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Abstract. — In this paper we considered a hyperbolic first order nonhomogeneous system of

PDEs describing a viscoelastic medium where short memory e¤ects are present. We solved a class

of Riemann problems by integrating a suitable 2� 2 reduced homogeneous model. The nonlinear
interaction of two shock waves propagating in opposite directions are studied.
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1. Introduction

Within the theoretical framework of nonlinear wave propagation, the Riemann
problem (RP) represents one of the most interesting and celebrated problems of
the applied mathematics. As it is well known, it consists in an initial value prob-
lem characterized by constant data with a discontinuity in x ¼ 0. It takes its name
from Riemann who in [39] (see also [40]) studied a situation where a gas is con-
tained in a cylindrical tube which is divided in two parts by a thin layer. The gas
is initially at rest while the pressure and the mass density are constant but with
di¤erent values on the left and on the right of the layer. The problem is to study
the evolution of the gas when at the time t ¼ 0 the layer is broken. Riemann
found the general solution in terms of constant states separated by rarefaction
waves, contact discontinuities and shoch waves. Since then many e¤orts have
been done for solving Riemann problems for hyperbolic systems of PDEs and
starting from the fundamental paper of Lax [29] many results have been obtained
for conservation laws (see [14, 43] and references therein quoted). In particular
it can be proved that for systems of conservation laws, under the assumption of
not large initial jumps, a RP admits an unique solution in terms of constant states
separated by rarefaction waves, shock waves and/or contact discontinuities.
Unfortunately the validity of such results are limited to the homogeneous case.
In fact a rarefaction wave is characterized by a self-similar simple wave solution
which, in general, is not admitted by nonhomogeneous systems. Thus only few
cases of exact solution to RP for balance laws are known in the literature (see
for instance [8, 11, 38]) and usually such a situation is studied from a numerical
point of view.



A more hard task is to find exact solutions to a Generalized Riemann Problem
(GRP) which consists of non-constant initial data with a discontinuity at x ¼ 0.
The main problem is to determine an exact solution to the initial non constant
data as well as a rarefaction–like wave connecting the resulting left and right
non constant states. Some contributions on GRP have been given concerning
existence and uniqueness theorems [3, 24, 25, 31, 32, 42]. Some other contribu-
tions deal with asymptotic solutions [1, 30] while in some special cases exact solu-
tions of GRP have been obtained by using a reduction procedure proposed within
the framework of the theory of di¤erential constraints [7, 12].

In this context, the main aim of this paper is to develop a reduction procedure
for solving a RP for a first order quasilinear hyperbolic nonhomogeneous system
describing a viscoelastic medium. More precisely, following the approach pro-
posed in [13] for determining double wave solutions of first order hyperbolic
homogeneous or nonhomogeneous systems, we show that for solving a RP for
the governing system we are led to consider a corresponding RP for a suitable
2� 2 reduced model. This makes easier the analysis under interest because for
2� 2 hyperbolic homogeneous or nonhomogeneous systems a large body of
results concerning exact solutions as well as nonlinear soliton-like wave interac-
tions are known [9, 10, 28, 36, 37].

The paper is organized as follows. In section 2 we illustrate the viscoelastic
model under interest as well as its main features. Moreover for further conve-
nience we sketch some of the results obtained in [13] which will be useful for
developing the reduction procedure at hand. In sections 3 and 4, under suitable
hypotesis, we calculate rarefaction waves and shock waves admitted by the gov-
erning viscoelastic system previously considered. In section 5, we solve a RP
through rarefaction and/or shock waves and we study a nonlinear waves interac-
tion problem. Finally some conclusion and remarks will end the paper.

2. Rate–type viscoelastic model

Here we consider the following rate–type model which describes a viscoelastic
medium:

vt � sx ¼ 0ð1Þ
et � vx ¼ 0ð2Þ
st �Fðe; sÞet ¼ Cðe; sÞð3Þ

where x and t denote, respectively, space a time coordinates, v is the particle
velocity, e the strain and s the stress. Moreover Fðe; sÞ and Cðe; sÞ are material
response functions which measure, respectively, the instantaneous and non-
instantaneous response of the material. The characteristic speeds of the system
(1)–(3) are

lð1Þ ¼ �
ffiffiffiffi
F

p
; lð2Þ ¼ 0; lð3Þ ¼

ffiffiffiffi
F

p
ð4Þ

so that it results to be strictly hyperbolic provided that F > 0.
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The model (1)–(3) has been widely adopted in the litterature in order to
describe viscoelastic processes where memory e¤ects are present (see, for instance,
the Cristescu’s book [6] for an exhaustive review on this subject). In such a frame-
work, relation (1) is the equation of motion, (2) characterizes a compatibility con-
dition, while (3) denotes the stress-strain rate-type equation. Many results have
been obtained for the system (1)–(3) concerning energy estimates and phase
transformation fenomena [15, 16, 17, 18, 19, 45, 46, 47], moving boundary prob-
lems [20, 21], traveling waves and similarity solutions [44], reduction procedures
[22, 23, 35], numerical experiments [5], [41].

