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Abstract. — In this paper, we study melting and solidification for metallurgical processes related

with phase transitions of pure metals, which during the solid phase show an evident ductility. So, the
transition is between a viscous fluid and a viscoplastic state. In this work these particular phenomena

can be well described by a phase field fractional model, whose evolution has to satisfy a Ginzburg–
Landau equation. Then, we prove the compatibility with the Thermodynamic Laws.

Hence, for metallurgical phase transitions, we have considered a similar model by a new fractional
derivative and compared the behavior of the first with this second model. Finally, a generalization to

finite deformation for the same models is presented in the last section.
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1. Introduction

The phase transitions are consequence of a change of the internal material struc-
ture with significant variations of the physical, mechanical and thermodynamic
behavior of the bodies. So, in a phase transition the qualitative and phenomeno-
logical properties of a material change by varying some physical quantities, as
pressure, magnetic field, temperature, etc. In this sense, it should be emphasized
that in many transitions we observe a change of the molecular structure of the
material. As for example the transitions consequence of temperature and pressure
variations, among solid, liquid and gases, but also from an amorphous solid to a
crystalline solid state with high symmetry.

In the mathematical-physical framework, fundamental results related to the
formulation of models that represent the phase transitions were formalized by
Landau in [12] and in his fundamental work on superconductivity with Ginzburg
[10].

Recently, this theory was applied and extended to di¤erent transitions of inter-
est in the technology by the use of fractional derivatives with variable coe‰cients,
which help to better highlight the structural changes of materials.

In this the paper, we present a phase field model for the study of phase
transitions related with melting and solidification of metals (see Fig. 1) by the



use of two fractional models. In particular, we study pure metals, as alumi-
num, iron, copper, zinc, silver, etc., which show an evident ductility in solid
phase. Then, during the phase transition, the material passes from a viscous
fluid to a viscoplastic solid state. In the first part of the paper, we consider a
constitutive equation related with Caputo fractional derivative and we sup-
pose that along the transition, we have only small deformations, so that we
can use the eulerian view point also when we study the viscoplastic solid phase.
This transition will be described by a phase field aðx; tÞ, which satisfies the
Ginzburg–Landau equation and the restriction a a ½a; 1�, where 0 < af 0:5. For
a ¼ 1 we obtain the liquid phase, while a ¼ a describes the viscoplastic phase.
Then, we prove the compatibility of the model with the First and Second Laws
of Thermodynamics.

In the last part of the paper, by a suitable use of phase parameter a, we gener-
alize the mechanical processes, in order to consider also finite deformations. So
that we can consider and study general mechanical processes without to unify
the Lagrangian and Eulerian view point.

2. Differential model

For our model, we denote with W � R3 the domain of the body B and with ½0;T �
the time interval in which we observe the transition. So that, ðx; tÞ a W� ½0;T �.
For the study of these materials, it appears convenient the use of the following
constitutive equation

sðx; tÞ ¼ �paðyÞI þ AðxÞCDa
t eðx; tÞð2:1Þ

Figure 1. Phase diagram of solid-melting-liquid transition
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where s and e denote stress and strain tensors, while AðxÞ is a positive defined
four order tensor function of a and y the absolute temperature. The operator
CDa

t represents the Caputo fractional derivative (see [1], [2]) of order a defined
by

CDa
t eðtÞ ¼

1

Gð1� aÞ

Z t

0

e 0ðx; tÞ
ðt� tÞa dtð2:2Þ

where e 0ðx; tÞ ¼ d
dt eðx; tÞ and G is the Gamma function. Finally, we suppose the

body incompressible in the liquid and solid phase, otherwise during the transition
the pressure p is a function of a and y. So that we have the restrictions

paðyÞ ¼
not defined for a ¼ a

gðy� yTÞ þ pT ; for a a ða; 1Þ
undetermined for a ¼ 1

8<
:ð2:3Þ

where yT and pT denote the absolute temperature and pressure of triple point
related with phase diagram of the Fig. 2. While g > 0 represents the inclination
of solid-liquid line transition. Finally, when a ¼ a the pressure is not defined
because is embedded in the stress.

