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Abstract. — In this paper we deal with the approximation of SBV functions in the strong BV

topology. In particular, we provide three approximation results. The first one, Theorem A, concerns
general SBV functions; the second one, Theorem B, concerns SBV functions with absolutely con-

tinuous part of the gradient in L p, p > 1; and the third one, Theorem C, concerns SBV p functions,
that is, those SBV functions for which not only the absolutely continuous part of the gradient is in

L p, but also the jump set has finite HN�1-measure. The last result generalizes the previously known
approximation theorems for SBV p functions, see [5, 7]. As we discuss, the first and the third result

are sharp. We conclude with a simple application of our results.
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1. Introduction

SBV functions, first introduced in [3], arise as a natural tool in order to study free
discontinuity problems, which are a wide class of variational problems appearing,
for instance, in image analysis, fracture mechanics and liquid crystals theory.
Typical energies involve bulk and surface densities and are often modeled by
integral functionals of the form

F ðuÞ ¼
Z
W

f ðx;‘uÞ dxþ
Z
Ju

gðx; uþ; u�; nuÞ dHN�1:ð1:1Þ

Here, u is a scalar (or vectorial) function in SBVðWÞ, ‘u is the absolutely con-
tinuous part of its gradient Du, Ju and ue are the jump set and the traces of u
on both sides of Ju, and nu is the approximate normal to Ju (all the relevant
definitions are listed in Section 1.1).

Also in order to study functionals of the above type, it is clearly of primary
importance to have compactness and approximation results for SBV functions.
This paper deals with the question of the approximation. In the literature, there
are two approximation results, quite known, one due to Braides and Chiadò Piat
in 1996 (see [5]), and the other by Cortesani and Toader in 1999 (see [7], see also



the weaker result obtained in the earlier paper [9]); they both deal with the SBVp

functions, which are the SBV functions for which ‘u belongs to Lp, and the jump
set Ju has finite HN�1 measure, see Section 1.1. Let us summarize the results in
the following statement.

Theorem 1.1 (Braides–Chiadò Piat [5], Cortesani–Toader [7]). Let W � RN be
a bounded set with Lipschitz boundary, let p > 1, and let u a SBVpðWÞBLlðWÞ.
Then:

[1 (Braides–Chiadò Piat)] There exists a sequence uj a SBVpðWÞ such that
kuj � ukBV ! 0 and ‘uj ! ‘u in L p, for every j a N it is kujkLl a kukLl and

uj a C1ðWnRjÞ, being Rj � Juj some closed rectifiable set, and HN�1ðJujDJuÞ
! 0.

[2 (Cortesani–Toader)] There exists a sequence uj a SBVpðWÞ such that uj ! u
in L1 and ‘uj ! ‘u in L p, and for every j a N it is kujkLl a kukLl , Juj
is polyhedral (i.e., the intersection of W with a finite union of ðN � 1Þ-
dimensional simplexes), and uj a ClðWnJujÞBW 1;lðWnJujÞ. Moreover,

lim sup
j!l

Z
JujBW 0

gðx; uþj ; u�j ; nujÞ dHN�1ð1:2Þ

a

Z
JuBW 0

gðx; uþ; u�; nuÞ dHN�1

for every open set W 0 �� W and every u.s.c. function g : W� R� R� SN�1 !
½0;lÞ such that gðx; a; b; nÞ ¼ gðx; b; a;�nÞ for all x a W, a; b a R, n a SN�1.

The above results su‰ce for many applications, nevertheless they are still not
sharp; in fact, roughly speaking, one would like to find a sequence uj converging
to u in the strong BV topology and in Lp of the absolute continuous part of the
gradient, with the functions uj having a regular jump set and being smooth out
of the jump set. Instead, in [5] there is no information on the shape of the jump
set, while in [7] the BV convergence fails. In addition, both results are valid in
SBVp and not in SBV; this means that one assumes a higher integrability of
‘u and the finiteness of the HN�1-dimensional measure of the jump set. As
we will discuss in Section 1.2, there are good practical reasons to do that;
moreover, the Lp assumption on ‘u is actually satisfied in many applications
(however, in Section 6 we will deal with a situation for which this is not the
case). Nevertheless, for some important functionals of the form (1.1) there is
no guarantee that minimizers (or at least minimizing sequences) have finite
measure of the jump set, and in fact for such functionals a lot is still not known.
For these reasons, it appears desirable to have approximation results dealing
with completely general SBV functions, or with SBV functions having abso-
lutely continuous part of the gradient in Lp, with no constraint about the mea-
sure of the jump set; we will call for brevity SBVp

l the space of such functions
(see also Section 1.1).

370 g. de philippis, n. fusco and a. pratelli



In this paper, we contribute to give an answer to these questions. More
precisely, we present three approximation results, respectively for SBV, SBVp

l
and SBVp functions; the last one generalizes Theorem 1.1. Our results read as
follows.

Theorem A (Approximation in SBV). Let W � RN be an open set, and let
u a SBVðWÞ. Then, there exists a sequence of functions uj a SBVðWÞ and of com-
pact, C1, manifolds with (possibly empty) C1 boundary Mj �� W, such that
Juj � Mj B Ju, H

N�1ðJujnJujÞ ¼ 0, and

kuj � ukBVðWÞ ! 0; uj a ClðWnJujÞ:

Theorem B (Approximation in SBVp
l). Let W � RN be a local extension

domain (see Definition 4.4), and let u a SBVp
lðWÞ. Then, there exists a sequence

of functions uj a SBVpðWÞ and of compact, C1 manifolds with (possibly empty)
C1 boundary Mj �� W, such that Juj � Mj but H

N�1ðMjnJujÞ ¼ 0 and

kuj � ukBVðWÞ ! 0; uj a ClðWnJuj Þ; ‘uj ��!
L pðWÞ

‘u:ð1:3Þ

Theorem C (Approximation in SBVp). Let W � RN be an open set with locally
Lipschitz boundary, and let u a SBVpðWÞ. Then, there exists a sequence of func-
tions uj a SBVpðWÞ and of compact, C1, manifolds with (possibly empty) C1

boundary Mj �� W, such that Juj � Mj but H
N�1ðMjnJujÞ ¼ 0 and

kuj � ukBVðWÞ ! 0; uj a ClðWnJujÞ;ð1:4Þ
‘uj ��!

L pðWÞ
‘u; HN�1ðJujDJuÞ ! 0:

Notice that the only di¤erence between the approximations given for SBVp

and for SBVp
l functions consists in the validity of the convergence HN�1ðJujnJuÞ

! 0 (actually, the convergence of HN�1ðJunJujÞ to 0 in Theorem C is a direct
consequence of the BV convergence). However, as we will discuss in Section
1.2, this is a substantial di¤erence, and it is precisely the lack of this conver-
gence making Theorem B still not sharp. We remark that, in Theorems B
and C, since the jump sets Juj are contained in the compact, C1, ðN � 1Þ-
dimensional manifolds Mj, then in particular they are essentially closed, that is,
HN�1ðJujnJujÞ ¼ 0.

Let us note also that, in Theorem A, one can decide that the jump sets Juj of
the functions uj coincide H

N�1-a.e. with the C1 manifolds Mj, but in this case it
is no more true that they are contained in Ju. Moreover, in Theorems B and C,
one can remove the assumption of W to be locally an extension domain, or a
set with Lipschitz boundary, but then the Lp convergences in (1.3) and (1.4)
become L

p
loc convergences, see Theorem 4.7. We underline that our Definition

4.4 of extension domains is even weaker than the usual one, we only require
W 1;pðWÞ to be dense in W 1;1ðWÞ. In our three results we do not need to assume
that u is bounded; however, if u a LlðWÞ, then we can always assume that
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kujkLl a kukLl for every j a N: this is an immediate consequence of Lemma 3.2.
We remark that an approximation result for SBV functions, similar to our
Theorem A, was also proved in [13]. Finally, through the paper we consider for
simplicity of notations the case of scalar functions; however, the case of vector-
valued functions is identical.

As an immediate application of the approximation result in SBV, we will
consider in Section 6 a representation formula for the total variation recently
obtained in [11] for functions u a SBVðWÞ for which LNðJuÞ ¼ 0, and we show
that the same formula still holds in general, with no additional assumptions on
the jump set. The case of a general function in BVðWÞ with non trivial Cantor
part is also discussed.

1.1. Definitions and notations. Here we briefly give all the definitions and nota-
tions used in this paper, most of which are standard: one can refer for instance to
the book [4] for a complete account of the subject. Given an open set W � RN ,
the space of the functions of bounded variation is given by the set BVðWÞ of
all the L1 functions over W whose distributional derivative Du is a finite Radon
measure. For any function u a BVðWÞ, one denotes by ‘u a L1ðWÞ the abso-
lutely continuous part (with respect to the Lebesgue measure) of Du, and Dsu
the singular part. Hence, Du ¼ ‘uLN þDsu, and u a W 1;1ðWÞ if and only if
Dsu ¼ 0. The measure Dsu does not charge HN�1-negligible sets; moreover,
one further decomposes Dsu ¼ D juþDcu, where D ju is called jump part and

Dcu Cantor part. While the Cantor part Dcu does not charge HN�1-finite sets,
the jump part Dju is concentrated on a ðN � 1Þ-dimensional set Ju, called the
jump set, which is countably rectifiable: this means that there exist countably
many sets Mi, i a N, each one being a C1 image of the unit ball of RN�1, so
that HN�1ðJun

S
i AN MiÞ ¼ 0. In addition, for every point x a Ju, there exist a

direction nu ¼ nuðxÞ a SN�1, and two numbers uþ ¼ uþðxÞA u� ¼ u�ðxÞ, such
that

lim
r!0

Z
Bþ
nu ðx; rÞ

juðyÞ � uþj dy ¼ lim
r!0

Z
B�
nu
ðx; rÞ

juðyÞ � u�j dy ¼ 0;

where Be
n ðx; rÞ are the two half-balls defined by

Be
n ðx; rÞ ¼ fy a RN : jy� xj < r; ðy� xÞ � nr 0g:

Moreover, one has Dju ¼ ðuþ � u�ÞHN�1
KJu: this explains why this part of

the derivative is called ‘‘jump part’’. In particular, the strictly positive quantity
juþðxÞ � u�ðxÞj is called ‘‘jump’’. We recall that a sequence fujg � BVðWÞ con-
verges strictly to u if

kuj � ukL1ðWÞ þ j jDjujðWÞ � jDujðWÞj ! 0:

Note that this also trivially implies that Duj
�* Duj. We will say that a sequence

fujg � BVðWÞ converges to u in the BV sense if it converges in the strong
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norm topology:

kuj � ukBVðWÞ ! 0:

The space SBVðWÞ of the special functions of bounded variation is given by
the set of all BV functions u for which the Cantor part Dcu of the derivative
vanishes, thus Du ¼ ‘uLN þDju. Despite the elementary definition, this space
is extremely important, since it is the natural space in which functions live in
several applications. It is important to notice that SBVðWÞ is not a closed sub-
space of BVðWÞ in the strict topology, because the strict limit of a bounded
sequence of SBV functions can have a non-trivial Cantor part in the derivative,
which can arise both from the absolutely continuous part and from the jump
part of the derivatives. Also for this reason, in many applications one con-
siders the space SBVpðWÞ, see for instance [5, 6, 7]: given some p > 1, the space
SBVpðWÞ is defined as the space of the SBV functions u for which the quantity
kukBV þ k‘ukL p þHN�1ðJuÞ < l is finite. As an immediate consequence of
the well-known compactness Theorem for SBV functions (see [4, Theorem 4.8]),
one obtains that limits of sequences in SBVp for which the above quantity is
uniformly bounded remain in SBVp. Basically, the higher integrability of the
absolutely continuous parts of the gradients prevents them to create Cantor part
in the limit, while the boundedness of the measures of the jump sets prevents the
jump parts to create Cantor part in the limit.

For reasons that will be discussed in the next section, we will also be interested
in an intermediate space between SBV and SBVp, that is, the space of SBV func-
tions u for which the higher integrability ‘u a Lp holds, but no constraint on the
measure of Ju is assumed. Through this paper, we will denote by SBVp

l this
space. Notice that, as discussed above, this is not a closed subspace of SBV in
the strict topology.

1.2. A brief discussion of our results and a comparison with Theorem 1.1. In
this section we make a general discussion about the approximating issue in
SBV, and then we comment our three results, and we compare them with
Theorem 1.1.

First of all, let us consider a function u a SBV: the best approximation that
one can hope to get, is to write u as a BV limit of SBV functions uj, each of

them having a ‘‘nice’’ jump set Juj and being smooth outside of WnJuj . Notice

that the BV convergence of uj to u immediately implies that HN�1ðJunJuj Þ
converges to 0 as soon as Ju has finite measure (otherwise it is of course infinite
for every j, since HN�1ðJujÞ is finite). On the other hand, it could be in principle

possible that HN�1ðJujnJuÞ does not converge to 0, and this quantity could even
blow up: it is enough that the functions uj have a very large part of the jump
set where the jump juþ � u�j is very small. With this considerations at hand,
Theorem A appears completely satisfactory; in fact, not only we have that
HN�1ðJujnJuÞ converges to 0, but also that Juj is a subset of Ju.

As discussed above, not many applications use the space SBV, which is a non-
closed subspace of BV (even though, we consider an application in Section 6). In
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order to roughly understand the reason, let us consider again a functional as in
(1.1); to keep the discussion simple, we restrict ourselves to the particular case
(still very general) of a Mumford-Shah-like functional of the form

F ðuÞ ¼
Z
W

j‘uj p þ
Z
Ju

gðjuþðxÞ � u�ðxÞjÞ;

where p > 1 and g is a positive, increasing, l.s.c. function. When studying the
problem of minimizing this functional in SBV (under suitable assumptions), it is
of course not restrictive to consider BV functions for which ‘u belongs to Lp,
hence the functions belonging to the space that we denote by SBVp

l. On the other
hand, depending on the function g, it is not obvious whether or not it is restric-
tive to assume also that the measure of the jump set is finite, that is, to consider
functions in the space SBVp. This is of course not a problem for the original
Mumford-Shah case, corresponding to gC1, or more in general for functions
for which limt!0þ gðtÞ > 0, because in this case any function with finite energy
belongs to SBVp. Otherwise, for instance for the important case when gðtÞ ¼ tq

with some q > 0, restricting oneself to the space SBVp might change the min-
imizers; and actually, the fact that the space SBVp

l is not closed in BV (while so
is SBVp, as said) is the main reason why much less is known for functionals of
this last type. For instance, it is not clear if, for these functionals, the minimizers
(if any) should belong to SBVp or not. This clarifies the need of an approximation
result for the space SBVp

l, and we give a partial answer in the present paper
with Theorem B: as far as we know, this is the first approximation result for
SBV functions with higher integrability of ‘u but without any constraint on the
measure of the jump set. Unlike Theorem A, one can still not say that our result
is completely satisfactory. Indeed, in our result we get an approximating sequence
which converges in the BV sense and in the Lp sense of the absolutely contin-
uous parts of the gradients, and which is done by functions which have the
nicest possible jump set, and which are smooth outside. However, the informa-
tion that HN�1ðJujnJuÞ ! 0 is missing, and this can create troubles in some
cases. To understand that, consider once again the case of gðtÞ ¼ tq: if q < 1,
then the convergence of uj to u provided by our Theorem B does not imply that
F ðujÞ ! FðuÞ, and this is of course unsatisfactory. Notice that, instead, the con-
vergence of F ðujÞ to F ðuÞ is an immediate consequence of the BV convergence if
qb 1 (at least when the functions uj are equi-bounded, as one usually has in the
applications): for functionals of this type, then, the claim of our result seems to be
enough for the applications.

