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Abstract. — In this paper we investigate the stability of either the rest state (Bénard problem)

or parallel laminar flows in hydrodynamics and magnetohydrodynamics for inclined layers
heated from below. In particular, we numerically investigate the linear instability under general

three-dimensional perturbations of the basic state, and we also give conditions for the nonlinear
stability.

For particular basic states, a linear instability analysis shows that the critical Rayleigh numbers
can be obtained for longitudinal perturbations (which can be studied analytically both, in the linear

and nonlinear case) or for transversal perturbations depending on the inclination of the layer (and
of course also on the velocity of the boundaries and the applied magnetic field).

Remarkable is the presence of points of codimension-two: particular values of the critical

Rayleigh numbers obtained for specific angles of inclination for which there exist two equally desta-
bilising perturbations, one longitudinal and the other transversal.
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1. Introduction

With inclined layer convection one indicates the fluid-dynamical system in which
a fluid layer is inclined at an angle with respect to the vertical and is heated
from one side of the layer. This type of systems have been first investigated in
the seventies [17, 19], and still are the subject of theoretical and experimental
investigations which expose remarkable behaviours (see [34] and the bibliography
therein).

The appearance of convection instability in such systems is important in
many geophysical and industrial applications (many engineering applications
require heating at the boundaries) [37, 18, 7, 5, 35]. Moreover, laminar flows of
conducting fluids with or without an imposed magnetic field play an important
role in many applications, for instance in geophysics, astrophysics, and biology
[1, 2, 6].

In [11] Falsaperla et al. obtained the analytical expression of the basic sta-
tionary laminar solutions for an inclined layer filled with a hydromagnetic fluid



heated from below and subject to the gravity field. In [12] the same authors
studied the linear instability of such basic solutions only for transverse perturba-
tions, and their nonlinear stability for special choices of the basic states described
above. They also investigated the critical stability thresholds. In this article we
extend the results of [12] to general three dimensional perturbations.

In [12], the authors investigate the e¤ect of inclination for the Couette type
basic state, and show how:

(a) the velocity of the Couette basic state at the upper boundary is strictly con-
nected with stabilizing/destabilising e¤ect of inclination (see [4, 18, 36] for
similar phenomena);

(b) a coplanar magnetic field generates several closed disconnected neutral curves
(islands) for some inclinations and non-zero velocities at the upper boundary
(for transverse perturbations).

In this work we investigate the linear instability with respect to general three
dimensional perturbations, which include the transverse (or spanwise) and the
longitudinal (or streamwise) perturbations, and we numerically compute the crit-
ical linear Rayleigh numbers for some given parameters of the problem, such as
the inclination, the velocity and the value of a coplanar magnetic field at the
boundaries. We show that, given a basic flow, the linear instability is achieved
with perturbations which are longitudinal for some inclinations and with trans-
versal for other inclinations.

For three dimensional perturbations some interesting regions of critical Ray-
leigh numbers appear as a trumpet-like surface. The mouthpiece of this trumpet is
connected to the islands obtained for transverse perturbations in [12].

We also give nonlinear stability conditions in the energy norm, and show that
for longitudinal perturbations the critical linear and nonlinear thresholds coin-
cide. In some cases these values are the critical Rayleigh numbers.

The paper is divided into five sections. In Section 2 we introduce the analytical
problem and recall some classical stability/instability results for the Bénard prob-
lems and the laminar flows in hydrodynamics. In Section 3 we study the linear
instability in the case of an inclined layer for general three dimensional perturba-
tions. Our numerical results show that, in the Couette case, for particular values
of the boundary conditions and for an angle of inclination in some interval, the
more destabilizing perturbations are those longitudinal (similar to [13] for flows
in bidispersive porous layer). Section 4 deals with nonlinear stability of longi-
tudinal perturbations. Finally, in Section 5 we draw some conclusions and list
some open problems.

2. Position of the problem and particular cases

Consider the layer

Wd ¼ R2 � ð�d=2; d=2Þ
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of width d filled with a hydromagnetic fluid and inclined of an angle d with
respect to the vertical. The fluid has temperature T and is subject to thermal
expansion; its motion is also subject to and influences a magnetic field.

The fluid satisfies the boundary conditions of prescribed temperature Te, that
will be assumed lower on the top and higher on the bottom of the layer T� > Tþ

(this conditions is referred to as heating from below). For the velocity field and
the magnetic field the boundary conditions depend on the physical nature of the
bounding planes and can be stress-free and/or rigid, and electrically conducting
or nonconducting.