The rate-type equation (3) generalizes di¤erent models proposed in litterature.
For instance, if

F ¼ E; C ¼ � 1

t
sð5Þ

it reduces to the pioneering Maxwell’s model, while if

F ¼ E; C ¼ � 1

t
ðs� seðeÞÞð6Þ

it specializes to the Malvern’s model [33, 34]. In (5) and (6) E is the Young’s
modulus, t a relaxation time while s ¼ seðeÞ denotes the equilibrium stress-strain
curve. Furthermore in [27] Herrmann and Nunziato proved that the celebrated
integro-di¤erential equation proposed by Coleman and Noll [4] within the frame-
work of finite linear viscoelasticity is equivalent to (3) with

F ¼ s 0
i ðeÞ þ aðeÞðs� siðeÞÞð7Þ

C ¼ � 1

t
ðs� seðeÞÞð8Þ

where aðeÞ is a constitutive function while s ¼ siðeÞ characterizes the instanta-
neous stress-strain curve defined by

dsi

de
¼ FðsiðeÞ; eÞ:ð9Þ

The material response function characterized in (8) is widely used by many
researchers. In particular in [26] Gurtin et al. proved that if C is smooth in a
neighborhood of a point ðe0; s0Þ of the equilibrium curve s ¼ seðeÞ, then there
exists a constant kðe0Þb 0 such that

C ¼ �kðs� seðeÞÞ þOðdÞ

as

d ¼ je� e0j þ js� s0j
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approaches to zero. Furthermore it can be proved [26] that the model (1)–(3)
admits a free energy cðe; sÞ if and only if the following relations hold

qc

qe
þF

qc

qs
¼ s; C

qc

qs
a 0:ð10Þ

In passing we notice also that when t ! 0 system (1)–(3) supplementd by (8)
reduces to the celebrated p-system

et � vx ¼ 0

vt þ ðpðeÞÞx ¼ 0

�
ð11Þ

where pðeÞ ¼ �seðeÞ is the pressure-like function.
In [13] classes of double wave exact solutions of (1)–(3) have been determined

by following a reduction procedure therein proposed. The main idea was to
reduce the problem of integrating the full governing set of equations at hand to
that of solving a suitable 2� 2 reduced system. In particular, among the di¤erent
cases therein considered, it was proved that if the material response functions F
and C adopt the form

F ¼ j2ðmÞ; C ¼ C0ðwÞða20 � j2Þ;ð12Þ

under the variable transformation

m ¼ s� a20eð13Þ

w ¼ s� FðmÞ; FðmÞ ¼
Z

j2

j2 � a20
dm;ð14Þ

the equations (1)–(3) specialize to

qv

qt
� q

qx
ðwþ F ðmÞÞ ¼ 0ð15Þ

q

qt
ðF ðmÞ � mÞ � a20

qv

qx
¼ a20C0ðwÞð16Þ

qw

qt
¼ a20C0ðwÞð17Þ

where jðmÞ and C0ðwÞ are unspecified functions while a0 is a constant. Next,
under the double wave’s reduction

v ¼ w

a0
eGðmÞ; GðmÞ ¼

Z
j

j2 � a20
dm;ð18Þ
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the equations (15) and (16) assume to the form

mt H jðmÞmx ¼ 0ð19Þ
wt � a0wx ¼ 0:ð20Þ

Therefore in order to determine exact solutions of (1)–(3) supplemented by (12)
we are led to solve the uncoupled system (19), (20) along with (17) which plays
the role of di¤erential constraint. According to the method of di¤erential con-
straints [48], relation (17) selects the class of initial value problems admitted by
(19), (20). After some elementary algebra, the solution of (17), (19) and (20) is
given by

m ¼ m0ðzÞ; z ¼ xe jðmÞtð21Þ
w ¼ w0ðxÞ; x ¼ xþ a0tð22Þ

provided that

dw0

dx
¼ a0C0ðw0Þ:ð23Þ

Finally, once the constitutive functions j and C0 are specified, then exact solu-
tions of (1)–(3) are determined from (13), (14) and (18) through (21)–(23).

