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Abstract. — We give an explicit example of log Calabi–Yau pairs that are log canonical and

have a linearly decreasing Euler characteristic. This is constructed in terms of a degree two covering
of a sequence of blow ups of three dimensional projective bundles over the Segre–Hirzebruch sur-

faces Fn for every positive integer n big enough.
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1. Introduction

A log Calabi–Yau pair ðY ;DÞ consists of a proper variety Y and an e¤ective
Q-divisor D such that ðY ;DÞ is log canonical and KX þD is Q-linearly equiva-
lent to zero: see, for instance, [JK16]. A Calabi–Yau variety can be viewed as
ðY ; 0Þ. If Y is a Fano variety such that D is Q-linearly equivalent to the anti-
canonical divisor, then ðY ;DÞ is a log Calabi–Yau pair, provided it is log
canonical.

Let us take into account three dimensional log Calabi–Yau pairs. As well
known, there exist finitely many deformation types of Fano threefolds. As a
result, there are finitely many possible values for their Euler characteristic. Con-
jecturally, this should be true for the collection of all Calabi–Yau threefolds too.
Here by Calabi–Yau threefold we mean a complex Kähler compact manifold
with trivial canonical bundle and no p-holomorphic forms for p ¼ 1; 2. Since
general log Calabi–Yau pairs interpolate between these two extremes, it is natu-
ral to wonder whether they are bounded or not. In this paper, we prove the fol-
lowing result.

Theorem 1. There exists an integer N0 such that, for every nbN0 there exists a
log Calabi–Yau threefold ðY ;DÞ with the Euler characteristic of Y given by

eðYÞ ¼ �48n� 46:

Moreover, Y is smooth and its Kodaira dimension is negative. Additionally, we
have KY þD ¼ 0, where D is a divisor isomorphic to a K3 surface.

Recently, Di Cerbo and Svaldi in [DS16] prove that log Calabi–Yau pairs are
bounded. One of their assumption is that the pair are klt. Notice that there is no



contradiction between their result and ours; indeed, the example in Theorem 1 is
not klt but log canonical.

The proof of Theorem 1 is constructive. More specifically, we describe a col-
lection of log Calabi–Yau threefolds with the properties mentioned above. First,
take into account the Segre–Hirzebruch surface Fn for any positive integer n.
Next, fix a suitable decomposable vector bundle on each Fn, namely

V :¼ OFn aOFnð2C0 � FÞ;

where C0 is the unique e¤ective divisor on Fn such that C2
0 ¼ �n and F is

the class of the fiber with respect to the P1-bundle structure on Fn. For any
n denote by X the scroll defined as PðVÞ, the projective bundle of hyper-
planes in V. For futher information about these scrolls, see, for instance,
[FF15].

If the linear system j�2KX j had a smooth member, then the double covering
of X – branched along it – would be a smooth Calabi–Yau manifold. Unfortu-
nately, this is not the case. The base locus of j�2KX j is given by a smooth ratio-
nal curve. Luckily, the multiplicity of the generic section along the base locus is
three. This requires a careful analysis of the cohomology group H 0ðX ;�2KX Þ,
which can be carried out more easily for n big enough.

If we blow up X along the smooth curve in the base locus of the bianticanon-
ical system, we obtain a smooth threefold X1. The linear system j�2KX1

j is not
basepoint free. The base locus is given by a smooth rational curve g1. In order
to resolve a generic section of the linear system j�2KX j, we blow up X1 along
g1. We obtain a smooth threefold X2. The degree two branched cover Y2 along
a smooth section of �2KX � 2E1 � 4E2 is not normal. Taking the normalization
of it is equivalent to taking the branched covering of X2 along a smooth member
of the linear system �2KX2

� 2E2 ¼ �2KX � 2E1 � 4E2.
Finally, in order to calculate the Euler characteristic of Y2 for n big enough, it

su‰ces to determine that of X2 and that of a smooth surface in j�2KX2
� 2E2j.

The former follows from the cohomology of blow ups along a submanifold and
the latter from the Chern classes of it: see, for instance, [GH].

Our construction relies on the choice of the vector bundle V ¼ OFn a

OFnð2C0 � FÞ. It is important to stress that this is only one of the possible
choices in order to arrive at an unbounded family of log Calabi–Yau pairs. To
be more precise, we analysed all the cases as V varies among the rank 2 vector
bundle on Fn that are decomposable. Our method yields a double cover, which
is a smooth Calabi–Yau threefold, only for a finite number of cases. We expect
that for the great majority of the other cases the situation is similar to that pre-
sented in this paper: one can mimic the construction and obtain a log Calabi–
Yau pair.