The equations that model, in the Boussinesq approximation and in non-
dimensional form, such a system are [12]:

Ut þU � ‘U ¼ Pm�1 H � ‘H� ‘Pþ RTðcos diþ sin dkÞ þ DU

‘ �U ¼ 0

Ht þU � ‘H�H � ‘U ¼ Pm�1 DH

‘ �H ¼ 0

Tt þU � ‘T ¼ Pr�1 DT ;

8>>>>>><
>>>>>>:

ð1Þ

where U, H, T , P are the velocity of the fluid, the magnetic field, the tempera-
ture, the pressure (including the magnetic pressure). Moreover,

• Pr ¼ n=k is the Prandtl number;

• Pm ¼ n=h is the magnetic Prandtl number;

• Ra ¼ R2 ¼ gabd 4

kn
is the Rayleigh number;

• k is the thermal di¤usivity;

• n is the viscosity;

• a is the volume expansion coe‰cient;

• b ¼ ðT� � TþÞ=d is the gradient of temperature.

We consider stationary and laminar solutions, in which all the fields are explicitly
independent of time and the velocity field, the temperature field and the magnetic
have the form

w ¼ UðzÞi; T ¼ TðzÞ H ¼ HðzÞ ¼ ðHðzÞ; 0;H3ðzÞÞ:ð2Þ
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2.1. Particular cases

a) The layer is horizontal, the fluid is isothermal and electrically nonconducting.
This is the usual Navier-Stokes system.

Let m0 ¼ ðwðxÞ; pðxÞÞ be a stationary flow of a viscous incompressible fluid
F solution of Navier-Stokes equations. A perturbation to m0, ðuðx; tÞ; pðx; tÞÞ sat-
isfies (in a suitable non-dimensional form) the following IBVP:

ut þ u � ‘uþ w � ‘uþ u � ‘w ¼ �‘pþRe�1 Du in W� ð0;lÞ
‘ � u ¼ 0 in W� ð0;lÞ
uðx; 0Þ ¼ u0ðxÞ on W

uðx; tÞ ¼ 0 on qW� ½0;lÞ;

8>>><
>>>:

ð3Þ

where W ¼ R2 � ½�1=2; 1=2�, and Re is a Reynolds number.
Assume that juj is so small, with j‘uj small, in such a way that we can neglect

in (3) the nonlinear term u � ‘u. We thus obtain the linearized system

ut þ w � ‘uþ u � ‘w ¼ �‘pþRe�1 Du in W� ð0;lÞ
‘ � u ¼ 0 in W� ð0;lÞ
uðx; 0Þ ¼ u0ðxÞ on W

uðx; tÞ ¼ 0 on qW� ½0;lÞ:

8>>><
>>>:

ð4Þ

This system is linear and autonomous and therefore we may look for solutions
of the following form:

uðx; tÞ ¼ e�stqðxÞ pðx; tÞ ¼ e�stp0ðxÞð5Þ

with s a priori a complex number.
The eigenvalue problem (4) admits a nonempty set S of eigenvalues s (which

belong to a parabolic region of the complex plane, Prodi 1961 [29]).
As concerns the classical definitions of linear instability and nonlinear energy

stability we refer to [14].
If the basic state is the rest state w ¼ 0, (4) gives its linear stability. It is easily

seen that the basic state is also globally nonlinearly stable in the energy norm.
Plane parallel shear flows are characterized by the functional form

w ¼ Re

UðzÞ
0

0

0
B@

1
CA¼ ReUðzÞi:ð6Þ

The function UðzÞ : ½�1=2; 1=2� ! R is assumed to be su‰ciently smooth and is
called the shear profile. Possible shear profiles are:

• Couette UðzÞ ¼ 1
2 þ z;

• Poiseuille UðzÞ ¼ 1� 4z2.
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Here we summarize some classical results:

• plane Poiseuille flow is linearly unstable for Re > 5772 (Orszag 1971 [28])

• pipe Poiseuille flow and plane Couette flow are linearly stable for all Reynolds
numbers

• laboratory experiments: plane and pipe Poiseuille flows actually undergo transi-
tion to three-dimensional turbulence for Reynolds numbers on the order of
1000; plane Couette flow: the lowest Reynolds numbers at which turbulence
can be produced and sustained has been shown to be between 300 and 400
both in numerical simulations and in experiments

• global asymptotic energy-stability for Reynolds numbers Re below some value
ReE which is of the order 102 (Joseph 1966), Re ¼ Rey ¼ 82:6 (Rex ¼ 177) for
Couette, Re ¼ Rey ¼ 99:1 (Rex ¼ 174) for Poiseuille. Rey is the streamwise or
longitudinal number, Rex is the spanwise or transverse number.

In [23] Kaiser et al. wrote the velocity field in terms of poloidal, toroidal and the
mean field components. They used a generalized energy functional E (with some
coupling parameters chosen in an optimal way) for plane Couette flow providing
conditional nonlinear stability for Reynolds numbers Re below ReE :¼ 177:2,
which is larger than the ordinary energy stability limit. The method allows the
explicit calculation of so-called stability balls in the E-norm; i.e., the system is
stable with respect to any perturbation with respect to E-norm in this ball.

Kaiser and Mulone (2005) [22] proved conditional nonlinear stability for arbi-
trary plane parallel shear flows up to some value ReE which depends on the shear
profile. They used a generalized functional E depending only on the poloidal
component of the velocity field. As a consequence ReE turns out to be RexE ,
the ordinary energy stability limit for perturbations depending on x (transverse
perturbations). In the case of the experimentally important profiles, viz. linear
combinations of Couette and Poiseuille flow, this number is at least 174, the value
for pure Poiseuille flow. For Couette flow it is at least 177.