Therefore, by (2.1), (2.2) and (2.3), we obtain the stress-strain constitutive
equation

sðx; tÞ ¼ �paðyÞI þ
AðxÞ

Gð1� aðx; tÞÞ

Z t

0

e 0ðx; tÞ
ðt� tÞaðx; tÞ

dtð2:4Þ

In this framework, the model for a ¼ 1 describes a viscoelastic fluid, while the
viscoplastic solid phase is represented by a ¼ a:

When we study phase transitions, the a-coe‰cient will be a function of
ðx; tÞ. So that, the function aðx; tÞ is a new unknown able to describe the evo-
lution of the transition, which will be controlled by the Ginzburg–Landau
equation

Figure 2. Melting and freezing phase transition
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lðxÞ q
qt
aðx; tÞ ¼ kðxÞ‘2aðx; tÞ � yTF

0ðaðx; tÞÞð2:5Þ

�
�
y� 1

g
ðp� pTÞ

�
G 0ðaðx; tÞÞ

� G 0ð1� aðx; tÞÞ
G2ð1� aðx; tÞÞ

Z l

0

ðe tðx; sÞ � eðx; tÞÞ2

ðsÞ2þa
ds

where we have denoted e tðx; tÞ :¼ eðx; t� tÞ the past history of the strain eðx; tÞ,
while the potential FðaÞ and GðaÞ describe a transition of first order, which can
be represented by the polynomials of forth order

F ðaÞ ¼ ða� aÞ4

4ð1� aÞ �
ða� aÞ3

3ð1� aÞ ; GðaÞ ¼ ða� aÞ4

4ð1� aÞ � 2
ða� aÞ3

3ð1� aÞ þ
ða� aÞ2

2ð1� aÞð2:6Þ

Moreover for fluid and solid phase, we suppose an incompressible condition,
then the pressure will be well defined only during the phase transition.

Finally, we introduce the motion equation

rðxÞ q
qt
vðx; tÞ ¼ �‘pðx; tÞ þ ‘ � sEðx; tÞ þ rðxÞbðx; tÞð2:7Þ

where the vector v denotes the velocity, b the body forces and the extra-stress sE

is defined by

sEðx; tÞ ¼
AðxÞ

Gð1� aðx; tÞÞ

Z t

0

e 0ðx; tÞ
ðt� tÞaðx; tÞ

dtð2:8Þ

¼ AðxÞ
Gð1� aðx; tÞÞ

Z t

0

e 0ðx; t� sÞ
saðx; t�sÞ ds

The last equation connected with mechanical evolution is given by the con-
tinuity equation, which we write in the classical form

_rrðx; tÞ ¼ �rðx; tÞ‘ � vðx; tÞ

It is important to remember that we have supposed the incompressibility of the
liquid phase.

For this model, where the phase field a denotes a new variable which satisfies
the balance law (2.5), it is suitable to introduce the Landau free energy by the
functional

cLðy; a; e t;‘aÞ ¼
1

2
kð‘aÞ2 þ yTFðaÞ þ

�
y� 1

g
ðp� pTÞ

�
GðaÞð2:9Þ

þ 1

Gð1� aðx; tÞÞ

Z l

0

ðe tðx; sÞ � eðx; tÞÞ2

s2þaðx; t�sÞ ds
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So that, the equation (2.5) can be written as

lðxÞ q
qt
aðx; tÞ ¼ �dacLðy; a;‘aÞ

where da denote the variational derivative on a (see [8]).
Finally, because the temperature plays a major role in the phase transition, we

have to consider the heat balance equation

rðxÞhðx; tÞ ¼ �‘ � qðx; tÞ þ rðxÞrðx; tÞð2:10Þ

where the scalar hðx; tÞ denotes the internal heat power, the vector q the heat flux
and the scalar r the heat supply. In the following the heat flux will be supposed
function of ‘y such that

qðx; tÞ ¼ �kðxÞ‘yðx; tÞ; kðxÞb 0ð2:11Þ

3. Thermodynamic Laws

In this section, we introduce the First and Second Laws of Thermodynamics,
then we obtain the heat equation and we prove the thermodynamic compatibility
of our system.