Let us finally consider the case of the SBVp functions. As discussed above, not
for all functionals this is the ‘‘right’’ space to consider. However, our Theorem C
seems again to be completely satisfactory, since we obtain also the convergence
missing in Theorem B, compare (1.4) with (1.3).

To conclude, we can make a quick comparison between our results and those
of Theorem 1.1. As already said, for several applications the results of Theorem
1.1 are enough; nevertheless, in [5] there is no information about the possible
shape of the jump sets of the functions uj, except the fact that they are con-
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tained in a closed rectifiable set; analogously, in [7] the strong BV convergence
fails. Notice that, since the jump sets of the approximating functions in [7] are
polyhedral (i.e., a finite union of ðN � 1Þ-dimensional simplexes), hence in gen-
eral disjoint from the jump set of u, then of course there is no possibility to
have strong BV convergence in that result. We also underline that, in our result,
the jump set is a compact C1 manifold: hence, it is the disjoint union of finitely
many C1 images of ðN � 1Þ-dimensional simplexes; obtaining the disjointness,
which is not ensured by the result of [7], requires some care, and it is done in
Lemma 5.2. A last comment can be done about the strategy of the proof. In
[5, 7] the authors use the well-known existence and regularity results for the
Mumford-Shah functional, see for instance [8]. Our strategy is instead quite
di¤erent; more precisely, given a function u a SBVðWÞ, we single out a compact
subset K of the jump set Ju contained in a C1 manifold, and we construct a
smooth function in WnK having the same upper and lower traces of u on K by
means of a simple mollification argument with variable kernel; this is enough to
conclude in the case of SBV functions, Theorem A, while a careful modification
is needed to treat the cases of SBVp

l or SBVp functions, in order to get also the
Lp convergence of the ‘uj.

2. Mollification with variable kernel

In our construction to prove Theorem A we will make use of a mollification with
a variable kernel. Even though this is a well established technique, in this section
we collect the relevant definitions and the properties that we are going to need, in
order to keep our presentation self-contained.

Through this section, we will consider a given compact set K �� W, and we
will write D ¼ K A qW. Then, we arbitrarily fix a ‘‘regularized distance function’’
from D, that is, a function d : W ! R such that

kDdkLl a 1;
distðx;DÞ

2
a dðxÞa distðx;DÞ Ex a W;

and that d a ClðWnDÞ. Moreover, we also take a function f a Clð½0;lÞÞ
satisfying

f ð jÞð0Þ ¼ 0 E j a N; 0 < f ðtÞa 1 Et a ð0;þlÞ;ð2:1Þ
0a f 0ðtÞa 1 Et a ½0;þlÞ:

Given a number 0 < s < 1 and a vector y a Bð1Þ, we define the ‘‘generalized
translation’’ as the function

Ts;yðxÞ ¼ x� sf ðdðxÞÞy:

Here, and in the following, we denote by Bðx; rÞ the ball with center x and radius
r > 0, and we simply write BðrÞ in place of Bð0; rÞ. Notice that, by the properties

375on the approximation of sbv functions



(2.1) and the choice of 0 < s < 1, one has Ts;y : W ! W, and Ts;y is the identity
on D. Since

DTs;yðxÞ ¼ Id� sf 0ðdðxÞÞynDdðxÞ;

(observe that f 0ðdðxÞÞDdðxÞ is continuous on the whole W by construction), keep-
ing in mind that detðIdþ an bÞ ¼ 1þ a � b and recalling again (2.1) and the fact
that s < 1 and that jyj < 1 we obtain

detDTs;yðxÞ ¼ 1� sf 0ðdðxÞÞy �DdðxÞb 1� s > 0:ð2:2Þ

In particular Ts;y is a local di¤eomorphism, and since a quick look at the def-
inition ensures that it is a bijection from W onto itself, it is also a global dif-
feomorphism. Finally, we fix a smooth positive function r a Cl

c ðBð1ÞÞ, such thatZ
Bð1Þ

r ¼ 1. We are then ready to give the definition of the mollification with

variable kernel, for a L1
loc function and for a Radon measure. Notice that both

definitions reduce to the standard mollification if Ts;y is replaced by the standard
translation TyðxÞ ¼ x� y.

Definition 2.1. Let f , s and r as above. For any u a L1
locðWÞ we define

usðxÞ ¼
Z
Bð1Þ

uðTs;yðxÞÞrðyÞ dy ¼
Z
Bð1Þ

uðx� sf ðdðxÞÞyÞrðyÞ dy:

Instead, for any Radon measure m a MðWÞ, we let ms a MðWÞ be the unique
measure such thatZ

W

jðxÞ dmsðxÞ

¼
Z
Bð1Þ

�Z
W

jðT�1
s;yðzÞÞdetðDT�1

s;yðzÞÞ dmðzÞ
�
rðyÞ dy for all j a CcðWÞ;

that is,

ms ¼
Z
Bð1Þ

ðT�1
s;yÞa½detðDT�1

s;yÞm�rðyÞ dy:

It is very simple to deduce from the definition that, if m ¼ u dLN , then ms ¼
us dL

N , as well as that ms ¼ m if the measure m is concentrated on K ; moreover,
if mj

�* m then ðmjÞs �* ms. Before proving the main properties of us, we need to
make a simple observation about the density (in the strict sense) of smooth func-
tions in BV.

Lemma 2.2. Let u a BVðWÞ be such that Dsu is concentrated on a compact
set K �� W and ‘u belongs to L pðWÞ for some 1a p < l. Then, there exists a
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sequence of smooth functions uj : W ! R such that uj ! u strictly, and for every
e > 0 one has that Duj ! Du strongly in L pðWnKeÞ, being Ke the e-neighborhood
of K.

Proof. First of all, assume that W ¼ RN . In this case, it is immediate to observe
that the sequence u � r1=j is as needed, where r1=j is a standard smooth kernel
concentrated in the ball of radius 1=j.

Let us now consider the general situation of an open set W. Let A1 and A2 be
two open sets such that K �� A1 �� A2 �� W. By means of a smooth cut-o¤
function, we can write u ¼ u1 þ u2, being u1 a BVðWÞ supported in A2, with
‘u1 a LpðWÞ, while u2 a W 1;pðWÞ is supported in WnA1. By Meyers and Serrin
Theorem, we can take a sequence u2; j of smooth functions converging to u2
strongly in W 1;pðWÞ. Instead, concerning u1, we can extend it by 0 outside of
A2, getting a function in BVðRNÞ, and then we find the sequence u1; j with a
convolution as before. If we now let uj ¼ u1; j þ u2; j, this sequence is clearly as
requested, since in the set A2nA1 both the convergences of u1; j and u2; j to u1
and u2 are strong in W 1;p. r

Proposition 2.3. Let 1a p < l, u a LpðWÞ, m be a Radon measure, and let
us and ms be as in Definition 2.1 for some 0 < sa 1=2. Then

(i) us a ClðWnKÞ.
(ii) The following estimates hold:

kuskL pðWÞ a 2kukL pðWÞ; jmsjðWÞa 2jmjðWÞ:ð2:3Þ

In particular, the map u 7! us is linear and continuous in L p.
(iii) One has kus � ukL pðWÞ ! 0 as s ! 0 and, if u a CðWÞ, then kus � ukLlðW 0Þ

! 0 as s ! 0 for every W 0 �� W.
(iv) If u a BVðWÞ, then us a BVðWÞ and

Dus ¼ ðDuÞs þ sxs;ð2:4Þ

where xs is a Radon measure such that xs
KK ¼ 0 and jxsjðWÞa 2jDujðWÞ.

Moreover,

DusKK ¼ DuKK :ð2:5Þ

Finally, if ‘u a LpðWÞ and Ju is contained in K, then

‘us ��!
L pðWÞ

‘u:

Proof. Point (i) follows from the fact that for x a WnK

usðxÞ ¼
1

ðsf ðdðxÞÞÞN
Z
Bðx;sf ðdðxÞÞÞ

uðzÞr
� x� z

sf ðdðxÞÞ

�
dz;

and by the smoothness of f on Rþ, r on Bð1Þ, and d in WnK .
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To prove point (ii), we start with an Lp function u. By Jensen inequality,
Fubini Theorem and the change of variable z ¼ Ts;yðxÞ, also keeping in mind
that Ts;yðWÞ ¼ W, we haveZ

W

jusðxÞj p dxa
Z
W

Z
Bð1Þ

juðTs;yðxÞÞj prðyÞ dy dxð2:6Þ

¼
Z
Bð1Þ

�Z
W

juðTs;yðxÞÞj p dx
�
rðyÞ dy

¼
Z
Bð1Þ

Z
W

juðzÞj p detDT�1
s;yðzÞ dzrðyÞ dy

a kdetDT�1
s;ykLlðWÞkuk

p

L pðWÞ:

Since by (2.2) for sa 1=2 we have kdetDT�1
s;ykLlðWÞ a ð1� sÞ�1

a 2, inequality

(2.3) for an Lp function follows from (2.6). More in general, calling Ke the
e-neighborhood of K , it is clear by construction that Ts;yðxÞ might belong to
Ke=2 only if x belongs to Ke, thus we also have thatZ

WnKe

jusðxÞj p a 2kuk p

L pðWnKe=2Þ:ð2:7Þ

Let us now consider a Radon measure m, and let uj be a sequence of L1 functions
such that uj dL

N �* m. As noticed above, we get that

ðujÞs dLN ¼ ðuj dLNÞs �* ms;

thus the estimate (2.3) for the measure m follows from the same estimate for the
functions uj.

Concerning point (iii), we note that the second part is an immediate con-
sequence of the uniform continuity of u on compact sets and of the fact that
kTs;y � IdkLlðWÞ ! 0 as s ! 0. The fact that kus � ukL pðWÞ ! 0, then, follows
by the density of C0

c ðWÞ in LpðWÞ and by (2.3) exactly as in the classical case.
Let us now prove point (iv). We first assume that u a ClðWÞ, then we get

DusðxÞ ¼
Z
Bð1Þ

ðDuðTs;yðxÞÞ � sf 0ðdðxÞÞDuðTs;yðxÞÞ � yDdðxÞÞrðyÞ dy;

so that (2.4) holds with

xs ¼ �f 0ðdðxÞÞDdðxÞ
Z
Bð1Þ

DuðTs;yðxÞÞ � yrðyÞ dy:ð2:8Þ

Notice that in the present case, also by (2.1), the measure xs is actually a smooth
function. Moreover, xs

KK ¼ 0 because for every x a K one has dðxÞ ¼ 0 and

378 g. de philippis, n. fusco and a. pratelli



so f 0ðdðxÞÞ ¼ 0, and since 0a f 0 a 1 and kDdkLl a 1, we have

jxsðxÞja
Z
Bð1Þ

jDuðTs;yðxÞjrðyÞ dy ¼ jDujsðxÞ;ð2:9Þ

so that applying part (ii) above to the function jDuj we get

jxsjðWÞa k jDujskL1 a 2k jDuj kL1 ¼ 2jDujðWÞ:

In conclusion, (2.4) of point (iv) holds if u is a smooth function.
Let instead now u a BVðWÞ be a generic function, and let uj a BVðWÞBClðWÞ

be a sequence such that uj
�* u in the strict BV sense (with the additional prop-

erty granted by Lemma 2.2 if Dsu is concentrated on K and ‘u a Lp). First
of all, note that ðujÞs ! us in L1 by part (ii), hence DðujÞs ! Dus in the sense
of distributions. Since for every j we have DðujÞs ¼ ðDujÞs þ sxs

j according to

(2.4), and since as already noticed Duj
�* Du implies ðDujÞs �* ðDuÞs, we have

to check the weak* limit of xs
j for j ! l. Let us then take a bounded and

continuous function j a CbðW;RNÞ, with compact support: applying (2.8) to
each smooth function uj, we get

3�xs
j ; j4 ¼

Z
W

f 0ðdðxÞÞDdðxÞ � jðxÞ
�Z

Bð1Þ
DujðTs;yðxÞÞ � yrðyÞ dy

�
dx

¼
Z
Bð1Þ

y �
�Z

W

DujðTs;yðxÞÞ f 0ðdðxÞÞDdðxÞ � jðxÞ dx
�
rðyÞ dy

¼
Z
Bð1Þ

y �
�Z

W

DujðzÞ f 0ðdðT�1
s;yðzÞÞÞDdðT�1

s;yðzÞÞ

� jðT�1
s;yðzÞÞ detðDTs;yÞ�1ðzÞ dz

�
rðyÞ dy

¼
Z
Bð1Þ

y �
�Z

W

DujðzÞgðy; zÞ dz
�
rðyÞ dy

¼
Z
W

DujðzÞ �
�Z

Bð1Þ
ygðy; zÞrðyÞ dy

�
dz;

where for any y a Bð1Þ we have set

gðy; zÞ ¼ f 0ðdðT�1
s;yðzÞÞÞDdðT�1

s;yðzÞÞ � jðT�1
s;yðzÞÞ detðDTs;yÞ�1ðzÞ:ð2:10Þ

By construction, g is a continuous, compactly supported, scalar function, with
kgkLl a 2kjkLl and of course depending on j, so we can define

hðzÞ ¼
Z
Bð1Þ

ygðy; zÞrðyÞ dy;ð2:11Þ
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and the calculations above give

3�xs
j ; j4 ¼

Z
W

DujðzÞ � hðzÞ dz ¼ 3Duj; h4 ! 3Du; h4:

Since the map j 7! h is easily seen to be linear and continuous, we have a mea-
sure xs such that xs

j
�* xs. Summarizing, we have shown that for any u a BVðWÞ

there is a measure xs such that (2.4) holds true, and this also implies that
us a BVðWÞ. Moreover, since xs

j
�* xs, the validity of jxsjðWÞa 2jDujðWÞ is

straightforward, since we know it for every xs
j and uj. In order to prove that

xs
KK ¼ 0, let us take a function j a CbðWÞ supported in the e-neighborhood

Ke of K . Thus, jðT�1
s;yðzÞÞ ¼ 0 whenever the distance between T�1

s;yðzÞ and K

is bigger than e. On the other hand, if it is smaller, then dðT�1
s;yðzÞÞa e, and this

implies that f 0ðdðT�1
s;yðzÞÞÞa ek f 00kLl . Recalling the definitions (2.10) and (2.11),

we deduce that khkLl a kgkLl a 2ek f 00kLlkjkLl . Recalling that 3�xs; j4 ¼
3Du; h4 and sending e ! 0, we have obtained that xs

KK ¼ 0. In other words,
we have now proved the validity of (2.4).