Rionero and Mulone (1991) [31] studied the non-linear stability of parallel
shear flows with the Lyapunov method in the (ideal) case of stress-free boundary
conditions. In that paper they show that plane Couette flows and plane Pois-
euille flows are conditionally asymptotically stable for all Reynolds numbers.
A Lyapunov function (in terms of the essential variables z and w) has been
introduced.

b) The layer is horizontal, electrically nonconducting, and it is heated from below.
The classical Bénard problem.

The Bénard problem concerns with the stability/instability of an incompressible
newtonian fluid F filling an infinite layer of thickness d, Wd ¼ R2 � ð�d=2; d=2Þ.

Let the fluid be subject to the vertical action of gravity g ¼ �gk, and heated
from below in such a way that an adverse temperature gradient b > 0 is main-
tained. Because of thermal expansion, the fluid at the bottom expands as it be-
comes hotter and heat is transported through the fluid by conduction. When the
temperature gradient reaches a critical value bc, the buoyancy overcomes gravity,
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the fluid gives rise to a regular cellular pattern and the motions take place within
the cells.

This phenomenon is called Bénard convection after the experiments of Bénard
(1900). The onset of convection depends on b and also on the depth d of the
layer. In fact, the correct non-dimensional parameter for describing this threshold
phenomenon is the Rayleigh number defined above.

Denoting by rðTÞ ¼ r0ð1� aTðT � T �ÞÞ, the equations of the fluid in the
Oberbeck-Boussinesq approximation, in a non-dimensional form, are

Ut þU � ‘U ¼ �‘Pþ RTkþ DU

‘ �U ¼ 0

Tt þU � ‘T ¼ Pr�1 DT :

8<
:ð7Þ

A stationary solution of these equations with boundary conditions Tð�d=2Þ ¼
T�, Tðd=2Þ ¼ Tþ, is given by the rest state conduction-solution:

U ¼ 0 ¼ 0; TðzÞ ¼ �RP�1
r zþ ~TT0; P ¼ R

Z z

0

TðzÞ dzþ c0x;

with c0 a suitable real number, and ~TT0 an adimensional form of T0.
By writing as before the non-dimensional perturbation equations, it can be

proved that the associated linear operator is autonomous and symmetric in
L2ðCÞ (where C is a suitable cell of periodicity), the strong principle of exchange
of stabilities holds, and the instability arises as stationary convection. Symmetry
implies the coincidence of linear and nonlinear critical Rayleigh numbers (Joseph
1966 [20]).

The critical Rayleigh numbers of linear instability are given by

R2
L ¼ R2

c ¼ R2
B;

where R2
B ¼ 27=4p4Q657:511 for stress free boundaries, R2

BQ1707:76; for rigid
boundaries, and R2

BQ1100:65 for rigid-free boundaries.
In the Bénard problem many stabilizing e¤ects can be considered, for instance

a rotation field, a magnetic field, a gradient of concentration of mass for binary
mixtures. In the last 30 years many stability results have been obtained for this
type of systems [8, 9, 10, 15, 16, 24, 25, 27, 26, 32].

c) The layer is inclined, electrically nonconducting, and heated from below.

The equations that model, in the Boussinesq approximation and in non-
dimensional form, such a system are:

Ut þU � ‘U ¼ �‘Pþ RTðcos diþ sin dkÞ þ DU

‘ �U ¼ 0

Tt þU � ‘T ¼ Pr�1 DT :

8><
>:ð8Þ

The basic motion, in the case of the Couette flow with velocity field U at the
boundaries, Uð�1=2Þ ¼ 0, Uð1=2Þ ¼ V i is given by
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UðzÞ ¼ R2P�1
r cos d

z

24
ð4z2 � 1Þ þ V

� 1

2
þ z

�
;

TðzÞ ¼ �RP�1
r zþ ~TT0; P ¼ R

Z z

0

TðzÞ sin d dzþ c0x:

8>><
>>:

ð9Þ

Expression (9)1 can be obtained from formula (13) in [11] by letting g ! 0. It
coincides with (2.2b) in [34].

