
on M.

We want now to modify v; so to become smooth in Q\M’, and in such a way
that its traces on M’ become C! and coincide on M. To do so, let us call M;,
for 1 <i < P, the connected components of M’, which are finitely many, and
let A; be disjoint smooth open sets, compactly contained in Q, and each one
compactly containing the corresponding manifold ;.

We apply Lemma 4.1 to the set A = 4; and with H = M;, getting a constant
C;. Then we set g; =0 on 04;, and we let g € L'(M;) be two functlons such
that v + gF are two C' functions on M; coinciding on dM;, where vf denote
the two traces of v; on M;, and satisfying

)
(CGi+1)P
Lemma 4.1 provides then us with a function ¢, € W1(4,\ M;), with zero as trace

on 04; and with g* as traces on M; and satisfying the estimate (4.1), which by
(4.10) becomes

(4.10) g0 1 asy <

20C;
(4.11) ill s aary < G 0P

We can then define the function 7, € SBV(Q) as the function coinciding with
v; + @; on each A;, and with v; in Q\ |J; 4;. Notice that the J; C M’, the traces

U =

of #, are C! on M’ and coincide on dM’, and by (4.10) and (4.11) we evaluate

P

122 = villgy() = Z @il canany + 1195 = 95 1l paary < 26,
i=1

which by (4.9) implies
102 — ullgy(q) < 30.

We can then apply Corollary 2.4 to 7, € SBV(Q), finding to v, € SBV(Q) n
C*(Q\M") with [[v2 — 02|[y(q) < 30 — [[D2 — ullpy(q), so that

(4.12) |02 = ullgy(q) < 30.

Notice that, by Lemma 2.5, the traces of v, on M’ coincide with those of v5.



ON THE APPROXIMATION OF SBV FUNCTIONS 393

Step III. The function vy € SBV(Q) nC*(Q\M') n W= (Q'\M') for M' cC
Q' cc Q.

Our next goal is to modify v,, so to become W' in Q"\ M’ for every open
set Q' cC Q compactly containing M’. Since the traces of v, on M’ are C! and
coincide on dM’, and since M’ is a finite union of connected, C' manifolds,
Lemma 4.1 provides us with a function € W1 *(Q\M') which equals 0
outside of a neighborhood of M’, and whose traces on M’ coincide with
those of vy; considered on the whole Q,  is of course an SBV function. Again
by Corollary 2.4 and Lemma 2.5, we can assume without loss of generality
that ¥ € SBV(Q) n W= (Q\M') nC*(Q\M'). Let us then write v, = Y + .
By definition, @ € SBV(Q) nC*(Q\M'); however, both the traces of
on M’ are zero by construction, hence we derive w € W1(Q) nC*(Q\M").
By Meyers and Serrin Theorem, we can find w; € WH1(Q) nC™(Q) such
that [ws — ollgyq) = llos — @11 <J. We can now simply define v; =
W + ws: this function clearly belongs to SBV(Q)nC™(Q\M’), and since
e Whe(Q\M') and ws € C*(Q) we have also v3 € W= (Q"\M') for every
M' cC Q' cC Q. Finally, by construction [|v3 — 02 gy(q) < 6, which from (4.12)
gives

Step IV. The function v4 € SBV?(Q) nC*(Q\M').

Observe now that the function v is smooth in Q\M’, but this does not
necessarily mean that Vus is in L?(Q\M"’). In this step we face with this problem,
replacing v3 with vy € SBV/(Q) nC*(Q\M'). Let n: Q — [0,1] be a smooth
function with compact support such that 7 =1 on a neighborhood of M’,
and let us set ¢ = (1 — 5)v3; by construction, ¢ € W1(Q). Let us now use the
assumption on Q to be a local extension domain in the sense of Definition
4.4: then, we can approximate ¢ in W11(Q) with W!? functions, so again
by Meyers and Serrin we can take a function ¢; € W!'7(Q) nC*(Q) with
|95 — @l 11 < 0. Let us then define vy = yv3 + ¢, since Vus is bounded
in A\M', being M' CC A ={n+#0} CcCQ, we derive that nv; € SBV”(Q)n
C*(Q\M'), so it is also vy € SBV?(Q) mC“(Q\M’), and [|vs — v3l|gy(q) =
o5 — (9||BV(Q) = [lps — oll wii(q) <0, which by (4.13) gives

Step V. The final function u..
We are now ready to give our last two approximating functions, namely, the
function vs and the final function u,. Let us consider the set

F={xeQ\M':|Vuy(x)| > K},

where K is the constant in (4.7). The set F is open in Q\M’, since v4 is smooth
there; moreover, it has small measure: indeed, also by (4.14), we have

K|F| < /FIVU4| < llvallpvio) < llullpvio) + lloa = ull gy ) < 2llullpy),
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and by (4.7) this implies that

&

€
(4.15) IVull Lory < 320 [ull L1y + 11Vl 1y < Yol

Now, let us use the fact that Vv, belongs to L?(Q\M’), hence in particular
Vvs € L?(F): as a consequence, we can take finitely many disjoint balls B,
1 <i <k, compactly contained in F, with the property that

&

(4.16) IVosll ot 5y < 55175

We now define vs : Q — R as the function given by

B (1)4)3[ if x e B,
) = vy(x) if x¢ UL, By,

where (v4) p denotes the average of vy in the ball B;, according with the notation
of Lemma 4.2. In particular, observe that vs = v4 on Q\F. It is clear by construc-
tion that vs € SBV?(Q), and its jump set is contained in

Observe that M is a C' and compact manifold, with C' boundary, and since v4
was smooth on Q\M’, then vs is smooth on Q\M. We apply now Lemma 4.3
to get our final function u, € SBV”(Q), which belongs to C*(Q\M) and which
satisfies
(4.17)  [IVos = Vit oy <0, los — teellgyy <6, AN (M\J,,) = 0.
Hence, we have then only to take care of (4.6) to conclude.