The paper is organized as follows. In Section 2 we recall some preliminary
results. Section 3 is devoted to describing the bianticanonical system of the scroll
X , in particular a desingularitazion of a generic section of it. At last, Section 4
concludes the exposition with the computation of the Euler characteristic, thus
showing that it is in fact unbounded!
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2. Some preliminary results

In this section we recall some basic facts and prove some results that will be
applied in what follows. For further details, the reader is referred to [H], p. 369 ¤.

Let S be a smooth projective surface and denote by X the projective bundle
associated to a rank 2 vector bundle V on S. To avoid confusion we recall that
X is the projective bundle PðVÞ over the base S, where PðVÞ is the projective
bundle of hyperplanes in V. In what follows we will set t to be c1ðOX ð1ÞÞ.

Lemma 2. Denote by j : X ! S the fibration given by the projective bundle struc-
ture. Then the following identities hold:

c1ðX Þ ¼ 2tþ j�ðc1ðSÞ � c1ðVÞÞ;
c2ðX Þ ¼ j�ðc2ðSÞ � c1ðVÞc1ðSÞÞ þ 2j�c1ðSÞt;

c3ðXÞ ¼ 2j�ðc2ðSÞÞt:

Proof. We have the exact sequences

0 ! TX=S ! TX ! j�TS ! 0;ð1Þ
0 ! OX ! ðj�V4ÞnOX ð1Þ ! TX=S ! 0:ð2Þ

Recall also that H �ðXÞ is generated as an H �ðSÞ-algebra by t with the single
relation

t2 � j�c1ðVÞt ¼ 0:ð3Þ

We have

c1ððj�V4ÞnOX ð1ÞÞ ¼ j�c1ðV4Þ þ 2t ¼ �j�c1ðVÞ þ 2t;

c2ððj�V4ÞnOX ð1ÞÞ ¼ j�c2ðV4Þ þ j�c1ðV4Þtþ t2

¼ j�c2ðVÞ � j�c1ðVÞtþ t2:

By (3), this yields

cððp�V4ÞnOX ð1ÞÞ ¼ 1þ ð2t� j�c1ðVÞÞ:ð4Þ

From the exact sequences (1) and (2), we get

cðX Þ ¼ cðTX=SÞj�cðTSÞ ¼ cððj�V4ÞnOX ð1ÞÞj�cðTSÞð5Þ
¼ ð1þ ð2t� j�c1ðVÞÞÞj�cðSÞ
¼ 1þ ½2t� j�c1ðVÞ þ j�c1ðSÞ�
þ ½j�c2ðSÞ þ j�c1ðSÞð2t� j�c1ðVÞÞ� þ ½2j�c2ðSÞt�

¼ 1þ ½2tþ j�ðc1ðSÞ � c1ðVÞÞ�
þ ½j�ðc2ðSÞ � c1ðVÞc1ðSÞÞ þ 2j�c1ðSÞt� þ ½2j�c2ðSÞt� r
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In order to determine the cohomology of line bundles on X , we are going to
apply the following result. We will recall it here for the sake of completeness:
see, for instance, [H], page 253, Ex 8.4 (a).

Lemma 3. Let V be a vector bundle on a smooth surface S. Let X ¼ PðVÞ and
define t as before. Then

j�OX ðatÞ ¼ 0 if a < 0;

j�OX ðatÞ ¼ SaðVÞ if ab 0;

Rij�OX ðatÞ ¼ 0 Ea a Z if 0 < i < RkðVÞ � 1 or if ibRkðVÞ;
RRkðVÞ�1j�OX ðatÞ ¼ 0 if a > �RkðVÞ:

3. A generic member of the bianticanonical linear system

From now onwards, S will be the Segre–Hirzebruch surface Fn ¼ PðOP1 a

OP1ð�nÞÞ, with n positive. Recall that PicðFnÞ is generated by C0, the only e¤ec-
tive divisor on S such that C2

0 ¼ �n, and F , the class of a fiber of the P1-bundle.
Hence, without loss of generality, any decomposable vector bundle of rank 2,
up to tensor product with a line bundle, can be written as V ¼ OFn aOFnð�AÞ,
where A ¼ xC0 þ yF and x is nonnegative. For the sake of convenience, we will
denote by the same symbol a divisor on S and its pullback on X . We will denote,
as before, by X the projective bundle associated to V

Proposition 4. Consider a divisor D ¼ atþ G on X where G ¼ bC0 þ cF is the
pullback of a divisor on S. Then the following hold:

i) If A ¼ xC0 þ yF with yb 0 (i.e., if A is e¤ective), D is e¤ective if and only if
a; b; cb 0.

ii) If A ¼ xC0 � yF with y > 0, D is e¤ective if and only if ab 0 and

ðb; cÞ a
[a
r¼0

Sr with Sr ¼ fðb; cÞ j b; cb 0g þ ðrx;�ryÞ:

iii) If A ¼ xC0 � yF with y > 0, the only prime and rigid divisors on X are t, C0

and tþ A.