The equations which govern the evolution of the perturbations u, y, p to the
basic solution are:

ut þU � ‘uþ wUz þ u � ‘u ¼ �‘pþ Ryðcos diþ sin dkÞ þ Du

yt þUðzÞyx � Pr�1 Rwþ u � ‘y ¼ Pr�1 Dy

‘ � u ¼ 0:

8<
:

Observe that the boundary conditions on z ¼e1=2 for u, y are

y ¼ 0; u ¼ v ¼ w ¼ 0:

Linearizing the equations, we have

ut þU � ‘uþ wUz ¼ �‘pþ Ryðcos diþ sin dkÞ þ Du

yt þUðzÞyx � Pr�1 Rw ¼ Pr�1 Dy

‘ � u ¼ 0:

8<
:ð10Þ

Taking into account the dependence of U only on z, this system becomes

ut þUux þ wU 0i ¼ �‘pþ Ryðcos diþ sin dkÞ þ Du

yt þUðzÞyx � Pr�1 Rw ¼ Pr�1 Dy

‘ � u ¼ 0:

8<
:ð11Þ

Since the system is autonomous, we consider solutions of the form f ðx; y; z; tÞ ¼
f ðzÞeiðaxþbyÞþct (with f ¼ u; v;w; y or p) in the domain C� ð0;þlÞ, with C ¼
½0; 2p=a� � ½0; 2p=b� � ½�1=2; 1=2� (the positive constants a, b are called wave
numbers).

The generalized Orr-Sommerfeld equations are

ðcþ iaUÞðw 00 � ða2 þ b2ÞwÞ � iawU 00

¼ �iaRa y 0 cos d� ða2 þ b2ÞRa y sin d

þ ðw 0000 � 2ða2 þ b2Þw 00 þ ða2 þ b2Þ2wÞ
Prðcþ iaUÞy� w ¼ y 00 � ða2 þ b2Þy;

8>>><
>>>:

ð12Þ

where we have posed Rw ¼ ŵw and we have denoted ŵw with w.
Falsaperla et al. [12], have numerically analysed, in some very specific con-

ditions, system (12) to determine the critical Rayleigh number for a variety of
boundary conditions and physical parameters, when b ¼ 0 (transverse perturba-
tions). Here we extend the investigation in [12] to longitudinal perturbations
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(a ¼ 0, bA 0) and also to more general perturbations with both aA 0, bA 0,
without an applied magnetic field. In the next section we will treat the coplanar
magnetic case. In our numerical computations, we use the Chebyshev-tau method
with a number of polynomials ranging form 15 to 25 for each unknown function.
All computations have been performed with rigid and nonconducting boundaries,
with fixed Prandtl number Pr ¼ 6:7. In the calculations and in the next figures,
the boundary values Uð1=2Þ ¼ u and Uð�1=2Þ ¼ 0 have been chosen.

The simplest case is that of an inclined Bénard layer with rigid boundary
conditions. In this case, as studied in [34], longitudinal perturbations are the
most destabilizing up to a certain inclination with respect to the horizontal. The
angle at which transverse perturbations become the more destabilizing depends
strongly on the Prandtl number of the fluid. For Pr ¼ 1:07 (carbon dioxide) in
[34] the authors report an angle of 77:746�. In our work we consider a fluid with
Pr ¼ 6:7 and find that this transition is obtained for an angle of 88:1� (for this
value we have a codimension-two point).

The left panel of fig. 1 shows the instability thresholds for the longitudinal
and transverse perturbations as a function of the angle j ¼ p=2� d. We observe
that the critical Rayleigh number for transverse perturbations has a jump discon-
tinuity around j ¼ 24:1�. This phenomenon is due to the presence of an island of
instability which disappears for angles larger of 24:1�. In fact, the right panel,
which describes the transverse critical curves, shows the critical curves in the
plane ða;RaÞ for angles near the critical value 24:1�. We note that for an angle
in the interval ½22�; 23�� the instability region becomes disconnected and an island
of instability appears. For angles greater than 24:1� the island disappears and a
jump, shown in the left panel, arises (see also fig. 3).

A similar situation appears for Couette-type motions when the upper bound-
ary is moving in the downward direction (at least for small velocities in the inter-
val ½�5; 0�). In this case the longitudinal perturbations are the most destabilizing
up to a very large angle (near 90�) as in the Bénard case. Instead a di¤erent situ-

Figure 1. The critical Rayleigh number vs the angle with the horizontal j ¼ p=2� d for
the inclined Bénard layer. The critical longitudinal curve (dotted) and transverse (contin-
uous) are plotted. The codimension-two point is obtained for a critical angle jc ¼ 88:1�

corresponding to dc ¼ 1:9�. The most destabilizing perturbations are longitudinal for all
inclination angle d a ½1:9�; 90��. The right panel shows the critical Rayleigh number vs
the wave number a (transverse perturbations) for di¤erent values of the angle j. The
appearance of an instability island near 22�–23� is shown.
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ation appears when the upper boundary is moving in the upward direction, as
shown in fig. 2, for u ¼ 2 and u ¼ 5. We observe in this case that transverse
perturbations prevail also for an interval of inclinations near to the horizontal
case. Figure 2 shows that for u ¼ 2 two codimension-two points are present
(j1 ¼ 22:75� and j2 ¼ 88�) di¤erent from the case u ¼ 0 (the inclined Bénard)
where only one codimension-two point is present. Left panel of fig. 2 shows that
the most destabilizing critical curve can be associated to either longitudinal
or transverse perturbations. As before we denote with Rax and Ray the critical
Rayleigh numbers with respect to transverse and longitudinal perturbations,
i.e. Rax ¼ minRað0; bÞ and Ray ¼ minRaða; 0Þ. The right panel shows that the
change of critical instabilities between Rax and Ray takes place in a di¤erent way
for u ¼ 2 and u ¼ 5. In the first case the codimension-two point appears (i.e.
Rax ¼ Ray) for j ¼ 22:75� and the critical Rayleigh number depends continu-
ously on the angle. Instead for u ¼ 5 the critical Rayleigh number is discontinu-
ous at the angle j ¼ 39:3� because Rax jumps above the value of Ray.

