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1. Introduction

The unexpected connections between continuum mechanics and the laws of an
evolving economy were understood and fruitfully employed starting from the
middle of the last century. In 1950, the New Zealand electrical engineer A. W.
Phillips invented an ingenious hydraulic device (named MONIAC) useful to
teach economical principles in a few easy and graphic operations based on fluid
dynamics. Using the words of Phillips [24] ‘‘There has been an increasing use in
economic theory of mathematical models, usually in the form of di¤erence equa-
tions, sometimes of di¤erential equations, for investigating the implications
of systems of hypotheses. However, those students of economics who, like the
present writer, are not expert mathematicians, often find some di‰culty in
handling these models e¤ectively. ½. . .� Mechanical models ½. . .� may help non-
mathematicians by enabling them to see the quantitative changes that occur in
an interrelated system of variables following initial changes in one or more of
them.’’

A similar remark was done by J. Meade (later Nobel Laureate for Economics)
[21] ‘‘Once upon a time there was a student at the London School of Economics
½. . .� who got into di‰culties ½. . .� with such questions as whether Savings are nec-
essarily equal to Investment ½. . .� but he realized that monetary flows and stocks
of money could be thought of as tankfuls of water’’.

A sound basis for these connections started to be done around twenty years
ago by a community of physicists, who gave a unifying theoretical framework
to various social and economic phenomena. These investigations were identified



under the name of econophysics. The neologism was introduced by H. E. Stanley
during the Conference ‘‘Second Statphys–Kolkata’’, held in Kolkata (India) in
1995 (cf. [26]). Like biophysics, geophysics and astrophysics, this term is the
result of the combination of the words economy and physics.

Among the various models present in the literature [22], mostly based on the
approach furnished by statistical mechanics, kinetic models of socio-economic
systems gained a lot of popularity, due to strong analogies between them and
the classical kinetic theory of rarefied gases, described by the Boltzmann equation
[6].

With respect to the classical kinetic theory of rarefied gases, where the equilib-
rium density is found to be a Gaussian (known as Maxwellian distribution [4, 8,
9]), maybe the main di¤erence in kinetic theory of wealth distribution is related to
the fact that, while the wealth variable w is assumed to be nonnegative, the cor-
responding equilibrium density, known as Pareto-type distribution [23], is repre-
sented by a curve that exhibits a polynomial decay at infinity. If in equilibrium
the wealth in a multi-agent society is distributed according to a probability den-
sity f ðwÞ, the distribution function of wealth, say F ðwÞ satisfies, for wg 1

1� FðwÞ ¼
Z þl

w

f ðvÞ dvGw�p; p > 1:

The value of the positive constant p is usually called the Pareto index.
The equilibrium density of type (2.15) makes evident both the unequal distri-

bution of wealth in the society, and the existence of a (small) class of extremely
rich people. Various studies of the real data of western economies allowed to con-
clude that the Pareto index is varying between 1:5 e 3 (data referred to the year
2000: USAP1:6, JapanP1:8–2:2) [15]. The main consequence is that typically
less than the 10% of the population possesses at least the 40% of thew total
wealth of the country, and follows that law.

The di¤erences between the equilibrium distribution of the Boltzmann equa-
tion and the Pareto-type equilibrium density appearing when studying wealth dis-
tribution reflect also at a macroscopic level, represented by the equations of fluid
dynamics. A first step in this direction has been done few years ago by the present
author with Bertram Düring [18], by deriving Euler-type equations for the distri-
bution density of the propensity to invest in a society of agents trading according
to a kinetic model with risk introduced in [14]. As we shall see in the following,
the main ideas in [18] can be easily extended to construct equations of fluid dy-
namics for various traits of a human society naturally linked to the personal
wealth. This allows to study social phenomena in a multi-agent society which
are naturally varying in dependence of wealth.