Proof. i) D ¼ atþ bC0 þ cF is e¤ective if and only if ab 0; else we have

j�OX ðatþ bC0 þ cFÞ ¼ j�OX ðatÞnOSðbC0 þ cFÞ ¼ 0:

Hence, we can assume ab 0. Doing so, we have

H 0ðOX ðDÞÞ ¼ 0
a

r¼0

H 0ðOSðbC0 þ cF � rAÞÞ � H 0ðOSðbC0 þ cFÞÞ:

If b; cb 0 the divisor is e¤ective.
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ii) Assume, now, A ¼ xC0 � yF with y > 0. In this case

Vr ¼ H 0ðOSðbC0 þ cF � rAÞÞ ¼ H 0ðOSððb� rxÞC0 þ ðcþ ryÞFÞÞ

and H 0ðOX ðDÞÞ is not zero exactly when at least one of these spaces is not
zero. Vr is not zero exactly when bb rx and cb�ry, i.e., when ðb; cÞ a Sr,
so the second claim is proved.

iii) Finally assume A ¼ xC0 � yF with y > 0, and consider the e¤ective divisor
D ¼ atþ bC0 þ cF with a; bb 0 and �aya ca 0. If D is rigid then
ðb; cÞ a Sr for exactly one value or r (with 0a ra a). If ðb; cÞ a Sr we can
write D as atþ rAþ b 0C0 þ c 0F with 0a c 0 < y. If r < a we can assume
0a b 0 < x whereas, if ðb; cÞ a Sa, we can assume b 0 b 0. In both cases,
the divisor D ¼ atþ rAþ b 0C0 is e¤ective; hence, if c 0 > 0, we have
h0ðOX ðDÞÞb 2. This shows that we have to look for rigid divisors among
the ones of the form

D ¼ atþ rAþ b 0C0;

where ab 0; 0a r < a and 0a b 0 < x or with ab 0; r ¼ a and b 0b 0. It is
not di‰cult to see that, in this case, h0ðOX ðDÞÞ ¼ 1, so we always get a rigid
divisor. It is also easy to see that every such divisor can be written as a sum

a1tþ a2C0 þ a3ðtþ AÞ;

which proves that t, C0 and tþ A are the only rigid prime divisors on X
when A ¼ xC0 � yF and y > 0. r

We will be interested in the case V ¼ OFn aOFnð�AÞ with A ¼ 2C0 � F .
Recall that, in this case,

KX ¼ �2t� 2C0 � ðnþ 2ÞF � 2C0 þ F ¼ �2t� 4C0 � ðnþ 1ÞF ;

so we have

�2KX ¼ 4tþ 8C0 þ ð2nþ 2ÞF :

As we will see, if n is big enough, the linear system j�2KX j does not have smooth
members. Thus, we need to describe more closely the base locus and the type of
singularities.

Proposition 5. The base locus of the bianticanonical linear series is given by the
complete intersection s of the rigid divisors with class tþ A and C0.

Proof. Since 2C0 � F is not e¤ective, by Proposition 4 there are three rigid
prime divisors, namely t, C0 and tþ A. The intersections of these three divisors
are

tðtþ AÞ ¼ 0; tC0 :¼ g; ðtþ AÞC0 ¼ ðt� ð2nþ 1ÞF ÞjC0 :¼ s:
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The unique surface T with class given by t is a Segre–Hirzebruch surface Fn
with standard generators for PicðtÞ given by

C0jT ¼ gT ; F jT ¼ fT :

By standard generators, we mean a basis of e¤ective prime divisors under which
the intersection product has representative matrix

�a 1

1 0

� �

where a is the (positive) index of the Segre–Hirzebruch surface. In particular, the
class of the curve g seen in T is given by gT .

