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Abstract. — The aim of this paper is to study the Euler dynamics of a 2D periodic layer of non

uniform vorticity. We consider the zero thickness limit and we compare the Euler solution with the
vortex sheet evolution predicted by the Birkho¤–Rott equation. The well known process of sin-

gularity formation in shape of the vortex sheet correlates with the appearance of several complex
singularities in the Euler solution with the vortex layer datum. These singularities approach the real

axis and are responsible for the roll-up process in the layer motion.
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1. Introduction

Shear layer flows naturally arise in many oceanic and atmospheric processes.
These layers can be represented by a thin transition region across which the
velocity of the flow experiences a rapid variation which is related to a large
amount of vorticity within the layer. If the thickness of the layer goes to zero,
one obtains a vortex sheet curve across which the velocity field has a disconti-
nuity in the component tangent to the curve, while the vorticity is a Dirac d
concentrated on the curve.

To prove that the vortex sheet motion is the zero-thickness limit of the
dynamics of a shear layer is an important problem that has been tackled through
di¤erent approaches, like formal asymptotics, see [47, 26], numerical methods [6],
rigorous methods, see [45, 9, 8]. In particular, in [9], for a layer of uniform vor-
ticity distributed between two analytic curves, and through the use of the abstract
Cauchy–Kowalewski theorem, the authors proved convergence to the Birkho¤–
Rott (BR) dynamics; a rigorous estimate of the error in terms of the thickness of
the layer was in fact given.

One of the main issues related to the mathematical treatment of vortex sheet
flows is the Kelvin–Helmholtz instability. This phenomenon leads to the ill-
posedness of the BR equation in Sobolev norms [15, 27], and to the finite time
formation of curvature singularity. For analytic initial data, local in time well-
posedness of the BR equation was achieved in [58], while long time existence



was proven in [14] for a small perturbation of the flat sheet. We mention that the
singularity formation had been predicted by the analysis of Moore, see [48, 49]
and also [3], and by direct numerical simulations [39, 55, 24].

To continue vortex sheet motion beyond the singularity time of the BR solu-
tion invokes models including regularization components such as finite layer
thickness [6, 13], surface tension [52, 35, 4], vortex blob regularization [42, 2, 5,
43], Euler-a model [34, 7, 13], viscosity e¤ects [59, 26, 20, 56], or a more sophisti-
cated notion of BR solution [61]. Usually all these models ensure convergence to
the vortex-sheet solution before the singularity formation, and allow the continu-
ation of the vortex-sheet solution after the singularity time. The post-singularity
motion is characterized by typical phenomena like roll-up and spiral formation
with trailing arms wrapping around the core of the sheet.

In this work we shall analyze the motion of a 2D periodic inviscid thin layer on
which a non uniform vorticity is concentrated. In the zero thickness limit the layer
reduces to the infinite array of periodic vortex sheets introduced in [13]. We shall
show that the small disturbances of the equilibrium solution of the BR equation
are linearly unstable, and have an exponential growth rate which is dependent on
the distance between two consecutive sheets. This instability is the mechanism
leading to the finite time singularity formation. By applying the singularity track-
ing methods, we shall analyze the singularity formation for a flat sheet with non
uniform strength; the results will be compared with the singularity analysis of the
Euler dynamics of the small-thickness layer motion. Although the Euler solution
does not develops a real singularity, we shall see how the solution has complex
singularities whose distance form the real domain is dependent on the initial
thickness of the layer, and how the singularities are compatible with an eruptive
behavior of the vorticity within the layer.

The rest of the paper is organized as follows: in Section 2 we shall introduce
the infinite array of periodic vortex sheets and we shall prove how the equilibrium
solution of the BR equation develops a Kelvin–Helmholtz instability (Subsection
2.1), eading to the singularity formation in finite time (Subsection 2.2). In Section
3 we shall analyse the motion of a 2D inviscid thin vortex layer of non uniform
vorticity. We shall perform the 2D singularity analysis on the Euler solution in
Subsections 3.2 and 3.3.

2. Singularity formation

The initial configuration we shall consider is the infinite array of vortex sheets,
already presented in [13]; it consists of planar curves, periodic in the tangential
direction x, and evenly distributed along the normal direction y: on these curves
the vorticity is concentrated as delta-function.

Across each curve the velocity field experiences a jump in the component
tangential to the curve, and the vorticity concentrated along the curves can be
expressed at each time t as

oðx; tÞ ¼
X
h AZ

ĝgðp; tÞdðx� xhðp; tÞÞ;
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where xðp; tÞ ¼ ðxðp; tÞ; yðp; tÞÞ, xhðp; tÞ ¼ ðxðp; tÞ; yðp; tÞ � hLyÞ is the generic
h-th vortex sheet curve, d is the Dirac function, and Ly is the distance between
two consecutive sheets. The variable p is a Lagrangian variable constant along
particle paths. The relevant quantities are the true vortex strength ĝgðp; tÞ, which
is a measure of the jump of the velocity field across the curves, and the time inde-
pendent vortex strength gðpÞ ¼ ĝgðp; tÞjqpxhðp; tÞj.

Assuming that Lx is the periodicity in the tangential direction, one has

xðpþ kLx; tÞ ¼ kLx þ xðp; tÞ; yðpþ kLx; tÞ ¼ yðp; tÞ; gðpþ kLxÞ ¼ gðpÞ;

for each k a Z.
The motion of the generic marker xðp; tÞ of a sheet (hereafter we shall omit

the subscript h in xh) is governed by the BR equation, see [53, 44]:

qxðp; tÞ
qt

¼
Z Lx=2

�Lx=2

gð~ppÞKLx;Ly
ðxðp; tÞ � xð~pp; tÞÞÞ d~pp;ð2:1Þ

where the integral is intended in the principal value sense.
One can show, see [1, 13], that the kernel KLx;Ly

in (2.1) has the following
form:

KLx;Ly
ðxÞ ¼

� qCLx;Ly

qy
ðx; yÞ;�

qCLx;Ly

qx
ðx; yÞ

�
;ð2:2Þ

where

CLx;Ly
ðx; yÞ ¼ x2

2LxLy

� 1

2p
log y1

�
p
�
i
x

Ly

þ y

Ly

�
; e

�pLx
Ly

�����
����;ð2:3Þ

being y1ðz; qÞ ¼ 2
Pl

n¼0ð�1Þnqðnþ1=2Þ2 sin½ð2nþ 1Þz� the Jacobi theta function of
the first kind.