Let us pass now to show (2.5). By (2.4) we have DusKK ¼ ðDuÞsKK , so to
obtain (2.5) we have to show

ðDuÞsKK ¼ DuKK :ð2:12Þ

Keeping in mind Definition 2.1, for any function j a CbðWÞ we have

3ðDuÞs; j4 ¼
Z
Bð1Þ

3ðT�1
s;yÞa½detðDT�1

s;yÞDu�; j4rðyÞ dy

¼
Z
Bð1Þ

3 detðDT�1
s;yÞDu; j 	 T�1

s;y4rðyÞ dy

¼
Z
Bð1Þ

ð3Du; j4þ 3Du; j 	 T�1
s;y � j4

þ 3ðdetðDT�1
s;yÞ � 1ÞDu; j 	 T�1

s;y4ÞrðyÞ dy

¼ 3Du; j4þ
Z
Bð1Þ

ð3Du; j 	 T�1
s;y � j4

þ 3ðdetðDT�1
s;yÞ � 1ÞDu; j 	 T�1

s;y4ÞrðyÞ dy:

Let us now again restrict our attention to the case when j is supported in Ke.
Since by construction the function j 	 T�1

s;y is concentrated on K2e, and more-
over for every x a K one has j 	 T�1

s;yðxÞ � jðxÞ ¼ jðxÞ � jðxÞ ¼ 0, then we can
evaluate

j3ðDuÞs; j4� 3Du; j4j
a kjkLlð2jDujðK2enKÞ þ kdetðDT�1

s;yÞ � 1kLlðK2eÞjDujðK2eÞÞ:
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By sending e to 0, since kdetðDT�1
s;yÞ � 1kLlðK2eÞ goes to 0 by (2.2), we obtain

(2.12).
To conclude the proof, let us now assume that the jump set Ju is contained

in K , and that the function ‘u belongs to LpðWÞ: we have to prove that ‘us
converges to ‘u in LpðWÞ. Recalling (2.4) and by linearity, we have

Dus ¼ ðDuÞs þ sxs ¼ ð‘u dLN þDsuÞs þ sxsð2:13Þ
¼ ð‘uÞs dLN þ ðDsuÞs þ sxs:

By point (iii) we know that ð‘uÞs converges to ‘u in LpðWÞ, and on the other
hand since Dsu is concentrated in K then ðDsuÞs ¼ Dsu is also concentrated
in K . As a consequence, to deduce that ‘us converges in LpðWÞ to ‘u when
s ! 0, it is enough to observe that the measures xs are actually functions,
uniformly bounded in LpðWÞ.

To do so, we fix some e ! 0, and we consider the situation in WnKe: keep-
ing in mind that xs

j
�* xs, applying the estimate (2.9) to each function uj, and

recalling (2.7) and Lemma 2.2, we derive that

kxskL pðWnKeÞ a lim inf
j!l

kxs
j kL pðWnKeÞ a lim inf

j!l
k jDujjskL pðWnKeÞ

a 2 lim inf
j!l

kDujkL pðWnKe=2Þ

a 2k‘ukL pðWnKe=2Þ a 2k‘ukL pðWÞ:

By letting e to 0, recalling also that xs
KK ¼ 0, we deduce that

kxskL pðWÞ a 2k‘ukL pðWÞð2:14Þ

and, as noticed above, this uniform estimate in LpðWÞ concludes the proof. r

An immediate corollary of the above proposition is the following result, which
basically says that in all the converge results in SBV (or SBVp, or SBVp

l), the
smoothness of the approximating functions out of their jump sets comes for free.

Corollary 2.4. Let u a SBVðWÞ be a function with ‘u a LpðWÞ and Ju � K
for some compact set K �� W and pb 1. Then, for every e > 0, there exists
~uu a SBVðWÞ with Ds~uu ¼ Dsu and

J~uu ¼ Ju; ~uu a ClðWnKÞ; ku� ~uukBVðWÞ þ k‘u� ‘~uukL pðWÞ < e:

If, in addition, W has finite measure and u a W 1;lðWnKÞ, then also ~uu a
W 1;lðWnKÞ.

Proof. We apply Proposition 2.3 to the function u, finding the BV functions us.
By the proposition, each function us belongs to ClðWnKÞ, so the measure Dsus is
concentrated on K; recalling (2.13) and the fact that xs

KK ¼ 0, we derive that
Dsus ¼ ðDsuÞs ¼ Dsu, which also implies that Jus ¼ Ju. Moreover, points (iii)
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and (iv) ensure that us ! u and ‘us ! ‘u in LpðWÞ, so to obtain the first part of
the thesis it is enough to set ~uu ¼ us for some s ¼ sðeÞ small enough.

Let us now suppose that u a W 1;lðWnKÞ. Since Dus ¼ ‘us þDsus with
Dsus ¼ Dsu concentrated in K , we have to show that ‘us a LlðWÞ. By (2.13),
‘us ¼ ð‘uÞs þ sxs, and by Definition 2.1 it is obvious that kð‘uÞskLl a

k‘ukLlðWÞ. To conclude, it is then enough to observe that the functions xs are

uniformly bounded in LlðWÞ; but in fact, since the estimate (2.14) is true for
every s and every p, by letting p ! l we directly find that kxskLl a 2k‘ukLl

for every s. The functions us are then also in W 1;lðWnKÞ, and the proof is
concluded. r

We want now to prove that the traces of us on K coincide with those of u:
recall that a function u is said to have right and left traces ueðx0Þ with respect to
a vector n a SN�1 at a point x0, if

lim
r!0

Z
Be
n ðx0; rÞ

juðxÞ � ueðx0Þj dx ¼ 0:

We can then prove what follows.

Lemma 2.5. Let u a L1ðWÞ be a function, and let x0 a K be a point such that
u admits right and left traces with respect to a vector n a SN�1. Then, for any
sa 1=2 we have that us admits the same traces at x0.

Proof. Without loss of generality, we assume that x0 ¼ 0, that the traces are
uþðx0Þ ¼ 1 and u�ðx0Þ ¼ 0, and we denote BeðrÞ ¼ Be

n ð0; rÞ. It is enough to
show that

lim
r!0

Z
BþðrÞ

jus � 1j ¼ 0:ð2:15Þ

Let us take any r such that Bð2rÞ ¼ Bð0; 2rÞ �� W, and let us define v the restric-
tion of u to Bð2rÞ, extended to 0 outside, and w the function given by w ¼ 1 in
Bþð2rÞ and 0 outside. By the definition of the left and right traces we have that

kv� wkL1ðWÞ
rN

¼
ku� uþkL1ðBþð2rÞÞ þ ku� u�kL1ðB�ð2rÞÞ

rN
�!
r!0

0:

Hence, by (ii) of Proposition 2.3, one has also

kvs � wskL1ðWÞ
rN

�!
r!0

0:

Moreover, by construction and since x0 a K , for every x a BðrÞ we have that
Ts;yðxÞ a Bð2rÞ; as a consequence, recalling Definition 2.1, we get that us ¼ vs
in BðrÞ, then the last inequality implies

kus � wskL1ðBþðrÞÞ
rN

�!
r!0

0:ð2:16Þ
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We have then to evaluate kws � 1kL1ðBþðrÞÞ. Keeping in mind that w ¼ 1 on

Bþð2rÞ and 0 outside, and recalling the definition of ws, we immediately obtain
that 0aws a 1 everywhere. Let now x a BþðrÞ: as already noticed, for every
y a Bð1Þ one has Ts;yðxÞ a Bð2rÞ; in particular, if Ts;yðxÞ a Bþð2rÞ for each

y a Bð1Þ one has wsðxÞ ¼ 1. By the properties of f and d we get

jTs;yðxÞ � xj ¼ jsf ðdðxÞÞyja f ðdðxÞÞa f ðrÞ:

Summarizing, we know that 0awsðxÞa 1 for every x a BþðrÞ, and that
wsðxÞ ¼ 1 if the whole ball Bðx; f ðrÞÞ is contained in Bþð2rÞ, that is, for every
x a BþðrÞ which does not belong to the set

fx a BþðrÞ : x � na f ðrÞg:

Since a rough estimate ensures that the volume of this set is less than
oN�1r

N�1f ðrÞ, we obtain

kws � 1kL1ðBþðrÞÞ
rN

aoN�1
f ðrÞ
r

:

Putting this inequality together with (2.16), and keeping in mind that f ðrÞ=r
goes to 0, when r ! 0, since f 0ð0Þ ¼ 0, we derive the validity of (2.15), and this
concludes the proof. r

3. The proof of Theorem A

This section is devoted to show Theorem A.

Proof of Theorem A. Let us fix a small quantity e. Then, since the jump set
Ju of u is ðN � 1Þ-rectifiable, we can find a compact, C1 manifold M with C1

boundary and a compact set Ke � JuBM satisfying

jDujðJunKeÞa
e

4
;ð3:1Þ

actually, M can be chosen as a finite union of C1 images of the closed unit disk in
RN�1.

Let us now consider the functions us defined in Section 2 with K ¼ Ke. First
of all, by Proposition 2.3 we know that every us is a BV function in W, of class
Cl in WnK ; this implies that every us belongs to SBVðWÞ. Moreover, since K
is contained in the jump set Ju of u, by Lemma 2.5 we obtain that Jus ¼ K up
to ðN � 1Þ-negligible subsets. Hence, HN�1ðJusnJusÞ ¼ 0. Therefore, keeping in
mind (3.1), we see that to conclude the proof we have to show that, for s small
enough, ku� uskBVðWÞ a e. Since by (iii) in Proposition 2.3 we already have that
us ��!

L1ðWÞ
u for s ! 0, we are reduced to check only that, for s small enough,

jDu�DusjðWÞa e:ð3:2Þ
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By (2.4), we know that Dus ¼ ðDuÞs þ sxs, with jxsjðWÞa 2jDujðWÞ, thus

Dus ¼ ð‘uLN þDuKK þDuKðJunKÞÞs þ sxs:

Moreover, as already noticed after Definition 2.1, ms ¼ m for every measure m
concentrated on K ; therefore, by linearity we can rewrite the last equality as

Dus ¼ ð‘uÞsLN þDuKK þ ðDuKðJunKÞÞs þ sxs:

We derive, thanks to (2.3), (iv) of Proposition 2.3 and (3.1),

jDu�DusjðWÞa k‘u� ð‘uÞskL1ðWÞ þ jDuKðJunKÞjðWÞ
þ jðDuKðJunKÞÞsjðWÞ þ sjxsjðWÞ

a k‘u� ð‘uÞskL1ðWÞ þ 3jDuKðJunKÞjðWÞ þ 2sjDujðWÞ

a k‘u� ð‘uÞskL1ðWÞ þ
3

4
eþ 2sjDujðWÞ:

By (iii) of Proposition 2.3 the validity of (3.2) for sf 1 immediately follows,
hence the proof is concluded. r

Remark 3.1. As an immediate application of Lemma 2.5 we have that, if u
admits an inner trace on qW, then the same is true for us (hence for every func-
tion uj of Theorem A) and the two traces coincide.

A quick look to the above construction ensures that, if the function u is in Ll,
then the same is true for every function uj, and in fact kujkLlðWÞ a kukLlðWÞ. We
want now to observe something much stronger, which will be useful in the sequel;
namely, that starting from every sequence fujg as in Theorem A, one can con-
struct by smooth truncation a new sequence f~uujg, still approximating u, satisfying
the Ll bound. This is a straightforward consequence of the next general result,
which we can directly prove for SBV or SBVp

l functions. Notice that, instead of
giving two di¤erent results for the case of an SBV, or of an SBVp

l, function, we
present a single claim for a function u a SBV with ‘u a Lp for some pb 1: of
course, these functions are simply the SBV functions if p ¼ 1, and the SBVp

l
functions if p > 1.

Lemma 3.2. Let u a SBVðWÞBLlðWÞ be a function such that ‘u a LpðWÞ for
some pb 1. Then, for every e > 0 there exists d > 0 with the following property:
whenever v a SBVðWÞ is a function satisfying

ku� vkBVðWÞ þ k‘u� ‘vkL pðWÞ < d;ð3:3Þ

there is a modification ~vv a SBVðWÞ of v such that

J~vv ¼ Jv; k~vvkLl a kukLl ; ku� ~vvkBVðWÞ þ k‘u� ‘~vvkL pðWÞ < e:

In addition, if v a ClðWnJvÞ, then the same is true for ~vv.
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Proof. Without loss of generality, let us assume that kukLl ¼ 1. Let moreover
df hf 1 be two fixed constants, depending on u and e, to be specified later, and
let t : R ! ð�1� 2h; 1þ 2hÞ be a smooth function satisfying

0 < t 0ðtÞa 1 Et a R; tðtÞ ¼ t E� 1� ha ta 1þ h:

Given now a function v a SBVðWÞ satisfying (3.3), we define w ¼ t 	 v. Notice
that of course w a SBVðWÞ, Jw ¼ Jv, and if v a ClðWnJvÞ the same is true for w.