Denote by R the only surface whose class is tþ A. One can easily see that R is
again a Segre–Hirzebruch surface Fn if one considers the vector bundle V 0 ¼
VnOSðAÞ and uses the identification

X ¼ PðVÞ ¼ PðOS aOSð�AÞÞ ¼ PðOS aOSðAÞÞ ¼ PðV 0Þ:

Indeed the class of c1ðOPðV 0Þð1ÞÞ ¼ t 0 is tþ A under this identification. The stan-
dard generators for PicðRÞ are

C0jR ¼ gR; F jR ¼ fR:

The surface U , whose class is C0, is also a Segre–Hirzebruch surface Fm with
m ¼ 2nþ 1. The standard generators for the Picard lattice are

ðtþ AÞjU ¼ gU ; F jU ¼ fU :

Notice that

�2KX ¼ 4ðtþ AÞ þ ð2nþ 6ÞF ;

so, an eventual base point of j�2KX j cannot lie outside the surface R. In fact,
ð2nþ 6ÞF is globally generated. It is easy to prove that tþ A is not a component
of j�2KX j, so the base locus of the bianticanonical linear series is contained in R.
In fact, let us restrict �2KX to R. This yields

ð4tþ 8C0 þ ð2nþ 2ÞFÞjR ¼ 8sþ ð2nþ 2Þ fR;

which shows that s is contained in the base locus of the bianticanonical linear
series. Conversely, given a point in such a base locus, it must belong to s because
it is in R and nowhere else than in s because j fRj is globally generated in R.
Therefore the claim is proved. r

Remark. The curves s and g are the intersection of C0 with t and tþ A, respec-
tively. We can also see them inside these surfaces and the following table
describes their classes (a ‘‘–’’ simply means that the curve cannot be seen in that
particular surface).
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T (t) R (tþ A) U (C0)

T BU ¼ g gT – gU þ ð2nþ 1Þ fU
RBU ¼ s – gR gU

From this description (as well as from adjunction) one can see that both g and s
are smooth curves of genus 0. Moreover, s is rigid in both R and U , whereas g is
rigid only in T . From now on, we will assume ng 0.

Proposition 6. The generic member of the bianticanonical system has multiplic-
ity 3 along the base locus.

Proof. Define t, u and r to be the sections (uniquely determined up to scalar)
such that

H 0ðOX ðtÞÞ ¼ 3t4 H 0ðOX ðC0ÞÞ ¼ 3u4 H 0ðOX ðtþ AÞÞ ¼ 3r4

so the zero loci of t, u and r describe T , U and R, respectively. Define Di to be
�2KX � iðtþ AÞ. Therefore, there exists a positive integer N0 big enough such
that for nbN0 the following hold:

h0ðD0Þ ¼ 14nþ 61 –
h0ðD1Þ ¼ 11nþ 52 h0ðOX ðD0ÞÞ � h0ðOX ðD1ÞÞ ¼ 3nþ 9
h0ðD2Þ ¼ 8nþ 40 h0ðOX ðD1ÞÞ � h0ðOX ðD2ÞÞ ¼ 3nþ 12
h0ðD3Þ ¼ 5nþ 25 h0ðOX ðD2ÞÞ � h0ðOX ðD3ÞÞ ¼ 3nþ 15
h0ðD4Þ ¼ 2nþ 7 h0ðOX ðD3ÞÞ � h0ðOX ðD4ÞÞ ¼ 3nþ 18

Let us now describe the sections of OX ð�2KX ÞÞ ¼ OX ð4ðtþ AÞ þ ð2nþ 6ÞFÞ.
We have the exact sequence

0 ���! H 0ðOX ðD1ÞÞ H���! H 0ðOX ð�2KX ÞÞ ���! H 0ðORð�2KX ÞÞð6Þ �nr

Notice that �2KX jR ¼ ð8C0 þ ð2nþ 2ÞF ÞjR ¼ 8gR þ ð2nþ 2Þ fR hence, as
R ¼ Fn, we have

h0ðORð�2KX ÞÞ ¼ h0ðOFnð8gR þ ð2nþ 2Þ fRÞÞ ¼ 3nþ 9

¼ h0ðOX ðD0ÞÞ � h0ðOX ðD1ÞÞ:

Thus, the restriction map H 0ðOX ð�2KX ÞÞ ! H 0ðORð�2KX ÞÞ in Equation 6 is
indeed surjective. Denote by V0 a subspace of H 0ðOX ð�2KX ÞÞ such that

V0 a ðH 0ðOX ðD1ÞÞn 3r4ÞUH 0ðORð�2KX ÞÞ:

If s a H 0ðOX ð�2KX ÞÞ, we have a decomposition of s as

s ¼ ra0 þ b0

with a0 a H 0ðOX ðD1ÞÞ and b0 a V0. In particular, b0 does not vanish identically
on R (it vanishes on gR and some P1’s transversal to gR). We can iterate this pro-
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cess by restricting a0 on R. As before, we have the following exact sequences,
namely:

0 ���! H 0ðOX ðD2ÞÞ H���! H 0ðOX ðD1ÞÞ ���! H 0ðORðD1ÞÞ ���! 0

0 ���! H 0ðOX ðD3ÞÞ H���! H 0ðOX ðD2ÞÞ ���! H 0ðORðD2ÞÞ ���! 0

0 ���! H 0ðOX ðD4ÞÞ H���! H 0ðOX ðD3ÞÞ ���! H 0ðORðD3ÞÞ ���! 0;

ð7Þ

�nr

�nr

�nr

where the surjectivity follows as before by inspecting the dimension of

H 0ðORðDiÞÞ ¼ H 0ðOFnðð8� 2iÞgR þ ð2nþ 2þ iÞ fRÞ

and observing that it equals h0ðOX ðDiÞÞ � h0ðOX ðDiþ1ÞÞ. Then we can create the
vector spaces Vi such that

Vi a ðH 0ðOX ðDiþ1ÞÞn 3r4ÞUH 0ðORðDiÞÞ

and sections ai a H 0ðOX ðDiþ1ÞÞ, bi a Vi such that

ai ¼ raiþ1 þ biþ1:

Finally, the section s has the following form:

s ¼ r4a3 þ r3b3 þ r2b2 þ rb1 þ b0:ð8Þ

Notice that D0jR, D1jR and D2jR are divisors with sR as fixed components so bi
for i ¼ 0; 1; 2 will vanish on it (with multiplicity greater than or equal to 4). But
the same is not true for D3jR, which is very ample. In particular, b3 can be chosen
such that b3jR vanishes at exactly 5 points of sR (this is equal to sR �D3jR) which
are free on sR and whose associated curve cut sR transversely at such points.

In particular, the generic element of j�2KX j has s as base curve and the mul-
tiplicity of s along the generic bianticanonical divisor is 3. r

4. Blowing up the projective bundle

In this section we will describe a resolution of a generic member of the linear
system j�2KX j.

Near a point P of s we can choose local coordinates ðx; y; zÞ such that x ¼
y ¼ 0 is the local equation of s near P, x ¼ 0 and y ¼ 0 are the local equations
of R and U respectively and z is a coordinate on s. We can also use ðy; zÞ as local
coordinates on R. We write, locally

s ¼ x3f þ x4gþ x2y4f1 þ xy6f2 þ y8f3;

where f is the local expression for b3 and g is the local expression for a3. We can
blow up s in X and take the strict transform ~DD of D :¼ fs ¼ 0g. Near P the blow
up X1 looks like

fðx; y; zÞ � ðl0 : l1Þ j xl1 � yl0 ¼ 0g:

626 g. bini and f. f. favale



In the local chart U0 ¼ fl0A 0g we have coordinates ðx; z; l1Þ with y ¼ xl1 and
the local equation for the exceptional divisor E which is x ¼ 0. The total trans-
form of D has equation

x3ð f þ xgþ x3l41 f1 þ x4l61 f2 þ x5l81 f3Þ;

so

s ¼ f þ xgþ x3l41 f1 þ x4l61 f2 þ x5l81 f3

is a local equazion for ~DD. Notice that f ð0; y; zÞ is not identically zero because f is
the local expression of b3. From the proof of Proposition 6 we have also that ~DD is
smooth along s and hence everywhere (since it is the strict transform of some-
thing that has base locus s). Unfortunately, ~DD is not a bianticanonical divisors
on X1: the bianticanonical class is indeed ~DDþ E so we can take a bianticanonical
divisor on X1 to be the union of ~DD and E. This is reduced, reducible and singular
exactly along the intersection E1 � ~DD.

Lemma 7. The divisor E is a Segre–Hirzebruch variety Fnþ1.

Proof. The curve s is a complete intersection. More precisely, it is the inter-
section of the two rigid divisors C0 and tþ A. Thus, the normal bundle is
OsðC0ÞaOsðtþ AÞ. By direct computation, this is isomorphic to OP1ð�nÞa
OP1ð�2n� 1Þ, which proves the claim. r

The Picard group of X1 is generated by t, C0, F and the exceptional divisor
E1. By construction, the restriction of t to E1 is zero. Moreover, the restriction
of C0 to the exceptional divisor is an integer multiple of f1 ¼ F jE1

, the class of a
fiber of E1 seen as Segre–Hirzebruch surface. This follows from the intersection
numbers that are calculated in the next section. Therefore, the Picard group of
the exceptional divisor is generated by the restriction of E1 and F , respectively.
It is not di‰cult to check that the unique divisor g1 on E1 such that g21 ¼ �n� 1
is given by

g1 ¼ �E1jE1
� ð2nþ 1ÞFjE1

:

The strict transform of the divisor �2KX is equal to �2KX � 3E1. Its intersec-
tion with E1 is given by 3g1 þ 5f1. This is an e¤ective divisor on E1, which is made
up of the unique curve of self-intersection �n� 1 and 5 disjoint fibers. Since we
have

�2KX1
¼ �2KX � 2E1 ¼ ð�2KX � 3E1Þ þ E1;

the sections of the bianticanonical divisor �2KX1
pass through the curve g1,

which is the complete intersection of tþ A� E1 (strict transform of the divisor
tþ A) and E1.

