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Abstract. — We consider the dynamics of a point-mass object, e.g. a small satellite, around a

primary rigid body, e.g. a planet. We assume that the planet is oblate and axially symmetric with
respect to the vertical axis. Revisiting a procedure described in [19], we make use of the first integrals

(the energy and the projection of the angular momentum on the vertical axis), so to reduce the
problem to the study of a one-dimensional, time-dependent Hamiltonian system. Such Hamiltonian

depends upon control parameters, which represent the coe‰cients of the zonal terms of the gravita-
tional potential. We provide the explicit expressions of the most relevant terms of the expansion of

the potential in spherical harmonics. Averaging over the fast angles one obtains a one-dimensional
system. A Poincaré map of such Hamiltonian is also introduced. We discuss the conditions under

which the Hamiltonian (or the mapping) satisfies the twist condition, which is needed in KAM

theory to ensure the existence of rotational invariant surfaces. A qualitative description of the
dynamics in the twist and non-twist regimes is performed; it is based on the analysis of the equilib-

rium solutions and on the occurrence of bifurcations as the parameters are varied.
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1. Introduction

A reliable formulation of satellite dynamics requires the introduction of a model
in which the central body is not considered just as a point-mass. Therefore, it is
convenient to assume that the central object, hereafter the planet, is a rigid body
with oblate shape and axial symmetry with respect to the vertical axis. We
assume that the satellite and the planet interact just through the gravitational
force and we neglect the influence due to other bodies as well as tidal torques
that may arise from the non-rigidity of the planet. The model which describes
the oblate planet problem is governed by a Hamiltonian function, which can be
conveniently expressed in terms of the Delaunay action-angle variables (see,
e.g., [3]). According to a procedure described in [19] (see also [13], [18], [23],
[24]), the Hamiltonian can be reduced by using the first integrals of motion given
by the energy and the projection of the angular momentum on the vertical axis.
Using such integrals and averaging over the fast angle (i.e., the mean anomaly),
one is led to consider a one-dimensional Hamiltonian function in action-angle



variables, where the action G is related to the eccentricity of the orbit, while
the angle g represents the argument of perigee. Correspondingly, one can intro-
duce a discrete mapping as the Poincaré map of the Hamiltonian at multiples
of 2p.

The averaged reduced Hamiltonian can be decomposed in the form (compare
with (2.12) below)

KðG; g; ~LL;HÞ ¼ K0ðG;HÞ þ eK1ðG; g; ~LL;HÞ;

where ~LL, H are the first integrals, K0 represents the integrable Hamiltonian, K1 is
the perturbing function which is multiplied by a parameter e (depending on the
so-called zonal coe‰cients Jk of the gravitational potential), that we assume to
be small ([17]). If only J2 is considered, then the problem is usually called the
J2-problem.

The oblate planet problem (or its variant – the J2-problem) can be used for the
description of the artificial satellite dynamics, but it has also received attention
in various contexts, since it has been analyzed as a bench test of di¤erent aspects
in Dynamical Systems and Astrodynamics. Most notably, we mention the use of
this model in connection to the proof of its non-integrability based on Lerman
([8]) or Ziglin ([16]) theorems, the global structure of the reduced phase space
([10]), the analysis of collision orbits ([22]), the investigation of periodic solutions
([4, 18, 19]). Particular values of a control parameter (the inclination) lead to
a model which paves the way to the study of the non-twist dynamics that
has been carefully investigated in di¤erent examples (see, e.g., [11, 26, 29, 31]).
Finally, an application of KAM theory is given, e.g., in [19] by applying Moser’s
small twist theorem; the oblate planet model is also taken as an appropriate
example to prove the existence of invariant curves within the non-twist regime
(see, e.g., [12, 15]).

Rather than being interested in the orbital propagation of the satellite, we con-
centrate on the qualitative and geometrical aspects of the model, especially by
looking at the behavior of the dynamics as some control parameters are varied.
In particular, we analyze the problem under non-degenerate and degenerate con-
ditions, precisely the twist and non-twist conditions (see, e.g., [11, 12, 26, 27, 29]),
and in such cases we study the occurrence of bifurcations of equilibria (see, e.g.,
[7, 14, 28]).

To be more precise, we analyze the oblate planet model when a relevant
quantity, represented by the second derivative of the unperturbed Hamiltonian,
is varied. Precisely, when such derivative is di¤erent from zero, the system is
non-degenerate or, equivalently, the Poincaré map satisfies the twist condition;
for the values at which such derivative is zero, we say that the system is degen-
erate or that the map is non-twist. Non-degeneracy and twist conditions are
required to prove the celebrated Kolmogorov–Arnold–Moser (hereafter, KAM)
theorem ([20], [1], [25]), which allows one to show the existence of rotational
invariant surfaces, with the property that they are graphs over the angle coordi-
nate. It can be easily shown that the oblate planet problem becomes non-twist
at specific values of the inclination. For such values, the dynamics presents a
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behavior quite di¤erent from the twist case, with the occurrence of so-called
meandering tori, which are not graphs over the angle variables.