The streamfunction (2.3) is the solution of the following periodic problem in
the domain W ¼ ½�Lx=2;Lx=2� � ½�Ly=2;Ly=2�, see [1]:

‘2CLx;Ly
ðx; yÞ ¼ �d0;0;

CLx;Ly
ð�Lx=2; yÞ ¼ CLx;Ly

ðLx=2; yÞ; Ey a ½�Ly=2;Ly=2�;
CLx;Ly

ðx;�Ly=2Þ ¼ CLx;Ly
ðx;Ly=2Þ; Ex a ½�Lx=2;Lx=2�:

8><
>:ð2:4Þ

One can therefore write explicitly the components of the kernel KLx;Ly
as follows:

KLx;Ly
ðxÞ ¼

0
@� 1

2Ly

<
y 0
1

�
p
�
i x
Ly
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Ly

�
; e

�pLx
Ly
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�
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3
5;ð2:5Þ
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2.1. The Kelvin–Helmholtz instability

In this Subsection we shall explain how, for the infinite array of periodic
vortex sheet configuration, the BR equation develops the Kelvin–Helmholtz
instability.

We first write the BR equation (2.1) in terms of the complex variable zðp; tÞ ¼
xðp; tÞ þ iyðp; tÞ as

qz�ðp; tÞ
qt

¼
Z Lx=2

�Lx=2

gð~ppÞ½KSðzðp; tÞ � zð~pp; tÞÞ þKxðzðp; tÞ � zð~pp; tÞÞ� d~ppð2:6Þ

where z� denotes the complex conjugate of z, and the kernels KS, Kx are defined
as

KSðzÞ ¼ � 1

2Ly

y 0
1

�
p

~zzðp; tÞ�~zzð ~pp; tÞ
Ly

; e
�p

Lx
Ly

�

y1
�
p

~zzðp; tÞ�~zzð ~pp; tÞ
Ly

; e
�p

Lx
Ly

� ; ~zz ¼ �iz;ð2:7Þ

KxðzÞ ¼
i

2LxLy

ðzþ z�Þ:ð2:8Þ

From the properties of the y1 function we have

K�
S ðzÞ ¼ KSðz�Þ:

To show how the Kelvin–Helmholtz instability forms, we determine the
growth rate of the perturbation of an equilibrium solution of (2.6). It is easy
to check that the flat solution zhðp; tÞ ¼ zðp; tÞ þ ihLy ¼ pþ ihLy, gðpÞ ¼ 1 is
an equilibrium solution for the BR equation. We now consider the linear
evolution of zhðpÞ ¼ pþ ihLy þ mðp; tÞ where mðp; tÞ ¼ A~kkðtÞei

~kkp þ B~kkðtÞe�i~kkp,
being jA~kkð0Þjf 1, jB~kkð0Þjf 1; ~kk ¼ 2pk=Lx where k a Z.

To write the equation for the time evolution of the disturbance m first we
use

X
k;h AZ

1

z� pðhþ iklÞ ¼
y 0
1ðz; e�plÞ

y1ðz; e�plÞ ;

where y 0
1ðz; qÞ denotes the derivative with respect to z of y1; second the periodicity

condition

zhðpþ kLx; tÞ ¼ z0ðp; tÞ þ kLx þ ihLy; Ek; h a Z;

obtaining that
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Z Lx=2

�Lx=2

gð~ppÞ½KSðzðp; tÞ � zð~pp; tÞÞ� d~pp

¼ � 1

2p

X
k;h AZ

Z Lx=2

�Lx=2

gð~ppÞ
~zzðp; tÞ � ~zzð~pp; tÞ � ikLx � hLy

d~pp

¼ � 1

2p

X
k;h AZ

Z ðkþ1=2ÞLx

ðk�1=2ÞLx

gð~ppÞ
~zzðp; tÞ � ~zzhð~pp� kLx; tÞ

d~pp

¼ � 1

2p

X
h AZ

Z �l

l

gð~ppÞ
~zzðp; tÞ � ~zzhð~pp; tÞ

d~pp:

Hence, the equation of the perturbation m has the following form:

qmðp; tÞ�

qt
¼ 1

2pi

X
h AZ

Z l

�l

1

p� ~ppþ ihLy þ ðmðp; tÞ � mð~pp; tÞÞ d~ppð2:9Þ

þ i

2Ly

ðmðp; tÞ þ m�ðp; tÞÞ

and, as ðmðp; tÞ � mð~pp; tÞÞ is small, to leading order we obtain

qmðp; tÞ�

qt
¼ 1

2pi

X
h AZ

�Z l

�l

1

p� ~ppþ ihLy

d~pp�
Z l

�l

ðmðp; tÞ � mð~pp; tÞÞ
ðp� ~ppþ ihLyÞ2

d~pp
�

ð2:10Þ

þ i

2Ly

ðmðp; tÞ þ m�ðp; tÞÞ:

The first integral (2.10) vanishes, and by means of integrating by parts the
second integral we obtain

qmðp; tÞ�

qt
¼ � 1

pi

X̂Xþl

h¼0

Z l

�l

mpð~pp; tÞðp� ~ppÞ
ðp� ~ppÞ2 þ ðhLyÞ2

d~ppð2:11Þ

þ i

2Ly

ðmðp; tÞ þ m�ðp; tÞÞ:

where mp ¼ qpm, and the symbol
P̂P

means that the term for h ¼ 0 is multiplied by
a factor 1/2.