We want to estimate the deviation between w and u; first of all, it is obvious
that

kw� ukL1ðWÞ a kv� ukL1ðWÞ a d:ð3:4Þ

Let us now concentrate ourselves on the singular parts of Du and Dw; this is very
easy in the set JuDJv, since

jDsu�DswjðJuDJvÞ ¼ jDsu�DswjðJunJvÞ þ jDsu�DswjðJvnJuÞð3:5Þ
¼ jDsujðJunJvÞ þ jDswjðJvnJuÞ
a jDsujðJunJvÞ þ jDsvjðJvnJuÞ
¼ jDsu�DsvjðJunJvÞ þ jDsu�DsvjðJvnJuÞ
¼ jDsu�DsvjðJuDJvÞa d:

Keep now in mind that Ju is countably rectificable; as a consequence, we can
write Ju ¼ GAH in such a way that G is a finite union of Lipschitz ðN � 1Þ-
dimensional graphs, while jDsujðHÞ < h. Since, on Lipschitz sets, the trace oper-
ator for BV functions is continuous with respect to the strong BV convergence
(see [4, Theorem 3.86]), there exists a constant C such that

k fekL1

HN�1
ðGÞ aCk f kBVðWÞð3:6Þ

for every function f a BVðWÞ, where fe are the two traces of f on the two
sides of G. Notice that C only depends on the set G, hence on u and h, but not
on d.

We can then now evaluate Dsu�Dsw on the set JuB Jv. Within the set H we
simply have

jDsu�DswjðJuB JvBHÞa jDsujðHÞ þ jDswjðHÞð3:7Þ
a jDsujðHÞ þ jDsvjðHÞ
a 2jDsujðHÞ þ kv� ukBVðWÞ a 2hþ d:

Instead, concerning the set JuB JvBG, we have to further subdivide it. More
precisely, we write JuB JvBG ¼ G1 AG2, where G1 is the subset done by all the
points where both the traces ve are in ð�1� h; 1þ hÞ, and G2 are the remaining
points. In G1, we have by construction Dsw ¼ Dsv; instead, since for every x a G2
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one has either jvþðxÞjb 1þ h or jv�ðxÞjb 1þ h, so in particular at least one
between jvþ � uþj and jv� � u�j is bigger than h, by (3.6) we deduce

hHN�1ðG2Þa kvþ � uþkL1

HN�1
ðG2Þ þ kv� � u�kL1

HN�1
ðG2Þ

a 2Ckv� ukBVðWÞ a 2Cd:

Moreover, the jump jðw� uÞþ � ðw� uÞ�j is clearly at most 4þ 4h everywhere,
so we get

jDsu�DswjðJuB JvBGÞ ¼ jDsu�DsvjðG1Þ þ jDsu�DswjðG2Þ

a dþ ð4þ 4hÞHN�1ðG2Þa dþ 8þ 8h

h
Cd:

Putting this estimate together with (3.5) and 3.7), we obtain

jDsu�DswjðWÞa 2hþ 3dþ 8þ 8h

h
Cd:ð3:8Þ

Finally, we have to estimate ‘u� ‘w: calling A ¼ fx a W : jvðxÞj > 1þ hg, we
have that ‘w ¼ ‘v on WnA, while j‘wja j‘vj on A. Moreover, ju� vj > h in
A, hence hjAja kv� ukL1ðWÞ a d, that is, jAja d=h. Whatever h is, up to take

d small enough we have then that the measure jAj is as small as we wish; in
particular, since ‘u a LpðWÞ, we can take d so small that k‘ukL pðAÞ < h. Con-
sequently, we can evaluate

k‘w� ‘ukL pðWÞ a k‘v� ‘ukL pðWnAÞ þ k‘w� ‘ukL pðAÞ

a dþ k‘wkL pðAÞ þ k‘ukL pðAÞ

a dþ k‘vkL pðAÞ þ k‘ukL pðAÞ

a dþ 2k‘ukL pðAÞ þ k‘u� ‘vkL pðAÞ

a 2dþ 2h:

Since this estimate holds for any pb 1, in particular the case p ¼ 1 and the
estimates (3.8) and (3.4) give

kw� ukBVðWÞ ¼ kw� ukL1ðWÞ þ jDu�DwjðWÞa 4hþ 6dþ 8þ 8h

h
Cd;

from which we further deduce

ku� wkBVðWÞ þ k‘u� ‘wkL pðWÞ a 6hþ 8dþ 8þ 8h

h
Cd:

We are finally in position to conclude, by defining ~vv ¼ 1
1þ2hw. In fact, it is clear

that ~vv a SBVðWÞ, that J~vv ¼ Jw ¼ Jv, that k~vvkLl a 1 ¼ kukLl , and that ~vv belongs
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to ClðWnJvÞ as soon as so does v. Moreover,

kw� ~vvkBVðWÞ þ k‘w� ‘~vvkL pðWÞ ¼
2h

1þ 2h
ðkwkBVðWÞ þ k‘wkL pðWÞÞ;

so we finally conclude the proof by evaluating

ku� ~vvkBVðWÞ þ k‘u� ‘~vvkL pðWÞ

a 2ðku� wkBVðWÞ þ k‘u� ‘wkL pðWÞÞ þ 2hðkukBVðWÞ þ k‘ukL pðWÞÞ

a 12hþ 16dþ 16þ 16h

h
Cdþ 2hðkukBVðWÞ þ k‘ukL pðWÞÞ < e;

where the last inequality holds true as soon as h has been chosen small enough
depending on u and e, and d small enough depending on h (recall that C depends
on u and h but not on d). r

In the lemma above, we have considered the situation of a bounded function
u a SBV. Now we notice that, in fact, for our purposes it is always admissible
to assume that an SBV function is bounded: this is a very simple observation,
which will be useful later.

Lemma 3.3. Let W � RN be an open set, and let u a SBVðWÞ be a function
with ‘u a LpðWÞ for some pb 1. Then, for every e > 0 there exists a function
ue a SBVðWÞBLlðWÞ such that

ku� uekBVðWÞ þ k‘u� ‘uekL pðWÞ a e; Jue � Ju:ð3:9Þ

Proof. Keep in mind that Ju is countably rectifiable, hence it is contained, up
to HN�1-negligible subsets, in the union of C1 compact manifolds Mi, i a N.
Moreover, as already observed, by [4, Theorem 3.88] we know that the two traces
tei : BVðWÞ ! L1ðMiÞ on the two sides of each manifold Mi are continuous. As
a consequence, we can select a big constant K such that

kukL1ðAK Þ þ k‘ukL1ðAK Þ þ k‘ukL pðAK Þ þ jDsujðBKÞ < e;ð3:10Þ

where we call

AK ¼ fx a W : juðxÞjbKg; BK ¼
[
i AN

fx a Mi;maxfjtþi ðxÞj; jt�i ðxÞjgbKg:

With such a choice of K , we then let ue be the standard truncation of u at level
K , that is, ueðxÞ ¼ sgnðuðxÞÞminfK; juðxÞjg. It is clear that ue a SBVðWÞ and that
‘ue a LpðWÞ, as well as that Jue � Ju. Since, on the other hand, Dsue ¼ Dsu on
JunBK and jDsueja jDsuj on BK , then (3.9) comes directly from (3.10) since

ku� uekBVðWÞ þ k‘u� ‘uekL pðWÞ

a kukL1ðAK Þ þ k‘ukL1ðAK Þ þ jDsujðBKÞ þ k‘ukL pðAK Þ: r
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4. The proof of Theorem B

This section is devoted to the proof of Theorem B; before doing that, we present
three simple technical results. The first one is an extension lemma for smooth
sets with a C1 crack.

Lemma 4.1. Let A � RN be a smooth, bounded, open set, and let H �� A be
a compact, ðN � 1Þ-dimensional, connected, C1 manifold, with (possibly empty)
C1 boundary. Then, there exists a constant C, depending only A and on H, such
that for any three functions g a L1ðqAÞ and ge a L1ðHÞ, there exists a function
j a W 1;1ðAnHÞ whose trace on qA coincides with g and whose two traces on (the
two sides of ) H are gþ and g�, satisfying

kjkW 1; 1ðAnHÞ aCðkgkL1ðqAÞ þ kgþkL1ðHÞ þ kg�kL1ðHÞÞ:ð4:1Þ

If moreover g a C1ðqAÞ and ge a C1ðHÞ with gþ ¼ g� on qH, then there exists
a function c a W 1;lðAnHÞ, again with g as trace on qA and ge as traces on H,
satisfying

kckW 1;lðAnHÞ aCðkgkC1ðqAÞ þ kgþkC1ðHÞ þ kg�kC1ðHÞÞ:ð4:2Þ

Proof. Since H is a C1 manifold with C1 boundary, we can find an open,
Lipschitz set A0 �� A, contained in a small neighborhood of H, with the
property that its boundary qA0 consists of two parts, Hþ and H�, so that Hþ

and H� are two C1 manifolds with disjoint interiors and with the same ðN � 2Þ-
dimensional boundary qHþ ¼ qH� ¼ qH. This is a very simple geometrical fact,
Figure 1 depicts the situation for the two possible cases, namely, when H has
non-empty boundary (H1) and when it has empty boundary (H2).

As a consequence, we can find a di¤eomorphism F : AnH ! AnA0,
bi-Lipschitz up to the boundary for the geodesic distance, which is the identity
in a neighborhood of qA, and such that the images of (the two sides of ) H under
F are Hþ and H�.

The standard extension result for Lipschitz sets ensures that there exists a
constant C1, depending only on A and on A0, thus actually only on A and on
H, such that for any two maps g a L1ðqAÞ and g0 a L1ðqA0Þ there exists a func-
tion v a W 1;1ðAnA0Þ whose traces on qA and qA0 coincide with g and g0 respec-
tively and such that

kvkW 1; 1ðAnA0Þ aC1ðkgkL1ðqAÞ þ kg0kL1ðqA0ÞÞ:ð4:3Þ

Figure 1. Construction in Lemma 4.1: the shaded parts on the right are A0.
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To obtain the searched j, then, it is then enough to define g0 as g
þ 	F�1 on Hþ

and as g� 	F�1 on H�, and then simply set j ¼ v 	F; the validity of (4.1) comes
directly from (4.3) and by the fact that F is bi-Lipschitz up to the boundary.

A similar argument can be done to find the searched function c when g, gþ

and g� are C1. In fact, the function defined on qðAnA0Þ, which equals g on qA
and g0 on qA0, is C

1 by construction, so there exists a function w a W 1;lðAnA0Þ
with g and g0 as traces, for which

kwkW 1;lðAnA0Þ aC1ðkgkC1ðqAÞ þ kg0kC1ðqA0ÞÞ:

Thus, defining c ¼ w 	F, we get a W 1;l function on AnH with g, gþ and g�

as traces and satisfying the estimate (4.2). r

Our second preliminary lemma is the estimate of how much a continuous
function changes (in the BV sense) if we substitue its value in a ball with the
average value on the ball itself. We will use the following notation: given a
continuous function j on an open set U , and given a ball B compactly contained
in U , we set jB as the function

jBðxÞ ¼
jðxÞ if x a UnB;Z
B

jðyÞ dy if x a B:

8><
>:ð4:4Þ

Lemma 4.2. Let U be an open set, and B a ball compactly contained in U. Let
moreover j a W 1;1ðUÞ be a continuous function. Then, the function jB defined in
(4.4) belongs to SBVðUÞ, its jump set satisfies JjB � qB, and

kj� jBkBVðUÞ aC 0kjkW 1; 1ðBÞ;ð4:5Þ

where C 0 is a purely geometrical constant, not depending on j, U or B.

Proof. Since the function jB coincides with the continuous, W 1;1 function j in
UnB and is constant in B, of course it belongs to SBVðUÞ with JjB � qB, hence
we only have to deal with (4.5).

First of all, calling k ¼
Z
B

jðyÞ dy, by the trace inequality and the Sobolev–

Poincarè inequality we get thatZ
qB

jj� kjaCTkj� kkW 1; 1ðBÞ ¼ CTkj� kkL1ðBÞ þ CTkDjkL1ðBÞ

aCTðCP þ 1ÞkDjkL1ðBÞ:

Notice that both the constants CT and CP depend on the radius of the ball B;
nevertheless, if we define C1 as the smallest constant such that for every jZ

qB

jj� kjaC1kDjkL1ðBÞ;
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a trivial rescaling argument ensures that C1 does not depend on the radius of B.
Then, keeping in mind that j is continuous, we can evaluate

kj� jBkBVðUÞ ¼ jDjBjðqBÞ þ kj� jBkW 1; 1ðBÞ

¼
Z
qB

jj� kj þ kj� jBkL1ðBÞ þ kDjkL1ðBÞ

a ðC1 þ 1ÞkDjkL1ðBÞ þ 2kjkL1ðBÞ a ðC1 þ 2ÞkjkW 1; 1ðBÞ;

hence (4.5) is established with the purely geometric constant C 0 ¼ C1 þ 2. r

Our last preliminary technical result allows to modify the jump set of a SBV
function, in order to make it more regular.

Lemma 4.3. Let u a SBVðWÞ, and let M �� W be a compact manifold, poly-
hedral or of class C1, such that Ju � M. Then, for every d > 0, there exists
a function v a SBVðWÞ such that Jv � M and HN�1ðMnJvÞ ¼ 0, satisfying
ku� vkBVðWÞ þ ku� vkLlðWÞ < d. In addition, if u a SBVpðWÞ, then v a SBVpðWÞ
and also k‘u� ‘vkL pðWÞ < d. Finally, if u belongs to ClðWnMÞ, or to
W 1;lðWnMÞ, then so does v.

Proof. Let us assume, for a moment, that M is connected, and let us consider
a smooth open set A such that M �� A �� W. Let jþ : M ! R be a C1 func-
tion with jþðxÞ ¼ 0 for every point x in the boundary of M, and jþðxÞ > 0
for every other x a M, and let j� : M ! R be identically 0. By Lemma 4.1, we
get a function j a W 1;lðAnMÞ, whose trace at qA is zero, while the traces on
the two sides of M are jþ and j�. In particular, extending j by 0 outside of A,
we have j a SBVðWÞBW 1;lðWnMÞ with Jj ¼ M. By Corollary 2.4, we are
allowed to assume that j a SBVðWÞBClðWnMÞBW 1;lðWnMÞ. We want to
define v ¼ uþ ej for a suitable, small e.

Of course, whatever e is, we have that v a SBVðWÞ, and v belongs to
SBVpðWÞ, or ClðWnMÞ, or W 1;lðWnMÞ, as soon as so does u. Moreover,
Jv � Ju A Jj ¼ M. The fact that ku� vkBVðWÞ þ ku� vkLlðWÞ < d is clearly true
for every e small enough, as well as the fact that k‘u� ‘vkL pðWÞ < d, in case that
u a SBVpðWÞ. Therefore, to conclude we only have to find a small e such that
HN�1ðMnJvÞ ¼ 0.