Recalling the estimate (4.5) of Lemma 4.2, since v4 is a continuous function in
the open set Q\ M, and by (4.14) and (4.15), we have

o4 = vsllpy() < C/||U4||lel(uf:13,~) < C'oall oy
&
< C'(llva — ullgya) + lull ey + IVull 1)) < 5C0 T
so that again by (4.14), by (4.17), and by (4.8)
[t = wellgyi) < llu = vallgy(q) + llva = vsllgyq) + [lvs — wellpv(q)

gm+scw+§<&

and the first estimate in (4.6) follows.
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Let us then pass to estimate the L” norm of Vvs — Vu in Q. In Q\F, using
(4.14), (4.7) and (4.8), and recalling that vs = v4, we can evaluate

/ |Vos — Vul? = / |Vog — Vul? +/ |Vog — Vul”
Q\F OQ\Fn{|Vu|<2K} Q\Fn{|Vu|>2K}

< (K)" Ves = Vil +27 [ vl
{|Vu|>2K)}
8p

< (31()1’*‘55+g <=
< <75

Instead, in F, by (4.15), by (4.16) and by construction we have

Vos = Vull ory < Vsl Loy + VUl Logr

e
= IVuall ooy 5y + IVl Loy < S

Putting together the last two estimates, (4.17), and again (4.8), we get the second
estimate in (4.6), therefore the proof is concluded. O

For later use, we now remark what we have found after Step III in the above
proof, namely, the result below.

LEMMA 4.5. Let Q be an open set, u € SBV(Q), and let M be a C' manifold with
C' boundary such that, for some small ¢, |D*u|(J,\M) < ¢/4. Then, there exists a
Junction v € SBV(Q) n C* (Q\M) such that ||[v — ul|gyq) < 4, AN (M\T,) =0,
both the traces of v on the two sides of M are C', and v belongs to W * (Q'\ M)
for every M CcC Q' cC Q. Moreover, if u is compactly supported in Q, then so is
also v (and then, one has v e Wb*(Q\M)).

In fact, in this lemma, to get that #¥~!(M\J,) = 0 one has to rely also on
Lemma 4.3; moreover, the last point comes directly from the construction.

REMARK 4.6. We remark that, in Theorem B, we do not have J,, C J,, which
was the case for Theorem A. In fact, in our construction of the functions u; for
the proof of Theorem B, we have enlarged the jump set in Step V.

Observe that the domain Q could be any open set in R" in Theorem A, while
we have added the assumption on Q to be a local extension domain for Theorem
B. Nevertheless, it is also possible to consider any open set Q, up to replace the
L? convergence by an Llf)c convergence.

THEOREM 4.7. Let Q C RY be an open set, and let u € SBVZ (Q). Then, there
esists a sequence of functions u; € SBV(Q) nSBV] (Q) and of compact, cl,
manifolds with (possibly empty) C' boundary M; CC Q, such that J, € M;,
%’N_l(Mj\Juj) =0, and so that

|y — u”BV(Q) —0, ue Cw(Q\J_u,-)v Vu, m Vu.

loc
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PROOE. It is enough to repeat the proof of Theorem B with few minor modifica-
tions. More precisely, we define the functions vy, v, and v3 exactly as in the steps
I, IT and III of that proof. In place of Step IV, which is the only point where we
have used the assumption on Q of being a local extension domain, we simply set
v4 = v3. Of course, we do not know whether vy € SBV”(Q), but vs € SBV/ (Q)
for sure, since it is smooth outside the compact set M’ and Vv, is bounded
around M.

Keep now in mind Step V: the fact that Vos was in L?(Q) was used only to get
the balls B; satisfying (4.16). In the present case we cannot get such an estimate,
but since Vv € L] (Q) we can find balls B; for which

&
(4.16") ||VU4||LP(FHQ,,\UI-Z1 B) = 2. 01/p’

where O, CC Q is a smooth open set such that
M cCcQ, {xeQ:|x|<e! B(x,e) cCc Q) CQ,.

Continuing Step V, we can notice that the proof of the fact that [ju — u:||py(q) < &
did not use (4.16), hence the validity of the estimate still holds. Instead, (4. 16) was
used to obtain that [|[Vu — Vi || ,q) < ¢ and using in the very same way (4.16’)
we readily get |[Vu — Vi, g < 8 which implies the L[ convergence stated
above. The proof is then concluded |

REMARK 4.8. A further generalization of Theorem B for the case of a generic
open set Q C R” is possible. Namely, we can have the sequence u; in SBV”(Q),
instead of SBV(Q) nSBV/ (€Q). But, in this case, both the BV and the L? con-
vergences in (1.3) become a BV and a L[ convergence. To prove this, just
define the open sets €, as in the proof of Theorem 4.7, notice that vy is Lipschitz
in a neighborhood of 0Q. by construction, and replace vs with some function
coinciding with it in €,, and Lipschitz in Q\Q,. Of course, the function v4 belongs
to SBV?(Q), but we do not have any estimate of u — u, in Q\Q,, so that even
the BV estimate of u — u, remains valid only in Q,, thus we have only a BV,
estimate.

5. THE PROOF OF THEOREM C

This section is devoted to present the proof of Theorem C. In our construction,
we will make use of Theorem B, of Theorem 1.1 (in particular, the part 2 by
Cortesani and Toader), and of the following two technical lemmas.

LEMMA 5.1. Let Q C RY be an open set and My cC Q a C' manifold (possibly
with boundary). Given 6 >0 and a neighborhood A CC Q of M, there exist a
diffeomorphism ® : Q — Q, with ®(x) = x outside of A, and a relatively open, C'
set M C My without boundary such that
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||(D - Id“cl(ﬁ;RN) —|— ”Q_l — Id”cl(ﬁ;RN) < 57
k

AN (My\M) <5, oM) =0
i=1

where the Q; are (N — 1)-dimensional open cubes with pairwise disjoint closures.