As

Z þl

�l

eei~kk~ppðp� ~ppÞ
ðp� ~ppÞ2 þ ðhLyÞ2

d~pp ¼Hipe�
~kkhLyei~kkp
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and substituting in (2.11) we obtain

_AA�
~kk
ðtÞe�i ~kkp þ _BB�

~kk
ðtÞei ~kkp ¼ i~kk

X̂Xþl

h¼0
½A~kkðtÞe

�~kkhLyþi ~kkp þ B~kkðtÞe
�~kkhLy�i~kkp�ð2:12Þ

þ i

2Ly

ðA~kke
i ~kkp þ B~kke

�i ~kkp þ A�
~kk
e�i ~kkp þ B�

~kk
ei

~kkpÞ

¼ i~kkðe ~kkLy þ 1Þ
2ðe ~kkLy � 1Þ

½A~kkðtÞe
i~kkp þ B~kkðtÞe

�i~kkp�

þ i

2Ly

ðA~kke
i ~kkp þ B~kke

�i ~kkp þ A�
~kk
e�i ~kkp þ B�

~kk
ei

~kkpÞ;

where we have used
Pþl

h¼0 e
�hx ¼ ex=ðex � 1Þ for x > 0. From (2.12) we obtain

the following system of ODE

_ZZðtÞ ¼ AZðtÞ;ð2:13Þ

where ZðtÞ ¼ ð<ðA~kkðtÞÞ;=ðA~kkðtÞÞ;<ðB~kkðtÞÞ;=ðB~kkðtÞÞÞ, and

A ¼

0 1
2Ly

0 q

� 1
2Ly

0 q 0

0 q 0 1
2Ly

q 0 � 1
2Ly

0

0
BBBBB@

1
CCCCCA
;

where q ¼ � ~kkðe ~kkLyþ1Þ
2ðe ~kkLy�1Þ

� 1
2Ly

. The matrix A admits a positive eigenvalue with
multiplicity 2

l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~kk2ðe ~kkLy þ 1Þ2

4ðe ~kkLy � 1Þ2
þ ðe ~kkLy þ 1Þ
2Lyðe ~kkLy � 1Þ

vuut :

Therefore the linearized modes of any disturbances have positive growth rate,
implying an ill-posed linear motion. This is known as the Kelvin–Helmholtz
instability. We notice that if we let Ly ! l, and take Lx ¼ 2p, the infinite array
of periodic vortex sheets reduces to the classical single periodic vortex sheet
curve, see [39, 55]. In this case l ¼ k=2 which is exactly the growth rate reported
in [39, 55] for the periodic vortex sheet.

2.2. Singularity formation for the Birkho¤–Rott solution

In this section we show how the Kelvin–Helmholtz instability induces the singu-
larity formation in finite time for the solution of the BR equation.

For the purpose of our analysis we need to compute the numerical solution
of (2.1). In particular we use a fourth order Runge–Kutta scheme as temporal
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discretization and, following Krasny [39], we compute the numerical value of the
integral in (2.1) by using the alternating point quadrature formula. To evaluate
the y1 function it is enough to consider in the summation only the first 20 terms,
because the summation rapidly decreases to zero with n. The main di‰culty in
computing the vortex sheet motion is related to the Kelvin–Helmholtz growth
of the round-o¤ disturbances. To avoid this unwanted phenomenon, we apply
the filtering technique proposed by Krasny in [39], according to which at each
time step the Fourier modes having amplitude smaller than the threshold value
10�27 are set to zero. Computation is performed with 32-digit precision.

We consider, as initial condition, the flat sheets with a sinusoidal vortex
strength

xðp; 0Þ ¼ ðp; 0Þ; gðpÞ ¼ sinðpÞ; p a ½�p; p�;ð2:14Þ

and Lx ¼ Ly ¼ 2p.
To analyze the process of the singularity formation we apply the singularity

tracking method, which allows to determine the position and the algebraic char-
acter of the complex singularity nearest to the real axis. This method has been
widely used to perform a singularity analysis in equations arising in fluid dy-
namics. Besides the paper cited in the introduction for the BR equation, we recall
here the applications to the incompressible Euler flow, see [10, 28, 46, 21, 51],
to boundary layer flow, see [23, 25, 30, 31, 32, 33], to Camassa–Holm and
Degasperi–Procesi equations, [25, 22], to the KdV equation in [36, 29], and others
[36, 37, 38, 60]. See also the recent review paper [11] on the various singularity
tracking procedures.

The complex singularity tracking method is based on the link between the
asymptotic properties of the Fourier spectrum and the radius of analyticity of a
real function. In particular, suppose that uðzÞ is a real function having a complex
singularity in z� ¼ x� þ id� and that uðzÞQðz� z�Þaþit, using a steepest descent
argument it is possible to give the asymptotic (in k) behaviour of the spectrum
uk of uðzÞ:

ukQCXk
�ðaþ1Þe�d�k sinðkx� þ t logðkÞ þ fÞ:ð2:15Þ

To apply the singularity tracking method to BR solution, we consider the
Fourier modes of the components

ðX ðp; tÞ;Y ðp; tÞÞ ¼ xðp; tÞ � p ¼
�X

k

XkðtÞeikp;
X
k

YkðtÞeikp
�
;

obtained from the numerical solution of (2.1). Hence, the asymptotic behaviour
of the spectrum of X for large k (same arguments for the component Y and its
Fourier modes) is:

XkðtÞQCX ðtÞk�ðaX ðtÞþ1Þe�dX ðtÞk sinðkxX ðtÞ þ tX ðtÞ logðkÞ þ fX ðtÞÞ;ð2:16Þ
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where z� ¼ xX þ idX is the position of the singularity. The best way to find the
parameters CX , aX , dX , xX , tX , fX in (2.16) is to perform a fitting procedure to
the logarithmic of (2.16). In particular, we suppose that (2.16) holds point-wise
for each k, and equating six consecutive modes Xk�5; . . . ;Xk to the form in
(2.16) we obtain a system for the parameters CX , aX , dX , xX , tX , fX whose
solution returns the k-dependent values of the parameters. The values of the
various parameters are actually retrieved in the band of k where they are almost
k-independent, and this happens in general in the first 30–100 modes.

Results show that both components have a singularity in the same position
in the complex plane (that is dX ðtÞQdY ðtÞ and xX ðtÞQxY ðtÞ), while the two
characterizations aX and aY are di¤erent. The time evolutions of the width
of the analyticity dX ¼ dY is shown in Figure 1(a), while the time evolutions
of the characterizations aX , aY are shown in Figure 1(b). We have found that
at tsQ1:911 the singularity hits the real domain (dX ¼ 0) in p�Qp=2, and that
the characterizations are aX Q1:84 and aY Q1:97, being the values of tX , tY
of order 10�2 at ts. Notice that for symmetry reasons there is also a singular-
ity placed in �p�. This means that both the components ðXðp; tÞ;Y ðp; tÞÞ ex-
perience at ts a blow-up in their second derivative in p� due to the presence
of a branch singularity. As X and Y have a blow up in their second deriva-
tives, the curve at time ts has a smooth behavior as shown in Figure 2(a),
while the eruptive behavior of the second derivatives can be deduced from
Figure 2(b), where the time evolution of Xpp from t ¼ 1:7 up to t ¼ 1:9 ( just
prior the singularity time) is shown: in p� the second derivative Xpp rapidly
decreases for p ! ðp�Þ� while it rapidly increases for p ! ðp�Þþ (Ypp has a
similar behavior).