3. Rarefaction waves

Let us consider the following Riemann problem

Uðx; 0Þ ¼ UL for x < 0

UR for x > 0

�
; where U ¼

v

e

s

0
@

1
Að24Þ

where UL and UR are constant vectors characterizing equilibrium states of
(1)–(3).

Here, in order to solve the initial value problem (24) through rarefaction
waves, we consider the ‘‘reduced’’ Riemann problem

mðx; 0Þ ¼ mL for x < 0

mR for x > 0

�
; wðx; 0Þ ¼ wL for x < 0

wR for x > 0

�
ð25Þ

for the equations (17), (19) and (20), where, owing to (13)–(14),

mL ¼ sL � a20eL; mR ¼ sR � a20eR; wL ¼ sL � FL; wR ¼ sR � FR:ð26Þ

In (26) and in what follows FL ¼ F ðmLÞ and FR ¼ F ðmRÞ. Moreover here and in
the following we assume that jðmÞ is a monotone non-negative function.
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In the case of l ¼ l1 ¼ �j, a straightforward integration of (19) leads to

m ¼ mL for x < �jðmLÞt

jðmÞ ¼ � x

t
for �jðmLÞta xa�jðmRÞt

m ¼ mR for x > �jðmRÞt

ð27Þ

with

jðmLÞ > jðmRÞð28Þ

while from (17) and (20) we find

w ¼ wL ¼ wR ¼ w0; provided that C0ðw0Þ ¼ 0:ð29Þ

Furthermore, from (18), the corresponding rarefaction curve in the ðv; m;wÞ space
is easily obtained

v ¼ R1ðm; vL; mLÞ ¼ vL þ ðGðmÞ � GðmLÞÞ; w ¼ w0:ð30Þ

Therefore owing to relations (27)–(29), from (13) and (14), a smooth solution of
(1)–(3) along with (24) is given by (30)1 and

s ¼ w0 þ FðmÞð31Þ

e ¼ 1

a20
ðw0 þ FðmÞ � mÞð32Þ

along with the conditions

vR ¼ R1ðmR; vL; mLÞ ¼ vL þ ðGðmRÞ � GðmLÞÞð33Þ
w0 ¼ sR � FR ¼ sL � FL:ð34Þ

As far as the rarefaction curve (30) is concerned, for further convenience we
notice that

dR1

dm
r 0 , jr a0ð35Þ

d 2R1

dm2
r 0 , dj

dm
q 0:ð36Þ

Of course similar results can be obtained when l ¼ l3 ¼ j. In such a case the cor-
responding rarefaction curve is given by

v ¼ R3ðm; vL; mLÞ ¼ vL � ðGðmÞ � GðmLÞÞ; w ¼ w0:ð37Þ
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with

jðmLÞ < jðmRÞð38Þ

and

dR3

dm
r 0 , jq a0ð39Þ

d 2R3

dm2
r 0 , dj

dm
r 0:ð40Þ

In passing we remark that the functions W
ð�Þ
1 ¼ v� GðmÞ and W

ð�Þ
2 ¼ w charac-

terizing the rarefaction curve (30) are Riemann invariants of (1)–(3) associated to

the characteristic speed l ¼ �
ffiffiffiffi
F

p
as well as the functions W

ðþÞ
1 ¼ vþ GðmÞ and

W
ðþÞ
2 ¼ w involved in (37) are Riemann invariants corresponding to l ¼

ffiffiffiffi
F

p
.

4. Shock waves

Here we look for solution of the Riemann problem (24) in terms of shock waves
and we write the Rankine-Hugoniot conditions of (15)–(17)

s½v� þ ½wþ F ðmÞ� ¼ 0ð41Þ
s½FðmÞ � m� þ a20 ½v� ¼ 0ð42Þ
s½w� ¼ 0ð43Þ

where s is the shock speed while ½�� denotes the jump of the corresponding quan-
tity across the shock line.