But actually, any point x a M belongs to the jump set of v for all real e except
one; as a consequence, the values of e for which HN�1ðMnJvÞ > 0 are only
countably many, and then the existence of some e as required is obvious and
the proof is conclued when M is connected.

If M is not connected, by compactness it has anyway a finite number of
connected components Mi; we can then consider disjoint, smooth sets Ai with
Mi �� Ai �� W, and repeat in each of them the above argument, so that the
conclusion follows also in the general case. r
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We give now the definition of the extension domains that we are going to need
for Theorem B.

Definition 4.4. Let W � RN be an open set. We say that W is a local extension
domain if W 1;pðWÞ is dense in W 1;1ðWÞ.

Notice that this definition is even weaker than the usual one. In fact, given a
function u a W 1;1ðWÞ, we do not need a function ~uu a W 1;1ðRNÞ which coincides
with u in W, we only want to find a function v a W 1;pðWÞ such that kv� ukW 1; 1ðWÞ
is arbitrarily small (by Meyers and Serrin Theorem, this requirement is of course
weaker). We are now ready to present the construction of the approximation
required by Theorem B.

Proof (of Theorem B). Let us take W and u as in the claim, and let us fix
a very small constant ef kukBVðWÞ. Notice that, thanks to Lemma 3.3, we can
assume that u a LlðWÞ. Moreover, we can also assume that the support of u
is bounded, that is, uðxÞ ¼ 0 for every x a W with jxj big enough: to achieve
this, it is enough to multiply u by a smooth function h : RN ! ½0; 1� such that
hðxÞ ¼ 1 for jxj < R1, hðxÞ ¼ 0 for jxj > R2, kDhkLl a 1, and R2 gR1 g 1. We
aim to find a function ue a SBVpðWÞBClðWnJueÞ satisfying

kue � ukBVðWÞ < e; k‘ue � ‘ukL pðWÞ < e:ð4:6Þ

Moreover, we will find a compact, ðN � 1Þ-dimensional manifold M, C1 and
with C1 boundary, such that Jue is contained in M and coincides with it up to
HN�1-negligible subsets. Of course, once we do so we will have concluded the
proof.

We start by selecting a su‰ciently big constant K , depending on W, u and e, so
that both propertiesZ

fj‘uj>2Kg
j‘uj p < e p

2 pþ2
;

k‘ukL pðFÞ <
e

2 � 21=p ; kukL1ðFÞ þ k‘ukL1ðF Þ <
e

2C 0

EF � W : jF ja
2kukBVðWÞ

K

ð4:7Þ

hold, where C 0 is the constant of Lemma 4.2. We also fix a small constant d,
depending on W, u, e and K , hence actually only on W, u and e, satisfying

ð6þ 5C 0Þd < e

2
; ð3KÞ p�15d <

e p

12
; d < e

�
1�

� 5

6

�1=p�
:ð4:8Þ

We will define several approximating functions trough successive refinements,
until we will reach the desired function ue. For the sake of clarity, we divide our
construction in some steps.
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Step I. The function v1 a SBVðWÞ from Theorem A.
First of all, we apply Theorem A to get a first approximation v1 a SBVðWÞ which
satisfies

kv1 � ukBVðWÞ < d;ð4:9Þ

and so that v1 is Cl in WnJv1 ; moreover, there is a compact, C1 manifold
M 0 �� W, with C1 boundary, which contains Jv1 . Notice that the choice ue ¼ v1
does not work because Theorem A does not give information on k‘v1 � ‘ukL pðWÞ,
and we do not even know whether ‘v1 a LpðWÞ.

Step II. The function v2 a SBVðWÞBClðWnM 0Þ, with C1 traces on M 0 coinciding
on qM 0.
We want now to modify v1 so to become smooth in WnM 0, and in such a way
that its traces on M 0 become C1 and coincide on qM 0. To do so, let us call Mi,
for 1a iaP, the connected components of M 0, which are finitely many, and
let Ai be disjoint smooth open sets, compactly contained in W, and each one
compactly containing the corresponding manifold Mi.

We apply Lemma 4.1 to the set A ¼ Ai and with H ¼ Mi, getting a constant
Ci. Then, we set gi ¼ 0 on qAi, and we let gei a L1ðMiÞ be two functions such
that ve1 þ gei are two C1 functions on Mi coinciding on qMi, where ve1 denote
the two traces of vi on Mi, and satisfying

kgei kL1ðMiÞ <
d

ðCi þ 1ÞP :ð4:10Þ

Lemma 4.1 provides then us with a function ji a W 1;1ðAinMiÞ, with zero as trace
on qAi and with gei as traces on Mi and satisfying the estimate (4.1), which by
(4.10) becomes

kjikW 1; 1ðAinMiÞ a
2dCi

ðCi þ 1ÞP :ð4:11Þ

We can then define the function ~vv2 a SBVðWÞ as the function coinciding with
v1 þ ji on each Ai, and with v1 in Wn

S
i Ai. Notice that the J~vv2 � M 0, the traces

of ~vv2 are C
1 on M 0 and coincide on qM 0, and by (4.10) and (4.11) we evaluate

k~vv2 � v1kBVðWÞ ¼
XP
i¼1

kjikW 1; 1ðAinMiÞ þ kgþi � g�i kL1ðMiÞ a 2d;

which by (4.9) implies

k~vv2 � ukBVðWÞ < 3d:

We can then apply Corollary 2.4 to ~vv2 a SBVðWÞ, finding to v2 a SBVðWÞB
ClðWnM 0Þ with kv2 � ~vv2kBVðWÞ < 3d� k~vv2 � ukBVðWÞ, so that

kv2 � ukBVðWÞ < 3d:ð4:12Þ

Notice that, by Lemma 2.5, the traces of v2 on M 0 coincide with those of ~vv2.
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Step III. The function v3 a SBVðWÞBClðWnM 0ÞBW 1;lðW 0nM 0Þ for M 0 ��
W 0 �� W.
Our next goal is to modify v2, so to become W 1;l in W 0nM 0 for every open
set W 0 �� W compactly containing M 0. Since the traces of v2 on M 0 are C1 and
coincide on qM 0, and since M 0 is a finite union of connected, C1 manifolds,
Lemma 4.1 provides us with a function c a W 1;lðWnM 0Þ which equals 0
outside of a neighborhood of M 0, and whose traces on M 0 coincide with
those of v2; considered on the whole W, c is of course an SBV function. Again
by Corollary 2.4 and Lemma 2.5, we can assume without loss of generality
that c a SBVðWÞBW 1;lðWnM 0ÞBClðWnM 0Þ. Let us then write v2 ¼ cþ o.
By definition, o a SBVðWÞBClðWnM 0Þ; however, both the traces of o
on M 0 are zero by construction, hence we derive o a W 1;1ðWÞBClðWnM 0Þ.
By Meyers and Serrin Theorem, we can find od a W 1;1ðWÞBClðWÞ such
that kod � okBVðWÞ ¼ kod � okW 1; 1ðWÞ < d. We can now simply define v3 ¼
cþ od: this function clearly belongs to SBVðWÞBClðWnM 0Þ, and since
c a W 1;lðWnM 0Þ and od a ClðWÞ we have also v3 a W 1;lðW 0nM 0Þ for every
M 0 �� W 0 �� W. Finally, by construction kv3 � v2kBVðWÞ < d, which from (4.12)
gives

kv3 � ukBVðWÞ < 4d:ð4:13Þ

Step IV. The function v4 a SBVpðWÞBClðWnM 0Þ.
Observe now that the function v3 is smooth in WnM 0, but this does not
necessarily mean that ‘v3 is in LpðWnM 0Þ. In this step we face with this problem,
replacing v3 with v4 a SBVpðWÞBClðWnM 0Þ. Let h : W ! ½0; 1� be a smooth
function with compact support such that hC 1 on a neighborhood of M 0,
and let us set j ¼ ð1� hÞv3; by construction, j a W 1;1ðWÞ. Let us now use the
assumption on W to be a local extension domain in the sense of Definition
4.4: then, we can approximate j in W 1;1ðWÞ with W 1;p functions, so again
by Meyers and Serrin we can take a function jd a W 1;pðWÞBClðWÞ with
kjd � jkW 1; 1ðWÞ < d. Let us then define v4 ¼ hv3 þ jd: since ‘v3 is bounded
in AnM 0, being M 0 �� A ¼ fhA 0g �� W, we derive that hv3 a SBVpðWÞB
ClðWnM 0Þ, so it is also v4 a SBVpðWÞBClðWnM 0Þ, and kv4 � v3kBVðWÞ ¼
kjd � jkBVðWÞ ¼ kjd � jkW 1; 1ðWÞ < d, which by (4.13) gives

kv4 � ukBVðWÞ < 5d:ð4:14Þ

Step V. The final function ue.
We are now ready to give our last two approximating functions, namely, the
function v5 and the final function ue. Let us consider the set

F ¼ fx a WnM 0 : j‘v4ðxÞj > Kg;

where K is the constant in (4.7). The set F is open in WnM 0, since v4 is smooth
there; moreover, it has small measure: indeed, also by (4.14), we have

KjF ja
Z
F

j‘v4ja kv4kBVðWÞ a kukBVðWÞ þ kv4 � ukBVðWÞ a 2kukBVðWÞ;
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and by (4.7) this implies that

k‘ukL pðFÞ <
e

2 � 21=p ; kukL1ðFÞ þ k‘ukL1ðF Þ <
e

2C 0 :ð4:15Þ

Now, let us use the fact that ‘v4 belongs to LpðWnM 0Þ, hence in particular
‘v4 a LpðFÞ: as a consequence, we can take finitely many disjoint balls Bi,
1a ia k, compactly contained in F , with the property that

k‘v4kL pðFnS k
i¼1

BiÞ a
e

2 � 21=p :ð4:16Þ

We now define v5 : W ! R as the function given by

v5ðxÞ ¼
ðv4ÞBi

if x a Bi;

v4ðxÞ if x B
Sk

i¼1 Bi;

(

where ðv4ÞBi
denotes the average of v4 in the ball Bi, according with the notation

of Lemma 4.2. In particular, observe that v5 ¼ v4 on WnF . It is clear by construc-
tion that v5 a SBVpðWÞ, and its jump set is contained in

M ¼ M 0 A
[k
i¼1

qBi:

Observe that M is a C1 and compact manifold, with C1 boundary, and since v4
was smooth on WnM 0, then v5 is smooth on WnM. We apply now Lemma 4.3
to get our final function ue a SBVpðWÞ, which belongs to ClðWnMÞ and which
satisfies

k‘v5 � ‘uekL pðWÞ < d; kv5 � uekBVðWÞ < d; HN�1ðMnJueÞ ¼ 0:ð4:17Þ

Hence, we have then only to take care of (4.6) to conclude.
Recalling the estimate (4.5) of Lemma 4.2, since v4 is a continuous function in

the open set WnM, and by (4.14) and (4.15), we have

kv4 � v5kBVðWÞ aC 0kv4kW 1; 1ðS k
i¼1

BiÞ aC 0kv4kW 1; 1ðF Þ

aC 0ðkv4 � ukBVðWÞ þ kukL1ðFÞ þ k‘ukL1ðFÞÞa 5C 0dþ e

2
;

so that again by (4.14), by (4.17), and by (4.8)

ku� uekBVðWÞ a ku� v4kBVðWÞ þ kv4 � v5kBVðWÞ þ kv5 � uekBVðWÞ

a ð6þ 5C 0Þdþ e

2
< e;

and the first estimate in (4.6) follows.
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Let us then pass to estimate the Lp norm of ‘v5 � ‘u in W. In WnF , using
(4.14), (4.7) and (4.8), and recalling that v5 ¼ v4, we can evaluateZ

WnF
j‘v5 � ‘uj p ¼

Z
WnFBfj‘uja2Kg

j‘v4 � ‘uj p þ
Z
WnFBfj‘uj>2Kg

j‘v4 � ‘uj p

a ð3KÞ p�1k‘v4 � ‘ukL1ðWÞ þ 2 p

Z
fj‘uj>2Kg

j‘uj p

a ð3KÞ p�15dþ e p

4
a

e p

3
:

Instead, in F , by (4.15), by (4.16) and by construction we have

k‘v5 � ‘ukL pðFÞ a k‘v5kL pðFÞ þ k‘ukL pðF Þ

¼ k‘v4kL pðFnS k
i¼1

BiÞ þ k‘ukL pðF Þ a
e

21=p
:

Putting together the last two estimates, (4.17), and again (4.8), we get the second
estimate in (4.6), therefore the proof is concluded. r

For later use, we now remark what we have found after Step III in the above
proof, namely, the result below.

Lemma 4.5. Let W be an open set, u a SBVðWÞ, and let M be a C1 manifold with
C1 boundary such that, for some small e, jDsujðJunMÞ < e=4. Then, there exists a
function v a SBVðWÞBClðWnMÞ such that kv� ukBVðWÞ < 4e,HN�1ðMnJvÞ ¼ 0,
both the traces of v on the two sides of M are C1, and v belongs to W 1;lðW 0nMÞ
for every M �� W 0 �� W. Moreover, if u is compactly supported in W, then so is
also v (and then, one has v a W 1;lðWnMÞ).

In fact, in this lemma, to get that HN�1ðMnJvÞ ¼ 0 one has to rely also on
Lemma 4.3; moreover, the last point comes directly from the construction.

Remark 4.6. We remark that, in Theorem B, we do not have Juj � Ju, which
was the case for Theorem A. In fact, in our construction of the functions uj for
the proof of Theorem B, we have enlarged the jump set in Step V.

Observe that the domain W could be any open set in RN in Theorem A, while
we have added the assumption on W to be a local extension domain for Theorem
B. Nevertheless, it is also possible to consider any open set W, up to replace the
Lp convergence by an L

p
loc convergence.

Theorem 4.7. Let W � RN be an open set, and let u a SBVp
lðWÞ. Then, there

esists a sequence of functions uj a SBVðWÞBSBVp
locðWÞ and of compact, C1,

manifolds with (possibly empty) C1 boundary Mj �� W, such that Juj � Mj,
HN�1ðMjnJuj Þ ¼ 0, and so that

kuj � ukBVðWÞ ! 0; uj a ClðWnJujÞ; ‘uj ���!
L

p

loc
ðWÞ

‘u:
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Proof. It is enough to repeat the proof of Theorem B with few minor modifica-
tions. More precisely, we define the functions v1, v2 and v3 exactly as in the steps
I, II and III of that proof. In place of Step IV, which is the only point where we
have used the assumption on W of being a local extension domain, we simply set
v4 ¼ v3. Of course, we do not know whether v4 a SBVpðWÞ, but v4 a SBVp

locðWÞ
for sure, since it is smooth outside the compact set M 0 and ‘v4 is bounded
around M 0.