Beside showing twist and non-twist behaviors, the model we consider o¤ers
also another interesting feature, precisely the occurrence of bifurcations of equi-
libria as a control parameter is varied: in the present setting, the role of control
parameter is played by the asymmetric coe‰cient J3. By varying this parameter,
we observe the birth or annihilation of periodic orbits, either in the twist and non-
twist regimes. In summary, due to its twofold intrinsic interest, we propose the
oblate planet problem as a paradigmatic model in which it is possible to study
two di¤erent interrelated aspects: the twist/non-twist regimes and the occurrence
of bifurcations.

This paper is organized as follows. In Section 2 we revisit the method used in
[19] to introduce the oblate planet model and we give an explicit approximated
expression of the potential; we also discuss the twist condition as a function of
the orbital elements. In Section 3 we draw some conclusions on the existence
of invariant surfaces. A qualitative description of the dynamics is provided in
Section 4, where we compute the equilibrium positions and we analyze bifurca-
tion phenomena as the control parameters are varied.

2. The oblate planet model

We consider a satellite subject to the gravitational influence of a rigid oblate
planet. We assume that the mass of the satellite is negligible with respect to that
of the planet (for example, the satellite is a spacecraft). After introducing the
potential function in Section 2.1, we revisit a method described in [19], which al-
lows us to reduce the equations of motion to a one-dimensional, time-dependent
Hamiltonian model. The method makes use of the first integrals of motion,
namely the energy and the projection of the angular momentum on the vertical
axis. Then, the equations of motion are conveniently expressed in terms of the
mean anomaly (Section 2.2); such equations can be integrated over a period to
obtain the Poincaré map (see Section 2.3). In particular, we consider the system
(and the map) obtained after averaging over the fast variable (see Section 2.4).
The twist properties of such mapping are discussed in Section 2.5.

2.1. The potential

Let us consider an inertial reference frame ðO; x; y; zÞ, whose origin coincides
with the center of mass of the planet, the z axis is aligned with the polar axis,
while the x and y axes lie on the equatorial plane to form an oriented frame.
Denoting by~rr and~vv the position and velocity vectors of the satellite, we have

d~rr

dt
¼~vv;

d~vv

dt
¼ �‘V ;

where V denotes the potential energy. We assume that the planet is axially sym-
metric with respect to the z axis. Thanks to this assumption, the potential energy
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V ¼ Vðx; y; zÞ can be expanded in terms of the Legendre polynomials as

Vðx; y; zÞ ¼ � m

r
þ m

Xl
j¼2

Jj
R j

e

r jþ1
Pj

� z

r

�
;ð2:1Þ

where r ¼ rðx; y; zÞ is the Euclidean norm of ~rr, mCkM is taken in normalized
units (k denotes the gravitational constant, while M stands for the mass of the
planet) and Re is the equatorial radius of the planet. We normalize the units of
distance so that Re ¼ 1. The quantities Jj in (2.1) are constants which depend
on the mass distribution of the planet, while the functions Pj are the Legendre
polynomials of degree j. The term corresponding to j ¼ 1 in the series expansion
(2.1) is missing, due to the fact that the center of mass of the planet coincides with
the origin of the inertial frame. Since the planet is not spherically symmetric, the
angular momentum is not constant. However, assuming axial symmetry of the
planet, the projection H of the angular momentum on the z axis is constant.
Another integral of motion is given by the total energy ~HH, which is assumed to
be negative, thus providing bounded unperturbed trajectories. No other integral
of motion can be determined, except for particular choices of the coe‰cients Jj;
for example, when Jj ¼ 0 for any j, then the model reduces to Kepler’s problem.
Next, we write (2.1) as

Vðx; y; zÞ ¼ UKepðx; y; zÞ þUðx; y; zÞ;

where the Keplerian potential is UKep ¼ � m
r
and we have introduced the perturba-

tive potential given by

Uðx; y; zÞC�m
Xl
j¼2

Jj
1

r jþ1
Pj

� z

r

�
:ð2:2Þ

2.2. A reduced system of equations

We denote the orbital elements as follows: a is the semimajor axis, e the eccen-
tricity, i the inclination, l the mean anomaly, g the argument of perigee and h
the longitude of the ascending node. Setting n the mean motion, according to
Kepler’s third law, we have n2a3 ¼ m.