LEMMA 5.2. Let u e SBV?(Q)nCHQ\J,) n WL*(Q\T,) with a polyhedral
Jump set J, CC Q (i.e., J, is the intersection of Q with a finite union of (N — 1)-
dimensional simplexes). Given ¢ > 0 there exists a function u, € SBV’(Q)n
C*(Q\J,) n Wh*(Q\J,.) such that J,, CC Q is a C' manifold with C" boundary
and

N-1
lu—wellgyi) <& [Vu— V| pqryy <& A7 (LAL,) <e.
Moreover, if Tl is any given hyperplane in RY, we can build the function u, in such
a way that J,\I1 cC RN\, that is, the part of J,, which is not contained in T
is a strictly positive distance apart from it.

The first lemma is a variant of a well know result stated in [10, Th. 3.1.23], in
particular it can be deduced at once from [1, Th. 3.1]. The second one, instead, is
a technical approximation result; notice that the result is not trivial because a
polyhedral set is not a C! manifold, since different simplexes might intersect
with each other and with dQ. To keep this section simple, we postpone the proof
of Lemma 5.2 to the Appendix.

ProOF OoF THEOREM C. For the sake of clarity, we will divide this proof in
some steps. First, we will consider the case when u is compactly supported, then
we will deduce the general case.

Part A. The case of u compactly supported in Q.

Step I. The set M and the function uy from Theorems A and B.
First of all, we fix an arbitrary ¢ > 0 and we select a C' manifold M, cC Q with
C! boundary in such a way that

(5.1) ANV (T AMy) < g |\ Dul(J,\ M) < g

Applying Lemma 5.1 with some constant ¢ « ¢ to be specified later, we obtain
another C' manifold M C M, without boundary, a diffeomorphism @ : Q +— Q
coinciding with the identity map outside a compact subset of Q, and finitely
many disjoint open (N — 1)-dimensional simplexes {Q;},_; , such that

(5.2) HNNJAM) < % | Dul(J,\M) < 2,
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as well as
(53) |0 —Hd||cgpy, + 197 — M| gy, <6, @(M) =[]0

In fact, the properties (5.3) are directly given by Lemma 5.1, and the first inequal-
ity in (5.2) comes from the corresponding one in (5.1) as soon as ¢ < &/6, while
the second inequality in (5.2) comes from the corresponding one in (5.1) if 0 is
small /sn?ugh, because D*u is a finite measure, absolutely continuous with respect
to A"

Lemma 4.5 (which is nothing else than Theorem A and the first three steps
of Theorem B) provides then us with a function u; € SBV(Q) n C*(Q\M) n
W1 (Q\M) such that

(5.4) AN M) =0, lu— ]|y < 4e

Notice that, since u; € SBV(Q) n W (Q\M), then of course it is also u; €
SBV?(Q).

Step II. The function vy from Theorem 1.1.
Let us now set

vi=uo® '~y o® !

By the first estimate in (5.2) and the last one in (5.4) we have that, if ¢ is suffi-
ciently small,

(5.5) AV INGM)) < & [ollpyiy < 8.

Moreover, of course v is still compactly supported in Q and v € SBV?(Q),
however we have no a priori estimate on the L?” norm of Vu.

Let us now denote by v; the normal vector to each of the simplexes Q;, and set
P;={x+1tv;:x€e Q;te (—nmn)}, where 5 is a sufficiently small parameter to be
chosen. In particular, we take # so small that the parallelepipeds P; are pairwise
disjoint.

Since the function v is bounded by construction, we can apply to it the re-
sult by Cortesani and Toader, Theorem 1.1, finding a sequence {f;} of SBV”
functions with polyhedral jump sets, with f; € C*(Q\J;) n W= (Q\J;), such
that

and satisfying property (1.2) for any admissible function g. Notice that, since v is
compactly supported in Q, again by multiplication by a smooth cut-off function
we can assume without loss of generality that all the functions f; are supported
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inside some given open set Q' CC Q. We claim that, by setting v; = f; for some
7> 1, one has

(5.7) Vo — VUIHU(Q) <e, ||U1||BV(Q) = 2||U||BV(Q) < 16g,

o (n\Ur) <
i=1

In fact, the first inequality in (5.7) is obvious for j big enough by (5.6). Instead,
the validity of the second inequality in (5.7) for j > 1 comes by (5.6) and applying
(1.2) with the function g(x, a, b, v) = |b — al, since this implies that

limsup || fillgy(q) = limsup (|| fill .1q) + Vil L1 + [DV1(€2))

J—o J—o0

— ol + Vol + limsup / o)
/1, NQ!

J—=©

< [vllgvig)

Finally, the third property of (5.7) for j > 1 comes by applying again (1.2),
this time with the u.s.c. function g(x,a,b,v) which coincides with 0 whenever
..k Pi, and with 1 otherwise: mdeed

lim sup 7V~ l(Jf\UP> = hmsup/Jmﬁ/g(x,fjﬂﬁ,vf/.)dnyl

J—o® J—= 0

< / glx, v, v v da Nt
J,n QY

— A\ UP) <o
i=1

since (J, P; D <I)( ) and recalling (5.5). For future reference we observe that
forevery 1 <i<k

(5.8) 1Tr(v1; Qi + nvi) = Tr(v1; Qi — i)l (g, < [Dor|(P),

where Tr(vi; Q; + nvi)(x) and Tr(vi; Q; — nv;)(x) denote the upper trace of v;
on Q;+nv;, and its lower trace on Q; —nv; (Where “upper” and “lower” are
intended in the direction of v;).

Step III. The function v,.