Keep now in mind Step V: the fact that ‘v4 was in LpðWÞ was used only to get
the balls Bi satisfying (4.16). In the present case we cannot get such an estimate,
but since ‘v4 a L

p
locðWÞ we can find balls Bi for which

k‘v4kL pðFBWen
SH

i¼1
BiÞ a

e

2 � 21=p ;ð4:16 0Þ

where We �� W is a smooth open set such that

M 0 �� We; fx a W : jxj < e�1;Bðx; eÞ �� Wg � We:

Continuing Step V, we can notice that the proof of the fact that ku� uekBVðWÞ < e

did not use (4.16), hence the validity of the estimate still holds. Instead, (4.16) was
used to obtain that k‘u� ‘uekL pðWÞ < e, and using in the very same way (4.16 0)
we readily get k‘u� ‘uekL pðWeÞ < e, which implies the L

p
loc convergence stated

above. The proof is then concluded. r

Remark 4.8. A further generalization of Theorem B for the case of a generic
open set W � RN is possible. Namely, we can have the sequence uj in SBVpðWÞ,
instead of SBVðWÞBSBVp

locðWÞ. But, in this case, both the BV and the Lp con-
vergences in (1.3) become a BVloc and a L

p
loc convergence. To prove this, just

define the open sets We as in the proof of Theorem 4.7, notice that v4 is Lipschitz
in a neighborhood of qWe by construction, and replace v4 with some function
coinciding with it in We, and Lipschitz in WnWe. Of course, the function v4 belongs
to SBVpðWÞ, but we do not have any estimate of u� ue in WnWe, so that even
the BV estimate of u� ue remains valid only in We, thus we have only a BVloc

estimate.

5. The proof of Theorem C

This section is devoted to present the proof of Theorem C. In our construction,
we will make use of Theorem B, of Theorem 1.1 (in particular, the part 2 by
Cortesani and Toader), and of the following two technical lemmas.

Lemma 5.1. Let W � RN be an open set and M0 �� W a C1 manifold (possibly
with boundary). Given d > 0 and a neighborhood A �� W of M0, there exist a
di¤eomorphism F : W 7! W, with FðxÞ ¼ x outside of A, and a relatively open, C1

set M � M0 without boundary such that
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kF� Idk
C 1ðW;RN Þ þ kF�1 � Idk

C 1ðW;RN Þ < d;

HN�1ðM0nMÞ < d; FðMÞ ¼
[k
i¼1

Qi;

where the Qi are ðN � 1Þ-dimensional open cubes with pairwise disjoint closures.

Lemma 5.2. Let u a SBVpðWÞBC1ðWnJuÞBW 1;lðWnJuÞ with a polyhedral
jump set Ju �� W (i.e., Ju is the intersection of W with a finite union of ðN � 1Þ-
dimensional simplexes). Given e > 0 there exists a function ue a SBVpðWÞB
ClðWnJueÞBW 1;lðWnJueÞ such that Jue �� W is a C1 manifold with C1 boundary
and

ku� uekBVðWÞ < e; k‘u� ‘uekL pðW;RN Þ < e; HN�1ðJuDJueÞ < e:

Moreover, if P is any given hyperplane in RN, we can build the function ue in such
a way that JuenP �� RNnP, that is, the part of Jue which is not contained in P
is a strictly positive distance apart from it.

The first lemma is a variant of a well know result stated in [10, Th. 3.1.23], in
particular it can be deduced at once from [1, Th. 3.1]. The second one, instead, is
a technical approximation result; notice that the result is not trivial because a
polyhedral set is not a C1 manifold, since di¤erent simplexes might intersect
with each other and with qW. To keep this section simple, we postpone the proof
of Lemma 5.2 to the Appendix.

Proof of Theorem C. For the sake of clarity, we will divide this proof in
some steps. First, we will consider the case when u is compactly supported, then
we will deduce the general case.

Part A. The case of u compactly supported in W.

Step I. The set M and the function u1 from Theorems A and B.
First of all, we fix an arbitrary e > 0 and we select a C1 manifold M0 �� W with
C1 boundary in such a way that

HN�1ðJuDM0Þ <
e

3
; jDujðJunM0Þ <

e

5
:ð5:1Þ

Applying Lemma 5.1 with some constant df e to be specified later, we obtain
another C1 manifold M � M0 without boundary, a di¤eomorphism F : W 7! W
coinciding with the identity map outside a compact subset of W, and finitely
many disjoint open ðN � 1Þ-dimensional simplexes fQigi¼1;...;k such that

HN�1ðJuDMÞ < e

2
; jDujðJunMÞ < e

4
;ð5:2Þ
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as well as

kF� Idk
C 1ðW;RN Þ þ kF�1 � Idk

C 1ðW;RN Þ < d; FðMÞ ¼
[k
i¼1

Qi:ð5:3Þ

In fact, the properties (5.3) are directly given by Lemma 5.1, and the first inequal-
ity in (5.2) comes from the corresponding one in (5.1) as soon as d < e=6, while
the second inequality in (5.2) comes from the corresponding one in (5.1) if d is
small enough, because Dsu is a finite measure, absolutely continuous with respect
to HN�1.

Lemma 4.5 (which is nothing else than Theorem A and the first three steps
of Theorem B) provides then us with a function u1 a SBVðWÞBClðWnMÞB
W 1;lðWnMÞ such that

HN�1ðMnJu1Þ ¼ 0; ku� u1kBVðWÞ < 4e:ð5:4Þ

Notice that, since u1 a SBVðWÞBW 1;lðWnMÞ, then of course it is also u1 a
SBVpðWÞ.

Step II. The function v1 from Theorem 1.1.
Let us now set

v :¼ u 	F�1 � u1 	F�1:

By the first estimate in (5.2) and the last one in (5.4) we have that, if d is su‰-
ciently small,

HN�1ðJvnFðMÞÞ < e; kvkBVðWÞ < 8e:ð5:5Þ

Moreover, of course v is still compactly supported in W and v a SBVpðWÞ,
however we have no a priori estimate on the Lp norm of ‘v.

Let us now denote by ni the normal vector to each of the simplexes Qi, and set
Pi ¼ fxþ tni : x a Qi; t a ð�h; hÞg, where h is a su‰ciently small parameter to be
chosen. In particular, we take h so small that the parallelepipeds Pi are pairwise
disjoint.

Since the function v is bounded by construction, we can apply to it the re-
sult by Cortesani and Toader, Theorem 1.1, finding a sequence f fjg of SBVp

functions with polyhedral jump sets, with fj a ClðWnJfjÞBW 1;lðWnJfjÞ, such
that

fj ��!
L1ðWÞ

v; ‘fj ��!
L pðWÞ

‘vð5:6Þ

and satisfying property (1.2) for any admissible function g. Notice that, since v is
compactly supported in W, again by multiplication by a smooth cut-o¤ function
we can assume without loss of generality that all the functions fj are supported
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inside some given open set W 0 �� W. We claim that, by setting v1 ¼ fj for some
jg 1, one has

k‘v� ‘v1kL pðWÞ < e; kv1kBVðWÞ a 2kvkBVðWÞ a 16e;ð5:7Þ

HN�1
�
Jv1

/[k
i¼1

Pi

�
< e:

In fact, the first inequality in (5.7) is obvious for j big enough by (5.6). Instead,
the validity of the second inequality in (5.7) for jg 1 comes by (5.6) and applying
(1.2) with the function gðx; a; b; nÞ ¼ jb� aj, since this implies that

lim sup
j!l

k fjkBVðWÞ ¼ lim sup
j!l

ðk fjkL1ðWÞ þ k‘fjkL1ðWÞ þ jDsfjjðWÞÞ

¼ kvkL1ðWÞ þ k‘vkL1ðWÞ þ lim sup
j!l

Z
JfjBW 0

gðx; f þj ; f �j ; nfjÞ dHN�1

a kvkBVðWÞ:

Finally, the third property of (5.7) for jg 1 comes by applying again (1.2),
this time with the u.s.c. function gðx; a; b; nÞ which coincides with 0 whenever
x a

S
i¼1;...;k Pi, and with 1 otherwise: indeed,

lim sup
j!l

HN�1
�
Jfj

/[k
i¼1

Pi

�
¼ lim sup

j!l

Z
JfjBW 0

gðx; f þj ; f �j ; nfjÞ dHN�1

a

Z
JvBW 0

gðx; vþ; v�; nvÞ dHN�1

¼ HN�1
�
Jv

/[k
i¼1

Pi

�
< e;

since
Sk

i¼1 Pi � FðMÞ and recalling (5.5). For future reference we observe that
for every 1a ia k

kTrðv1;Qi þ hniÞ � Trðv1;Qi � hniÞkL1ðQiÞ a jDv1jðPiÞ;ð5:8Þ

where Trðv1;Qi þ hniÞðxÞ and Trðv1;Qi � hniÞðxÞ denote the upper trace of v1
on Qi þ hni, and its lower trace on Qi � hni (where ‘‘upper’’ and ‘‘lower’’ are
intended in the direction of ni).

Step III. The function v2.
Let C : W ! W be a piecewise a‰ne function which is a bijection from Wn

S
i Pi

to Wn
S

i Qi, and such that CðxÞ ¼ x unless x has distance at most
ffiffiffiffiffi
N

p
h fromS

i Pi, while CðPiÞ ¼ CðqðPiÞÞ ¼ Qi for every i. In particular, we can take such
a function so that, for every i, the function C maps each of the two simplexes
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Qi e hni in an a‰ne way onto Q 0
i � Qi, obtained from Qi with an homothety

of factor 1� h. With a slight abuse of notation we denote by C�1 the inverse
of the restriction of C to Wn

S
i Pi, so C�1 maps WnFðMÞ ¼ Wn

S
i Qi onto

Wn
S

i Pi. It is very simple to check that, as soon as h is small enough, one
can find such a map C so that kDCkLlðWÞ a 2 and kDC�1k

LlðWnS
i
QiÞ a 2. We

now set

v2 :¼ v1 	C�1:

From our construction it follows immediately that v2 a SBVpðWnFðMÞÞ, and
clearly v2 can be uniquely extended to a function in SBVpðWÞ, which we still
denote v2. Notice that Jv2 �� W is a polyhedral set. Moreover from (5.7) it
follows that

kv2kBVðWnFðMÞÞ a 2Nþ4e; HN�1ðJv2nFðMÞÞa 2N�1e:ð5:9Þ

To conclude this step, we want an estimate of the BV norm of v2 on the whole W,
as well as of the Lp norm of ‘v� ‘v2. The latter is very easy to obtain; indeed,
by construction, (5.7) yields that if h is very small then

k‘v� ‘v2kL pðWÞ < 2e:ð5:10Þ

Concerning the BV norm of v2, by recalling (5.9), (5.8) and (5.7), the definition of
the Q 0

i , and the definition of C on qPi, we get

kv2kBVðWÞ ¼ kv2kBVðWnFðMÞÞ þ
Xk
i¼1

Z
Qi

jvþ2 � v�2 j dHN�1ð5:11Þ

aCeþ
Xk
i¼1

Z
Q 0

i

jvþ2 � v�2 j dHN�1 þ
Z
QinQ 0

i

jvþ2 � v�2 j dHN�1

aCeþ
Xk
i¼1

kTrðv1;Qi þ hniÞ � Trðv1;Qi � hniÞkL1ðQiÞ

þ C 0hHN�1ðQiÞkv1kLl

aCeþ jDv1j
�[

i

Pi

�
þ C 0hHN�1

�[
i

Qi

�
kv1kLl aC 0e;

where C and C 0 are two constants depending only on N (that we do not write
explicitely just for the sake of shortness), and the last inequality is true as soon
as h is small enough (keep in mind that v1 is bounded by construction).

Step IV. The final functions w, we and ue.
Let us now define w ¼ u1 	F�1 þ v2, which is by construction a function in
SBVpðWÞ. From Steps I and III we know that Jw � FðMÞA Jv2 and the latter
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set is a polyhedral set compactly contained in W. Moreover, from (5.2) and (5.9)
we have that

HN�1ððFðMÞA Jv2ÞDFðJuÞÞa 2Ne:ð5:12Þ

We claim that

ku 	F�1 � wkBVðWÞ a ðC 0 þ 5Þe; k‘ðu 	F�1Þ � ‘wkL pðWÞ < 2e:ð5:13Þ

The first inequality follows by (5.11), (5.4) and (5.3), while the second is simply
(5.10), since by definition

u 	F�1 � w ¼ u 	F�1 � u1 	F�1 � v2 ¼ v� v2:

Notice that, by Lemma 4.3 and Corollary 2.4, up to an arbitrarily small modifi-
cation both in the BV norm and in the Lp norm of the absolutely continuous part
of the gradient, we can assume that Jw ¼ FðMÞA Jv2 (up to HN�1-negligible
sets) and that w a ClðWnJwÞ.

Keep in mind that, since u1 a ClðWnJu1ÞBW 1;lðWnJu1Þ, v1 a ClðWnJv1ÞB
W 1;lðWnJv1Þ, F is a di¤eomorphism, and C is piecewise a‰ne, then w also
belongs to W 1;lðWnJwÞ. As a consequence, we can apply Lemma 5.2 to w, find-
ing a function we a SBVpðWÞBClðWnJwe

ÞBW 1;lðWnJwe
Þ such that Jwe

�� W
is a manifold of class C1 with C1 boundary and satisfying

kw� wekBVðWÞ < e; k‘w� ‘wekL pðW;RN Þ < e; HN�1ðJwDJwe
Þ < e:ð5:14Þ

We can finally set the final function ue ¼ we 	F. Then, keeping in mind (5.13),
(5.3), (5.14) and (5.12), as well as the fact that Jw ¼ FðMÞA Jv2 , we immediately
obtain

ku� uekBVðWÞ < C 00e; k‘u� ‘uekL pðW;RN Þ < C 00e; HN�1ðJuDJueÞ < C 00e;

for a suitable, purely dimensional constant C 00. The thesis is then obtained in this
case.

Part B. The general case.
Let us now pass to consider the general case, which only requires few simple
arguments to be reduced to the preceding, particular one. We divide for sim-
plicity also this part in few steps.