2. The legacy of kinetic theory

The discussion that follows will be based on the kinetic Fokker–Planck equation
[25]. The Fokker–Planck equation is a fundamental model in kinetic theories and
statistical mechanics. It is a partial di¤erential equation describing the time evo-
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lution of a density function f ðv; tÞ, where v a Rn, nb 1 and tb 0, departing from
a nonnegative initial density f0ðvÞ. The standard assumptions on f0ðvÞ is that it
possesses finite mass r, mean velocity u and temperature y, where for any given
density gðvÞ

rðgÞ ¼
Z
Rn

gðvÞ dvð2:1Þ

is the mass density,

uðgÞ ¼ 1

r

Z
Rn

vgðvÞ dvð2:2Þ

is the mean velocity, and y is the temperature defined by

yðgÞ ¼ 1

nr

Z
Rn

jv� uj2gðvÞ dv:ð2:3Þ

The general form of the equation reads

qf

qt
¼ Jð f Þ ¼ g

Xn

k¼1

q2f

qv2k
þ 1

yð f Þ
q

qvk
½ðvk � ukð f ÞÞ f �

( )
:ð2:4Þ

The one-particle friction constant g is usually assumed to be a function of r, u, y.
Equation (2.4) has a stationary solution of given mass r, mean velocity u and
temperature y given by the Maxwellian density function

Mr;u;yðvÞ ¼ r
1

ð2pyÞn=2
exp � jv� uj2

2y

( )
;ð2:5Þ

which is such that JðMr;u;yÞ ¼ 0. Note that mass density, mean velocity and tem-
perature are preserved in time by the Fokker–Planck equation (2.4). It is more-
over interesting to remark that, if the friction g is taken to be proportional to the
pressure p ¼ ry, then Jð f Þ has the same kind of nonlinearity (quadratic) as the
true Boltzmann equation.

In view of its conservations and its decay property towards the equilibrium
Maxwellian distribution [2], the Fokker–Planck operator can be fruitfully used
in place of the Boltzmann collision operator to describe the evolution of the rare-
fied gas phase space density f ðx; v; tÞ [8, 9]

q

qt
f ðx; v; tÞ ¼ �v � ‘x f ðx; v; tÞ þ

1

e
Jð f ðx; v; tÞÞ:ð2:6Þ

This equation contains terms accounting for the two ways that the density can
change. The

�v � ‘x f ðx; v; tÞ

453continuum models in wealth distribution



term represents the e¤ects of transport; that is, the motion

x0 7! x0 þ ðt� t0Þv0 v0 7! v0ð2:7Þ

of molecules between interactions. The Fokker–Planck operator Jð f Þ represents
the e¤ects of interactions and describes relaxation to the local Maxwellian equi-
librium [8, 9] as a function of the local mass rðx; tÞ, velocity uðx; tÞ and tempera-
ture yðx; tÞ:

Mðx; v; tÞ ¼ rðx; tÞ
ð2pyðx; tÞÞ3=2

exp � jv� uðx; tÞj2

2yðx; tÞ

( )
:ð2:8Þ

Last, e in (2.6) is a suitable relaxation time.
Starting from the pioneering works of Mandelbrot [19], it is now commonly

accepted by the kinetic community that in many aspects a trading market com-
posed of a su‰ciently large number of agents can be described using the laws
of statistical mechanics, just like a rarefied gas, composed of many interacting
particles. In fact, there is an almost literal translation of concepts: molecules are
identified with the agents, the particles’ energy correspond to the agents’ wealth,
and binary collisions translate into trade interactions.

Resorting to the proposed analogies between trading agents and colliding par-
ticles, various well established methods from kinetic theory and statistical physics
are ready for application to the field of economy. Most notably, the numerous
tools originally devised for the study of the time evolution of the density in a rare-
fied gas can now be used to analyze the evolution of wealth distribution. In this
way, the kinetic description of market models via a Boltzmann-type equation
provides one possible explanation for the development of universal profiles in
wealth distributions of real economies.

A non secondary aspect of this analogy is the possibility to resort to the
classical closure procedure around the local equilibrium density to recover the
underlying equations of fluid dynamics. Indeed, the local Maxwellian equilibrium
density (2.8) allows to obtain all moments of the distribution in terms of the prin-
cipal ones, given by mass density, mean velocity and temperature. We remark
that this procedure requires, as in the classical case, a transport term linear with
respect to the velocity variable.

