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ABSTRACT. — We obtain estimates for the Kantorovich transportation costs along solutions to dif-
ferent Fokker—Planck—Kolmogorov equations for measures with the same diffusion part but with
different drifts and different initial conditions. We give applications of such estimates to the study
of the well-posedness for nonlinear equations.

Key worps: Nonlinear Fokker—Planck equation, dissipative operator; Fokker—Planck—
Kolmogorov equation, Kantorovich distance

MATHEMATICS SUBJECT CLASSIFICATION: 35K55, 35Q84, 35Q83

1. INTRODUCTION

In the present paper we derive and study estimates for the Kantorovich trans-
portation costs along probability solutions for the linear Fokker—Planck—
Kolmogorov (FPK) equations for probability measures x, and o, on RY,
t € [0, T], with different drifts and different initial conditions

Oy, = trace DZ(Q(xa Dpy) — div(Bi(x, 0p,),  pli—g = Ko
0,0, = trace D*(Q(x, t)a,) — div(Ba(x, 1)a;), a|,_y = G0.

We also develop an alternative method of the study of well-posedness and stabil-
ity of solutions to the nonlinear FPK equations

(1'1) 0p, = traceDz(Q(x, t)pz) - diV(B(p,x, t)/)t)v p|t:0 = Po;

based on such estimates for linear equations.

Recently, FPK equations have been actively studied from the functional-
analytical, variational and as well from the probabilistic point of view. Interesting
connections between diverse approaches have been found (a survey of the current
state of studies is provided in [3]). Estimates connecting transportation costs
along solutions with cost functional between initial data and even coefficients
play a great role not only for the study of such qualitative properties of solutions
as uniqueness or stability, but also for numerical simulations. In this context esti-
mates for transportation costs along solutions to equations with different drift
terms are particularly interesting.
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In Section 2 we derive estimates for the Kantorovich transportation cost func-
tional along solutions of FPK equations with different dissipative drifts. To do
this, we partially use ideas from [13]. Since these ideas can not be directly applied
in the case of different drifts and to nonlinear equations, new methods and ideas
should be used. In the present paper extension to these cases has been done for
the Kantorovich functionals with bounded cost functions. Moreover, we admit
time-dependent coefficients and a non-constant diffusion matrix Q. We note that
the requirement of dissipativity is not really restrictive — in typical physical exam-
ples, the drift term is the gradient of a concave function, i.e. is dissipative. Section
3 is concerned with applications of these estimates to the study of the well-
posedness of the Cauchy problem for nonlinear FPK equations. Well-posedness
for nonlinear equations has been studied by many authors even in a more general
setting (see, for example, [7, 11, 9, 10]). However, we present an alternative
approach to this problem that is applicable in the case of dissipative drifts. A sim-
ilar method of treating well-posedness via estimates for the costs along solutions
to linear equations was used in [5].

Let us introduce some notation and give basic definitions. By C(‘)’C‘(IRd) and
C(RY x (0,T)) we denote the classes of infinitely smooth compactly supported
functions on R? and R¥ x (0, T), respectively. For shortness of notation we shall
always drop the subscript RY when integrating over the whole space. We shall
say that a measure p on R? x [0, 7] is given by a family of probability measures
(P)ico, ) on R? (and write p(dxdt) = p,(dx)dt or simply p = p,dt) if p, >0,
p,(RY) = 1, for each Borel set U the function 7 — p,(U) is measurable and

| Joan=[ Joanar wpeciw =00

Given a probability measure p, on R?, a symmetric Borel measurable matrix
Q(x, 1) and a Borel measurable mapping B(x, ?) : R? x [0, T] — R, consider the
following Cauchy problem for the linear FPK equation:

(1.2) dip, = trace(Q(x, 1)D*p,) — div(B(x, 0)p,),  pli_g = Po-

Here D? denotes the Hessian matrix with respect to the spacial variables. Denote
the elements of the diffusion matrix Q(x, 1) by ¢”(x,7), 1 <i,j < d and the ele-
ments of the vector drift B(x,7) by b/(x,1), 1 < j <d. Set