A direct inspection of (41)–(43) leads to three shock’s families. The 1-shocks
and the 3-shocks are characterized by

s ¼ �F � FL

v� vL
; w ¼ wL; v ¼ vL e

Hðm; mLÞ
a0

ð44Þ

where

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF � FLÞðF � FL þ mL � mÞ

p
;ð45Þ

while the 2-family is a contact discontinuity and it is determined by

s ¼ 0; v ¼ vL; w ¼ wL þ FL � F :ð46Þ

In (44) and (46) the index L means that the concerning quantity is evaluated on
the left of the shock.

Next, as far as the 1-shocks and the 3-shocks are concerned, by requiring the
Lax conditions are satisfied, we are led to the following four cases:
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i) if j 0 > 0 and j > a0 then

v ¼ vL þ 1

a0
Hðm; mLÞ; with

m > mL; for 1-shocks

m < mL; for 3-shocks

�
ð47Þ

ii) if j 0 > 0 and j < a0 then

v ¼ vL � 1

a0
Hðm; mLÞ; with

m > mL; for 1-shocks

m < mL; for 3-shocks

�
ð48Þ

iii) if j 0 < 0 and j > a0 then

v ¼ vL � 1

a0
Hðm; mLÞ; with

m < mL; for 1-shocks

m > mL; for 3-shocks

�
ð49Þ

iv) if j 0 < 0 and j < a0 then

v ¼ vL þ 1

a0
Hðm; mLÞ; with

m < mL; for 1-shocks

m > mL; for 3-shocks

�
ð50Þ

Moreover s < 0 for 1-shocks while s > 0 for 3-shocks.
Let us denote with

v ¼ S1ðm; vL; mLÞ; v ¼ S3ðm; vL; mLÞð51Þ

the Rankine-Hugoniot curves corresponding, respectively, to the 1-shocks and
3-shocks which are characterized in the previous i)–iv) cases.

Since

dH

dm
¼ sgnðm� mLÞ

ðF 0ðmÞðF 0ðxÞ � 1Þ þ F 0ðxÞðF 0ðmÞ � 1ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 0ðxÞðF 0ðxÞ � 1Þ

p
d 2H

dm2
¼ sgnðm� mLÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 0ðxÞðF 0ðxÞ � 1Þ

p F 00ðmÞð2F 0ðxÞ � 1Þ � ðF 0ðxÞ � F 0ðmÞÞ2

4ðF 0ðxÞðF 0ðxÞ � 1ÞÞ

( )

where x a ðmL; mÞ if mL < m or x a ðm; mLÞ if m < mL, then it is easily to verify that
dS1

dm
> 0 and dS3

dm
< 0 in the i) and iii) cases, dS1

dm
< 0 and dS3

dm
> 0 in the ii) and iv)

cases, d
2S1

dm2 < 0 and d 2S3

dm2 > 0 in the i) and ii) cases while d 2S1

dm2 > 0 and d 2S3

dm2 < 0 in the

iii) and iv) cases.
Furthermore, owing to (30) and (37), in all the four cases i)–iv) it follows soon

that �dR1

dm

�
mL

¼
�dS1

dm

�
mL

;
�dR3

dm

�
mL

¼
�dS3

dm

�
mL

;ð52Þ

�d 2R1

dm2

�
mL

¼
�d 2S1

dm2

�
mL

;
�d 2R3

dm2

�
mL

¼
�d 2S3

dm2

�
mL

:ð53Þ
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Thererefore in the ðv; m;wÞ space the solution of the Riemann problem (24) in
terms of shock waves is determined by (51) along with wR ¼ wL provided that
the equilibrium state ðvR; mRÞ a S1ðm; vL; mLÞ or ðvR; mRÞ a S3ðm; vL; mLÞ. Further-
more, taking (13) and (14) into account, the solution of (24) in the ðv; e; sÞ space is
given by

sR � sL ¼ FðsR � a20eRÞ � F ðsL � a20eLÞð54Þ
vR � vL ¼e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðeR � eLÞðsR � sLÞ

p
ð55Þ

s ¼ � sR � sL

vR � vL
ð56Þ

where in (55) thee sign is determined according to the analysis previously devel-
oped in the i)–iv) cases.

Remark 1. Let us consider the subsystem [2] of (15)–(17) determined by w ¼
w0 ¼ const: such that C0ðw0Þ ¼ 0. By introducing the variable transformation

m ¼ F ðmÞ � m

a20
ð57Þ

and setting

pðmÞ ¼ �F ðmðmÞÞ ¼ �
Z

j2ðmðmÞÞ dmð58Þ

the equations (15) and (16) reduce to

qv

qt
þ qpðmÞ

qx
¼ 0ð59Þ

qm

qt
� qv

qx
¼ 0:ð60Þ

Therefore, since

dp

dm
¼ �j2;

d 2p

dm2
¼ �2jðj2 � a20Þ

dj

dm
ð61Þ

in the ii) and iii) cases, the pair of equations (59) and (60) is the celebrated
p-system where p 0ðmÞ < 0 and p 00ðmÞ > 0.