Before, we need to introduce the internal mechanical and structural powers P i
m

and P i
s respectively defined by

P i
mðtÞ ¼ sðx; tÞ � _eeðx; tÞð3:1Þ

¼
�
�pða; yÞI þ AðxÞ

Gð1� aðx; tÞÞ

Z t

0

e 0ðtÞ
ðt� tÞaðx; tÞ

dt
�
� _eeðx; tÞ

P i
s ðtÞ ¼

d

dt

�
k
ð‘aÞ2

2

�
þ yT _FF ðaÞ þ

�
y� 1

g
ðp� pTÞ

�
_GGðaÞ þ g _aa2ð3:2Þ

þ G 0ð1� aðx; tÞÞ
G2ð1� aðx; tÞÞ

_aaðx; tÞ
Z l

0

ðe tðx; sÞ � eðx; tÞÞ2

s2þaðx; t�sÞ ds

In the following we need to introduce the notion of state s and process P,
which in this framework are defined by

sðx; tÞ ¼ ðyðx; tÞ; e tðx; sÞ; aðx; tÞ;‘aðx; tÞÞ;
P ¼ ð _yyðx; tÞ;‘vðx; tÞ;‘yðx; tÞ; _aaðx; tÞ;‘ _aaðx; tÞÞ

Now, by the notion of state and process we consider
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First law of thermodynamics
There exists a state function eðsÞ, called internal energy, such that

r _eeðsÞ ¼ P i
mðs;PÞ þP i

s ðs;PÞ þ rhðs;PÞð3:3Þ

where the internal heat power h is a function of the pair state-process ðs;PÞ:
Because the internal energy eðsÞ is a state function, we suppose eðsÞ ¼

eðy; a; e t;‘aÞ.
Hence we have from (3.1)–(3.3) the equation

rhðs;PÞ ¼ r _eeðy; a; e t;‘aÞ � sðx; tÞ � _eeðx; tÞ � d

dt

�
k
ð‘aÞ2

2

�
ð3:4Þ

� yT _FFðaÞ �
�
y� 1

g
ðp� pTÞ

�
_GGðaÞ � g _aa2

� G 0ð1� aðx; tÞÞ
G2ð1� aðx; tÞÞ

_aaðx; tÞ
Z l

0

ðe tðx; sÞ � eðx; tÞÞ2

s2þaðx; t�sÞ ds

Following [3] we have

sEðx; tÞ � _eeðx; tÞð3:5Þ

¼ aAðxÞ
Gð1� aðx; tÞÞ

Z l

0

e tðx; sÞ � eðx; tÞ
s1þaðx; t�sÞ � d

dt
ðeðx; t� sÞ � eðx; tÞÞ ds

þ aAðxÞ
Gð1� aðx; tÞÞ

Z l

0

e tðx; sÞ � eðx; tÞ
s1þaðx; t�sÞ � d

ds
ðeðx; t� sÞ � eðx; tÞÞ ds:

So, the free mechanical energy CEðe tðx; sÞÞ is defined by the functional

CEðe tðx; sÞÞ ¼
aAðxÞ

2Gð1� aðx; tÞÞ

Z l

0

ðe tðx; sÞ � eðx; tÞÞ2

s1þaðx; t�sÞ ds:ð3:6Þ

whereby we have by (3.5)

_CCEðe tðx; sÞÞð3:7Þ

¼ sEðx; tÞ � _eeðx; tÞ �
G 0ð1� aðx; tÞÞ
2G2ð1� aðx; tÞÞ

_aaðx; tÞ
Z l

0

ðe tðx; sÞ � eðx; tÞÞ2

s2þaðx; t�sÞ ds

� aAðxÞð1þ aÞ
2Gð1� aÞ

Z l

0

ðe tðx; sÞ � eðx; tÞÞ2

s2þaðx; t�sÞ ~aaðx; t� sÞ ds

where ~aaðx; t� sÞ ¼ d
ds
aðx; t� sÞ: Finally, from definition (3.1)
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P i
mðs;PÞ ¼ p