To be more precise, in agreement with the classical theory of rarefied gases,
where the particle density depends on the space variable x, the velocity variable
v and time t, in the framework of wealth distribution one can study the evolution
of the distribution function of the agents which depends on a suitable trait
x a I � R, wealth w a Rþ and time t a Rþ, say f ¼ f ðx;w; tÞ. By analogy with
the classical kinetic theory of rarefied gases, it is useful to emphasize the role
of the di¤erent parameters by identifying the velocity with the wealth, and the
position with the trait. By doing this, one assumes at once that the variation of
the distribution f ðx;w; tÞ with respect to the wealth parameter w will depend on
trades between agents, while the change of distributions in terms of the trait x
depends on the transport term, which contains the equation of motion, namely
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the law of variation of x with respect to time. The most general law of transport
that can be treated is given by

dx

dt
¼ Tðx;wÞ ¼ AðxÞLðwÞ;ð2:9Þ

where LðwÞ is a linear function of the wealth w. The time evolution of the distri-
bution will then obey a non-homogeneous kinetic equation, given by

q

qt
f ðx;w; tÞ þ Tðx;wÞ q

qx
f ðx;w; tÞ ¼ 1

t
Jð f ðx;w; tÞÞ:ð2:10Þ

In (2.10), Tð� ; �Þ describes the law of variation of the trait, while J represents
the corresponding of the Fokker–Planck operator in (2.4) describing now the
relaxation to the local wealth equilibrium density. Finally, t is a suitable relax-
ation time, depending on the velocity of money circulation [28]. Note that in
physical applications where no forces are present, the transport term is simply
Tðx;wÞ ¼ w.

In wealth distribution models, the Fokker–Planck operator describing relax-
ation to equilibrium is assumed to be [7, 14]

Jð f ðwÞÞ ¼ s

2

q2

qw2
ðw2f ðwÞÞ þ l

q

qw
ðw�mð f ÞÞ f ðwÞ;ð2:11Þ

where wb 0 and mð f Þ is the mean wealth of f ðwÞ. As before

rð f Þ ¼
Z
Rþ

f ðwÞ dw; mð f Þ ¼ 1

r

Z
Rþ

wf ðwÞ dw:ð2:12Þ

In analogy with the classical kinetic theory, the homogeneous equation

q

qt
f ðw; tÞ ¼ Jð f ðw; tÞÞð2:13Þ

is such that both the mass and the mean wealth mð f Þ are conserved in time.
Moreover, for any initial density f ðw; t ¼ 0Þ ¼ f0ðwÞ with mass r, mean m and
finite second moment [27], the unique solution f ðw; tÞ to equation (2.13) con-
verges towards its unique stationary state, the so-called Pareto-like state Mr;mðwÞ
given by (cf. also the original description by Amoroso [1])

Mr;mðwÞ ¼ r
ðpmÞ pþ1

Gðpþ 1Þ
1

wpþ2
exp

�
� pm

w

�
;ð2:14Þ

where

p ¼ 2l

s
> 0:ð2:15Þ
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Therefore, the equilibrium density exhibits a Pareto power law tail for large w’s.
In particular, the existence of higher moments depends on the value of p, and
their value at equilibrium is given in terms of mass r and mean m. Among other
approaches, the Fokker–Planck equation (2.13) appears as the quasi-invariant
trading limit of the Boltzmann type equation for wealth distribution introduced
in [14]. This kinetic equation is obtained by resorting to the binary trade

v� ¼ ð1� lÞvþ lwþ hv;

w� ¼ lvþ ð1� lÞwþ ~hhw:
ð2:16Þ

In (2.16), the result of the trade depends on the saving rate l a ð0; 1Þ, while the
risks of the market are described by h and ~hh, equally distributed random variables
with zero mean and variance s. Hence, Pareto tails in the Fokker–Planck equa-
tion depend on the balance between the saving and risk parameters in the micro-
scopic trade (2.16).