Figure 3 shows the critical Rayleigh surface as a function of both the wave
numbers a and b. In all our calculations we see that the minimum of Ra with

Figure 3. The graphs of the critical Rayleigh numbers as functions of a and b for the
inclined Bénard problem with j ¼ 23� (left) and j ¼ 25� (right) are represented. The thick
black curves are the intersection of the surface with the planes a ¼ 0 and b ¼ 0.

Figure 2. Both panels show the critical Rayleigh numbers vs the inclination angle j, the
right panel is a zoom of the left one. The thick plots represent the critical Rayleigh num-
bers for transverse perturbations while the thinner plots represent the critical Rayleigh
numbers for longitudinal perturbations.
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respect to a and b is achieved only for a ¼ 0 or b ¼ 0. (This is not a proof
that the instability sets in via two-dimensional perturbations, in particular
this is not a proof of a Squire-like theorem.) For this reason we have focussed
our attention to longitudinal and transverse perturbations. The left panel rep-
resents the critical surface Ra ¼ Raða; bÞ for the inclined Bénard problem with
an angle j ¼ 22:75�. In this case a trumpet-like surface appears. The right
panel corresponds to an angle j ¼ 25�. In this case the surface is simply-
connected.

3. The hydromagnetic case: linear instability

First we recall that, if the magnetic field has the form (2)3, the solenoidality
of H implies that the third component of the magnetic field must be a con-
stant g.

Moreover we recall that an interesting phenomenon appears when the layer
is inclined. In fact, in the horizontal case (the classical magnetic Bénard prob-
lem), the magnetic field is constant and orthogonal to the layer. This is not
possible when the layer is inclined (see the following lemma) because of the
cubic dependence of the velocity field on z (see (9)). Moreover, equation (1)3
becomes

�gU 0ðzÞ ¼ Pm�1 H 00:

In [11] the following lemma has been proved:

Lemma 1 ([11]). If the velocity field and the magnetic field are regular functions
and have the form w ¼ UðzÞi, H ¼ HðzÞiþH3k, with w 0 not identically zero, then
H3 ¼ 0 if and only if HðzÞ is linear function (in particular identically zero) of z.
Then H ¼ Hi, i.e. H must be coplanar to the plane z ¼ 0.

From this lemma it follows that, in the inclined case, the magnetic field must have
necessarily a component parallel to the layer (see below).

Some physically relevant boundary conditions are:

• (rigid, rigid, electrically nonconducting, electrically nonconducting) up to a uni-
form translation, one can assume that Uð�1=2Þ ¼ 0 and Uð1=2Þ ¼ u for the
velocity field, while the boundary conditions on the first two components of
the magnetic field are Hð�1=2Þ ¼ h�, Hð1=2Þ ¼ hþ. This case includes Couette
and Poiseuille basic solutions;

• (rigid, rigid, electrically conducting, electrically nonconducting) the conditions
on the velocity field are the same, that is Uð1=2Þ ¼ u, Uð�1=2Þ ¼ 0. For the
magnetic field one has conditions on the first derivatives below H 0ð�1=2Þ ¼ h 0

and Hð1=2Þ ¼ h;

• (rigid, stress free, electrically conducting, electrically nonconducting) Uð�1=2Þ
¼ 0, U 0ð1=2Þ ¼ u 0, H 0ð�1=2Þ ¼ h 0, Hð1=2Þ ¼ h.
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The general solutions to these equations are (see [11]),

UðzÞ ¼ u1 coshðgzÞ þ u2 sinhðgzÞ �
Ra

Pr g2
cos dzþ b1

Pm g
þ s1

g2
;

HðzÞ ¼ �Pm u1 sinhðgzÞ � Pm u2 coshðgzÞ þ
RaPm

Pr g
cos d

z2

2
� Pms1

g
zþ c1;

with u1, u2, b1, c1, s1 integrating constants. Observe that the functions must sat-
isfy 4 boundary conditions, and the constants of integrations are 5. Among them,
the constant s1 is related to an exterior force field, exerted through a non-trivial
‘‘pressure’’ function. For simplicity, here we always assume that s1 ¼ 0.