Therefore, we blow up X1 along the curve g1 and obtain a new variety X2 with
exceptional divisor E2. To determine its structure, we compute the normal bundle
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of g1 which is given by

Ng1=X1
¼ Og1ðE1ÞaOg1ðtþ A� E1ÞUOP1ð�n� 1ÞaOP1ð�nÞ:

Therefore, the exceptional divisor E2 is isomorphic to F1. Let us denote by g2
and f2 the generators of E2 such that g22 ¼ �1, g2 f2 ¼ 1 and f 22 ¼ 0. As in the
case of E1, we can take f2 to be the restriction of F to E2. As for the other divisor,
it is easy to check that

g2 ¼ �E2jE2
� ðnþ 1ÞFjE2

:ð9Þ

The bianticanonical divisor of X2 is thus given by

�2KX2
¼ �2KX � 2E1 � 2E2 ¼ ð�2KX � 2E1 � 4E2Þ þ 2E2:

Let us compute the restriction of the divisor ð�2KX � 2E1 � 4E2Þ to E2. An
easy calculation shows that it is equal to 4r2 þ 6f2, which corresponds to the class
of a smooth irreducible curve on E2UF1. Thus, there is a smooth member of the
linear system

2ð�KX2
� E2Þ ¼ �2KX � 2E1 � 4E2:

Being 2ð�KX2
� E2Þ even, we can consider the cyclic covering b : Y2 ! X2 of

degree two with branch along a smooth member of �2KX2
� 2E2 ¼ 2KX � 2E1 �

4E2.

Lemma 8. Y2 is a smooth threefold and b�E2 is a K3 surface. Moreover the pair
ðY2; b

�E2Þ is a log Calabi–Yau.

Proof. Y2 is clearly smooth as the branch divisor has been chosen to be
smooth. Moreover, by [BPHV] page 55, we have also

KY2
¼ b�ðKX2

þ B2=2Þ ¼ �b�ðE2Þð10Þ

so ðY2; b
�E2Þ is a log Calabi–Yau. Notice that b�ðE2Þ is a degree two covering of

the Segre–Hirzebruch surface F1 branched along the intersection of E2 with the
branch divisor of the covering b : Y2 ! X2. We have already seen that this inter-
section can be written as the smooth curve B2 ¼ 4r2 þ 6f2 on E2UF1, i.e. it is a
smooth bianticanonical curve on F1. This is enough to conclude that the canoni-
cal divisor of b�E2 is trivial. The Euler characteristic is of b

�E2 can be calculated
as 2eðE2Þ � eðR2Þ, where R2 is the ramification divisor of the restriction of b to
b�ðE2Þ. Since b is a degree two covering, the divisor R2 is isomorphic to the
branch divisor B2. This is a curve of genus 9, so the Euler characteristic of R2

is �16. We have hence eðb�E2Þ ¼ 24 so we can conclude that b�ðE2Þ is a K3
surface. r

In the next section, we are going to calculate the Euler characteristic of Y2 for
every nbN0. To conclude this section, let us prove the following result.
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Theorem 9. Let Y2 be as above. Then we have:

h1;0ðY2Þ ¼ 0; h2;0ðY2Þ ¼ 0; h3;0ðY2Þ ¼ 0:

Moreover, Y2 has negative Kodaira dimension.

Proof. We need to determine hq;0ðY2Þ for qb 1. Recall that

b�OY2
UOX2

aOX2
ð�B2=2Þ ¼ OX2

aOX2
ðKX2

þ E2Þ

and that Rqb�F ¼ 0 for all F coherent on Y2 and for all qb 1. Hence, by Leray
spectral sequence, we have

HqðOY2
ÞUHqðOX2

ÞaHqðOX2
ðKX2

þ E2ÞÞ:

X2 is birational to X , which is a projective bundle over Fn so the Hodge
numbers hq;0ðX2Þ ¼ hq;0ðX Þ are zero for qb 1. Hence we need to prove that
hqðOX2