Figure 1. a) The time evolutions of the width of the analyticity dX , dY , dk, dĝg of X , Y , k, ĝg
from t ¼ 1:85 up to ts ¼ 1:911. At ts dX ¼ dY ¼ dk ¼ dĝgQ0 meaning that the BR solution
develops a singularity. b) The time evolutions of the characterizations aX , aY , ak, aĝg from
t ¼ 1:85 up to ts ¼ 1:911. At ts, aX Q1:84, aY Q1:97, akQ�0:63, aĝgQ0:55.
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Figure 2. a) The vortex sheet curve from t ¼ 1:7 up to t ¼ 1:9 (time steps of 0.05) and
t ¼ 1:91, just prior the singularity time. b) Time evolution of the second derivative
Xpp of the X component from t ¼ 1:7 up to t ¼ 1:9 (time steps of 0.05). At t ¼ 1:9 the
singularity is very close to the real domain, and Xpp exhibits an eruptive behavior in
p� ¼ep=2. c) Time evolution of the true vortex sheet strength ĝg in terms of the arc-
length sðpÞ from p ¼ 0 (only sb 0 is shown). At t ¼ 1:91 ĝg has a square-root cusp
behavior in p�. d) Time evolution of the curvature k in terms of the arc length s (only
sb 0 is shown). At t ¼ 1:91 k experiences an eruptive behaviour in p�, similarly to the
derivative Xpp.
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At tQ ts also the curvature kðp; tÞ ¼ ðxpypp � ypxppÞ=ððx2
p þ y2pÞ

3=2Þ and the
true vortex sheet strength ĝgðp; tÞ ¼ gðpÞ=jxp; ypj become singular in p�. Applying
the singularity tracking method to k and ĝg we obtain that k diverges, being the
characterization akQ�0:63, while ĝg forms a square-root cusp having character-
ization aĝgQ0:55 (see Figure 1(b)), and also in this case both the imaginary part
of the complex characterizations due to the asymptotic behaviour in (2.16) is neg-
ligible. The time evolutions of the curvature k and the true vortex sheet strength
ĝg are shown in Figures 2(c), 2(d) from t ¼ 1:7 up to t ¼ 1:91 as functions of the
signed arc length from p ¼ 0.

3. Vortex layer of non uniform vorticity

In this Section we shall consider the regularization of the vortex sheet motion
given by an inviscid layer of small thickness whose evolution is governed by Euler
equations. Several authors considered this problem and compared the motion of
a layer of uniform vorticity with the vortex sheet motion governed by the BR
equation, see [48, 6, 9, 26]. Here we consider a layer of non uniform vorticity
concentrated on the layer of thickness e.

Following the analysis performed in [13], we introduce the rescaled variable
Y ¼ y=e and assume the initial vorticity to be of the form

o0ðx; yÞ ¼ e�1f ðx;Y Þ;ð3:1Þ

where f ðx;Y Þ has a rapid decay in Y , and

Z
f ðx;Y Þ dY is finite. In the limit

e ! 0, the layer shrinks to a sheet.
The Euler equations in the vorticity-streamfunction formulation are the

following:

qtoþ uqxoþ vqyo ¼ 0;ð3:2Þ

q2xxcþ q2yyc ¼ �o;ð3:3Þ

u ¼ qyc; v ¼ �qxc;ð3:4Þ

oðx; y; t ¼ 0Þ ¼ e�1f ðx;Y Þ;ð3:5Þ

f ðx;YÞ ¼ sinðxÞ expð�Y 2=2Þ=
ffiffiffiffiffi
2p

p
:ð3:6Þ

The problem is solved in the periodic domain D ¼ ½�p; p� � ½�p; p�. Equation
(3.2) is the vorticity-transport equation, (3.3) is the Poisson equation for the
streamfunction, and equation (3.4) links the streamfunction to the velocity com-
ponents. The initial condition is given by (3.5) and (3.6), and it represents a flat
layer having thickness of order e, in which the vorticity strength has a sinusoidal
profile along the tangential direction, and it has a highly peaked gaussian profile
along the normal direction. Numerical simulations are employed by using a fully
spectral numerical scheme with a semi-implicit third order Runge–Kutta scheme
as temporal discretization, see [62].
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3.1. Vortex layer motion

We have performed several numerical simulations of (3.2)–(3.6) with the regula-
rization parameter ranging from e2 ¼ 0:02 up to e2 ¼ 0:005. To compare the vor-
tex layer motion with the vortex sheet dynamics, we consider the material curve
C which, at t ¼ 0, is placed in the center of the layer. We evolve in time the curve
C following the lagrangian path of fluid particles initially distributed on C.

The behavior of C is shown at time t ¼ 1:91, just prior the singularity time
of the BR solution, in Figure 3(a) for the various e, and compared with the BR
solution. As one could expect, the curve C shows a better agreement with the
BR case as e ! 0.

After the singularity time for the BR solution, the typical roll-up process of
the thin vorticity layer begins to manifest (see also [59, 13] for the roll-up process
of vorticity layer). For all the e considered, the vorticity concentrates close to
the points where the singularity should form in the vortex sheet governed by the
BR equation (i.e. in p ¼ep=2) and, due to the incompressibility condition, the
flow bulges outwards close to that points, leading to the formation of two cores
of negative and positive vorticity visible for instances in Figures 3(b)–3(d) for
e2 ¼ 0:02; 0:005 at t ¼ 6, and e2 ¼ 0:005 at t ¼ 4. As time passes the two cores
begin to rotate in opposite direction, and two spirals with trailing arms wrapping
around the cores of the layer form. In Figures 3(c), 3(e) the spirals are well visible
for e2 ¼ 0:02; 0:005 at t ¼ 6.

The di¤erent initial thickness of the layer induces di¤erent flow motion. From
Figures 3(b)–3(d) one can observe how the roll-up process is more sustained for
the lower e, with the curve C showing, at a specific time, an increasing number of
windings for decreasing e.