Following [19], we make use of the first integrals to describe the oblate planet
model by a non-autonomous, one-dimensional Hamiltonian function. To this
end, we introduce the Delaunay action variables defined in terms of the orbital
elements as

L ¼ ðmaÞ
1
2; G ¼ Lð1� e2Þ

1
2; H ¼ G cos i;ð2:3Þ

while the conjugated angles are l, g, h. We notice that H represents the integral
given by the projection of the angular momentum on the vertical axis, while the
energy coincides with the Hamiltonian function, that we express as

~HHðL;G;H; l; gÞ ¼ � m2

2L2
�UðL;G;H; l; gÞ;ð2:4Þ
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where the function U in (2.2) is now expressed in terms of the Delaunay variables.
We fix the integrals as H ¼ a for some a a R, ~HH ¼ b for some b a R. Following
[19], we solve the equation ~HHðL;G; a; l; gÞ ¼ b to obtain L ¼ ~KKðG; a; l; g; bÞ for
some function ~KK , so that we can consider the Hamiltonian ~HH as depending just
on G, l, g and parametrized by a, b.

Finally, we consider l instead of t as an independent variable to obtain the
equations

dg

dl
¼

q ~HH
qG

q ~HH
qL

;
dG

dl
¼ �

q ~HH
qg

q ~HH
qL

;ð2:5Þ

where ~HH ¼ ~HHð ~KKðG; a; l; g; bÞ;G; a; l; gÞ. The final step consists in di¤erentiat-
ing ~HHð ~KKðG; a; l; g; bÞ;G; a; l; gÞ ¼ b with respect to the variables G and g to
obtain

q ~HH

qL

q ~KK

qG
þ q ~HH

qG
¼ 0;

q ~HH

qL

q ~KK

qg
þ q ~HH

qg
¼ 0:ð2:6Þ

Setting

KðG; g; l; a; bÞC ~KKðG; a; l; g; bÞ � m

ð�2bÞ
1
2

ð2:7Þ

and using (2.5), (2.6), we obtain

dg

dl
¼ � qKðG; g; l; a; bÞ

qG
;

dG

dl
¼ qKðG; g; l; a; bÞ

qg
:ð2:8Þ

We remark that the quantities a, b cannot be arbitrary, but they must satisfy the
inequalities

0a aa
m

ð�2bÞ
1
2

:

2.3. The Poincaré map

Let us introduce a new variable ~LL through the equation �b ¼ m2=2~LL2. By using
the energy integral and the Hamiltonian defined by the equation (2.4), we get

m2

2~LL2
¼ m2

2L2
þUðL;G; l; g; aÞ;

that we can invert to obtain L in terms of ~LL, hence of b. Following [18], we
can reduce to the study of the Poincaré mapping associated to (2.8), described
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by the equations

Gð2pÞ ¼ Gð0Þ þ
Z 2p

0

qK

qg
ðGðlÞ; gðlÞ; l; a; bÞ dl

gð2pÞ ¼ gð0Þ �
Z 2p

0

qK

qG
ðGðlÞ; gðlÞ; l; a; bÞ dl;

ð2:9Þ

where ðGð0Þ; gð0ÞÞ denote the initial conditions. Given the dependence of K on
the variables ðG; g; lÞ, we need to express U in terms of such variables, as de-
scribed in the following section where an averaged approximation of the potential
is considered.

2.4. The averaged problem

Due to the assumption of axial symmetry, we limit to consider the so-called zonal
harmonics in the expansion of the potential ([2]). Therefore, U in (2.2) can be
written as U ¼ V20 þ V30 þ � � � , where the terms Vj0 are defined by

Vj0 ¼
m

að~LLÞ jþ1

Xj

p¼0

Fj0pðiðG;HÞÞ
Xl
q¼�l

GjpqðeðG; ~LLÞÞHj0pqðg; lÞ;ð2:10Þ

where a ¼ að~LLÞ ¼ ~LL2=m, e¼ eðG; ~LLÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�G2=~LL2

q
, i ¼ iðG;HÞ ¼ arccosðH=GÞ,

while the expressions of the functions Fjmp, Gjpq, Hjmpq are recalled in Appendix
A.