In the coplanar magnetic-Couette case, for rigid–rigid, electrically
nonconducting–electrically nonconducting boundaries with velocity zero at the
lower plane and u at the upper plane, and with boundary values of the first com-
ponent of magnetic field h� and hþ, we have, [11]

UðzÞ ¼ R2P�1
r cos d

z

24
ð4z2 � 1Þ þ V

� 1

2
þ z

�
; TðzÞ ¼ �RP�1

r zþ ~TT0;

HðzÞ ¼ hþ þ h�
2

þ ðhþ � h�Þz:

The equations which govern the evolution of the perturbations u, h, y, p to the
basic solution are:

ut þU � ‘uþ wUz þ u � ‘u ¼ Pm�1ðH � ‘hþ lHz þ h � ‘hÞ
� ‘pþ Ryðcos diþ sin dkÞ þ Du

ht þU � ‘hþ wHz þ u � ‘h�H � ‘u� lUz � h � ‘u ¼ Pm�1 Dh

yt þUðzÞyx � Pr�1 Rwþ u � ‘y ¼ Pr�1 Dy

‘ � u ¼ 0; ‘ � h ¼ 0:

8>>>>>><
>>>>>>:

Observe that the boundary conditions on z ¼e1=2 for u, h, y are

y ¼ 0; u ¼ v ¼ w ¼ 0; h ¼ k ¼ l ¼ 0:

Linearizing the equations, we have

ut þU � ‘uþ wUz ¼ Pm�1ðH � ‘hþ lHzÞ � ‘p

þ Ryðcos diþ sin dkÞ þ Du

ht þU � ‘hþ wHz �H � ‘u� lUz ¼ Pm�1 Dh

yt þUðzÞyx � Pr�1 Rw ¼ Pr�1 Dy

‘ � u ¼ 0; ‘ � h ¼ 0:

8>>>>>><
>>>>>>:

ð13Þ

Taking into account that, in the coplanar case g ¼ 0, this system becomes
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ut þUux þ wU 0i ¼ Pm�1ðHhx þ lH 0iÞ � ‘p

þ Ryðcos diþ sin dkÞ þ Du

ht þUhx þ wH 0i�Hux � lU 0i ¼ Pm�1 Dh

yt þUðzÞyx � Pr�1 Rw ¼ Pr�1 Dy

‘ � u ¼ 0; ‘ � h ¼ 0:

8>>>>>><
>>>>>>:

ð14Þ

Since the system is autonomous, as before we consider solutions of the form
f ðx; y; z; tÞ ¼ f ðzÞeiðaxþbyÞþct (with f ¼ u; v;w; h; k; l; y or p) in the domain
C� ð0;þlÞ, with C ¼ ½0; 2p=a� � ½0; 2p=b� � ½�1=2; 1=2�.

The generalized Orr-Sommerfeld equations are

ðcþ iaUÞðw 00 � ða2 þ b2ÞwÞ � iawU 00

¼ Pm�1ðiaHðl 00 � ða2 þ b2ÞlÞ � ialH 00Þ � iaRa y 0 cos d

� ða2 þ b2ÞRa y sin dþ ðw 0000 � 2ða2 þ b2Þw 00 þ ða2 þ b2Þ2wÞ
ðcþ iaUÞl� iawH ¼ Pm�1ðl 00 � ða2 þ b2ÞlÞ
Prðcþ iaUÞy� w ¼ y 00 � ða2 þ b2Þy;

8>>>>>><
>>>>>>:

ð15Þ

where we have posed Rw ¼ ŵw and we have denoted ŵw with w.
As above, we note that Falsaperla et al. [12], have numerically analysed,

in some very specific conditions, the system to determine the critical Rayleigh
number for a variety of boundary conditions and physical parameters, when
b ¼ 0 (transverse perturbations). Here we extend the investigation in [12] to
longitudinal perturbations (a ¼ 0, bA 0) and also to more general perturbations
with both aA 0, bA 0 in the presence of a coplanar magnetic field. The
computations have been performed with rigid and electrically nonconducting
boundaries, with fixed Prandtl number Pr ¼ 6:7 and magnetic Prandtl number
Pm ¼ 1. In the calculations and in the next figures, j ¼ 15�, the boundary
values Uð1=2Þ ¼ 1 and Uð�1=2Þ ¼ 0, and h� ¼ hþ ¼ 11:5, h� ¼ hþ ¼ 13 have
been chosen. These values were used also in [12] to show a peculiar phenomenon
of the presence of two islands of instability. Here we report the three-dimensional
instability surfaces corresponding to the previous values of the physical param-
eters to show the two trumpet-like surfaces.

Fig. 4 shows the disappearance of one mouthpiece by changing the values of
h at the boundaries.

We have also verified that, by varying the inclination from j ¼ 15� to j ¼ 16�

and j ¼ 17�, the two mouthpieces disappear. This corresponds to the loss of the
islands in the transverse perturbations. With the disappearance of each mouth-
piece a jump discontinuity in the critical Rayilegh number takes place for trans-
verse perturbations as a function of the inclination.