3.2. Singularity analysis

Although the vortex layer, and consequently the curve C, is regular for all time, it
is of interest to characterize the complex singularities of the layer solution, and
how they are related to the parameter e.

In order to perform the singularity analysis of Euler’s solution, we apply the
singularity tracking method for bi-variate function, see [46, 51] and also [30, 32,
33]. In particular, given the Fourier expansion of Euler’s solution

oðx; yÞ ¼
X
k1;k2

ok1k2e
ik1xeik2y;

if one considers those modes ðk1; k2Þ such that k1 ¼ k cos y and k2 ¼ k sin y,
where k ¼ jðk1; k2Þj, then the Fourier coe‰cients, for k ! l, have the following
asymptotic behavior:

ok1k2 Qk�ðaðyÞþ1Þe�dðyÞkeikx
�ðyÞ; where ðk1; k2Þ ¼ kðcos y; sin yÞ:ð3:7Þ

The width of the analyticity strip d� is the minimum over all directions y, i.e.
d� ¼ miny dðyÞ.
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Figure 3. a) Vortex sheet curve for the BR equation and the material curves C for various
values of the initial thickness of the layer at t ¼ 1:91 ( just prior the singularity formation
for the BR solution). b)–c) Vorticity distribution for the vortex layer and material curve
C (black lines) for e2 ¼ 0:02 at t ¼ 4 and t ¼ 6. d)–e) Vorticity distribution for the vortex
layer and material curve C (black lines) for e2 ¼ 0:005 at t ¼ 4 and t ¼ 6.
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When dealing with bi-variate function it is more convenient to work with the
shell-summed Fourier amplitudes, defined as

AK C
X

Kajðk1;k2Þj<Kþ1

jok1k2 j:ð3:8Þ

The asymptotic behavior of these amplitudes is, see [51]

AKQCK�ðaShþ1=2Þ expð�dShKÞ when K ! l;ð3:9Þ

where dSh gives the width of the analyticity strip and aSh gives information on
the characterization of the singularity. As proven in [51], if one denotes with y�

the angle where dðyÞ takes its minimum (i.e. d� ¼ dðy�Þ), then dSh ¼ dðy�Þ and
aSh ¼ aðy�Þ � 1=2, that is the rates of exponential and algebraic decay of the
shell-summed Fourier amplitudes are, respectively, the width of the analyticity
and the characterization of the most relevant complex singularity of the solution.

The shell-summed amplitudes of the vorticity o of the Euler solution are
shown in Figure 4(a) for various values of the initial thickness e2 at t ¼ ts in
lin-log scale. As expected, the amplitudes have decreasing exponential decay for
decreasing e (see Figure 4(b)). We also notice that the fitting procedures are in
this case applied to particular bands of K . In fact, due to the initial choice the
flat gaussian layer, the first part of the shell summed amplitudes exhibits for all
e almost a gaussian decay, so that it is convenient to focus only on the last range
of the amplitudes which is actually a¤ected by the presence of complex singular-
ities. For instances for e2 ¼ 0:01–0.02 only K b 100 are considered, whereas for
e2 ¼ 0:005 we considered Kb 200 (see Figure 4(a)).

Figure 4. a) Fourier shell summed amplitudes in lin-log scale at t ¼ ts for various values
of the initial thickness of the layer. For decreasing thickness the amplitudes exhibit a
decreasing exponential decay rate, meaning that the width of the analyticity dSh of the
Euler solution decreases with e. b) Width of the analyticity dSh evaluated through (3.9)
for various e2 at t ¼ ts.
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Regarding the characterization of the singularity, which is obtained by deter-
mining the rate of algebraic decay aSh in (3.9), we have obtained that aSh is,
at t ¼ 1:91 of order aShQ�0:5. This reveals that the vorticity has an inverse
square root singularity, meaning that the complexified vorticity has an eruptive
behaviour. This is somewhat expected, as the vorticity is highly concentrated
and shows an eruptive behavior along the thin layer, especially for decreasing
e. The obtained characterization is also compatible with that found in [11] for
the streamfunction of a viscous periodic thin layer of non uniform vorticity of
distinguished sign. In particular in [11] it was shown that the streamfunction
had a 3=2-characterized singularity, revealing an eruptive behavior in the second
derivatives of the streamfunction and, consequently, in the vorticity. We stress
here that the outcomes of the fitting procedures applied to (3.9) does not give
any further information on all the possible complex singularities of the Euler
solution. It is likely, in fact, that the various complex singularities actually form
a complex manifold as predicted by previous analysis on the Euler equation with
analytic initial data, [28, 46, 51].

3.3. Singularity analysis for the material curve C

The aim of this subsection is to perform a comparison between the singularity of
the BR solution, and the complex singularities of the curve C retrieved from the
vortex layer motion presented in subsection 3.1. The analysis we shall present is
di¤erent from the one presented in the previous subsection, as it is applied to the
components of a curve, and it allows to retrieve information also on the position
of the singularities.

We apply the singularity tracking methods, and in particular we use the Borel–
Polya–van der Hoeven method (BPH). This method is very powerful, and it
allows to retrieve information on the positions and the characterizations of the
various algebraic singularities of an analytic function, extending the singularity
tracking method based on the asymptotic behaviour (2.16). It was originally
proposed in [50] to investigate on the various complex singularities of the Burgers
equation, and later to analyse the complex singularities of a wall shear of a
boundary layer flow ([32]), and the complex singularities for the regularized
BR-a in [13]. We shall not give further details on this method, and we refer the
interest reader to the previous cited papers for an exhaustive reading on this
method and how can be applied.