Let ¥ : Q — Q be a piecewise affine function which is a bijection from Q\ |, P;
to Q\J; 0, and such that W(x) = x unless x has distance at most V/Np from
U, Pi, while W(P;) = W(d(P;)) = O; for every i. In particular, we can take such
a function so that, for every i, the function ¥ maps each of the two simplexes
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Q; + nv; in an affine way onto Q] C Q;, obtained from Q; with an homothety
of factor 1 —#. With a slight abuse of notation we denote by ¥! the > inverse
of the restriction of ¥ to Q\|J; P;, so ¥~ maps Q\®(M) = Q\|J; 0; onto
Q\J; P;. It is very simple to check that, as soon as x i§ small enough, one
fla(l)l;f;r;? such a map ¥ so that ||[D¥||,.q) <2 and [[D¥" HLl(Q\U,.Q) <2. We

Uy := 101 © ypl

From our construction it follows immediately that v, € SBV?(Q\®(M)), and
clearly v, can be uniquely extended to a function in SBV?(Q), which we still
denote v,. Notice that J,, CC Q is a polyhedral set. Moreover from (5.7) it
follows that

(5.9) 02l pyi@ogny <2V e AN I\B(M)) <2V e,

To conclude this step, we want an estimate of the BV norm of v, on the whole Q,
as well as of the L?” norm of Vv — Vu,. The latter is very easy to obtain; indeed,
by construction, (5.7) yields that if # is very small then

(5.10) Vo = Voa| 1) < 2.

Concerning the BV norm of v, by recalling (5.9), (5.8) and (5.7), the definition of
the Q/, and the definition of ¥ on 0P;, we get

k
(511)  v2llgy) = lo2llgviyaoin) + Z/Q vy — vy |dA V!

k
SCS-l—Z/ |v§r—vz|d%Nl+/ vy — vy |dA N

i-1 /9] 0\ 0/

k
< Ce+ ) |Tr(vi; Qi +nvi) — Tr(vi; Qi — nvi)ll 11 g,
i=1

+ ClpA N1 o1 -

< Ce+ |Dv1|(UE) + Clpar N (U Qi) o1]] 1 < C'e,

where C and C’ are two constants depending only on N (that we do not write
explicitely just for the sake of shortness), and the last inequality is true as soon
as 7 is small enough (keep in mind that v; is bounded by construction).

Step 1V. The final functions w, w, and u.
Let us now define w =1 o ® ! + v2, which is by construction a function in
SBV?(Q). From Steps I and III we know that J,, C ®(M) u J,, and the latter
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set is a polyhedral set compactly contained in Q. Moreover, from (5.2) and (5.9)
we have that

(5.12) AN (D(M) U T, AD(,)) < 2Ve.
We claim that
(513) Juo @' = wlgy) < (C'+5)e,  [[V(wo @) = V| ,q) < 26

The first inequality follows by (5.11), (5.4) and (5.3), while the second is simply
(5.10), since by definition

uod)’l—w:uod)*l—uloq)’l—vz:v—vz.

Notice that, by Lemma 4.3 and Corollary 2.4, up to an arbitrarily small modifi-
cation both in the BV norm and in the L? norm of the absolutely continuous part
of the gradient, we can assume that J,, = ®(M) U J,, (up to # " '-negligible
sets) and that w € C*(Q\J,,).

Keep in mind that, since u; € C*(Q\J,,) n WL*(Q\J,,), v1 € C*(Q\J,,) N
wh=(Q\J,), ® is a diffeomorphism, and ¥ is piecewise affine, then w also
belongs to W1 (Q\J,,). As a consequence, we can apply Lemma 5.2 to w, find-
ing a function w, € SBV?(Q) n C*(Q\J,,) n W*(Q\J,,) such that J,, CC Q
is a manifold of class C! with C! boundary and satisfying

(5.14) w = wellgyo) <& VW =Vwell s ry) <& AN TAT) < e

We can finally set the final function u, = w, o ®. Then, keeping in mind (5.13),
(5.3), (5.14) and (5.12), as well as the fact that J,, = ®(M) U J,,, we immediately
obtain

Ju — tt:|lgyy < C"e,  [|[Vu = Vite||Loiq.mvy) < C, AN NIAT,) < Cle,

for a suitable, purely dimensional constant C”. The thesis is then obtained in this
case.

Part B. The general case.

Let us now pass to consider the general case, which only requires few simple
arguments to be reduced to the preceding, particular one. We divide for sim-
plicity also this part in few steps.

Step I The case of J,, CC Q.

First of all, let us assume that u is not necessarily compactly supported in Q,
but the jump set of u is compactly contained in Q. In this case, we can argue
more or less as in Lemma 2.2; that is, we take two open sets 4; and 4, such
that J, CC A; CC A, cC Q, and we use a smooth cut-off function to write
u = uy + up, with u; € SBV?(Q) supported in 4,, and u, € WH?(Q) supported
in Q\A;. The conclusion is then obtained just applying Part A to the function
u1, and Meyers and Serrin Theorem to u;.
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Step II. The case of Q = IRiV . separating the jump set from the boundary.

Let us now consider the case when Q = Rﬁ’ ={xeR":xy >0}: we aim to
approximate a given u € SBV?(Q) with another function whose jump set is a
positive distance apart from 0Q, that is, we claim the existence of a function
v € SBV?(Q) such that

(5.15) dist(Jy,0Q) >0, [lv — ullgyq) <,

Vo= Vull iy <& AV LA <e.
First of all, as already done at the beginning of the proof of Theorem B, we can
assume without loss of generality that the support of u is bounded. Then, via
multiplication with a smooth cut-off function, we can also write u = u; + uy,
with uy,u; € SBV?(Q) and so that u; is compactly supported in Q and
(5.16) Ju=Juy Udu, HN VNI, <6, |Dws|(Ju) <9,
for some J =d(¢) to be specified later. Then, we let u3 € SBV/(R") be the
extension of u; by symmetry through the hyperplane {xy =0} = 0Q, that is,
uz(x, y) = up(x,|y|). Notice that by definition

AN V(T,) <26, |Dus|(J,) < 26.