Lo =q"(x,0)03 ¢+ b'(x,1)046,

where the summation over all repeated indices is taken. We shall say that a mea-
sure p(dxdt) = p,(dx)dt is a solution to the Cauchy problem (1.2) if the map-
pings ¢7(x, ), b'(x,1), 1 <i,j <d, are Borel and belong to L'(p, U x [0, T]) for
each ball U C RY, and for each test function ¢ € C5°(R“) we have

t
(1.3) [odni= [vin+ [ [ Lodp,as
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for all # € [0, T']. Occasionally it is more convenient to use an equivalent defini-
tion (see [4]), more precisely, the identity

a4 [otndp= [ p0yan+ | t [106-+ Lol dp,as

for all ¢ € [0, 7] and all test functions ¢ € C>'(R? x [0, 7)) n C(R? x [0, T]) that
are identically zero outside a ball U c R?. If we know a priori that the drift term
B is integrable over RY x [0, 7] with respect to the measure dp,ds and ¢ is not
of compact support, but has two continuous bounded derivatives, then (1.4)
also holds true for such ¢ (to show this, it suffices to use the standard truncation
argument).

2. ESTIMATES FOR KANTOROVICH TRANSPORTATION COSTS ALONG SOLUTIONS
TO LINEAR EQUATIONS WITH DIFFERENT DRIFTS

In this section, we shall focus on two solutions of the linear FPK equation with
different initial conditions and different drifts. Fix 7" > 0. Given probability mea-
sures y, and oy on R?, a symmetric Borel measurable matrix Q(x,¢) and Borel
measurable mappings By, B, : R x [0, T] — RY, consider the two corresponding
Cauchy problems

1) o= trace(Q(x, 1) D) — div(Bu(x. i), Hlo = Ho
0,0, = trace(Q(x, t)D*a,) — div(B,(x, t)5,), 0],y = 00.

The indices 1 and o in the drift coefficients are merely used to distinguish the dif-
ferent drifts and don’t indicate any dependence on the solution.

Given a monotone nonnegative continuous function /2 on R with /(0) = 0, we
introduce the Kantorovich /-cost functional between the probability measures u
and g by

(22) Cil(so) = inf / bl = s da, ),

nell(u,0)

where TT(x, o) is the set of couplings between u and o. Recall that a probability
measures 7 on R? x R? belongs to I1(x, o) if and only if 7(E x R?) = u(E) and
n(R? x E) = o(E) for each Borel set E C R?. If / is a concave function with
h(r) > 0 for r > 0, then C, defines a distance on the space of probability measures
and turns it into a complete metric space with the topology that coincides with
the usual weak one (see [1, Proposition 7.1.5]). Another 1mp0rtant example is
given by /(r) = min{|r|”, 1} for some p > 1. In this case C, /7 turns the space of
probability measures into a complete metric space. Moreover convergence with
respect to this metric is equivalent to the weak convergence (see (6, Th. 1.1.9]).

We assume that a monotone non-decreasing continuous bounded cost func-
tion /2 with 2(0) = 0 is fixed. Set ||A]| , := sup, g« A(]z]) < 0.
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Throughout the paper we assume that the following regularity condition
holds:

(A1) The diffusion matrix Q(x,¢) has uniformly bounded elements with uni-
formly bounded first derivatives. Moreover, it is strictly elliptic: there exists
v > 0 such that ¥(x, ) € R? x [0, T]

(23) O(x,0)y,y> = vy* VyeR”

THEOREM 2.1. Let (Al) hold. Let (p,),co ) and (61),c (9 1 be solutions to (2.1)
with initial conditions w, and o, respectwely Suppose that the drift term B, is
A-dissipative in x, ie.,

(2.4) (Bu(x, 1) = Bu(y, 1),x — y> < Allx = y|?
forall x,y € R and all t € [0, T). Let
(2.5) B,(x,1) — Jx, B,(x,t) — Ax € L*(R? x [0, T),d(p, + o) ds)

Then

4 1 5 1/2
26)  Cuin) < Culaonon) + 1L ([ 3718 B o)

! 1/2
1—|—/ /v_1|B,,—BJ|2dasds> ,
0

for all t € 0, T|, where hy(r) :== h(re™).