Remark 1. The calculations of linear instability for general three-dimensional
perturbations, in the cases we have studied, show that for some given parameters
(angle of inclination, velocity and magnetic fields at the boundaries) the critical
Rayleigh numbers are obtained via longitudinal perturbations. For this reason it
is interesting to study (analytically) the onset of instability with respect to these
perturbations (both in the linear and nonlinear regime).
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In the general case (with gA 0), if we consider only longitudinal perturbations,
i.e. we pose a ¼ 0 in (15), we obtain

cðw 00 � b2wÞ ¼ Pm�1 gðl 00 � b2lÞ0 � b2 Ra y sin dþ w 0000 � 2b2w 00 þ b4w

cl� gw 0 ¼ Pm�1ðl 00 � b2lÞ
Pr cy� w ¼ y 00 � b2y:

8><
>:ð16Þ

These equations coincide with (dimensional) equations (113)–(115) of Chandra-
sekhar [3], pag. 163, with Ra replaced by Ra sin d and kx ¼ 0, ky ¼ b.

Thus the critical Rayleigh number for longitudinal perturbations, Ray, is
given by

Ray ¼ R2
B

sin d
;

where Ray is the classical linear critical threshold of the magnetic Bénard
problem.

In particular, critical linear Rayleigh number Ray for stationary convection
for stress-free boundaries, is given by:

Ray ¼ p4

sin d
min
x>0

1þ x

x

�
ð1þ xÞ2 þ g2

p2

�
:

It is easy to see that Ray attains its minimum when

2x3 þ 3x2 ¼ 1þ g2

p2
;

(see [3], chapter 3, pag. 171, formula (166), where Q ¼ g2).

Figure 4. The graphs of the critical Rayleigh numbers for an inclined coplanar magnetic
layer as function of a and b with j ¼ 15� (left and right) are represented. The magnetic
field assigned at the boundaries are hþ ¼ h� ¼ 11:5 (left) and hþ ¼ h� ¼ 13 (right). The
thick black curves are the intersection of the surfaces with the planes a ¼ 0 and b ¼ 0. On
the left panel two mouthpieces in the trumpet-like surface are present, in the right panel
only one mouthpiece arises.

527on the hydrodynamic and magnetohydrodynamic stability



If we assume g ¼ 0 (magnetic coplanar case of pure fluid-dynamics case) and
leave Pm and Pr to be arbitrary positive numbers, then

Ray ¼ R2
B

sin d
;

where R2
B is the classical linear critical threshold of the Bénard problem (Chen

and Pearlstein 1989, [4]).

4. The hydromagnetic case, nonlinear stability,

longitudinal perturbations

To study nonlinear stability we use as Lyapunov function the classical energy
norm

E ¼ 1

2
ðkuk2 þ Pm�1khk2 þ Prkyk2Þ:

The energy identity is

_EE ¼ I �D;

where

D ¼ k‘uk2 þ Pm�2k‘hk2 þ k‘yk2ð17Þ

and

I ¼ �ðu;wU 0Þ þ Pm�1ððu; lH 0Þ � ðh;wH 0Þ þ ðh; lU 0ÞÞ
þ Rððu; yÞ cos dþ ð1þ sin dÞðw; yÞÞ:

From the energy identity we obtain:

_EEa

�
max
S

I

D
� 1

�
D;

where S is the space of the kinematically admissible functions (see Rionero 1968
[30], Joseph 1976, [21], Straughan 2004, [33]). The Euler-Lagrange equations of
this problem are

�wU 0i� uU 0kþ Pm�1ðlH 0i� hH 0kÞ
þ Ryðcos diþ ð1þ sin dÞkÞ þ 2Du ¼ ‘p

uH 0k� wH 0iþ lU 0iþ hU 0kþ 2 Pm�1 Dh ¼ ‘s

R cos duþ Rð1þ sin dÞwþ 2Dy ¼ 0

‘ � u ¼ 0; ‘ � h ¼ 0:

8>>>>>><
>>>>>>:

ð18Þ
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By taking the third components of the double curl of (18)1;2, we have

U 0D1uþ P�1
m H 0D1h� Rð1þ sin dÞD1y� 2DDw ¼ 0

�wU 0 þ P�1
m lH 0 þ R cos dyþ 2Du ¼ 0

H 0D1uþU 0D1hþ 2P�1
m DDl ¼ 0

lU 0 � wH 0 þ 2P�1
m Dh ¼ 0

R cos duþ Rð1þ sin dÞwþ 2Dy ¼ 0:

8>>>>>><
>>>>>>:

ð19Þ

This is a very di‰cult problem to solve in general. However, in the next subsec-
tion, we consider (for both the fluid dynamics and magnetohydrodynamics cases)
only longitudinal perturbations.