Notice also that, since the support of u is bounded, then u3 is compactly sup-
ported in RY (while u, is not compactly supported in Q). Hence, we can apply
as before Theorem 1.1 to the function u3 so to find a function #3 € SBV” (RY) N
C*(RM\J,;) n W= (RM\J,,) with polyhedral jump set J,,, satisfying

(5.17) ||u3 — l~l3||L1(RN) < 5, HVu3 — Vﬁ3||L1(RJ\/) < 5, ||Vu3 — Vﬂ3||Lp(RN> < 5,
and by (1.2) we have also

(5.18) ANV Ja) <2V V() < 40, |DYis|(Ji) < 2|D%us|(Juy) < 46.
Putting together the last estimates, we immediately deduce

(5.19) ||u3 — ﬁ3||BV(RN) < 80.

Let us now apply Lemma 5.2 to the function #; with the hyperplane
= {xy=0}=0Q, finding a function i3se SBV?’(R")n C*(R"\Jz,) N
Wl (RM\J;, ,), satisfying

(5.20) i3 — 3 ollgyyy <O, [IVits = Vit s ory <0, AN (T ATy ;) < 6.

and such that the part of the jump set of #3 5 not contained in 0Q has positive
distance from o€ itself. To conclude, it is enough to define v = u; + 3 5 on Q.
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Indeed, the jump set of v has positive distance from 0Q by construction, and of
course

(5.21) Ju\a, €I €y UJg

3,0 3.0°

Moreover,

[0 — ullgy(q) = 43,6 — u2lly(q) < 3,6 — U3l gv(q) + 143 — w2|lgy(q)

< |[#3.6 — sl py(my) + i3 — usllpy(ry < 90
by (5.20) and (5.19), and in the very same way
Vo = Vul| o) < ||Viis,s = Vit|| oy + [[Vits — V][ gyy < 20
by (5.20) and (5.17). Finally, by (5.16) and (5.21) we have

JAJ, C ((JMI U‘Iﬁia‘)\(‘]ul U‘]uz)) Y ((Jul UJuz)\(Jul\‘]ﬁs,o‘)) CJa ‘U‘]M27

3,0

so by (5.16), (5.20) and (5.18) we have
ANV (T,AT) < 66.

In conclusion, (5.15) holds as soon as soon as we have chosen J = ¢/9, and the
step is concluded.

Step III. Conclusion.

It is easy to conclude by putting together the last two steps. Indeed, let
u € SBV?(Q) be a given function. First of all, as already done several times, we
select # € SBV?(Q) with bounded support and such that

(522)  la—ulgy <& Via—Vull o <& #V (AL <e.

Since Q has locally Lipschitz boundary, we can find another set Q" C Q, bounded
and with Lipschitz boundary, in such a way that # = 0 in Q\Q', and of course
u e SBV?(Q'). By compactness, we can find finitely many smooth, bounded,
opensets Q; CRY, 0<i<K,sothat Q' CQyuQuU---UQk, Q) CC Q, and
for every 1 < i < K there is a bi-Lipschitz homeomorphism ®; : RY — R* such
that

Q,(Q) = (-1,1)", 0;(QnQ)=(=1,1)""x(0,1),
D,(Q; N Q) = (-1, DN x {0}.

Moreover, we can select a smooth partition of unity {#,},_ g associated

with the covering of Q'. We write then @ = ug + u; + - - - + ug, where for every
0 <i < K we have set u; = n;u € SBV/(Q;).
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Let us now take any i > 0; we have that u; o @, € SBV” (IRN ), so by Step II
and in particular (5.15) we find a function v; € SBV(IRN ) such that

HU[*]/{[O(D ||BV ) < &, ||VU[7VUI‘O(D;1||L,;(R1V) <8,
AV T A o 1) < &,
and the jump set of v; is a positive distance apart from dR”; hence, the function

v; o @; belongs to SBV?(Q;), and its jump set is a positive distance apart from
0Q; N 0Q’, so in particular from 0Q’. As a consequence, if we define

K
v =uy+ E v; o @,
i—1

then we have v e SBV?(Q'), and the jump set J, of v is a positive distance apart
from 0Q’, so in particular J, CC Q. Moreover, from the decomposition of #, also
recalling (5.22), we deduce that

[ —vllgyq) < Ce,  [[Vu— Vol ,q) < Ce, HNNIAT) < Ce,

where C is a geometric constant, only depending on the sets Q; and on the
bi-Lipschitz constants of the functions ®;. We can then simply apply Step I to
the function v, and the proof is concluded. |

6. AN APPLICATION OF OUR RESULT

In this last section we present an application of our first result, Theorem A. Let
Q C R" be an open set, and for ¢ > 0 let us denote by %, any finite collection of
disjoint open cubes Q C Q with side length ¢ and arbitrary orientation. Given a
function u € L] .(R") and & > 0, we consider the quantity

rep(u) = eV ! supz ][ lu — up| dx,

Y. Qe%,

denoting up = f u. This quantity was introduced in [2], where it was proved that

0
in the special case of the characteristic function of a measurable set the following
formula holds

. 1
lim (1) = 5 P(E),

where P(E) denotes the perimeter of the set E. This formula was then extended
in [11] to the case of a function u € SBV)(Q2) with “well behaved” jump set.
More precisely, the following result holds.



ON THE APPROXIMATION OF SBV FUNCTIONS 405

THEOREM 6.1. Let Q C RN be an open set and u e SBVi0e(Q) such that
PN(T,) =0. Then

(6.1) 11m Ke(u /|Vu|dx+ |D*u|(Q).

As a consequence of Theorem A, we can show that the above representation
formula holds with no assumptions on J,,.

COROLLARY 6.2. Let Q C RY be an open set, and let u € SBVioc(Q). Then (6.1)
holds.