Singularity tracking with the BPH method is applied to the Fourier expan-
sion of the components ðX eðp; tÞ;Y eðp; tÞÞ ¼ ðxCðp; tÞ � p; yCðp; tÞÞ, where C ¼
ðxCðp; tÞ; yCðp; tÞÞ. Up to ts we have clearly distinguished and characterized, in
both X e and Y e, two main complex singularities whose location will be denoted
with ~ppe

1 ¼ p1; e þ id1; e and ~ppe
2 ¼ p2; e þ id2; e1. In Figure 5(a), ~ppe

1 and ~ppe
2 are tracked

in the complex plane at t ¼ 1:911 and from t ¼ 2:5 up to t ¼ 6 (time steps of 0:5)
for e2 ¼ 0:005; 0:01; 0:02 (only pb 0 is shown). In the same figure the tracking
of the BR singularity is shown from t ¼ 1 up to t ¼ 1:91. Due to the symmetry

1Hereafter we shall also label these singularities simply with their locations ~pp e
1 and ~pp e

2.
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Figure 5. a) Tracking of the singularities ~ppe
1, ~pp

e
2 in the complex p-plane at t ¼ 1:911 and

from t ¼ 2:5 up to t ¼ 6 (time steps of 0:5) for e2 ¼ 0:005; 0:01; 0:02. The dashed line is
the tracking of the BR singularity from t ¼ 1:5 up to t ¼ 1:91. All the singularities have
characterizations compatible with the blow-up of the second derivatives of the com-
ponents X e, Y e. b) Second derivatives qppX

e, qppY
e for e2 ¼ 0:005 at t ¼ 6. Both the

derivatives have an eruptive behavior close to 0:61 and 2:52, very close to the real part
of the singularities ~pp e

1, ~pp
e
2.
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of the problem, it is expected that the singularities ~ppe
1 and ~ppe

2 are symmetric with
respect to p, and their distance from the real domain diminishes as time passes
and for decreasing e. Moreover as e decreases the distance in the complex plane
between the two singularities diminishes.

These singularities have similar characterizations for all times we have con-
sidered. In fact, we have determined through the BPH method that aX

~pp e
1
¼ aX

~pp e
2

and aY
~pp e
1
¼ aY

~pp e
2
have always values in the range (1.45–1.95) for all the time consid-

ered. The obtained characterizations are compatible with the BR-singularity, and
reveal an eruptive behavior in the second derivative of the components X e and
Y e. In Figure 5(b) qppX

e, qppY
e are shown for e ¼ 0:005 and t ¼ 6, and they

have an evident eruption close pQ0:61 and pQ2:52, very close to the real part
of the positions of ~ppe

1 and ~ppe
2 (Figure 5(a)).

4. Conclusion

We have analyzed the motion of a vortex layer of non uniform vorticity whose
evolution is governed by the Euler equation. The initial configuration we have
studied, in the zero thickness limit, consists in an infinite array of periodic vortex
sheets. The motion of the sheets is governed by the BR equation that, in finite
time, develops a singularity. We have characterized, through the singularity
tracking method, the singularities of the components of the curve as a 3=2 branch
singularity. We have compared the vortex sheets motion with the dynamics of a
material curve centered within the layer, and we have shown that, for small thick-
ness of the layer, this material curve closely follows the BR solution. However
due to the regularization induced by the finite thickness of the layer, this material
curve does not develop singularity and, after the singularity time for the BR solu-
tion, shows well known features of the shear layer flow like roll-up process and
spiral formation.

Although Euler solution is regular globally in time, we have shown through
the singularity analysis that the solution has complex singularities whose dis-
tances from the real domain diminishes as the thickness of the layer goes to
zero. Through the analysis of the Fourier shell summed amplitudes we have also
characterized the relevant singularities, obtaining that the complex singularities
are compatible with an eruptive behavior of the vorticity within the layer.

It remains still unsolved the question whether the various regularization of the
BR equation have a common limit in the zero-regularization limits (vortex blob,
Euler-a, approximation with viscous-inviscid layer), a problem that appears rele-
vant also considering the non uniqueness results obtained in [43]. In [59] it was
suggested that the blob methods well capture some large scale features of the vis-
cous vortex-layer motion, and in [34] the authors numerically proved that blob
and BR-a appear to be similar regularization, although blob regularization seems
to exhibit a somehow irregular behaviors. It would be interesting to see whether
these regularized models have similarities in the behavior of the complex singu-
larities. In [13] it was in fact given evidence that the Euler-a regularization of
the BR equation develops complex singularities, similarly to the results presented
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here. The relevant approximation with viscous layers, not considered here, has a
fundamental importance. For wall bounded flows there are results in di¤erent
contexts (see e.g. [16, 54, 40] and references therein), and we postpone to [12]
the analysis of the influence of the viscosity e¤ects on the dynamics of layer of
small thickness. It would be also interesting to study the behavior of the layer
using the framework of the matched asymptotics as it is usually done for wall
bounded flows, see e.g. [18, 19, 41] where it is suggested that analyticity might
be necessary for the tangential variable only. An inner expansion technique for
vortex layer was in fact used in [17] to derive an approximation of the flow inside
the layer, see also [57] in a di¤erent context; matching with the outer flow is how-
ever more challenging with respect to the wall bounded flow counterpart, because
the outer Euler flow is not a priori known due to the layer motion, although it
might be necessary to achieve the justification of the BR model as a zero viscosity
approximation of Navier–Stokes solutions.

Acknowledgments. The work of the authors has been partially supported by GNFM of

INdAM. The authors would like to thank an anonymous reviewer for comments and suggestions
that helped improving the presentation of the paper.

References

[1] D. H. Bailey - J. M. Borwein - R. E. Crandall - I. J. Zucker, Lattice sums

arising from the Poisson equation, J. Phys. A: Math. Theor. 46 (2013), no. 11, 115–201.

[2] G. R. Baker - J. T. Beale, Vortex blob methods applied to interfacial motion,
J. Comp. Phys. 196 (2004), no. 1, 233–258.

[3] G. R. Baker - D. I. Meiron - S. A. Orszag, Generalized vortex methods for free-

surface flow problems, J. Fluid Mech. 123 (1982), 477–501.

[4] G. R. Baker - A. Nachbin, Stable methods for vortex sheet motion in the presence

of surface tension, SIAM J. Sci. Comp. 19 (1998), 1737–1736.

[5] G. R. Baker - L. D. Pham, A comparison of blob methods for vortex sheet roll-up,
J. Fluid Mech. 547 (2006), 297–316.

[6] G. R. Baker - M. J. Shelley, On the connection between thin vortex layers and vortex

sheets, J. Fluid Mech. 215 (1990), 161–194.

[7] C. Bardos - J. S. Linshiz - E. S. Titi, Global regularity for a Birkho¤–Rott-a
approximation of the dynamics of vortex sheets of the 2d Euler equations, Physica D:
Nonlinear Phenomena 237 (2008), no. 14–17, 1905–1911.