Remark 2. Owing to (13) and (14), since for the 1-shocks and 3-shocks

½s� ¼ ½F �; a20 ½e� ¼ ½F � m�;ð62Þ

it follows that in the i) and iv) cases ½e� > 0 and ½s� > 0 for 1-shocks while ½e� < 0
and ½s� < 0 for 3-shocks. The opposite situation is in the ii) and iii) cases where
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½e� < 0 and ½s� < 0 for 1-shocks while ½e� > 0 and ½s� > 0 for 3-shocks. Further-
more since in the 1-shocks s < 0, the indexes L and R denote, respectively, the
unperturbed state 0 and the perturbed state while for the 3-shocks s > 0 so that
the indexes L and R denote, respectively, the perturbed state and the unperturbed
state 0. Therefore for both the 1-shocks and the 3-shocks e > e0 and s > s0 in the
i) and iv) cases while e < e0 and s < s0 in the ii) and iii) cases.

Remark 3. If in the material response functions (12) we assume j ¼ a0, then
the governing system (1)–(3) specializes to the model describing linear elasticity
where s ¼ a20e so that we can set a20 ¼ E where E is the Young’s modulus. In
such a case the elastic waves propagate with velocitiese

ffiffiffiffi
E

p
. Since the viscoelas-

tic waves described by the system (1)–(3) supplemented by (12) propagate with
the chracteristic speeds (4), then in the cases i)–iv) the conditions j > a0 or
j < a0 require that the viscoelastic waves propagate, respectively, faster or slower
than the corresponding elastic ones.

5. Riemann problem and wave interactions

In the previous sections we solved the Riemann problem (24) through a rarefac-
tion or a shock wave and we characterized four di¤erent cases. Here our main
aim is to solve the initial value problem (24) in a more general form. In the fol-
lowing we concentrate our attention to the i) case.

Owing to the analysis developed in sections 2 and 3 and taking (52) and (53)
into account, in figure 1 we represent in the ðm; vÞ plane the rarefaction curves
v ¼ R1, v ¼ R3 as well as the shock curves v ¼ S1, v ¼ S3. Moreover we set

F ¼ fv ¼ T3ðm; m0; v0Þ : v0 ¼ T1ðm0; mL; vLÞgð63Þ

Figure 1. Rarefaction curves v ¼ R1ðm; mL; vLÞ, v ¼ R3ðm; mL; vLÞ and shock curves v ¼
S1ðm; mL; vLÞ and v ¼ S3ðm; mL; vLÞ where PL ¼ ðmL; vLÞ.
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where Ti ¼ Ri ASi with i ¼ 1 or i ¼ 3. The situation depicted in figure 1 is
formally similar to what happens in the Riemann problem’s solution for the
p-system. Therefore the analysis there developed (see for instance [43]) can be
extended to the present case. In particular it can be proved that through each
point of the the regions I , II and III passes one and only one curve T3 a F so
that if the right initial datum ðmR; vRÞ belongs to one of the first three regions,
then the solution of (24) consists of three constant states separated by rarefaction
and/or shock waves. In region IV , if ðmR; vRÞ is not far from ðmL; vLÞ, the RP is
solved in terms of constant states connected by the R1 and R3 rarefaction waves,
while if ðmR; vRÞ is far from ðmL; vLÞ, then not every point of the region can be
reached by a curve T3 and the ‘‘vacuum’’ situation could appear. Of course such
an analysis can be carried on also in the remaining ii)–iv) cases.