PROOF. Let us assume for a moment that u € SBV(Q). Then, given any ¢ > 0,
Theorem A provides us with a function v € SBV(Q) such that |u — v||pyq) <,
and # N1 (J,\J,) = 0, so that in particular #" (7,) = 0 and then (6.1) holds for
v. Given now any cube 0 of side ¢, we can evaluate

ol = f o vol] ][|u—v (o =vo)l = f 1)~ (w=r)g
0o o

S 1P —0)|(Q),

IA

<
28

where the last inequality comes by the Poincaré inequality in a cube of side e,
which holds with constant ¢/2. For any finite family %, of cubes of side ¢, then,

we have
§ = ol - ][|v—vg|
0e9, /@ 0€eY,

which implies that |r.(u) — x,(v)| < /2. Applying (6.1) to v, and sending first ¢
and then J to 0, we directly obtain the validity of (6.1) also for u.

Suppose now that u ¢ SBV(Q), so that we have to show x,(#) — co. Fix any
open set Q' CC Q: since u € SBV(Q'), the very same argument as above, only
considering cubes in Q’, implies that

5
g1 Z |Du — Dv|(Q 5’
25e%,

lim inf Ko (u / |Vul dx+ |D ul(Q),

e—0

and letting Q' 1 Q the conclusion follows. O

It is actually possible to estimate the behaviour of «,(u#) even for the case of a
function u € BV(Q), thus possibly with a non vanishing Cantor part. In this case,
by means of Theorem 6.1 and of a suitable approximation argument (see [12]),
one can show that

1
(6.2) Z\Du|(9) < lirgl_glf K.(u) < limsup x,(u) < |Du|( ).

&e—0

o |
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Generalizing [11, Ex. 2.2], we can now show that this estimate is sharp: in fact,
if u has a non-vanishing Cantor part, then any limit between 1/4|Du|(Q) and
1/2|Du|(€) is possible.

ExaMPLE 6.3. Given any real sequence 4,, with 0 < 4, < 1/2 for every n,
we consider the following Cantor-like function. We are going to define induc-
tively the intervals J/* for any n e N and 0 < i <2""!, and the intervals I/ for
any ne N and 0 <i<2" Forn=1, we let I} =[0,4], J! = (4,1 — 1)), and
I} =[1 —J1,1]. Then, once we have defined any interval /', we subdivide it
in three parts, namely, 75"}, J/™! and IJi"!: the open interval J/'*! has the same
center as I, while the two closed intervals I;;"} and I;:™! are respectively on its
left and on its right, and the measure of each of them is a portion /,.; of the
measure of //".

We define then also a sequence of continuous functions u,. More precisely,
given any n > 1, we define u,(x) = 0 for x <0, u,(x) =1 for x > 1,

C2i-1

5 for x e JF, withk <mand 1 <i<2F ",

Un(X)

and u, is affine in each interval 1" for 1 <i <2". It is easily checked that u,
uniformly converges to a function u € BV(R), and moreover Du is purely Cantor
(that is, the absolutely continuous part and the jump part of Du are both 0), and
|Du|(R) = 1.

Suppose for a moment that the sequence A, takes constantly the value
0 < 2 < 1/2. In this case, a simple calculation ensures that, defining

k~(2) = liminf rx,(u), & (1) =limsup x.(u),

&= e—0

one has that 1 +— x%(1) are two continuous and decreasing functions in (0, 1/2),
satisfying

1 1
N | SRS |
i (}V)_Z’ Alil}}zk ) 4

As a consequence, we have shown that the liminf and the limsup in (6.2) can
take any value in the open interval

(IDuLI‘(Q) ’ IDug(Q)).

Finally, one can also build an example of u € SBV for which lim,_x.(u) =
|Du|(Q)/4 (resp., lim, ¢ r.(u) = |Du|(Q)/2). This can be obtained by the same
construction as above choosing the sequence 4, converging fast enough to 1/2
(resp., to 0).
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APPENDIX A. PROOF OF LEMMA 5.2
This final section is devoted to the proof of Lemma 5.2.

PrROOF OF LEMMA 5.2. By assumption, the jump set of u is made by finitely
many (N — 1)-dimensional open simplexes. Nevertheless, in order to perform
our recursive construction, it is simpler to consider a more general situation,
namely, when J, is made by finitely many (N — 1)-dimensional polyhedra. In
our construction, a 1-dimensional polyhedron in RY is simply a segment in R”,
and for every 2 <n < N — 1 we recursively define a n-dimensional polyhedron
in RY as a bounded, connected set, contained in an n-dimensional subspace of
RY, whose boundary is a finite union of (n — 1)-dimensional polyhedra.

We assume then that J, is made by K polyhedra of dimension N — 1, possibly
intersecting with each other, and we call [T and {I1;},_;, x_, the closures of these
polyhedra. Since our aim is, roughly speaking, to “separate’ these polyhedra, we
aim to reduce ourselves to a situation in which one polyhedron is a strictly
positive distance apart from the other K — 1. For simplicity of notations, we
assume that the polyhedron IT is contained in the hyperplane {xy = 0}. For
any 1 <i< K — 1, we want now to define a (N — 2)-dimensional polyhedron
I; C IT; if the intersection between IT; and IT is empty, we simply set I'; = 0.
Otherwise, let us call ®; the (N — 1)-dimensional hyperplane containing IT;, and
let us consider IT N ®;, which is a finite union of (N — 2)-dimensional closed
polyhedra: then, we call I'; the union of those which intersect IT;, so IT~II; C
I; CIInO;, and both inclusions can be strict. Since, in our construction, we
will need to know that the first inclusion is in fact an equality, we make a
slight modification of u. More precisely, we fix a constant & > 0 so small that
the set

K-1
(A.1) Jr=J,0 U{(x,t) €0,:0<<aprix,t) eI},

i~
where pr; : ©; — 0; N I1 is the orthogonal projection, satisfies

(A.2) HNVTEAT) = AN T < %
From Lemma 4.3 we get then u; € SBVZ(Q) nC'(Q\J.F) n WL (Q\J) so
that

&
(A3) lur — ullgyq) + llr — ull 2 q) + [[Vur = Vull 1) < g Ju = g,
Notice that J,, is not the same set as J,, but by construction it is still the union
of K polyhedra, that for ease of notation we still denote by Il and I1;; we have

only slightly enlarged some of the polyhedra IT; (actually, we could have even
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diminished the total number of polyhedra, since two different ones contained
in a same hyperplane could have been glued). Observe that, now, the equality
I'; = I1 n 11, holds true.