ðKX2
þ E2ÞÞ is zero for qb 1 in order to conclude the proof. If q ¼ 3 this

is straightforward: we have

h3ðOX2
ðKX2

þ E2ÞÞ ¼ h0ðOX2
ð�E2ÞÞ ¼ 0ð11Þ

because E2 is e¤ective. We have h pðOX2
ðKX2

ÞÞ ¼ h3�pðOX2
Þ ¼ h3�pðOX Þ so,

h1ðOX2
ðKX2

ÞÞ ¼ h2ðOX2
ðKX2

ÞÞ ¼ 0 and h3ðOX2
ðKX2

ÞÞ ¼ 1:ð12Þ

To compute HqðKX2
þ E2Þ for q ¼ 1; 2, let us consider the exact sequence

0 ! OX2
ðKX2

Þ ! OX2
ðKX2

þ E2Þ ! OE2
ðKX2

þ E2Þ ! 0;

which yields, using also Equations 11 and 12, the exact sequences

0 ! H 1ðOX2
ðKX2

þ E2ÞÞ ! H 1ðOE2
ðKX2

þ E2ÞÞ ! 0ð13Þ
0 ! H 2ðOX2

ðKX2
þ E2ÞÞ ! H 2ðOE2

ðKX2
þ E2ÞÞ ! H 3ðOX2

ðKX2
ÞÞ ! 0ð14Þ

By adjunction, OE2
ðKX2

þ E2Þ is the canonical divisor of KE2
so H 1ðOE2

ðKE2
ÞÞ

¼ H 1;2ðF1Þ ¼ 0 (or, alternatively, by Lemma 2.9 of [CM02]). Hence, from the
exact sequence 13, also H 1ðX2;OX2

ðKX2
þ E2ÞÞ is zero.

Both the second and the third term of the exact sequence 14 have dimension 1
so h2ðOX2

ðKX2
þ E2ÞÞ ¼ 0.

In order to see that the Kodaira dimension is �l, it is enough to observe that
�KY2

is e¤ective and this follows from Equation 10. r

5. The euler characteristic

In this section, we will calculate the Chern numbers of X2. Recall that X ¼ PðVÞ
with V ¼ OS aOSð�AÞ and A ¼ 2C0 � F . If X1 ¼ Bls X , where s is the rational
curve cut out by R and U . If E1 is the class of the exceptional divisor, we can
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consider the complete intersection curve cut out by the two divisors tþ A� E1

and E1. As for the notation, denote by E2 the exceptional divisor of the second
blow up. We will apply the following lemma:

Lemma 10. Let Z be a smooth complex threefold and let

C H���! Z;
j

where C is a smooth curve. If Z 0 ¼ BlCðZÞ with exceptional divisor E and blow up
map p : Z 0 ! Z. Then the following hold:

c1ðZ 0Þ ¼ p�c1ðZÞ � Eð15Þ
c2ðZ 0Þ ¼ p�ðc2ðZÞ � hCÞ � p�c1ðZÞEð16Þ

H �ðZ 0Þ ¼ H �ðZÞaH �ðEÞ=H �ðCÞ;ð17Þ

where hC is the class of C in H 4ðZÞ. Moreover, if ap a CH pðZÞ and pþ q ¼ 3
with qb 1, then

E � ðp�a2Þ ¼ 0 E2 � ðp�a1Þ ¼ �j �a1 E3 ¼ �c1ðNC=ZÞ:ð18Þ

Proof. The first two identities can be found in [GH], p. 609. Let ap be a class in
CH pðZÞ and consider the following commutative diagram

E H���! BlCðZÞ

p

???y
???yp

C Z

i

H�����!
j

If we assume that qb 1 we can write Eq ¼ Eq�1 � E ¼ Eq�1i�ð1Þ so that

Eq � ðp�apÞ ¼ ðEq�1p�apÞi�ð1Þ ¼ i�ðEq�1p�apÞ � 1 ¼ i�ðEq�1Þðp � iÞ�ap
¼ i�ðEq�1Þð j � pÞ�ap ¼ i�ðEq�1Þp�ð j �apÞ ¼ p�ði�EÞq�1 � ð j �apÞ:

The restriction of the exceptional divisor to itself is the tautological class of E
when seen as the total space of the projective bundle PðNC=ZÞ ! C. If we denote
by h ¼ c1ðOPðNC=ZÞð1ÞÞ, we have i�ðEÞq�1 ¼ ð�1Þq�1

hq�1. By definition we have
also p�ðhq�1Þ ¼ sq�2ðNC=ZÞ, where snðNC=ZÞ is the Segre class of level n of the
vector bundle NC=Z. To conclude, it is enough to observe that s1ðNC=ZÞ ¼
�c1ðNC=ZÞ and s0ðNC=ZÞ ¼ 1. r