[8] D. Benedetto - C. Marchioro - M. Pulvirenti, The 2-D incompressible Euler flow

for singular initial conditions, Nonlinear variational problems and partial di¤erential
equations (Isola d’Elba, 1990), Pitman Res. Notes Math. Ser., vol. 320, Longman Sci.
Tech., Harlow, 1995, pp. 57–74.

[9] D. Benedetto - M. Pulvirenti, From vortex layers to vortex sheets, SIAM J. Appl.
Math. 52 (1992), no. 4, 1041–1056.

[10] R. E. Caflisch, Singularity formation for complex solutions of the 3D incompressible

Euler equations, Physica D 67 (1993), no. 1–3, 1–18.

[11] R. E. Caflisch - F. Gargano - M. Sammartino - V. Sciacca, Complex singu-

larities and PDEs, Rivista di Matematica della Universita di Parma 6 (2015), no. 1,
69–133.

569singular behavior of a vortex layer in the zero thickness limit



[12] R. E. Caflisch - F. Gargano - M. Sammartino - V. Sciacca, Complex singu-

larity analysis of vortex layer flow, in preparation (2017).

[13] R. E. Caflisch - F. Gargano - M. Sammartino - V. Sciacca, Regularized

Euler-a motion of an infinite array of vortex sheets, Boll. Unione Mat. Ital. 10 (2017),
113–141, doi:10.1007/s40574-016-0097-6.

[14] R. E. Caflisch - O. F. Orellana, Long time existence for a slightly perturbed vortex

sheet, Comm. Pure Appl. Math 39 (1986), 807–838.

[15] R. E. Caflisch - O. F. Orellana, Singular solutions and ill-posedness for the evolu-

tion of vortex sheets, SIAM J. Math. Anal. 20 (1989), no. 2, 293–307.

[16] R. E. Caflisch - M. Sammartino, Navier-Stokes equations on an exterior circular

domain: construction of the solution and the zero viscosity limit, Comptes Rendus de
l’Acadmie des Sciences – Series I – Mathematics 324 (1997), no. 8, 861–866.

[17] R. E. Caflisch - M. Sammartino, Vortex layers in the small viscosity limit,
‘‘WASCOM 2005’’ – 13th Conference on Waves and Stability in Continuous Media,
World Sci. Publ., Hackensack, NJ, 2006, pp. 59–70.

[18] M. Cannone - M. C. Lombardo - M. Sammartino, Existence and uniqueness

for the Prandtl equations, Comptes Rendus de l’Acadmie des Sciences – Series I –
Mathematics 332 (2001), no. 3, 277–282.

[19] M. Cannone - M. C. Lombardo - M. Sammartino, Well-posedness of Prandtl

equations with non-compatible data, Nonlinearity 26 (2013), no. 3, 3077–3100.

[20] M. J. Chen - L. K. Forbes, Accurate methods for computing inviscid and viscous

Kelvin–Helmholtz instability, Journal of Computational Physics 230 (2011), no. 4,
1499–1515.

[21] C. Cichowlas - M. E. Brachet, Evolution of complex singularities in Kida-Pelz and

Taylor-Green inviscid flows, Fluid Dyn. Res. 36 (2005), no. 4–6, 239–248.

[22] G. M. Coclite - F. Gargano - V. Sciacca, Analytic solutions and singularity

formation for the peakon b-family equations, Acta Appl. Math. 122 (2012), 419–434.

[23] S. J. Cowley, Computer extension and analytic continuation of Blasius’ expan-

sion for impulsively flow past a circular cylinder, J. Fluid Mech. 135 (1983), 389–
405.

[24] S. J. Cowley - G. R. Baker - S. Tanveer, On the formation of Moore curvature

singularities in vortex sheets, J. Fluid Mech. 378 (1999), 233–267.

[25] G. Della Rocca - M. C. Lombardo - M. Sammartino - V. Sciacca, Singularity
tracking for Camassa–Holm and Prandtl’s equations, Appl. Numer. Math. 56 (2006),
no. 8, 1108–1122.

[26] M. R. Dhanak, Equation of motion of a di¤using vortex sheet, J. Fluid Mech. 269
(1994), 265–281.

[27] J. Duchon - R. Robert, Global vortex sheet solutions of Euler equations in the plane,
Journal of Di¤erential Equations 73 (1988), no. 2, 215–224.

[28] U. Frisch - T. Matsumoto - J. Bec, Singularities of Euler flow? Not out of the blue!,
J. Stat. Phys. 113 (2003), no. 5, 761–781.

[29] F. Gargano - G. Ponetti - M. Sammartino - V. Sciacca, Complex singularities

in KdV solutions, Ricerche di Matematica 65 (2016), no. 2, 479–490.

[30] F. Gargano - M. Sammartino - V. Sciacca, Singularity formation for Prandtl’s

equations, Physica D: Nonlinear Phenomena 238 (2009), no. 19, 1975–1991.

[31] F. Gargano - M. Sammartino - V. Sciacca, High Reynolds number Navier-Stokes

solutions and boundary layer separation induced by a rectilinear vortex, Computers &
Fluids 52 (2011), 73–91.

570 f. gargano, m. m. l. sammartino and v. sciacca

http://dx.doi.org/10.1007/s40574-016-0097-6


[32] F. Gargano - M. Sammartino - V. Sciacca - K. W. Cassel, Analysis of com-

plex singularities in high-Reynolds-number Navier-Stokes solutions, J. Fluid Mech. 747
(2014), 381–421.

[33] F. Gargano - M. Sammartino - V. Sciacca - K. W. Cassel, Viscous-inviscid
interactions in a boundary-layer flow induced by a vortex array, Acta Appl. Math. 132
(2014), 295–305.

[34] D. D. Holm - M. Nitsche - V. Putkaradze, Euler-alpha and vortex blob regulari-

zation of vortex filament and vortex sheet motion, J. Fluid Mech. 555 (2006), 149–176.

[35] T. Y. Hou - J. S. Lowengrub - M. J. Shelley, The long-time motion of vortex

sheets with surface tension, Physics of Fluids 9 (1997), no. 7, 1933–1954.

[36] C. Klein - K. Roidot, Numerical study of shock formation in the dispersionless

Kadomtsev-Petviashvili equation and dispersive regularizations, Phys. D 265 (2013),
1–25.

[37] C. Klein - K. Roidot, Numerical study of the semiclassical limit of the Davey-

Stewartson II equations, Nonlinearity 27 (2014), no. 9, 2177–2214.