If p > 1, the bounded second moment of the Pareto-type density can easily be
evaluated by considering that in equilibrium, i.e. as t ! l, one has

0 ¼ s

2

Z
Rþ

w2 q2

qw2
ðw2Mr;mðwÞÞ dwþ l

Z
Rþ

w2 q

qw
½Mr;mðwÞðw�mÞ� dw

¼ s

Z
Rþ

w2Mr;mðwÞ dw� 2l

Z
Rþ

wðw�mÞMr;mðwÞ dw

¼ ðs� 2lÞ
Z
Rþ

w2Mr;mðwÞ dwþ 2lm

Z
Rþ

wMr;mðwÞ dw

¼ ðs� 2lÞ
Z
Rþ

w2Mr;mðwÞ dwþ 2lrm2:

Thus, if p > 1, the second moment of the equilibrium density is bounded, andZ
Rþ

w2Mr;mðwÞ dw ¼ 2l

2l� s
rm2:ð2:17Þ

In analogy with the kinetic theory of rarefied gases, it appears natural to assume
that in a closed economy the Pareto-type density Mr;m, equilibrium solution of
the Fokker–Planck equation (2.13), plays the same role as played by the Maxwell
distribution (2.5). However, contrary to what happens in classical kinetic theory,
where the equilibrium Maxwellian has all moments bounded, in this case the
number of moments bounded in the equilibrium depends on the value of the
parameter p, as given in (2.15).

3. The Euler equations

In Section 2 we described the main properties of the Fokker–Planck equation
(2.13), such as the existence of a unique equilibrium with tails, and the conse-
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quent possibility of obtaining higher-order moments from the first two (mass and
mean wealth). As in the classical kinetic theory of rarefied gases, these properties
are the basis of the construction of hydrodynamics. In kinetic theory, a direct and
clear understanding of the derivation of macroscopic equations relies on the so-
called fractional step method, very popular in the numerical approach to the
Boltzmann equation. Let f ¼ f ðx;w; tÞ be the distribution function of the agents,
solving the Boltzmann-type equation (2.10). The fractional step method consists
in considering separately and sequentially, in each (small) time step, the transport
and relaxation operators. In consequence, during this short time interval one
recovers the evolution of the density f from the joint action of the relaxation

qf

qt
¼ 1

t
Jð f ðx;w; tÞÞð3:18Þ

and transport

qf

qt
þ Tðx;wÞ q

qx
f ðx;w; tÞ ¼ 0:ð3:19Þ

As in classical kinetic theory, where mass, mean velocity and energy are con-
served by the Fokker–Planck operator, the conservation (for fixed x), of mass
and mean wealth in the relaxation step is enough to guarantee that (3.18) pushes
the solution towards the (local x-dependent) Pareto-type equilibrium with the
same local mass and mean of the initial datum

Mr;mðx;w; tÞ ¼ rðx; tÞ ðpmðx; tÞÞ pþ1

Gðpþ 1Þ
1

wpþ2
exp

�
� pmðx; tÞ

w

�
;ð3:20Þ

In (3.20), rðx; tÞ, mðx; tÞ are the macroscopic variables, namely the local density
of agents with trait x at time t, given by

rðx; tÞ ¼
Z
Rþ

f ðx;w; tÞ dw;ð3:21Þ

and the local mean

mðx; tÞ ¼ 1

rðx; tÞ

Z
Rþ

wf ðx;w; tÞ dw:ð3:22Þ

Then, if t is su‰ciently small, one can easily argue that the solution to (3.18) is
su‰ciently close to the equilibrium (3.20), and this equilibrium can be used in the
transport step (3.19) to close the equations. In detail, since the Fokker–Planck
equation (3.18) is both mass and momentum preserving, integrating equation
(3.19) with respect to the wealth velocity w, using as test functions jðwÞ ¼ 1;w
respectively, we obtain the conservation lawsZ

Rþ

�qf
qt

þ Tðx;wÞ q

qx
f ðx;w; tÞ

�
dw ¼ 0;ð3:23Þ
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and Z
Rþ

w
�qf
qt

þ Tðx;wÞ q

qx
f ðx;w; tÞ

�
dw ¼ 0:ð3:24Þ

Let us fix the law Tð�;wÞ to be linearly dependent on w,

Tðx;wÞ ¼ ðw� wwÞAðxÞ;ð3:25Þ

where w is a positive constant and w represents a suitable fixed value of the
wealth. Then, one obtains from (3.23), (3.24) the equations