4.1. The longitudinal perturbations

a) Fluid-dynamics case

Following Joseph 1976, [21], by introducing

EðtÞ ¼ 1

2
ðkvk2 þ kwk2 þ Prkyk2Þ

we easily obtain

EðtÞ < Eð0Þ exp
�
� 2p2

maxð1;PrÞ

�
1�Ra

R2
B

sin d
�
t
�
:

Thus, for longitudinal perturbations, we obtain the same stability threshold as in
the linear case

R2
E ¼ R2

Long ¼
R2

B

sin d
:

It is possible to prove that whenever R2 < R2
Long also kuk2 exponential decays

and we have the exponential decay of the energy

EðtÞ ¼ 1

2
ðkuk2 þ Prkyk2Þ:

Theorem 1. Disturbances of laminar flows in an inclined layer, heated from
below which are x-independent decay under the inequality

EðtÞ < Eð0Þ exp
�
� 2p2

maxð1;PrÞ

�
1�Ra

R2
B

sin d
�
t
�

whenever

Ra <
R2

B

sin d
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independent of the basic solution UðzÞi. R2
B is the classical linear critical threshold

of the Bénard problem. Moreover, the criterion is necessary for stability as well as
su‰cient for stability to x-independent disturbances.

b) MHD-case

In the MHD case, we introduce the function EðtÞ

EðtÞ ¼ 1

2
ðkvk2 þ kwk2 þ Pm�1ðkkk2 þ klk2Þ þ Prkyk2Þ:

It is easy to see that

_EEðtÞ ¼ 2R
ffiffiffiffiffiffiffiffiffi
sin d

p
ðy;wÞ � ðk‘vk2 þ k‘wk2 þ P�2

m ½k‘kk2 þ k‘lk2� þ k‘yk2Þ

We obtain

EðtÞ < Eð0Þ exp
�
� 2p2

maxð1;P�1
m ;PrÞ

�
1�Ra

R2
B

sin d
�
t
�

As in the fluid dynamics case, we can prove the estimates for kuk2 and khk2.

Theorem 2. Let us consider a hydromagnetic laminar flow, in an inclined layer,
heated from below, subject to a coplanar magnetic field or a magnetic field which
has a constant component normal to the layer and non-linear coplanar components.
The disturbances which are x-independent, decay under the inequality

EðtÞ < Eð0Þ exp
�
� 2p2

maxð1;P�1
m ;PrÞ

�
1�Ra

R2
B

sin d
�
t
�

whenever

Ra <
R2

B

sin d

independent of the basic solution UðzÞi, HðzÞiþ gk. R2
B is the classical linear criti-

cal threshold of the magnetic Bénard problem. Moreover, the criterion is necessary
for stability as well as su‰cient for stability to x-independent disturbances.

In Falsaperla et al. (2016) [12], su‰cient conditions for global nonlinear sta-
bility in the energy norm are given in many cases (di¤erent boundary conditions,
magnetic field and angle of inclination).

5. Conclusions and some open problems

We have numerically studied linear instability of hydrodynamic and magnetohy-
drodynamic motions of an inclined layer heated from below in the Couette case
and in the coplanar magnetic Couette case for three–dimensional perturbations.
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In particular we have analytically investigated linear instability and nonlinear
energy stability with respect to longitudinal perturbations.

The results obtained here generalize those of [12]. Our calculations of linear
instability (in all the cases we have considered) show that the instability occurs
only for longitudinal or transverse perturbations. For this reason we have
focussed our investigation on transverse perturbations (numerically) and to lon-
gitudinal perturbations (analytically).

The critical Rayleigh number as a function of the wave numbers a, b is a
2-dimensional surface that can be simply connected or have one or more (in the
magnetic case) holes. The consequence of this fact is a jump discontinuity for the
function Rax, the transversal critical Rayleigh number.

In the case of the inclined Bénard problem we obtain, as in [34], one
codimension-two bifurcation point that corresponds to a particular choice of
the parameters (specifically the angle j) for which Rax coincides with Ray. A new
phenomenon described in this article is the fact that when u > 0 (the inclined Cou-
ette case and the inclined magnetic coplanar case) more than one codimension-two
points appear. This means that, for a given positive velocity u, the instability arises
with transverse rolls for small (like in classical Couette flows) and large inclina-
tions (in the interval ½0�; 90��), it arises via longitudinal rolls for other inclinations.
Moreover transverse-longitudinal bifurcations can take place with or without the
presence of a codimension-two point depending on how Rax overtakes Ray (in a
continuous or a discontinuous way, i.e. with a crossing or with a jump).

As concerns nonlinear stability, we recall some general results, and we ana-
lytically find the nonlinear stability threshold Ray with respect to longitudinal
perturbations.

Some possible open problems are:

• the study of linear and nonlinear critical Rayleigh numbers in the hydromag-
netic case with the normal component of magnetic field gA 0 and the their
dependence on the Prandtl numbers;

• the investigation of the Euler-Lagrange equations for the study of nonlinear
stability;

• the validity, for particular physical parameters, of the Squire theorem for the
inclined layers with and without magnetic field;

• the investigation of linear instability and nonlinear stability of stationary
laminar flows of porous layers (in the case of bidispersive flow, see Falsaperla
et al. (2016) [13]) heated from both below and above in particular the depen-
dence on the e¤ect of inclination (without a magnetic field);

• the e¤ect of heating from above (see [34]);

• the investigation of the stability/instability of more general basic solutions (for
instance with components in the y-direction).
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