_rr

r
þ sEðx; tÞ � _eeðx; tÞð3:8Þ

¼ p
_rr

r
þ _CCEðe tðx; sÞÞ

þ aAðxÞð1þ aÞ
2Gð1� aÞ

Z l

0

ðe tðx; sÞ � eðx; tÞÞ2

s2þaðx; t�sÞ ~aaðx; t� sÞ ds

þ G 0ð1� aðx; tÞÞ
2G2ð1� aðx; tÞÞ

_aaðx; tÞ
Z l

0

ðe tðx; sÞ � eðx; tÞÞ2

s2þaðx; t�sÞ ds

Now, we consider the function

erðy; aÞ ¼ eðy; a; e t;‘aÞ �CEðe tðx; sÞÞ � k
ð‘aÞ2

2
�
�
yT þ 1

g
pT

�
GðaÞ:

Then, the heat equation (2.10) assumes the form

r _eerðy; aÞ þ p
_rr

r
� aAðxÞð1þ aÞ

2Gð1� aÞ

Z l

0

ðe tðx; sÞ � eðx; tÞÞ2

s2þa
~aaðx; t� sÞ dsð3:9Þ

�
�
y� 1

g
p
�
_GGðaÞ � g _aa2 þ G 0ð1� aðx; tÞÞ

G2ð1� aðx; tÞÞ
_aaðx; tÞ

�
Z l

0

ðe tðx; sÞ � eðx; tÞÞ2

s2þaðx; t�sÞ ds

¼ �‘ � qðx; tÞ þ rðxÞrðx; tÞ

Second law of thermodynamics
There exists a upper potential hðsÞ, called the entropy function, such that

r _hhðsðx; tÞÞb r
hðsðx; tÞ;Pðx; tÞÞ

yðx; tÞ � 1

y2
qð‘yðx; tÞÞ � ‘yðx; tÞð3:10Þ

From the inequality (3.10) and using (3.3) we have

ry _hhb rhðsðx; tÞ;Pðx; tÞÞ � 1

y
q � ‘yð3:11Þ

¼ r _eerðy; aÞ þ p
_rr

r
� aAðxÞð1þ aÞ

2Gð1� aÞ

Z l

0

ðe tðx; sÞ � eðx; tÞÞ2

ðsÞ2þaðx; t�sÞ ~aaðx; t� sÞ ds

�
�
y� 1

g
p
�
_GGðaÞ þ g _aa2 � 1

y
q � ‘y

469melting and solidification of pure metals by a phase-field model



then by the free energy c ¼ er � yh and the Fourier law (2.11), we have

r _ccþ rh _yyþ p
_rr

r
� aAðxÞð1þ aÞ

2Gð1� aÞ

Z l

0

ðe tðx; sÞ � eðx; tÞÞ2

s2þaðx; t�sÞ ~aaðx; t� sÞ dsð3:12Þ

�
�
y� 1

g
p
�
_GGðaÞ �

�
y� 1

g
p
�
_GGðaÞ � g _aa2 þ G 0ð1� aðx; tÞÞ

G2ð1� aðx; tÞÞ
_aaðx; tÞ

�
Z l

0

ðe tðx; sÞ � eðx; tÞÞ2

s2þaðx; t�sÞ ~aaðx; t� sÞ ds� k

y
ð‘yÞ2 a 0

Now, we suppose the free energy c and entropy h are function only of y, a, ‘a.
Hence upon substitution of P i

m and P i
s we obtain

rðcy þ hÞ _yy� rg _aa2 � p
� _rr

r
þ lr _GGðaÞ

�
þ de tcð3:13Þ

þ r ca � yG 0 þ G 0ð1� aðx; tÞÞ
G2ð1� aðx; tÞÞ

Z l

0

ðe tðx; sÞ � eðx; tÞÞ2

s2þaðx; t�sÞ ds

" #
_aa

� aAðxÞð1þ aÞ
2Gð1� aÞ

Z l

0

ðe tðx; sÞ � eðx; tÞÞ2

s2þaðx; t�sÞ ds

þ ðrc‘a � K‘aÞ � ‘ _aa� k

y
ð‘yÞ2 a 0:

Then, from the Second Law in the form of inequality (3.13), we have by the
arbitrariness and linearity of _yy, _aa and ‘ _aa the identities

hðy; a;‘aÞ ¼ �cyðy; a;‘aÞ; rc‘að‘aÞ ¼ K‘a;ð3:14Þ

caðy; aÞ ¼ yG 0ðyÞ þ G 0ð1� aðx; tÞÞ
G2ð1� aðx; tÞÞ

Z l

0

ðe tðx; sÞ � eðx; tÞÞ2

s2þaðx; t�sÞ ds

Finally, as consequence of the incompressibility of the liquid and solid phase, the
pressure p is undefined. Therefore, from arbitrariness of p > 0 we have during
the phase transition

_rr

r
þ lr _GGðaÞ ¼ 0ð3:15Þ

The free energy will be a state function depending on ðy; a; r;‘aÞ

c ¼
Z

er;yðyÞ dy� y

Z
er;yðyÞ

y
dyð3:16Þ

þ aAðxÞ
Gð1� aðx; tÞÞ

Z l

0

ðe tðx; sÞ � eðx; tÞÞ2

s2þaðx; t�sÞ dsþ yGðaÞ þ K
2r

ð‘aÞ2
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Then, the entropy is given by

h ¼
Z

er;y

y
dy� GðaÞð3:17Þ

Now, we arrive to the di¤erential system connected with melting and solid-
ification of pure metals. Then from the equation (3.9) on the temperature we
have

r _eerðyðx; tÞ; aðx; tÞÞ �
aAðxÞð1þ aðx; tÞÞ
2Gð1� aðx; tÞÞ

Z l

0

ðe tðx; sÞ � eðx; tÞÞ2

s2þaðx; t�sÞð3:18Þ

� ~aaðx; t� sÞ ds� yðx; tÞ _GGðaðx; tÞÞ � g _aa2ðx; tÞ
¼ �‘ � qðx; tÞ þ rðxÞrðx; tÞ

Moreover, the di¤erential problem is completed by the motion equation (2.7)
and the continuity equation (3.15).

4. Constitutive equation by a CF fractional derivative

In this Section, we use the new definition of time fractional derivative of order
a a ð0; 1Þ proposed in [4], by CF fractional derivative

Da
t f ðtÞ ¼

1

1� a

Z t

0

e�
a

1�a
ðt�tÞf 0ðtÞ dtð4:1Þ

whose meaning and properties was discussed also in [5]. So, the stress is defined
by

sðx; tÞ ¼ �paðx; tÞðyÞI þ AðxÞDaðx; tÞ
t eðx; tÞ

If we suppose that the parameter a is a function of ðx; tÞ we obtain the stress-
strain constitutive equation

sðx; tÞ ¼ �paðx; tÞðyðx; tÞÞI þ
AðxÞ

1� aðx; tÞ

Z t

0

e
� aðx; tÞ

1�aðx; tÞðt�tÞ
e 0ðx; tÞ dtð4:2Þ

¼ �paðx; tÞðyðx; tÞÞI þ sEðx; tÞ

Also for this model, for a ¼ 1 we obtain a viscoelastic fluid, while for
aðx; tÞ a ða; 1Þ we have the phase transition, the viscoplastic solid phase is repre-
sented by a ¼ a:

In order to prove that this new system by constitutive equation (4.2) satisfies
the restrictions of the Thermodynamic Laws is necessary to study the representa-
tion of the internal mechanical power P i

mðs;PÞ given by
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P i
mðs;PÞ ¼