qr

qt
þ AðxÞ q

qx
½rðm� wwÞ� ¼ 0;ð3:26Þ

qðrmÞ
qt

þ AðxÞ q

qx

Z
Rþ

w2f ðx;w; tÞ dw� wwrm

� �
¼ 0:ð3:27Þ

Note that equation (3.27) depends on the second moment of the density.
Using the equilibrium relation (2.17), however, we can express this second
moment in terms of the local mass density and the mean as soon as p > 1. By
this relationship we finally obtain the following system of equations:

qr

qt
þ TðxÞ q

qx
½rðm� wwÞ� ¼ 0;

qðrmÞ
qt

þ TðxÞ q

qx
rm

� 2l

2l� s
m� ww

�� �
¼ 0;

ð3:28Þ

which have to be solved on I � ð0;TÞ with appropriate boundary and initial con-
ditions. Using (3.28) we can rewrite the second equation as

qm

qt
þ TðxÞðm� wwÞ qm

qx
þ 2l

2l� s

1

r

q

qx
½rm2� ¼ 0:ð3:29Þ

4. An example about personal satisfaction

Among the various applications of the system of macroscopic equations (3.28),
we will present here one simple example that will help to clarify the method.

In classical kinetic theory of gases the relationship between position and veloc-
ity is stated by the law of dynamics, that leads to (2.7). In one space dimension,
this law can be rephrased by saying that a positive velocity moves the particle on
the right, while a negative one moves the particle to the left. Hence, the transport
term is such that the value of the position will increase in presence of a positive
velocity, and decrease in presence of a negative velocity.

This picture can be fruitfully used to represent any trait of the agents that is
increasing or decreasing in dependence of the wealth. Such a situation appears

458 g. toscani



when considering as trait x the measure of satisfaction about the personal status
in a multi-agent society. It is commonly accepted that there is a level of wealth
in the society, say w, that is considered minimal to have a good quality of life. It
is close to reality to say that a personal wealth less than w will move the agent
towards a pessimistic view (so that x is decreasing), while a personal wealth
bigger than w will move the agent towards an optimistic view (and in this case x
will increase). By allowing x to vary on the whole real line, and by considering
x ¼ 0 as the border case of separation between optimists and pessimists, one can
assume a transport law in the form

Tðx;wÞ ¼ gðw� wÞ;ð4:30Þ

where g is a positive constant which gives the rate of velocity at which the per-
sonal satisfaction is increasing (or decreasing) in terms of the wealth. The corre-
sponding macroscopic equations then take the form

qr

qt
þ g

q

qx
½rðm� wÞ� ¼ 0;

qðrmÞ
qt

þ g
q

qx
rm

� 2l

2l� s
m� w

�� �
¼ 0:

ð4:31Þ

These equations, solved in R� ð0;TÞ give, for every fixed time t > 0, the local
density rðx; tÞ of people with degree of satisfaction x and the local flux mðx; tÞ
of people in the state x. Note that the solution depends on the key parameters
of the model, namely the chosen minimal wealth w, the rate g, as well as the sav-
ing parameter l and the risk parameter s that characterize the equilibrium den-
sity (3.20).

5. Conclusions

In this note we tried to explain how the strong analogies between kinetic theory
of ideal rarefied gases and the distribution of wealth in a conservative economy
remain at the level of the derivation of macroscopic equations. By this methodol-
ogy, it appears possible to study the time evolution of social phenomena in which
the personal wealth is the main responsible for changes of a well specified trait
of the agents. We gave in Section 4 an easy illustration of this idea. In this exam-
ple the transport term takes a very simple form, similar to the classical transport
term appearing in molecular dynamics. The interested reader can however take a
look of a di¤erent more involved situation [18], in which the considered trait x is
the propensity to invest, and the transport term depends on the trait itself. As dis-
cussed in [18] it is interesting to remark that, despite the huge variety of kinetic
models which have been introduced so far to describe the evolution of the wealth
distribution density [3, 10, 11, 12, 13], the analysis in [16, 17, 20] indicates that,
even if the analytical form of the equilibrium density is missing, the closure rela-
tion (2.17) appears to be a universal one. This fact constitutes a strong validation
of the Euler system (3.28).
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