In the expansion (2.10) we consider only the terms with q ¼ 2p� j, since
we are just interested to terms of U with zero average with respect to l. After
tedious computations, we obtain the following expressions for V20 and V30, which
provide the potential U truncated to the first two terms, namely U ¼ V20 þ V30

with

V20 ¼ J2m
4~LL�3G�3

� 3

4

H 2

G2
� 1

4

�
;

V30 ¼ 2J3m
5~LL�3G�5 sinðgÞ

� 15

16

H 2

G2
� 3

16

��
1�H 2

G2
� G2

~LL2
þH 2

~LL2

�1
2

:

ð2:11Þ

Notice that the secular terms appear only in the functions Vj0 with j even.
From the relations (2.7) and (2.11), we obtain the following expression for the
Hamiltonian K , averaged with respect to l:

KðG; g; ~LL;HÞ ¼ J2m
2G�3

� 3

4

H 2

G2
� 1

4

�
ð2:12Þ

þ 2J3m
3G�5 sinðgÞ

�15
16

H 2

G2
� 3

16

��
1�H 2

G2
� G2

~LL2
þH 2

~LL2

�1
2

:
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Finally, we can give an explicit form to the Poincaré map (2.9) associated to the
averaged model and we can introduce the following map M : R� T ! R� T
truncated up to first order in J3, where G0, g0 denote the solutions at time t ¼ 0,
while G1, g1 are the solutions at t ¼ 2p:

G1 ¼ G0 þ 2pJ3FgðG0; g0Þ
g1 ¼ g0 � 2p½J2gðG1Þ þ J3FGðG1; g0Þ�;

ð2:13Þ

in the above expressions, the functions g, Fg and FG are defined by the following
relations:

gðG1Þ ¼
3

4

m2

G4
1

�
1� 5

H 2

G2
1

�
;ð2:14Þ

FgðG0; g0Þ ¼ 2m3G�5
0 cosðg0Þ

3

16

�
5
H 2

G2
0

� 1
��

1�H 2

G2
0

� G2
0

~LL2
þH 2

~LL2

�1
2ð2:15Þ

and

FGðG1; g0Þ ¼ 2m3 sinðg0Þ
� 15

16

1

G6
1

� 105

16

H 2

G8
1

��
1�H 2

G2
1

� G2
1

~LL2
þH 2

~LL2

�1
2

þ 2m3 sinðg0Þ
� 15

16

H 2

G7
1

� 3

16

1

G5
1

�

�
�
1�H 2

G2
1

� G2
1

~LL2
þH 2

~LL2

��1
2
�H 2

G3
1

� G1

~LL2

�
:

Remark 1. We underline that in the second equation of (2.13) we have inserted
the iterated value of the G-variable, say G1; this allows to obtain a better preser-
vation of the area of the mapping M up to OðJ 2

3 Þ, as it can be easily checked by
computing the determinant of the Jacobian of the mapping.

2.5. The twist condition

An important feature of the map (2.13) is the behavior of the function (2.14).
Precisely, the map is said to satisfy the twist condition, if g 0ðGÞ > 0 in the domain
where the map is considered. Such condition is an essential requirement for the
application of KAM theory ([20], [1], [25]) on the existence of invariant curves
(see Section 3). On the other hand, maps which do not satisfy the twist condition
admit a peculiar dynamics, which includes curves which are not graphs (the
so-called meandering curves). Note that, in the following computation instead
of considering the iterated value G1 for the variable G in the equation for g
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(compare with Remark 1), we consider the original variable G0 (see also Remark
2 below). Given the expression (2.14) with G0 in place of G1, we have

g 0ðG0Þ ¼
3

2

m2

G5
0

�
2� 15

H 2

G2
0

�
:ð2:16Þ

We say that the map M satisfies the twist condition, if G0 is such that

g 0ðG0ÞA 0:ð2:17Þ

As already remarked in [19], the twist condition is violated for g 0ðG0Þ ¼ 0,
namely whenever H 2=G2

0 ¼ 2=15 or cos2 i ¼ 2=15, which holds for i ¼ 68o:583
or i ¼ 111o:417; we shall refer to such values as the non-twist inclinations. As we
shall see in Section 3, we need to exclude such critical values in order to guarantee
the persistence of rotational invariant curves by means of KAM theory.

Remark 2. The twist quantity (2.16) was obtained by assuming in (2.14) to
have the function at G0 and not at G1. If instead we consider g ¼ gðG1Þ with G1

as a function of G0 through the first of (2.13), we obtain:

q

qG0
½gðG1ðG0ÞÞ� ¼

q

qG1
½gðG1ðG0ÞÞ�

�
1þ 2pJ3

q

qG0
½FgðG0; g0Þ�

�
;

where

q

qG1
½gðG1ðG0ÞÞ� ¼

3

2

m2

G5
1

�
2� 15

H 2

G2
1

�
ð2:18Þ

and

q

qG0
½FgðG0; g0Þ� ¼ 2m3 cosðg0Þ

� 15

16

1

G6
0

� 105

16

H 2

G8
0

��
1�H 2

G2
0

� G2
0

~LL2
þH 2

~LL2

�1
2

þ 2m3 cosðg0Þ
� 15

16

H 2

G7
0

� 3

16

1

G5
0

�

�
�
1�H 2

G2
0

� G2
0

~LL2
þH 2

~LL2

��1
2
�H 2

G3
0

� G0

~LL2

�
:

Note that, since we used the iterated variable G1 in (2.14) and since we considered
the expression of the oblate potential up to orders proportional to J3, the expres-
sion of the twist functions (2.16) and (2.18) di¤er slightly (as far as J3 is small).
However, since the quantities in (2.14) and (2.15) are zero for the same values of
the initial inclination, this means that the same happens for the quantities in
(2.14) and (2.18).
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3. Invariant curves

The model described by (2.12), or equivalently (2.13), shows di¤erent features,
according to whether the twist or non-twist condition is satisfied. Under the
assumption that (2.17) holds, then we can find KAM invariant curves, which
are characterized by a frequency satisfying the Diophantine condition. Precisely,
let us consider the mapping M in (2.13), defined on a manifold DCV � T
with V � R open. We assume that the frequency o satisfies the Diophantine
condition

o

2p
qþ p

���� �����1

a njqjt; p a Z; q a Znf0g

for some nb 1, tb 1. Then, we have the following definition of KAM invariant
curve.

Definition 3. A KAM curve for (2.13) with Diophantine frequency o is an
invariant curve, described parametrically by an embedding P : T ! D, which
satisfies the invariance equation

M � PðyÞ ¼ Pðyþ oÞ:ð3:1Þ

Provided that the twist condition is satisfied, then for suitable values of the
parameters we have plenty of KAM rotational curves, whose existence is guar-
anteed by KAM theory ([20], [1], [25], see also [21], [6] and references therein).
Following the proof described in [21], the existence of KAM manifolds can be
shown using an a-posteriori approach. In short, starting with an approximate
solution P0 which satisfies the invariance equation (3.1) up to an error term
E0 ¼ E0ðyÞ, say

M � P0ðyÞ � P0ðyþ oÞ ¼ E0ðyÞ;

assuming the twist condition (2.17), if the norm of E0 is su‰ciently small, then
there exists a solution Pe which satisfies (3.1) exactly and such that the norm of
Pe � P0 (on a smaller domain compared to the domain on which P0 is defined) is
bounded by the norm of E0, multiplied by suitable powers of the Diophantine
constant n and by the inverse of the parameter which measures the domain loss.
We refer to [21] for complete details (see also [5] for an extension of the proof to
some dissipative systems, like the case of a satellite around an oblate primary and
subject to a tidal torque).

An important consequence of the KAM theory within the present model is
that, by proving the existence of two invariant curves, we obtain a confinement
between those invariant manifolds. In fact, any motion between any two invari-
ant curves will always remain trapped between the invariant manifolds. Notice
that due to (2.3) such confinement is indeed a bound on the eccentricity between
the values corresponding to the trapping invariant curves.
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When the non-twist condition is violated, we have the appearance of di¤erent
phenomena (see, e.g., [11], [14]). For example, there might exist several rotational
invariant curves and periodic orbits with the same frequency. Then, it might
happen that a parameter change gives rise to bifurcations of orbits with the
same frequency, which generate either a collision, an annihilation or rather a
separatrix reconnection. For example, in the integrable case J3 ¼ 0, it is clear
that the invariant curves G ¼eG0 have the same frequency. As it is well known,
non-twist maps exhibit also the appearance of meandering curves, which are
characterized by the fact that they are not graphs over the angle variable. Some
of these phenomena will appear in the qualitative description provided in Section
4. We refer to [11], [26], [28], [31], [29], [30], and references therein, for further
details. For a formulation of KAM theory for non-twist maps we refer, e.g., to
[12], [15], [27].

4. Equilibrium solutions and bifurcations

In this Section we perform a qualitative analysis of the model described in Section
2. First, we determine the equilibrium solutions (see Section 4.1), which are char-
acterized by a constant value of the eccentricity and the argument of perihelion.
Equilibrium profiles associated to the mapping (2.13) allow us to determine the
location of the equilibria and their evolution as the parameters are varied (see
Section 4.2). This analysis is further complemented and widened by a study of
the bifurcations of the equilibria, which is performed in Section 4.3.