�
�paðyðx; tÞÞI þ

AðxÞ
ð1� aðx; tÞÞ

Z t

0

e
� aðx; tÞ

1�aðx; tÞðt�tÞ
e 0ðx; tÞ dt

�
� _eeðx; tÞð4:3Þ

¼
�
�paðyðx; tÞÞI þ

aAðxÞ
ð1� aðx; tÞÞ2

�
Z t

0

e
� aðx; tÞ

1�aðx; tÞðt�tÞðeðx; tÞ � eðx; tÞÞ dt
�
� d
dt
eðx; tÞ

¼ �paðyðx; tÞÞI þ
aAðxÞ

ð1� aðx; tÞÞ2

�
Z t

0

e
� aðx; tÞ

1�aðx; tÞðt�tÞðeðx; t� sÞ � eðx; tÞÞ

� d
dt
ðeðx; t� sÞ � eðx; tÞÞ ds� aAðxÞ

ð1� aðx; tÞÞ2

�
Z t

0

e
� aðx; tÞ

1�aðx; tÞðt�tÞðeðx; t� sÞ � eðx; tÞÞ

� d
ds

ðeðx; t� sÞ � eðx; tÞÞ ds

So,

P i
mðs;PÞ ¼ �paðyðx; tÞÞIð4:4Þ

þ aAðxÞ
2ð1� aðx; tÞÞ2

d

dt

Z t

0

e
� aðx; tÞ

1�aðx; tÞðt�tÞðeðx; t� sÞ � eðx; tÞÞ

� ðeðx; t� sÞ � eðx; tÞÞ ds

� a2AðxÞ
ð1� aðx; tÞÞ3

Z t

0

e
� aðx; tÞ

1�aðx; tÞðt�tÞðeðx; t� sÞ � eðx; tÞÞ

� ðeðx; t� sÞ � eðx; tÞÞ ds

5. Simulations

In the previous section we have seen that the transition of a pure metal between
the viscous fluid phase and the viscoplastic solid phase can be modelled by using
a stress-strain relation that makes use of a fractional derivative, together with a
Ginzburg–Landau type phase transition model. We used two di¤erent types of
fractional derivative, the usual Caputo fractional time derivative and the new
fractional time derivative, recently introduced in [4].

Now, we would like to apply previous results to understand up to what point
they are in agreement with the experimental knowledge that we have of the phe-
nomena involved. For this purpose we performed some simulations considering a
situation in which, for the sake of simplicity, the geometry of the problem is one-
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dimensional, and further limiting our considerations to the time dependence: this
means that we consider all involved functions as homogeneous with respect to
space.

In detail, we consider the following reduced stress-strain relation

sEðtÞ ¼
A

Gð1� aðtÞÞ

Z t

0

1

ðt� tÞaðtÞ
e 0ðtÞ dtð5:1Þ

when using a stress-strain relation with the usual Caputo fractional time
derivative.

For the stress, we consider an harmonic oscillating function, while for the
phase a we consider a function increasing from a to 1 with the time t, built by
an appropriate scaling and translation of a sinusoidal function.

The obtained result for the usual Caputo fractional time derivative are
reported, for two di¤erent values of the fixed parameter a, in Fig. 3.

As we can see, from the start of the curve, near the origin of the axes, the
stress-strain relation is not a linear one, and this corresponds to a plastic material.
This e¤ect is more evident in the first of the two graphs, where the parameter a
is greater. Moreover, we see that for high values of a the curve follows a sort of
elliptic curve, typical of a viscous fluid.

For a stress-strain relation that make use of the new fractional time derivative
we have the following reduced stress-strain relation

sEðtÞ ¼
A

1� aðtÞ

Z t

0

exp
�
� aðtÞ
1� aðtÞ ðt� tÞ

�
e 0ðtÞ dt:ð5:2Þ

Figure 3. Stress vs. strain in a phase transition from a ¼ a to a ¼ 1, for two di¤erent
values of a and using the usual Caputo fractional time derivative
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In the next figure, we show the results obtained for the new fractional time de-
rivative, also in this case for the same two di¤erent values of the fixed parameter
a (see Fig. 4).

In this graphs we can see a behavior similar to the previous ones, but with a
slower adapting of the curve to the phase a.

It is the case to observe that the representations of phenomena by the con-
stitutive equations (5.1) and (5.2) are rather similar to each other. However we
observe that the simulations of the strain-stress graphs considered in Fig. 3 and
Fig. 4, have similar behaviors. The graphs show as the first model presents a
more evident memory e¤ects compared with the corresponding graph of the sec-
ond model.

We finally show a last figure (see Fig. 5) in which we let the phase a to reach 0,
so as to model a material that in the solid phase is elastic.

We can clearly see that in both graphs the start of the curve, near the origin
of the axes, is compatible with a straigth line through the origin, representing the
usual elastic stress-strain relation, in which the stress is proportional to the strain
(Hooke law). Again, the two graphs are di¤erent in the rapidity with which the
moving point follow the increasing of the transition phase a: the new fractional
time derivative retains a certain memory and it is slower in adapting to the phase.