Recall that

c1ðX Þ ¼ 2tþ 4C0 þ ðnþ 1ÞF ;ð19Þ
c2ðX Þ ¼ 4tC0 þ ð2nþ 4ÞtF þ ð�2nþ 6ÞC0F ;ð20Þ
c3ðX Þ ¼ 8tC0Fð21Þ
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and that s, the center of the first blow up, is the complete intersection of tþ A
and C0. Hence

Ns=X ¼ Osðtþ AÞaOsðC0Þ

and the class hs of s in H 4ðX Þ is simply the class of ðtþ AÞC0. In order to
simplify notation, we will write a to indicate both a class in X and its pull-
back to X1 and X2. The first Chern class of X1 is simply given by c1ðX Þ � E1

whereas

c2ðX1Þ ¼ c2ðXÞ � ðtþ AÞC0 � c1ðXÞE1:

We are blowing up a smooth rational curve so

E1 ¼ PðNs=X Þ ¼ PðOsðtþ AÞaOsðC0ÞÞ

is the Segre–Hirzebruch surface Fnþ1. By (15), we obtain that the Hodge structure
of X1 is pure and h1;1ðX1Þ ¼ 4. To recap, we have

c1ðX1Þ ¼ c1ðXÞ � E1;ð22Þ
c2ðX1Þ ¼ c2ðXÞ � ðtþ AÞC0 � c1ðXÞE1;ð23Þ
c3ðX1Þ ¼ 10tC0F :ð24Þ

Moreover, the relations that characterize the intersection theory on X1 are
(here we don’t report the ones coming from X ) given by

E1t ¼ 0 E1C0F ¼ 0 E2
1C0 ¼ n E2

1F ¼ �1 E3
1 ¼ 3nþ 1:

The first relation follows simply by observing that t and s are disjoint so t and E1

do not intersect. The others follow from Lemma 10 using

C0 j
�s ¼ C2

0 ðtþ AÞ ¼ �n Fj �s ¼ C0ðtþ AÞF ¼ 1:

and

c1ðNs=X Þ ¼ C2
0 ðtþ AÞ þ C0ðtþ AÞ2 ¼ �ð3nþ 1Þ:

The curve g1 is smooth and rational. If we blow it up, we obtain an excep-
tional divisor E2 that is isomorphic to F1. Indeed, the normal bundle of such
a curve is isomorphic to OP1ð�n� 1ÞaOP1ð�nÞ. Using the same argument as
before, we have

c1ðX2Þ ¼ c1ðX1Þ � E2;ð25Þ
c2ðX2Þ ¼ c2ðX1Þ � ðtþ A� E1ÞE1 � c1ðX1ÞE2;ð26Þ
c3ðX2Þ ¼ 12tC0F :ð27Þ
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Continuing as before we get

E2t ¼ 0 E2C0F ¼ 0 E2E1C0 ¼ 0 E2E1F ¼ 0 E2E
2
1 ¼ 0

E2
2C0 ¼ n E2

2F ¼ �1 E2
2E1 ¼ n E3

2 ¼ 2nþ 1

This is all we need to prove the following theorem

Theorem 11. For every positive integer n big enough there exists a pair ðY ;DÞ
such that

• Y is a smooth threefold of negative Kodaira dimension with

eðYÞ � 48n� 46 and hq;0ðY Þ ¼ 0 for qb 1;

• D is a smooth K3 surface;

• ðY ;DÞ is a log canonical log Calabi–Yau pair;

Proof. Fix nbN0 and consider the projective bundle X ¼ PðVÞ over Fn,
where

V ¼ OFn aOFnð�2C0 þ FÞ:

First, blow up the projective bundle along the base locus of the bianticanonical
divisor obtaining X1. Next, blow up such a variety along the base locus of the
bianticanonical divisor to obtain X2. Take the degree two covering of X2 with
branch B2 as described in the previous sections to finally obtain Y2. Then one
can take Y ¼ Y2 and D ¼ b�E2. Everything, apart form the calculation for the
Euler characteristics, have been done in the previous sections.

In order to compute the Euler characteristic, recall that if D is a smooth irre-
ducible divisor on X2, we have

c2ðDÞ ¼ c2ðX2Þ � c1ðX2ÞDþD2ð28Þ

so

eðDÞ ¼ ðc2ðX2Þ � c1ðX2ÞDþD2ÞND=X2
:ð29Þ

Hence, being the branch locus B2 a smooth element of j�2KX2
� 2E2j, we have

that

eðB2Þ ¼ 48nþ 70:

The Euler number of X2 is given by 12 so we have, finally,

eðY2Þ ¼ 2eðX2Þ � eðB2Þ ¼ 2 � 12� ð48nþ 70Þ ¼ �48n� 46:ð30Þ

Although feasible by hands, we have done the last computation using Magma. r
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