REMARK 2.1. Bound (2.6) is obviously asymmetric in measure: we impose dis-
sipativity on B,, and the integration in the right-hand side is taken over ¢. This
property might be interesting from the point of view of possible numerical simu-
lations. Indeed, if we want to solve a FPK equation

ity = trace(Q(x, 1) D) — div(B(x, 1))

with a dissipative drift B, we can approximate the drift by “better’” drifts B,
and solve the FPK equations with those drifts. Then (2.6) controls the transpor-
tation costs between the desired solution x, and the approximative solution ;'
in terms of the distance between the drifts integrated with respect to the known
solution u”.

PROOF. Let (1,),c(0, 71 and (67), o, 71 satisfy the assumptions of the theorem. Ac-
cording to [2], the measures u, and g, have strictly positive densities with respect
to Lebesgue measure on R? for each 7 € [0, 7]. We split the proof of (2.6) into
several steps.
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Step 1. Reduction to the dissipative case (/. = 0). We rescale the problem, keeping
the cost function unchanged, in order to reduce the problem to the case of a dis-
sipative drift B,. To this end we use the rescaling procedure from [13] with the
opposite sign (since our drift term and the drift term in the cited work have the
opposite signs). For completeness, we provide this rescaling procedure: for 1 # 0
define the change of time

Y | —— —In(1 — 27s)
s(t) := e dr=——v- s =———2 5e][0,S,),
0= [ o il = 0.5.)

where S, = +oo for 4 < 0 and S, = 1/(24) for A > 0. For the measures g, and
o, we introduce their rescaled versions p# and p?: for each Borel set E C R? set
pr(E) := wy(e"YE) for w=u,a. We observe that Cy(p¥,p?) = Cy, (1, 01).
Since B, is A-dissipative, 4, := B, — Al is dissipative. Define the rescaled diffu-
sion coefficient by

O(y,5) = O(i(s),e"y)
and the rescaled drifts by
Ew(y,s) = eit(S)Bw(t(s), e}'t(s)y), A},(y,s) = eit(S)Aw(z(s), eh(s)y), W=, 0.

Note that A~ﬂ is also a dissipative operator. The measure u = g, dt is a solu-
tion to

Oy = trace(QDzﬂz) — div(By,)
if and only if the rescaled version p# = p! dt is a solution to
(2.7) diplt = trace(QD?pl") — div(Apl);

moreover, (2.5) holds true if and only if for all nonnegative s; < 5o < S(7') < S,
one has

/</|A~ﬂ(x,s)|2dp§‘ds<+oo.
S

The integrability statement follows immediately from the change of variables for-
mula, identity (2.7) can be verified explicitly: it suffices to consider the change of
variables X(x, ) := (e *x,s(t)) and calculate the derivatives. A similar statement
holds for ¢ and p?. This means that it is sufficient to prove (2.6) only in the case
4 =0, 1.e., in the case of a dissipative drift term B,.

Step 2. Approximation of the drift term. We construct a family of smooth (in
both variables) bounded Lipschitz (as functions of x) dissipative operators
Aj(x,t) approximating the dissipative drift term B,(x,?).
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For each ¢ the operator B,(-,f) can be approximated by Lipschitz in x
bounded dissipative operators Ax(-, ?) (see [13, Th. 2.4, 2.5]): for each ¢ € [0, T

(2.8) ICILrEC Ar(x,1) = By(x,t) forae. (x) e R and sup |[Ax(x, 1) <k+ 1.

xeRY

Let us fix a nonnegative function # € C;°([0, T]) such that |5/, 7, =1 and
introduce the family of mollifiers #,(¢) := n(t/¢). Since for each k the mapping
Aj(x, t) is bounded, the mappings A} (x, t) := #,(t) * Ax(x, t) have bounded deriv-
atives of all orders with respect to ¢ and converge to A(x,?) as ¢ — 0 for a.e.
(x,1) € R? x [0, T]. Notice that A} also have bounded first order derivatives with
respect to the spacial variables. Moreover, 4] are dissipative in x:

<Ali(x> Z) - A/i(ya [),X - y> = ;//a(t) * <Ak<x7 t) - Ak(yv t)vx - J/> <0.