4.1. Equilibrium solutions

With reference to the mapping (2.13), we proceed to compute the equilibrium
points of the mapping, which correspond to the solutions in which ðG; gÞ are
invariant, namely the eccentricity and the argument of perihelion stay constant
under the e¤ect of the J2 and J3 terms. This kind of trajectories are known in
satellite dynamics as frozen orbits ([9]).

i) We observe that for G0 ¼ G0 ¼
ffiffiffi
5

p
a we obtain FgðG0; g0Þ ¼ 0 for any value of

g0. This solution implies that G1 ¼ G0 and that gðG1Þ ¼ 0. The condition on
G0 means that the inclination takes the values i ¼ 63o:435 or i ¼ 116o:565, to
which we will refer as the critical inclination values. To have the invariance of
the angular variable, we need to require that FGðG0; g0Þ ¼ 0, which is satisfied
for g0 ¼ 0 or g0 ¼ p. In conclusion, we obtain the following equilibrium
points:

G0 ¼
ffiffiffi
5

p
a; g0 ¼ 0

G0 ¼
ffiffiffi
5

p
a; g0 ¼ p:

ii) Another equilibrium solution is obtained as follows. We observe that for
g� ¼ p

2 and gþ ¼ 3
2 p we obtain FgðG0; geÞ ¼ 0, which implies that the action
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variable is kept fixed. On the other hand, we look for the values of G1 (equiv-
alently, G0), such that

J2gðG1Þ þ J3FGðG1; geÞ ¼ 0:ð4:1Þ

The solutions (not necessarily unique) of (4.1) determine the equilibrium
points of the mapping (2.13). Notice that the equation (4.1) provides a relation
between the eccentricity, the inclination and the semimajor axis.

4.2. Equilibrium profiles

We can infer several information from the graph of the function

FðG1; g0Þ ¼ �J2gðG1Þ � J3FGðG1; g0Þð4:2Þ

computed, for example, at the equilibrium position g0 ¼ 3
2 p and for fixed values

of the quantities ~LL, H. The zeros of FðG1;
3
2 pÞ provide the values of the action,

corresponding to the equilibrium solution g0 ¼ 3
2 p. In Figure 1 we fix a value for

J2 and we let the parameter J3 increase, plotting the most significant cases:

(1) a transverse intersection with the horizontal axis (Figure 1, left panel) corre-
sponds to a single equilibrium point;

(2) a tangency, as in the middle panel of Figure 1, corresponds to a case where
the bifurcation threshold is reached;

(3) for higher values of J3, there appear three equilibria (right panel of Figure 1).

This analysis, which is quite easy and computationally fast, provides a very
good indication of the equilibrium positions, as it will be confirmed by a more
elaborated study presented in the next section.

4.3. Bifurcation theory for a one degree-of-freedom system

For a Hamiltonian system, low-dimensional invariant manifolds (either equilib-
ria, periodic orbits or invariant tori) organize the structure of the phase space.
For one degree-of-freedom systems, the critical points of the Hamiltonian func-
tion identify the equilibria and the invariant manifolds associated to the phase
flow coincide with the level curves of the Hamiltonian. In the case in which this

Figure 1. Equilibrium profiles for ~LL ¼ 3, G0 ¼ 2:8, H ¼ G0

ffiffiffiffi
2
15

q
, J2 ¼ 10�2; left: J3 ¼

5 � 10�3, middle: J3 ¼ 8:83 � 10�3, right: J3 ¼ 9:3 � 10�3.
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Hamiltonian stems from a reduction procedure associated to the existence of one
or more integrals of motion, the equilibria correspond to periodic orbits and the
invariant curves to tori of the un-reduced system. The number and nature of
the critical points, as they are determined by varying intrinsic and control
parameters, provide information about bifurcation phenomena, with either the
birth or the annihilation of periodic orbits. We start with a Hamiltonian as in
(2.12), say K ¼ KðG; g; ~LL;H; J2; J3Þ in the phase-plane ðG; gÞ, where ~LL, H are
the intrinsic parameters and J2, J3 the control ones but, since J3 determines the
magnitude of the angle-dependent term, it plays the role of perturbation control
parameter. The variable G is limited by GminaGaL, where Gmin can be zero
or it can be determined by some physical constraints (see [7]). Therefore, the
available phase-space of the Hamiltonian system is represented by the cylinder

GC fðG; gÞ a R� T : GminaGaL; 0a ga 2pg:

Whenever the perturbation parameter J3 is small, the flow in G is a rotational set
of lines almost parallel to the base of the cylinder G ¼ Gmin. Depending on the
extent of the perturbation and the value of the internal parameters ~LL, H, critical
points may appear in G: this leads to the birth of libration islands and, in case, to
the appearance of stable and unstable manifolds. As mentioned in Section 4.1, to
find the critical points we have to solve the system of equations

qK

qG
¼ 0;

qK

qg
¼ 0:ð4:3Þ

The second equation is readily solved by g� ¼ p=2 and gþ ¼ 3=2p. These two
pairs of solutions, when inserted in the first of (4.3), give the two equations:

FeðGÞ ¼ 0ð4:4Þ

with FeðGÞ ¼ FðG; geÞ and F as in (4.2). Then, we need to find the roots of
this pair of equations as functions of the parameters. Two kind of bifurcation
phenomena may happen:

(1) every time one of the roots enters into the cylinder G by varying the param-
eters, we have a new equilibrium of the reduced problem (a periodic orbit
in the original system), whose stable or unstable nature can be assessed by
studying the Hessian of the Hamiltonian;

(2) at critical values of the parameters, the number of roots may change, giving
rise to the birth (or annihilation) of new critical points.

Remark 4. The explicit solution of (4.4) is easy to find when the equations are
linear or quadratic in G. For higher order or non-polynomial equations, usually
the presence of a small perturbation parameter allows the determination of
approximate solutions.

We present in Figure 2 an example of the computation of the contour plots
of the Hamiltonian (2.12), from which we infer the existence of di¤erent equilib-
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Figure 2. Contour plots for ~LL ¼ 3, G0 ¼ 2:8, J2 ¼ 10�2: top left H ¼ G0

ffiffiffiffi
2
15

q
, J3 ¼ 10�3;

top right H ¼ G0

ffiffiffiffi
2
15

q
, J3 ¼ 2 � 10�3; middle left H ¼ G0

ffiffiffiffi
2
15

q
, J3 ¼ 5 � 10�3; middle right

H ¼ G0

ffiffiffiffi
2
15

q
, J3 ¼ 8:83 � 10�3; bottom left H ¼ G0

ffiffiffiffi
2
15

q
, J3 ¼ 9:3 � 10�3; bottom right

H ¼ 0:5, J3 ¼ 10�3. The horizontal lines in the top panels represent the analytical
estimates of the values of G corresponding to the equilibria.
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ria and the occurrence of bifurcations. Moreover, for small values of the per-
turbing parameter J3 we can compute analytically the values of the action G,
which correspond to the equilibrium solutions. The procedure is the following.

Let G0 ¼
ffiffiffi
5

p
H as above and let g� ¼ p=2, gþ ¼ 3=2p be the values of g at

the equilibria. Let us decompose K in (2.12) as KðG; g; ~LL;HÞ ¼ K1ðG; ~LL;HÞþ
K2ðG; g; ~LL;HÞ, where K1 is the part proportional to J2 and K2 the term propor-
tional to J3. To find an approximate value of the root, we can apply the Newton-
Raphson method. Precisely, we start by defining the quantities

heC�
qK2ðG0;geÞ

qG

q2K1ðG0Þ
qG2

:

Then, the first-order (in J3) approximate solutions are given by

Ge ¼ G0 þ he

or, explicitly in terms of the parameters,

Ge ¼
ffiffiffi
5

p
He

J3

J2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 5ðH=LÞ2

q
5H

:ð4:5Þ

The horizontal lines in the upper plots of Figure 2 correspond to the values Ge

computed as in (4.5).
In particular, in the upper left plot of Figure 2 we have two stable equilibria,

whose action values lie on the lines Ge, although the prediction of the ordinate of
the equilibria becomes less reliable as the parameter J3 increases (compare with
the upper right plot of Figure 2). At J3 ¼ 5 � 10�3 we still have a pair of equilibria
(Figure 2, middle left panel), but the tori below the lower equilibrium become
more and more distorted as J3 increases (middle right panel of Figure 2), until a
bifurcation value is reached and more equilibria appear. They are produced in a
saddle-centre bifurcation occurring at the bifurcation value J3 ¼ 8:83 � 10�3 as
shown in the lower left panel of Figure 2. We notice that for such value of
J3 there appear meandering curves, typical of the non-twist regime, around the
equilibria at gþ ¼ 3=2p. The stable-unstable pair of critical points displayed in
the lower right panel of Figure 2 shows the behavior for a non critical value of
the parameters, precisely for H ¼ 0:5 and J3 ¼ 10�3. We highlight that Figure 2
presents two important phenomena typical of some dynamical systems, precisely
the transition from a twist to a non-twist regime and the occurrence of bifurca-
tions with the birth of new equilibria. Unfortunately, it is not possible to provide
an approximate analytical expression for the additional roots associated to the
bifurcation and, as a consequence, the estimate of the threshold value of J3
has only been obtained numerically. The reason stays in the breakdown of the
Newton-Raphson procedure for which is not possible to identify a sensible seed
solution.
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Appendix: The gravitational potential