Next we aim to show how the results obtained previously can be useful for
solving more general initial data. For instance let us consider the two Riemann
problems

mðx; 0Þ ¼
m1 for x < 0

m2 for 0 < x < x0

m3 for x > x0

8<
: ; vðx; 0Þ ¼

v1 for x < 0

v2 for 0 < x < x0

v3 for x > x0

8<
:ð64Þ

where m2 < m3 < m1 while v2 ¼ S3ðm2; v1; m1Þ (front shock) and v3 ¼ S1ðm3; v2; m2Þ
(back shock). Owing to the analysis carried on above, the solution of (64) is
determined by the constant states ðm1; v1Þ, ðm2; v2Þ and ðm3; v3Þ which are sepa-
rated, respectively, by a front shock and a back shock whose shock lines are

x ¼ x3ðtÞ ¼ s3t; s3 ¼ �F2 � F1

v2 � v1
> 0ð65Þ

x ¼ x1ðtÞ ¼ s1tþ x0; s1 ¼ �F3 � F2

v3 � v2
< 0:ð66Þ

ð67Þ

Such a solution is valid for t a ð0; tcÞ where

tc ¼
x0

s3 � s1

is the instant time when the front shock and the back shock interact in the place
xc ¼ s3x0

s3�s1
. Therefore at t ¼ tc we find the new Riemann problem

mðx; tcÞ ¼
m1 for x < xc

m3 for x > xc

�
; vðx; tcÞ ¼

v1 for x < xc

v3 for x > xc

�
ð68Þ

Since the right ‘‘initial’’ state ðm3; v3Þ is in the II region of the ðm; vÞ plane
(see figure 2), then the solution of (68) is given in terms of the constant states
ðm1; v1Þ, ðm; vÞ and ðm3; v3Þ separated by a back shock and a front shock whose
shock lines are given, respectively, by
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x ¼ x1ðtÞ ¼ s1ðt� tcÞ þ xc; s1 ¼ �FðmÞ � F1

v� v1
< 0ð69Þ

x ¼ x3ðtÞ ¼ s3ðt� tcÞ þ xc; s3 ¼ �F3 � F ðmÞ
v3 � v

> 0:ð70Þ
ð71Þ

Furthermore the state m and v can be calculated from

v ¼ S1ðm; v1; m1Þ
v3 ¼ S3ðm3; v; mÞ

�
ð72Þ

In figure 3 we show in the ðx; tÞ plane the solution of (64) for t > 0.

6. Conclusions and final remarks

In this paper we considered nonlinear wave propagation problems for a quasi-
linear hyperbolic nonhomogeneous first order system describing a viscoelastic
medium with short memory e¤ects. In particular, following the results obtained
in [13], we studied some Riemann problems for the viscoelastic governing model
(1)–(3) by solving the reduced 2� 2 homogeneous first order system (19), (20)
along with the di¤erential constraint (17). The general analysis carried on in sec-
tion 5 permitted to solve a nonlinear shocks interaction problem.

The reduction procedure here considered was carried on under the hypotesis
that the material response functions Fðe; sÞ and Cðe; sÞ adopt the form (12). It
should be of a certain interest to notice that if we assume

j2ðmÞ ¼ a20 � c0m; C0ðwÞ ¼
1

c0t
ð1� k0e

�c0

a2
0

w

Þ;ð73Þ

Figure 2. Rarefaction curves v ¼ R1ðm; m1; v1Þ, v ¼ R3ðm; m1; v1Þ and shock curves v ¼
S1ðm; m1; v1Þ, v ¼ S3ðm; m1; v1Þ, v ¼ SðmÞ ¼ S1ðm; m2; v2Þ. Moreover P1 ¼ ðm1; v1Þ, P2 ¼
ðm2; v2Þ, P3 ¼ ðm3; v3Þ.
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then the functions F and C specialize to

F ¼ a20 � c0ðs� siðeÞÞ; C ¼ � 1

t
ðs� seðeÞÞð74Þ

where

siðeÞ ¼ a20e; seðeÞ ¼ a20eþ k0e
�c0eð75Þ

denote, respectively, the instantaneous and the equilibrium stress-strain curves. In
(73) c0 and k are arbitrary parameters while t > 0 is a relaxation time. Therefore
the material response functions (74) are in a good agreement with the constitutive
equations (7) and (8) related to the Coleman and Noll model. We note that the
instantaneous stress-strain curve given in (75)1 is the Hooke law so that we can
identify again the parameter a20 with the Young’s modulus (see remark 3 of sec-
tion 4). Finally if we assume c0 < 0 and k0 < 0, then the behaviour of the equilib-
rium stress-strain curve characterized in (75)2 is in a good agreement with that
obtained in [41] for polymethyl methacrylate [13].
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[12] C. Curró - N. Manganaro, Generalized Riemann problems and exact solutions

for p-systems with relaxation, Ricerche di Matematica, 65 (2), (2016) 549–562,
doi: 10.1007/s11587-016-0274-z.
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