Finally, we define operators % as follows: for (x,s) € R? x [0, T] we set

L Pl(x,s) := trace(Q(x, s)D2¢(x, ) + <{A;(x,5), Vid(x,8)>,  #(-,5) € Cz(Rd).

Step 3. Reduction of the class of test functions. 1t is well-known (see, for example,
[15, Th. 1.3]) that the problem (2.2) admits a dual formulation: define the class
®,, as

= {(p ) € L' (1) x L' () : $(x) + ¥(») < h(lx — 3])}.
Hence
2.9 C1 yO) = d do.
29) )= s [gau [u

An important observation ([16, Lemma 2.3]) is that in the case of a bounded cost
function / the supremum in the dual problem (2.9) can be taken over the follow-
ing smaller class of functions (D,‘z for any 6 > 0:

(2.10) @) := @), CF(RY) N {(¢, ) : infy > 0 and supy < ||2]|, }.

The proof is based on the fact that functions ¢ and s can be shifted by different
constants and truncated in such a way that the new pair (¢, ) is still admissible
and the value in (2.9) does not decrease:

/good,u—f—/n//odoz /(/Jd,u—i—/wda and

infyyy =0, supyy <[], suppy=0.
R4 R4 R4

If we want to deal with smooth compactly supported functions, then the bounds
become a bit worse and lead to the class (2.10).
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In the sequel we shall take the supremum in (2 9) over the class ®; of admis-
sible pairs of Ci° (R?)-functions such that ||y < |||,

Step 4. The adjoint problem. Fix an admissible pair (¢,) € ®.. The smoothness
of operators A4; imply (see [14, Th. 3.2.1]) that the following adjoint problems
have solutions g, f € C2 HR? % [0,4):

2.11) a9+ Lig=0, g(,0)=¢() and of + Lf =0, [f(.0)=v()

First, due to the maximum principle (see [14, Th. 3.1.1]) we have

(2.12) sup |g| < sup |4, sup Ifl < sup\l//|
R %0, 1] RY Rx[0,1] R?

Let us derive some bounds for |Vg| and |Vf|. The method of doing this is inspired
by the Bernsteln estimates. Set for shortness A := (a!,... o). Set v(x 1) =
\VgI +xg?> — t, where x will be chosen below. Explicit computatlons give (the
summation over all repeated indices is assumed)

(2.13) (0 — 22w "2 20, 9(0,, 4702, 0+ 05,210,,9)

U@fmgaxﬂ g — 2Kq’7(3x,.g5xjg — 1.
Due to dissipativity, DA} defines a negative quadratic form and

ﬁxkgé’xkaciaxig = (DA;Vyg,Vg) <0.

By this observation, (2.3) and the Cauchy inequality 2ab < ca® + ¢~'b? with
¢ = 2v, the right-hand side of (2.13) is dominated by

wc Vgl + e (0% 9) — 20D (03,9) — 2ve|Vg|* — 1
l‘.]

ij

= Q|Vyg|* — 2w|Vg|* - 1,

where  := 2max{|d, ¢’} and Q:=w - (2v)" depend only on the diffusion
matrix and not on the drift. Letting x := Q- (2v) , we get

(05— Lf)v < —1.
Therefore, the maximum principle ensures

max [v] < max [v(x,0) = max |Vg|® 4 x max |¢|*,
RYx[0,1] R? R R

hence

/2
(2.14) sup [Vg(x,s)| < (max IVo|* + i max|¢\ ) =: C}.
x10,1]
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Similarly,

(2.15) sup |Vf(x,s)| < (max|w| + e max|y ) = O
R0, ]

Set /.= C; + Cs.

Finally, let us prove the crucial assertion: if the pair (¢, ) is admissible and
S and g solve (2.11), then g(x,0) + f(»,0) < i(|]x — y|). In the case Q =1 this
was proved in [13, Th. 3.1]. In the general case the proof almost repeats the
case Q = I, but we sketch it for completeness. By approximating /2 from above,
we can assume without loss of generality that 4 e C'(R). Let H(yi, y2) :=

h(|y1 = y2|) and

h(|y1=2))

if
Osf(yhyz)—é(yz,yl)_{0|y]_y2 it yi # 52

if y1 =

First assume that
09+ Lfg>0, o f +Z5f>0.