Let us now consider IT, which is subdivided by the (N — 2)-dimensional sets
I'; in finitely many “zones” Zy,Z,,...Zy. More precisely, IT is the union of
finitely many (N — 1)-dimensional closed polyhedra Z;, 1 < j < M, in such a
way that

j=1 i=1

Notice that these zones are uniquely determined.

Let us now fix a small quantity 0 < o < &, to be determined later. Con-
sider the closed, N-dimensional set {(x,7):(x,0) € I[1,0 < ¢ < a}: thanks to
our modification and since o < &, the sets II; divide this set in finitely
many N-dimensional polyhedra; in particular, for each 1 < j < M there is
a N-dimensional polyhedron Z;,, one (N — 1)-dimensional face of which
is Z;. Notice that the union of these Z;, is not necessarily the whole
{(x,1) : (x,0) e 1,0 < < a}, there could be also other very small zones appear-
ing if two different T';’s have an intersection with positive (N — 2)-dimensional
measure; however, we will not need to take care of these new zones. Observe
that, whenever a point (x,7) with 0 < 7 < o belongs to the boundary of some
Z; 4, then either this point is contained in some IT;, or (x,0) belongs to the
boundary of II.

We fix now a given polyhedron Z; ,, and we want to define a modification #;
of uy, such that #; = u; outside Z; ,. First of all, we take a piecewise affine diffeo-
morphism @ : Z; , — Z; x [0,«], being the identity on Z; and on the (possibly
empty) intersection Z; , N (0I1 x [0, «]): notice that we can do this in such a way
that the bi-Lipschitz constant of this diffeomorphism remains bounded when
o — 0. It is then simpler to construct a function v on Z; x [0, «] and eventually
to define u; as vo @ on Z; , and u; outside.

Let § « o be another constant, still to be specified later, and let Z/N" C Z; be
given by ‘

Z].INT ={xe Z;: dist(x, 621) <p}.

A simple geometric argument ensures that there exists a diffeomorphism
¥ :0Z; x [0, ] — Z/NT with bi-Lipschitz constant which remains bounded for
f — 0, and in such a way that for every point P € 0Z; the set WY({P} x [0,5])
is a segment, call it op, with endpoints ¥(P,0) = P and V(P, ) € 0Z/*"\0Z;.
The set Z/N" x [0,0] is then the union of the rectangles op x [0,4], with P
varying in 0Z;. Let us then fix a point P € 0Z;; notice that the segment o p belongs
to I1, so to the jump set J,,, and call v_ : gp — R the lower trace of u; on the
segment, that is, for every (»,0) € gp we have v~ (y,0) = lim, ~ u;(y,t). Notice
that the limit exists since u; € W *(Q\J,,). Instead, by construction the set
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“((ap\{P}) x (0,a]) does not intersect J,,, so we can set vt (ap\{P}) x
(0 o] — Rasvt =u; o® . Notice that v is Lipschitz, thus it extends naturally
to the whole gp x [0,a]: in general, v*(y,0) and v~ (y,0) do not coincide; they
do so, however, if y € o1, again by the fact that u; € W= (Q\J, ). We are
then in position to define v on the rectangle op x [0, o, by setting

v(y,to) = (1= 6o~ (p,0) + tv* (p, o) + 0" (P, tor) — tv" (P, o) — (1 — t)v™ (P, 0)

for every (»,0) € op and 0 < ¢ < 1. Notice that, on the horizontal sides of the
rectangle one has

(A.4) 0(»,0) =07(»,0), v(y,a)=0v"(y),
while on the vertical side touching 0Z; it is
(A.5) v(Ptor) = (1 = 1) (v (P,0) — v (P,0)) +v" (P, tor).

Now, keep in mind that both v~ and v are Lipschitz continuous, with Lipschitz
constant at most ||u1l 1. (o, ): as a consequence, by the definition, on the

rectangle gp x [0, o] the function v is Lipschitz continuous, with constant bounded
by

Sl T @\, )
. .

If we now repeat the same construction for every point P € 0Z;, we end up with
a function v : Z/N" % [0,4] — R, and this function satisfies

Sllarlly. = @, ) Lip(¥)
OC .

(A.6) ol zx(0,2) <

We define then the function #; : Q — R as follows:

5 (x) = {v(d)(x)) if x e ® 1 (ZNT % [0,4]),
N 7 e otherwise.

By construction, the function & belongs to W' * in the set ' (ZNT x [0, 4]),
and it is a BV function outside, so it is globally a BV function on Q. Thanks to the
first equality in (A.4), # is continuous across ZINT "and by the second equality in
(A.4) it is also contlnuous across @ 1(ZNT x {oc}) Instead, @; is generally not

continuous across @' ((0Z/N"\8Z;) x [0,0]), so we can expect this set to belong
to Jy;.
Fmally, we want to determine whether #; is contmuous across @1 (0Z; x [0, 4])

C 0Z; ,; more precisely, we intend to prove that, in ®'(0Z; x [0,a]), the jump
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set J; is contained in the jump set J,. In fact, let us take a generic point P € 0Z;
and 0 <7 <1, and let us consider the point Q = ®~ (P to): by constructlon
and keeping in mind (A.5), %; is continuous at Q if u; is continuous there, and
vt (P,0) = v (P,0), and both things are generally false. Nevertheless, assume
that Q ¢ J,,,;: as noticed above, this means that Q is not contained in any of the
IT;, and then it is necessarily Q = (P,g) with (P,0) € JI1 and some 0 < o < a.
And then, u, is continuous at Q because Q ¢ J,,,, and v (P,0) = v~ (P,0) because
the function u; is continuous on the boundary of Il. In conclusion, we have
shown that if Q¢ J,,, then also Q¢ J;; as a consequence, the jump set Jj
coincides with the jump set of u;, except that in place of Z; we have now the
“L-shaped set”

Z;=zZ\ZN w1 ((02/N\0Z)) x [0,4]) = Z\Z/N L Z}.