In polar coordinates ðr; f; lÞ with origin at the center of mass of the planet, the
real solution of the Laplace equation r2‘2Vðr; f; lÞ ¼ 0 is given by

Vðr; f; lÞ ¼
X
j;m

Vjmðr; f; lÞðA:1Þ

¼
Xl
j¼0

Rj
e

Xj

m¼0

m

r jþ1
PjmðsinðfÞÞ½Cjm cosðmlÞ þ Sjm sinðmlÞ�:

The quantities PjmðsinðfÞÞ are the Legendre associate functions, defined as

PjmðsinðfÞÞ ¼ cosmðfÞ
X½ j�m

2
�

t¼0

Tjmt sin
j�m�2tðfÞ;

where the coe‰cients Tjmt are given by

Tjmt ¼
ð�1Þ tð2j � 2tÞ!

2 jt!ð j � tÞ!ð j �m� 2tÞ! :

The constants Cjm and Sjm in (A.1) depend on the mass distribution of the planet
(see [17]). In particular, one has Ci0 ¼ �Ji, where Ji denote the coe‰cients
entering the potential (2.2). It is convenient to write the potential (A.1) using
the orbital elements ða; e; i; l; g; hÞ as in [17]:

Vjm ¼ m
R j

e

a jþ1

Xj

p¼0

FjmpðiÞ
Xl
q¼�l

GjpqðeÞHjmpqðl; g; h; yÞ;

where y denotes the sidereal time and Re is the equatorial radius of the planet.
The quantities Hjmpq are defined as

Hjmpqðl; g; h; yÞ ¼ Cjm½cosðð j � 2pÞgþ ð j � 2pþ qÞlþmðh� yÞÞ�
þ Sjm½sinðð j � 2pÞgþ ð j � 2pþ qÞlþmðh� yÞÞ�

if j �m is even, or

Hjmpqðl; g; h; yÞ ¼ �Sjm½cosðð j � 2pÞgþ ð j � 2pþ qÞlþmðh� yÞÞ�
þ Cjm½sinðð j � 2pÞgþ ð j � 2pþ qÞlþmðh� yÞÞ�

if j �m is odd. The expressions for FjmpðiÞ are
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FjmpðiÞ ¼
Xminðp; ½ j�m

2
�Þ

t¼0

ð2j � 2tÞ!
t!ð j � tÞ!ð j �m� 2tÞ!22j�2t

sin j�m�2tðiÞ

�
Xm
s¼0

m

s

� �
cossðiÞ

X
c

j �m� 2tþ s

c

� �
m� s

p� t� c

� �
ð�1Þc�k;

where the index c takes all values that do not nullify the binomial coe‰cients.
Finally, we do not give the general expression of the quantities GjpqðeÞ

since it is a long one and we rather limit to particular choices of the index
q, as needed for the computation of (2.11). Setting q ¼ 2p� j, we obtain the
expressions

Gjpð2p�jÞðeÞ ¼
1

ð1� e2Þ j�
1
2

Xp 0�1

d¼0

j � 1

2d þ j � 2p 0

� �
2d þ j � 2p 0

d

� �� e

2

�2dþ j�2p 0

;

where

p 0 ¼ p per pa j
2

p 0 ¼ j � p per pb j
2 .
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Poincaré-Birkho¤ chains near 1:3 resonance, Physica A 153 (1988) 283–294.

[31] A. Wurm - A. Apte - K. Fuchss - P. J. Morrison, Meanders and reconnection-

collision sequences in the standard nontwist map, Chaos 15 (2005) 1–13.

Received 23 December 2016,
and in revised form 15 January 2017.

551twist and non-twist regimes of the oblate planet problem



Alessandra Celletti

Department of Mathematics

University of Rome ‘‘Tor Vergata’’

Via della Ricerca Scientifica 1

00133 Rome, Italy

celletti@mat.uniroma2.it

Fabrizio Paita

Department of Mathematics

University of Rome ‘‘Tor Vergata’’

Via della Ricerca Scientifica 1

00133 Rome, Italy

f.paita@alice.it

Giuseppe Pucacco

Department of Physics

University of Rome ‘‘Tor Vergata’’

Via della Ricerca Scientifica 1

00133 Rome, Italy

pucacco@roma2.infn.it

552 a. celletti, f. paita and g. pucacco


	mk1
	mk2
	mk3
	mk4
	mk5
	mk6
	mk7
	mk8
	mk9
	mk10
	mk11
	mk12
	mk13
	mk14
	mk15
	mk16
	mk17
	mk18
	mk19
	mk20
	mk21
	mk22
	mk23
	mk24
	mk25
	mk26
	mk27
	mk28
	mk29
	mk30
	mk31
	mkEnd-page