Step I. The case of Ju �� W.
First of all, let us assume that u is not necessarily compactly supported in W,
but the jump set of u is compactly contained in W. In this case, we can argue
more or less as in Lemma 2.2; that is, we take two open sets A1 and A2 such
that Ju �� A1 �� A2 �� W, and we use a smooth cut-o¤ function to write
u ¼ u1 þ u2, with u1 a SBVpðWÞ supported in A2, and u2 a W 1;pðWÞ supported
in WnA1. The conclusion is then obtained just applying Part A to the function
u1, and Meyers and Serrin Theorem to u2.
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Step II. The case of W ¼ RN
þ : separating the jump set from the boundary.

Let us now consider the case when W ¼ RN
þ ¼ fx a RN : xN > 0g: we aim to

approximate a given u a SBVpðWÞ with another function whose jump set is a
positive distance apart from qW, that is, we claim the existence of a function
v a SBVpðWÞ such that

distðJv; qWÞ > 0; kv� ukBVðWÞ < e;ð5:15Þ
k‘v� ‘ukL pðWÞ < e; HN�1ðJvDJuÞ < e:

First of all, as already done at the beginning of the proof of Theorem B, we can
assume without loss of generality that the support of u is bounded. Then, via
multiplication with a smooth cut-o¤ function, we can also write u ¼ u1 þ u2,
with u1; u2 a SBVpðWÞ and so that u1 is compactly supported in W and

Ju ¼ Ju1 A Ju2 ; HN�1ðJu2Þ < d; jDsu2jðJu2Þ < d;ð5:16Þ

for some d ¼ dðeÞ to be specified later. Then, we let u3 a SBVpðRNÞ be the
extension of u2 by symmetry through the hyperplane fxN ¼ 0g ¼ qW, that is,
u3ðx; yÞ ¼ u2ðx; jyjÞ. Notice that by definition

HN�1ðJu3Þ < 2d; jDsu3jðJu3Þ < 2d:

Notice also that, since the support of u is bounded, then u3 is compactly sup-
ported in RN (while u2 is not compactly supported in W). Hence, we can apply
as before Theorem 1.1 to the function u3 so to find a function ~uu3 a SBVpðRNÞB
ClðRNnJu3ÞBW 1;lðRNnJu3Þ with polyhedral jump set Ju3 satisfying

ku3 � ~uu3kL1ðRN Þ < d; k‘u3 � ‘~uu3kL1ðRN Þ < d; k‘u3 � ‘~uu3kL pðRN Þ < d;ð5:17Þ

and by (1.2) we have also

HN�1ðJ~uu3Þa 2HN�1ðJu3Þ < 4d; jDs~uu3jðJ~uu3Þa 2jDsu3jðJu3Þ < 4d:ð5:18Þ

Putting together the last estimates, we immediately deduce

ku3 � ~uu3kBVðRN Þ < 8d:ð5:19Þ

Let us now apply Lemma 5.2 to the function ~uu3 with the hyperplane

P ¼ fxN ¼ 0g ¼ qW, finding a function ~uu3; d a SBVpðRNÞBClðRNnJ~uu3; dÞB
W 1;lðRNnJ~uu3; dÞ, satisfying

k~uu3 � ~uu3; dkBVðRN Þ < d; k‘~uu3 � ‘~uu3; dkL pðRN Þ < d; HN�1ðJ~uu3DJ~uu3; dÞ < d:ð5:20Þ

and such that the part of the jump set of ~uu3; d not contained in qW has positive
distance from qW itself. To conclude, it is enough to define v ¼ u1 þ ~uu3; d on W.
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Indeed, the jump set of v has positive distance from qW by construction, and of
course

Ju1nJ~uu3; d � Jv � Ju1 A J~uu3; d :ð5:21Þ

Moreover,

kv� ukBVðWÞ ¼ k~uu3; d � u2kBVðWÞ a k~uu3; d � ~uu3kBVðWÞ þ k~uu3 � u2kBVðWÞ

a k~uu3; d � ~uu3kBVðRN Þ þ k~uu3 � u3kBVðRN Þ < 9d

by (5.20) and (5.19), and in the very same way

k‘v� ‘ukL pðWÞ a k‘~uu3; d � ‘~uu3kL pðRN Þ þ k‘~uu3 � ‘u3kL pðRN Þ < 2d

by (5.20) and (5.17). Finally, by (5.16) and (5.21) we have

JvDJu � ððJu1 A J~uu3; dÞnðJu1 A Ju2ÞÞA ððJu1 A Ju2ÞnðJu1nJ~uu3; dÞÞ � J~uu3; d A Ju2 ;

so by (5.16), (5.20) and (5.18) we have

HN�1ðJvDJuÞ < 6d:

In conclusion, (5.15) holds as soon as soon as we have chosen d ¼ e=9, and the
step is concluded.

Step III. Conclusion.
It is easy to conclude by putting together the last two steps. Indeed, let
u a SBVpðWÞ be a given function. First of all, as already done several times, we
select ~uu a SBVpðWÞ with bounded support and such that

k~uu� ukBVðWÞ < e; k‘~uu� ‘ukL pðWÞ < e; HN�1ðJ~uuDJuÞ < e:ð5:22Þ

Since W has locally Lipschitz boundary, we can find another set W 0 � W, bounded
and with Lipschitz boundary, in such a way that ~uuC 0 in WnW 0, and of course
~uu a SBVpðW 0Þ. By compactness, we can find finitely many smooth, bounded,
open sets Wi � RN , 0a iaK, so that W 0 � W0 AW1 A � � �AWK , W0 �� W, and
for every 1a iaK there is a bi-Lipschitz homeomorphism Fi : R

N ! RN such
that

FiðWiÞ ¼ ð�1; 1ÞN ; FiðWi BWÞ ¼ ð�1; 1ÞN�1 � ð0; 1Þ;
FiðWi B qWÞ ¼ ð�1; 1ÞN�1 � f0g:

Moreover, we can select a smooth partition of unity fhigi¼0;1;...;K associated
with the covering of W 0. We write then ~uu ¼ u0 þ u1 þ � � � þ uK , where for every
0a iaK we have set ui ¼ hi~uu a SBVpðWiÞ.
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Let us now take any i > 0; we have that ui 	F�1
i a SBVpðRN

þ Þ, so by Step II
and in particular (5.15) we find a function vi a SBVðRN

þ Þ such that

kvi � ui 	F�1
i kBVðRN

þ Þ < e; k‘vi � ‘ui 	F�1
i kL pðRN

þ Þ < e;

HN�1ðJviDJui	F�1
i
Þ < e;

and the jump set of vi is a positive distance apart from qRN
þ ; hence, the function

vi 	Fi belongs to SBVpðWiÞ, and its jump set is a positive distance apart from
qWi B qW 0, so in particular from qW 0. As a consequence, if we define

v ¼ u0 þ
XK
i¼1

vi 	Fi;

then we have v a SBVpðW 0Þ, and the jump set Jv of v is a positive distance apart
from qW 0, so in particular Jv �� W. Moreover, from the decomposition of ~uu, also
recalling (5.22), we deduce that

ku� vkBVðWÞ < Ce; k‘u� ‘vkL pðWÞ < Ce; HN�1ðJuDJvÞ < Ce;

where C is a geometric constant, only depending on the sets Wi and on the
bi-Lipschitz constants of the functions Fi. We can then simply apply Step I to
the function v, and the proof is concluded. r

6. An application of our result

In this last section we present an application of our first result, Theorem A. Let
W � RN be an open set, and for e > 0 let us denote by Ge any finite collection of
disjoint open cubes Q � W with side length e and arbitrary orientation. Given a
function u a L1

locðRnÞ and e > 0, we consider the quantity

keðuÞ :¼ eN�1 sup
Ge

X
Q AGe

Z
Q

ju� uQj dx;

denoting uQ ¼
Z
Q

u. This quantity was introduced in [2], where it was proved that

in the special case of the characteristic function of a measurable set the following
formula holds

lim
e!0

keðwEÞ ¼
1

2
PðEÞ;

where PðEÞ denotes the perimeter of the set E. This formula was then extended
in [11] to the case of a function u a SBVlocðWÞ with ‘‘well behaved’’ jump set.
More precisely, the following result holds.

404 g. de philippis, n. fusco and a. pratelli



Theorem 6.1. Let W � RN be an open set and u a SBVlocðWÞ such that
LNðJuÞ ¼ 0. Then

lim
e!0

keðuÞ ¼
1

4

Z
W

j‘uj dxþ 1

2
jDsujðWÞ:ð6:1Þ

As a consequence of Theorem A, we can show that the above representation
formula holds with no assumptions on Ju.

Corollary 6.2. Let W � RN be an open set, and let u a SBVlocðWÞ. Then (6.1)
holds.

Proof. Let us assume for a moment that u a SBVðWÞ. Then, given any d > 0,
Theorem A provides us with a function v a SBVðWÞ such that ku� vkBVðWÞ < d,
and HN�1ðJvnJvÞ ¼ 0, so that in particular LNðJvÞ ¼ 0 and then (6.1) holds for
v. Given now any cube Q of side e, we can evaluateZ

Q

ju� uQj �
Z
Q

jv� vQj
����

����a
Z
Q

jðu� vÞ � ðuQ � vQÞj ¼
Z
Q

jðu� vÞ � ðu� vÞQj

a
1

2eN�1
jDðu� vÞjðQÞ;

where the last inequality comes by the Poincaré inequality in a cube of side e,
which holds with constant e=2. For any finite family Ge of cubes of side e, then,
we have

eN�1
X
Q AGe

Z
Q

ju� uQj �
X
Q AGe

Z
Q

jv� vQj
�����

�����a 1

2

X
Q AGe

jDu�DvjðQÞa d

2
;

which implies that jkeðuÞ � keðvÞja d=2. Applying (6.1) to v, and sending first e
and then d to 0, we directly obtain the validity of (6.1) also for u.

Suppose now that u B SBVðWÞ, so that we have to show keðuÞ ! l. Fix any
open set W 0 �� W: since u a SBVðW 0Þ, the very same argument as above, only
considering cubes in Q 0, implies that

lim inf
e!0

keðuÞb
1

4

Z
W 0

j‘uj dxþ 1

2
jDsujðW 0Þ;

and letting W 0 " W the conclusion follows. r

It is actually possible to estimate the behaviour of keðuÞ even for the case of a
function u a BVðWÞ, thus possibly with a non vanishing Cantor part. In this case,
by means of Theorem 6.1 and of a suitable approximation argument (see [12]),
one can show that

1

4
jDujðWÞa lim inf

e!0
keðuÞa lim sup

e!0
keðuÞa

1

2
jDujðWÞ:ð6:2Þ
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Generalizing [11, Ex. 2.2], we can now show that this estimate is sharp: in fact,
if u has a non-vanishing Cantor part, then any limit between 1=4jDujðWÞ and
1=2jDujðWÞ is possible.

Example 6.3. Given any real sequence ln, with 0 < ln < 1=2 for every n,
we consider the following Cantor-like function. We are going to define induc-
tively the intervals J n

i for any n a N and 0 < ia 2n�1, and the intervals I ni for
any n a N and 0 < ia 2n. For n ¼ 1, we let I 11 ¼ ½0; l1�, J 1

1 ¼ ðl1; 1� l1Þ, and
I 12 ¼ ½1� l1; 1�. Then, once we have defined any interval I ni , we subdivide it
in three parts, namely, I nþ1

2i�1, J
nþ1
i and I nþ1

2i : the open interval J nþ1
i has the same

center as I ni , while the two closed intervals I nþ1
2i�1 and I nþ1

2i are respectively on its
left and on its right, and the measure of each of them is a portion lnþ1 of the
measure of I ni .

We define then also a sequence of continuous functions un. More precisely,
given any nb 1, we define unðxÞ ¼ 0 for xa 0, unðxÞ ¼ 1 for xb 1,

unðxÞ ¼
2i � 1

2k
for x a J k

i ; with ka n and 1a ia 2k�1;

and un is a‰ne in each interval I ni for 1a ia 2n. It is easily checked that un
uniformly converges to a function u a BVðRÞ, and moreover Du is purely Cantor
(that is, the absolutely continuous part and the jump part of Du are both 0), and
jDujðRÞ ¼ 1.

Suppose for a moment that the sequence ln takes constantly the value
0 < l < 1=2. In this case, a simple calculation ensures that, defining

k�ðlÞ ¼ lim inf
e!0

keðuÞ; kþðlÞ ¼ lim sup
e!0

keðuÞ;

one has that l 7! keðlÞ are two continuous and decreasing functions in ð0; 1=2Þ,
satisfying

lim
l!0

k�ðlÞ ¼ 1

2
; lim

l!1=2
kþðlÞ ¼ 1

4
:

As a consequence, we have shown that the lim inf and the lim sup in (6.2) can
take any value in the open interval

jDujðWÞ
4

;
jDujðWÞ

2

� �
:

Finally, one can also build an example of u a SBV for which lime!0 keðuÞ ¼
jDujðWÞ=4 (resp., lime!0 keðuÞ ¼ jDujðWÞ=2). This can be obtained by the same
construction as above choosing the sequence ln converging fast enough to 1=2
(resp., to 0).
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Appendix A. Proof of Lemma 5.2

This final section is devoted to the proof of Lemma 5.2.

Proof of Lemma 5.2. By assumption, the jump set of u is made by finitely
many ðN � 1Þ-dimensional open simplexes. Nevertheless, in order to perform
our recursive construction, it is simpler to consider a more general situation,
namely, when Ju is made by finitely many ðN � 1Þ-dimensional polyhedra. In
our construction, a 1-dimensional polyhedron in RN is simply a segment in RN ,
and for every 2a naN � 1 we recursively define a n-dimensional polyhedron
in RN as a bounded, connected set, contained in an n-dimensional subspace of
RN , whose boundary is a finite union of ðn� 1Þ-dimensional polyhedra.