Taking o small enough, and keeping in mind that f « « has still to be chosen, and
that the bi-Lipschitz constant of @ does not explode when o — 0, we can then
evaluate

(A7) AN Ty ATy) = AN ZNT) + NN (2]
<24V 2(0Z)B + 204N 2 (0Z;) Lip(@ ).

Observe that the big achievement in passing from u; to #; is that Z is a positive
distance apart from J; \Z,, so we have separated a piece of the jump set from all
the rest.

Let us now estimate the distance between u; and #; in the BV sense, and in
the L? sense of the absolutely continuous part of the gradient. Calling 4 =
{x € Q:u(x) # u;(x)}, we have by construction

AHN(A) < 24N 2(0Z;)paLip(D ).
Hence, by construction, by (A.3), (A.6) and (A.7), by the fact that the

bi-Lipschitz constants of ® and ¥ do not explode when o and f go to 0, and
up to choose ff « o < 1, we can evaluate

~ &
(A8) AN (AT, [ = w[lgy(q) + [Vt = Vi gy <

)< 3MK T 3MK’
It is now very simple to conclude: for each 1 < j < M we do the same con-
struction, and we define the approximating function #* € BV(Q) as the function
coinciding with #; on each Z; ,, and with u; outside the union of the different Z; ,.
Thanks to (A.8), we have

- _ &
lat — “1||BV(Q) + ||vat — V“l”u(g) < 3%

%Nil(JﬁLAJul) S 3K

€
3K’
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Moreover by construction the jump set J;: satisfies J;2 = My UlK 11 I1;, where

U Z; is a stricitly positive distance apart from J;:\IT. Notice that IT
is no more a connected polyhedron; in fact, it is a union of M pieces, and each
piece is not a polyhedron, but an “L-shaped” set, not even contained in a
(N — 1)-dimensional hyperplane. Nevertheless, it is obvious by construction that
there ex1sts a bi-Lipschitz homeomorphism F : RY — R which transforms IT
into a C' compact manifold with C' boundary, and which equals the identity
outside of an arbitrarily small neighborhood U of IT; moreover, the bi-Lipschitz
constant of F' does not explode when U becomes smaller and smaller. Hence, we
can assume that U is a strictly positive distance apart from the polyhedra IT;,
1 <i< K — 1, so the function # = &1* o F~! satisfies

&

%N 1(] AJul) < 2K ||I,~l — ulHBV(Q) + HVﬁ — Vul”Lp(Q) < R,
which by (A.3) and (A.2) become
_ - €
(A9) AN (aA,) < E 12 = ullgyo) + 1V = Vull L) < &

Summarizing, starting from the function u € BV(Q) having K (possibly inter-
secting) polyhedra as jump set, we have chosen one of the polyhedra, IT, and
constructed a function # whose jump set is made by a C', compact manifold
with C! boundary, together with K — 1 polyhedra, and there is a strictly positive
distance between the manifold and the polyhedra; in addition, each of the K — 1
“new” polyhedra coincides with one of the “old” K — 1 polyhedra, or with a
small enlargement of it (at the beginning, we have added to each IT; the small
set {(x,7) € ®;: 0 <t <anpr(x,t) € I';}, recall the definition (A.1) of J). Fi-
nally, (A.9) holds and the set {u # @&} is an arbitrarily small neighborhood of
the polyhedron IT. With an obvious recursion argument (and also using Corollary
2.4 to get the smoothness of u, for free), we obtain the first part of the conclusion.
Notice that there is one polyhedron on which we never apply our construction:
indeed, once we have done K — 1 steps, and then transformed K — 1 polyhedra
into C' manifolds, each one a positive distance away from the remaining of
the jump set, the last polyhedron is automatically isolated; hence, there is no
need to apply our argument to this last polyhedron, it is enough to modify it
so to become C!, of course remaining away from the other manifolds.

Let us now prove the second part of the statement. Let IT be a given hyper-
plane; since J, is compactly contained in Q, we can select finitely many poly-
hedra I; CC Q, 1 < j < H, such that the intersection of J,, with IT is compactly
contained in the union of the II;. Thanks to Lemma 4.3, we can replace u
with a functlon 2 which is very close to u, whose jump set coincides with
J,u U - H cC Q, and which is still smooth, bounded and with bounded differ-
ential out51de of its jump set. Notice that the jump set of u is still polyhedral;
in particular, if J, is the union of K polyhedra, then J; is done by K + H ones.
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We can then apply our construction above to the function % more precisely, we
perform K steps, in each of which we transform one of the K original polyhedra
into a isolated C! manifold. In each of these steps we could have enlarged the
polyhedra IT;, and it is also possible that some of these polyhedra have been glued
together, so 1n the end we have polyhedra H’ for 1 < j < H’ and a suitable
H' < H. Keep in mind that by construction the polyhedra H’ are still compactly
contained in Q, and inside the hyperplane I1. Summarizing, after the K steps we
have obtained a function v in SBV”(Q) n C*(Q\J,) n W*(Q\J,), very close to
i and so to u, and whose jump set coincides with the union of K + H' discon-
nected, compact pieces, namely, K connected C' manifolds, and H’' polyhedra
inside IT. Notice also that, by construction, none of the manifolds can intersect
I, since we have modified @ only in an arbitrarily small neighborhood of J,,
and the union of I1/ is larger than that of IT;, which contains a neighborhood of
I1 ~ J,. Hence, we conclude by letting u, be a last, trivial modification of v which
makes the polyhedra HJ’ become disjoint, compact, C! manifolds, still contained
in IT and compactly contained in Q. O
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