6. Phase model with finite deformations

In this Chapter, we consider finite deformations, so that we do not unify the
lagrangian and eulerian view point, as considered in the first part of the paper.

Figure 4. Stress vs. strain in a phase transition from a ¼ a to a ¼ 1, for two di¤erent
values of a and using the new fractional time derivative
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Because, during the melting-solid transition, we need to change the view point.
So, for this reason we cannot use the classical motion equation

x ¼ ŵwðX ; tÞð6:1Þ

where X a B denotes the material point of the body B and x is localization
of X , i.e. the position occupied by the particle X at the instant t. As conse-
quence of the phase transition the equation (6.1) has to be replaced by the new
function

xaðX ; tÞ ¼ ~wwðX ; f ðaÞtÞ

where f ðtÞ is a monotone function, such that f ðaÞ ¼ 0, f ð1Þ ¼ 1. So, when a ¼ a;
we obtain the Lagrangian view point, while if a ¼ 1 we have the Eulerian point of
view. Then, the constitutive equation (2.4) assumes the form

sðxa; tÞ ¼ �paðyÞI þ
1

Gð1� aÞF
�Z t

0

e 0ðxa; tÞ
ð1� tÞa dt

�
ð6:2Þ

where F is a smooth second order tensor defined in a subset of a tensor
space T. Moreover, the Ginzburg–Landau equation assumes the equivalent
form

Figure 5. Stress vs. strain in a phase transition from a ¼ a ¼ 0 to a ¼ 1, for the two dif-
ferent types of Caputo fractional time derivative
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lðxaÞ
q

qt
aðxa; tÞ ¼ kðxaÞ‘2aðxa; tÞ � yTðxaÞF 0ðaðxa; tÞÞð6:3Þ

�
�
yðxa; tÞ �

1

g
ðpðxa; tÞ � pTÞ

�
G 0ðaðxa; tÞÞ

moreover, the motion equation is given by

rðxaÞ
q

qt
vðxa; tÞ ¼ �‘paðxa; tÞ þ ‘ � sEðxa; tÞ þ rðxaÞbðxa; tÞð6:4Þ

while from (3.18) we have the heat equation

rðxaÞ _eerðyðxa; tÞ; aðxa; tÞÞ �
aAðxaÞð1þ aðxa; tÞÞ

2Gð1� aÞ

Z l

0

ðe tðx; sÞ � eðx; tÞÞ2

s2þa
ds

� y _GGðaðxa; tÞÞ � g _aa2ðxa; tÞ ¼ �‘ � qðxa; tÞ þ rðxaÞrðxa; tÞ

Finally, the free mechanical energy CEðe tðxa; sÞÞ is defined by the functional

CEðe tðxa; sÞÞ ¼
aAðxaÞ

2rðxÞGð1� aÞ

Z l

0

ðe txax; sÞ � eðxa; tÞÞ2

s1þa
ds:ð6:5Þ

whereby we have by (6.5)

rðxaÞ _CCEðe tðxa; sÞÞð6:6Þ

¼ sEðxa; tÞ � _eeðxa; tÞ �
aAðxÞð1þ aÞ
2Gð1� aÞ

Z l

0

ðe tðxa; sÞ � eðxa; tÞÞ2

s2þa
ds:

7. Conclusions

We presented a phase field model useful for the study of phase transitions related
with melting and solidification of metals. This model applies to pure metals, as
aluminum, iron, copper, zinc, silver, etc., which in the solid phase show a pastic
beavior.

We first considered a constitutive equation related with Caputo fractional
derivative, whose coe‰cient is a new variabile of the problem, which satifies the
Ginzburg–Landau equation. Then, we supposed that along the transition there
are only small deformations. We proved the compatibility of the model with the
First and Second Laws of Thermodynamics. We then repeat the same analysis for
a new definition of time fractional derivative.

Next, we proposed some numerical simulations in a simplified situation, to
verify the obtained results in comparison with the experimental evidence.

In the last part of the paper, by a suitable use of the phase parameter
a, we generalized the mechanical processes, in order to consider also finite
deformations.
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