We assume then that Ju is made by K polyhedra of dimension N � 1, possibly
intersecting with each other, and we call P and fPigi¼1;...;K�1 the closures of these
polyhedra. Since our aim is, roughly speaking, to ‘‘separate’’ these polyhedra, we
aim to reduce ourselves to a situation in which one polyhedron is a strictly
positive distance apart from the other K � 1. For simplicity of notations, we
assume that the polyhedron P is contained in the hyperplane fxN ¼ 0g. For
any 1a iaK � 1, we want now to define a ðN � 2Þ-dimensional polyhedron
Gi � P; if the intersection between Pi and P is empty, we simply set Gi ¼ j.
Otherwise, let us call Yi the ðN � 1Þ-dimensional hyperplane containing Pi, and
let us consider PBYi, which is a finite union of ðN � 2Þ-dimensional closed
polyhedra: then, we call Gi the union of those which intersect Pi, so PBPi �
Gi � PBYi, and both inclusions can be strict. Since, in our construction, we
will need to know that the first inclusion is in fact an equality, we make a
slight modification of u. More precisely, we fix a constant a > 0 so small that
the set

Jþ
u ¼ Ju A

[K�1

i¼1

fðx; tÞ a Yi : 0a ta a; priðx; tÞ a Gig;ðA:1Þ

where pri : Yi ! Yi BP is the orthogonal projection, satisfies

HN�1ðJþ
u DJuÞ ¼ HN�1ðJþ

u nJuÞ <
e

2K
:ðA:2Þ

From Lemma 4.3 we get then u1 a SBVpðWÞBC1ðWnJþ
u ÞBW 1;lðWnJþ

u Þ so
that

ku1 � ukBVðWÞ þ ku1 � ukLlðWÞ þ k‘u1 � ‘ukL pðWÞ <
e

2K
; Ju1 ¼ Jþ

u :ðA:3Þ

Notice that Ju1 is not the same set as Ju, but by construction it is still the union
of K polyhedra, that for ease of notation we still denote by P and Pi; we have
only slightly enlarged some of the polyhedra Pi (actually, we could have even
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diminished the total number of polyhedra, since two di¤erent ones contained
in a same hyperplane could have been glued). Observe that, now, the equality
Gi ¼ PBPi holds true.

Let us now consider P, which is subdivided by the ðN � 2Þ-dimensional sets
Gi in finitely many ‘‘zones’’ Z1;Z2; . . .ZM . More precisely, P is the union of
finitely many ðN � 1Þ-dimensional closed polyhedra Zj, 1a jaM, in such a
way that

[M
j¼1

qZj ¼ qPA
[K�1

i¼1

Gi:

Notice that these zones are uniquely determined.
Let us now fix a small quantity 0 < a < a, to be determined later. Con-

sider the closed, N-dimensional set fðx; tÞ : ðx; 0Þ a P; 0a ta ag: thanks to
our modification and since a < a, the sets Pi divide this set in finitely
many N-dimensional polyhedra; in particular, for each 1a jaM there is
a N-dimensional polyhedron Zj;a, one ðN � 1Þ-dimensional face of which
is Zj. Notice that the union of these Zj;a is not necessarily the whole
fðx; tÞ : ðx; 0Þ a P; 0a ta ag, there could be also other very small zones appear-
ing if two di¤erent Gi’s have an intersection with positive ðN � 2Þ-dimensional
measure; however, we will not need to take care of these new zones. Observe
that, whenever a point ðx; tÞ with 0 < t < a belongs to the boundary of some
Zj;a, then either this point is contained in some Pi, or ðx; 0Þ belongs to the
boundary of P.

We fix now a given polyhedron Zj;a, and we want to define a modification ~uuj
of u1, such that ~uuj ¼ u1 outside Zj;a. First of all, we take a piecewise a‰ne di¤eo-
morphism F : Zj;a ! Zj � ½0; a�, being the identity on Zj and on the (possibly
empty) intersection Zj;aB ðqP� ½0; a�Þ: notice that we can do this in such a way
that the bi-Lipschitz constant of this di¤eomorphism remains bounded when
a ! 0. It is then simpler to construct a function v on Zj � ½0; a� and eventually
to define ~uuj as v 	F on Zj;a and u1 outside.

Let bf a be another constant, still to be specified later, and let ZINT
j � Zj be

given by

ZINT
j ¼ fx a Zj : distðx; qZjÞa bg:

A simple geometric argument ensures that there exists a di¤eomorphism
C : qZj � ½0; b� ! ZINT

j with bi-Lipschitz constant which remains bounded for
b ! 0, and in such a way that for every point P a qZj the set CðfPg � ½0; b�Þ
is a segment, call it sP, with endpoints CðP; 0Þ ¼ P and CðP; bÞ a qZINT

j nqZj.
The set ZINT

j � ½0; a� is then the union of the rectangles sP � ½0; a�, with P

varying in qZj. Let us then fix a point P a qZj; notice that the segment sP belongs
to P, so to the jump set Ju1 , and call v� : sP ! R the lower trace of u1 on the
segment, that is, for every ðy; 0Þ a sP we have v�ðy; 0Þ ¼ limt%0 u1ðy; tÞ. Notice
that the limit exists since u1 a W 1;lðWnJu1Þ. Instead, by construction the set
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F�1ððsPnfPgÞ � ð0; a�Þ does not intersect Ju1 , so we can set vþ : ðsPnfPgÞ �
ð0; a� ! R as vþ ¼ u1 	F�1. Notice that vþ is Lipschitz, thus it extends naturally
to the whole sP � ½0; a�: in general, vþðy; 0Þ and v�ðy; 0Þ do not coincide; they
do so, however, if y a qP, again by the fact that u1 a W 1;lðWnJu1Þ. We are
then in position to define v on the rectangle sP � ½0; a�, by setting

vðy; taÞ ¼ ð1� tÞv�ðy; 0Þ þ tvþðy; aÞ þ vþðP; taÞ � tvþðP; aÞ � ð1� tÞvþðP; 0Þ

for every ðy; 0Þ a sP and 0a ta 1. Notice that, on the horizontal sides of the
rectangle one has

vðy; 0Þ ¼ v�ðy; 0Þ; vðy; aÞ ¼ vþðy; aÞ;ðA:4Þ

while on the vertical side touching qZj it is

vðP; taÞ ¼ ð1� tÞðv�ðP; 0Þ � vþðP; 0ÞÞ þ vþðP; taÞ:ðA:5Þ

Now, keep in mind that both v� and vþ are Lipschitz continuous, with Lipschitz
constant at most ku1kW 1;lðWnJu1 Þ

; as a consequence, by the definition, on the
rectangle sP � ½0; a� the function v is Lipschitz continuous, with constant bounded
by

5ku1kW 1;lðWnJu1 Þ

a
:

If we now repeat the same construction for every point P a qZj, we end up with
a function v : ZINT

j � ½0; a� ! R, and this function satisfies

kvkW 1;lðZj�½0;a�Þ a
5ku1kW 1;lðWnJu1 Þ

LipðCÞ
a

:ðA:6Þ

We define then the function ~uuj : W ! R as follows:

~uujðxÞ ¼
vðFðxÞÞ if x a F�1ðZINT

j � ½0; a�Þ;
u1ðxÞ otherwise:

�

By construction, the function ~uuj belongs to W 1;l in the set F�1ðZINT
j � ½0; a�Þ,

and it is a BV function outside, so it is globally a BV function on W. Thanks to the
first equality in (A.4), ~uuj is continuous across Z

INT
j , and by the second equality in

(A.4) it is also continuous across F�1ðZINT
j � fagÞ. Instead, ~uuj is generally not

continuous across F�1ððqZINT
j nqZjÞ � ½0; a�Þ, so we can expect this set to belong

to J~uuj .
Finally, we want to determine whether ~uuj is continuous acrossF

�1ðqZj � ½0; a�Þ
� qZj;a; more precisely, we intend to prove that, in F�1ðqZj � ½0; a�Þ, the jump
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set J~uuj is contained in the jump set Ju1 . In fact, let us take a generic point P a qZj

and 0a ta 1, and let us consider the point Q ¼ F�1ðP; taÞ: by construction,
and keeping in mind (A.5), ~uuj is continuous at Q if u1 is continuous there, and
vþðP; 0Þ ¼ v�ðP; 0Þ, and both things are generally false. Nevertheless, assume
that Q B Ju1 : as noticed above, this means that Q is not contained in any of the
Pi, and then it is necessarily Q ¼ ðP; sÞ with ðP; 0Þ a qP and some 0a sa a.
And then, u1 is continuous at Q because Q B Ju1 , and vþðP; 0Þ ¼ v�ðP; 0Þ because
the function u1 is continuous on the boundary of P. In conclusion, we have
shown that if Q B Ju1 , then also Q B J~uuj ; as a consequence, the jump set J~uuj
coincides with the jump set of u1, except that in place of Zj we have now the
‘‘L-shaped set’’

~ZZj ¼ ZjnZINT
j AF�1ððqZINT

j nqZjÞ � ½0; a�Þ ¼ ZjnZINT
j AZL

j :

Taking a small enough, and keeping in mind that bf a has still to be chosen, and
that the bi-Lipschitz constant of F does not explode when a ! 0, we can then
evaluate

HN�1ðJ~uujDJu1Þ ¼ HN�1ðZINT
j Þ þHN�1ðZL

j ÞðA:7Þ
a 2HN�2ðqZjÞb þ 2aHN�2ðqZjÞLipðF�1Þ:

Observe that the big achievement in passing from u1 to ~uuj is that ~ZZj is a positive
distance apart from J~uujn ~ZZj, so we have separated a piece of the jump set from all
the rest.

Let us now estimate the distance between u1 and ~uuj in the BV sense, and in
the Lp sense of the absolutely continuous part of the gradient. Calling A ¼
fx a W : u1ðxÞA ~uujðxÞg, we have by construction

HNðAÞa 2HN�2ðqZjÞbaLipðF�1Þ:

Hence, by construction, by (A.3), (A.6) and (A.7), by the fact that the
bi-Lipschitz constants of F and C do not explode when a and b go to 0, and
up to choose bf af 1, we can evaluate

HN�1ðJ~uujDJu1Þa
e

3MK
; k~uuj � u1kBVðWÞ þ k‘~uuj � ‘u1kL pðWÞ a

e

3MK
:ðA:8Þ

It is now very simple to conclude: for each 1a jaM we do the same con-
struction, and we define the approximating function ~uuL a BVðWÞ as the function
coinciding with ~uuj on each Zj;a, and with u1 outside the union of the di¤erent Zj;a.
Thanks to (A.8), we have

HN�1ðJ~uuLDJu1Þa
e

3K
; k~uuL � u1kBVðWÞ þ k‘~uuL � ‘u1kL pðWÞ a

e

3K
:
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Moreover, by construction the jump set J~uuL satisfies J~uuL ¼ ~PPA
SK�1

i¼1 Pi, where
~PP ¼

SM
j¼1

~ZZj is a stricitly positive distance apart from J~uuLn ~PP. Notice that ~PP
is no more a connected polyhedron; in fact, it is a union of M pieces, and each
piece is not a polyhedron, but an ‘‘L-shaped’’ set, not even contained in a
ðN � 1Þ-dimensional hyperplane. Nevertheless, it is obvious by construction that
there exists a bi-Lipschitz homeomorphism F : RN ! RN which transforms ~PP
into a C1 compact manifold with C1 boundary, and which equals the identity
outside of an arbitrarily small neighborhood U of ~PP; moreover, the bi-Lipschitz
constant of F does not explode when U becomes smaller and smaller. Hence, we
can assume that U is a strictly positive distance apart from the polyhedra Pi,
1a iaK � 1, so the function ~uu ¼ ~uuL 	 F�1 satisfies

HN�1ðJ~uuDJu1Þa
e

2K
; k~uu� u1kBVðWÞ þ k‘~uu� ‘u1kL pðWÞ a

e

2K
;

which by (A.3) and (A.2) become

HN�1ðJ~uuDJuÞa
e

K
; k~uu� ukBVðWÞ þ k‘~uu� ‘ukL pðWÞ a

e

K
:ðA:9Þ

Summarizing, starting from the function u a BVðWÞ having K (possibly inter-
secting) polyhedra as jump set, we have chosen one of the polyhedra, P, and
constructed a function ~uu whose jump set is made by a C1, compact manifold
with C1 boundary, together with K � 1 polyhedra, and there is a strictly positive
distance between the manifold and the polyhedra; in addition, each of the K � 1
‘‘new’’ polyhedra coincides with one of the ‘‘old’’ K � 1 polyhedra, or with a
small enlargement of it (at the beginning, we have added to each Pi the small
set fðx; tÞ a Yi : 0a ta a; priðx; tÞ a Gig, recall the definition (A.1) of Jþ

u ). Fi-
nally, (A.9) holds and the set fuA ~uug is an arbitrarily small neighborhood of
the polyhedron P. With an obvious recursion argument (and also using Corollary
2.4 to get the smoothness of ue for free), we obtain the first part of the conclusion.
Notice that there is one polyhedron on which we never apply our construction:
indeed, once we have done K � 1 steps, and then transformed K � 1 polyhedra
into C1 manifolds, each one a positive distance away from the remaining of
the jump set, the last polyhedron is automatically isolated; hence, there is no
need to apply our argument to this last polyhedron, it is enough to modify it
so to become C1, of course remaining away from the other manifolds.

Let us now prove the second part of the statement. Let P be a given hyper-
plane; since Ju is compactly contained in W, we can select finitely many poly-
hedra Pj �� W, 1a jaH, such that the intersection of Ju with P is compactly
contained in the union of the Pj. Thanks to Lemma 4.3, we can replace u
with a function ~uu which is very close to u, whose jump set coincides with
Ju A

SH
j¼1 Pj �� W, and which is still smooth, bounded and with bounded di¤er-

ential outside of its jump set. Notice that the jump set of ~uu is still polyhedral;
in particular, if Ju is the union of K polyhedra, then J~uu is done by K þH ones.
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We can then apply our construction above to the function ~uu; more precisely, we
perform K steps, in each of which we transform one of the K original polyhedra
into a isolated C1 manifold. In each of these steps we could have enlarged the
polyhedra Pj , and it is also possible that some of these polyhedra have been glued
together, so in the end we have polyhedra P 0

j for 1a jaH 0 and a suitable
H 0 aH. Keep in mind that by construction the polyhedra P 0

j are still compactly
contained in W, and inside the hyperplane P. Summarizing, after the K steps we
have obtained a function v in SBVpðWÞBClðWnJvÞBW 1;lðWnJvÞ, very close to
~uu and so to u, and whose jump set coincides with the union of K þH 0 discon-
nected, compact pieces, namely, K connected C1 manifolds, and H 0 polyhedra
inside P. Notice also that, by construction, none of the manifolds can intersect
P, since we have modified ~uu only in an arbitrarily small neighborhood of Ju,
and the union of P 0

j is larger than that of Pj, which contains a neighborhood of
PB Ju. Hence, we conclude by letting ue be a last, trivial modification of v which
makes the polyhedra P 0

j become disjoint, compact, C1 manifolds, still contained
in P and compactly contained in W. r
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