[38] C. Klein - K. Roidot, Numerical study of the long wavelength limit of the Toda

lattice, Nonlinearity 28 (2015), no. 8, 2993–3025.

[39] R. Krasny, A study of singularity formation in a vortex sheet by the point-vortex

approximation, J. Fluid Mech. 167 (1986), 65–93.

[40] I. Kukavica - M. C. Lombardo - M. Sammartino, Zero viscosity limit for analytic

solutions of the primitive equations, Arch. Ration. Mech. Anal. 222 (2016), no. 1, 15–45.

[41] I. Kukavica - V. Vicol, On the local existence of analytic solutions to the Prandtl

boundary layer equations, Commun. Math. Sci. 11 (2013), 269–292.

[42] J. G. Liu - Z. Xin, Convergence of vortex methods for weak solutions to the 2D Euler

equations with vortex sheet data, Comm. Pure Appl. Math 48 (1995), 611–628.

[43] M. C. Lopes Filho - J. Lowengrub - H. J. Nussenzveig Lopes - Y. Zheng,
Numerical evidence of nonuniqueness in the evolution of vortex sheets, ESAIM: Math.
Mod. and Num. Anal. 40 (2006), no. 2, 225–237.

[44] A. J. Majda - A. L. Bertozzi, Vorticity and incompressible flow, Cambridge Texts
in Applied Mathematics, vol. 27, Cambridge University Press, Cambridge, 2002.

[45] C. Marchioro, Euler evolution for singular initial data and vortex theory: a global

solution, Comm. Math. Phys. 116 (1988), no. 1, 45–55.

[46] T. Matsumoto - J. Bec - U. Frisch, The analytic structure of 2D Euler flow at

short times, Fluid Dyn. Res. 36 (2005), no. 4–6, 221–237.

[47] D. W. Moore, The equation of motion of a vortex layer of small thickness, Studies
in Appl. Math. 58 (1978), no. 2, 119–140.

[48] D. W. Moore, The spontaneous appearance of a singularity in the shape of an evolving

vortex sheet, Proc. Roy. Soc. London Ser. A 365 (1979), no. 1720, 105–119.

[49] D. W. Moore, Numerical and analytical aspects of Helmholtz instability, Proceedings
of the Sixteenth International Congress of Theoretical and Applied Mechanics,
Lyngby, Denmark, 1985, pp. 263–274.

[50] W. Pauls - U. Frisch, A Borel transform method for locating singularities of Taylor

and Fourier series, J. Stat. Phys. 127 (2007), no. 6, 1095–1119.

[51] W. Pauls - T. Matsumoto - U. Frisch - J. Bec, Nature of complex singularities

for the 2D Euler equation, Physica D 219 (2006), no. 1, 40–59.

[52] D. I. Pullin, Numerical studies of surface-tension e¤ects in nonlinear Kelvin–

Helmholtz and Rayleigh-Taylor instability, J. Fluid Mech 119 (1982), 507–532.

[53] P. G. Saffman, Vortex dynamics, Cambridge University Press, 1993.

571singular behavior of a vortex layer in the zero thickness limit



[54] M. Sammartino - R. E. Caflisch, Zero viscosity limit for analytic solutions of the

Navier-Stokes equation on a half-space. II. Construction of the Navier-Stokes solution,
Comm. Math. Phys. 192 (1998), no. 2, 463–491.

[55] M. J. Shelley, A study of singularity formation in vortex-sheet motion by a spectrally

accurate vortex method, J. Fluid. Mech. 244 (1992), 493–526.

[56] S.-I. Sohn, Singularity formation and nonlinear evolution of a viscous vortex sheet

model, Physics of Fluids 25 (2013), no. 1, 014106.

[57] F. Sueur, Viscous profiles of vortex patches, Journal of the Institute of Mathematics
of Jussieu 14 (2015), no. 1, 1–68.

[58] C. Sulem - P.-L. Sulem - C. Bardos - U. Frisch, Finite time analyticity for the

two- and three-dimensional Kelvin–Helmholtz instability, Comm. Math. Phys. 80 (1981),
no. 4, 485–516.

[59] G. Tryggvason - W. J. A. Dahm - K. Sbeih, Fine structure of vortex sheet rollup by

viscous and inviscid simulation, Journal of Fluids Engineering 113 (1991), no. 1, 31–36.

[60] J. A. C. Weideman, Computing the dynamics of complex singularities of nonlinear

PDEs, SIAM J. Appl. Dyn. Syst. 2 (2003), no. 2, 171–186 (electronic).

[61] S. Wu, Mathematical analysis of vortex sheets, Comm. Pure Appl. Math. 59 (2006),
no. 8, 1065–1206.

[62] X. Zhong, Additive semi-implicit Runge–Kutta methods for computing high-speed non-

equilibrium reactive flows, J. Comp. Phys. 128 (1996), no. 1, 19–31.

Received 31 December 2016,
and in revised form 25 January 2017.

Francesco Gargano

Department of Energy, Engineering of

the Information and Mathematical Models

University of Palermo

Viale delle Scienze, Ed. 9

90128 Palermo, Italy

francesco.gargano@unipa.it

Marco Maria Luigi Sammartino

Department of Mathematics

University of Palermo

Via Archirafi 34

90123 Palermo, Italy

marcomarialuigi.sammartino@unipa.it

Vincenzo Sciacca

Department of Mathematics

University of Palermo

Via Archirafi 34

90123 Palermo, Italy

vincenzo.sciacca@unipa.it

572 f. gargano, m. m. l. sammartino and v. sciacca


	mk1
	mk10
	mk11
	mk2
	mk3
	mk4
	mk5
	mk6
	mk7
	mk8
	mk9
	mk12
	mk13
	mk14
	mk15
	mk16
	mk17
	mk18
	mk19
	mk20
	mk21
	mk22
	mk23
	mk24
	mk25
	mk26
	mk27
	mk28
	mk29
	mk30
	mk31
	mk32
	mk33
	mk34
	mk35
	mk36
	mk37
	mk38
	mk39
	mk40
	mk41
	mk42
	mk43
	mk44
	mk45
	mk46
	mk47
	mk48
	mk49
	mk50
	mk51
	mk52
	mk53
	mk54
	mk55
	mk56
	mk57
	mk58
	mk59
	mk60
	mk61
	mk62
	mkEnd-page