Suppose that {(y1, y2,5) == g(y1,5) + f(y2,5) — H(»1, y2) attains a local maxi-
mum at (Yy, ¥»,S) and S < . Then 0,{(Y1, Y2, S) = 0,9(Y1,S) + 0,/ (Y2, S) <0,

V. {(Y1, Y2,8) =V,,{(Y1,Y2,8) =0
= Vy,9(Y1,8) = =V, f(Y2,5) = (Y1, o) (Y1 — Ta)
and, due to dissipativity,
Ali(YhS)V}’lg(Ylvs) +A2(Y27S)V}’2f(y2>s)
=¢(Y1, Y2)<A4;(Y1,S) — 4;(Y2,8), Y1 — Y2) <0.

Since {( Y1 + z, Y3 + z,S) as a function of z has a local maximum at z = 0 and Q
is positive definite, trace QD = trace Q(Y1,S)D?g + trace Q(Y», S)D*f <0,
where

~ _(QO(y) 0
o0 = (" g

Summing up, we get
(0sg + Llg)+ (0 + L f) <0

this contradiction means that the local maximum can be attained only at S = z.
Now we proceed to the equality. Setting for some ¢,0 > 0

9es(11,9) == g(¥1,5) — (1 —5) — ee ™| 1|7,
foo(p2,8) i= f(2,8) =t — 5) — ee *| ;o]
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and computing J, + .%;°, we arrive at the previous case for ¢, 6 small enough
(since all the coefficients of the differential operator are bounded). Passing to the
limit as ¢,0 — 0, we obtain the desired assertion.

Step 5. Deriving the estimate-1. Plugging solutions of (2.11) into identity (1.4),
we get

/gbd,ut / x,0)duy = / /Ak X, ) ) - Vg(x,s) du,ds,
/lpda,—/f(x,O)dao / /Ak X, ) ) - Vf(x,s)dayds.

Because of (2.14),

[~ [0 x0>duo<1//|Ak Byl du ds.
Note that

/wdat—/f(x,O)dao
t t
< / /|A,§—Bﬂ|-|Vf|do—Sds+/ /|Bﬂ—Bﬂ|-|Vf|dasds
215
//|Ak |do-yds+/ /|B |- V| do, ds.

Summing up these inequalities, we get

/qﬁd,u, /tpdo",_/ de,u0+/fxO Ydoo+1- R},
+/ /|B#—B,-,|'Vf|d0'3ds,
0

t
R} ::/0 /|A,§—Bﬂ|d(,ux+ax)ds

According to Step 4 we have g(x,0) + f(»,0) < h(|x — y|). Thus,

where

(2.16) /g(x, 0) du, +/f(x, 0) day < Cy( 1y, 00).
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So we get

t
(2.17) /¢d,u,+/¢da[£ Ch(,uo,ao)+1~R,§+/ /|BH—B(,-|-|Vf|dans.
0

Step 6. Integral bound for Vf. The last term in the right-hand side of (2.17) is
dominated by

// v !B, - B,|? dasds //|\/_Vf| dosds)

To estimate the second multiplier, i.e., |/OV/|? L2(R4x[0, T]sdo, ds)» DOtE that f 2 is

a function of class C2 HRY % [0,1) N C(Rd x [0, T ]) and it can be plugged into
identity (1.4) for the measure o:

[wdoi~ [ 00 den
_ /OI/((’)S—f—LJ)fzdasds

- /I/2f(6xf+trace(QD2f) + (B, VD) + 2|Vf|* doy ds
0

= —/[/2f<A,§ — B, Vf> 4 2|Vf|* doy ds.
0

Hence

2/0 /|Vf|2dasdsg /wzda,—/fz(x,O)dao
+ 2max|f(x, t)|/t/v1/2|A,§—Ba| |/ OV/| do, ds.
0

The maximum principle (2.12) and relation (2.10) imply that max|f(x,?)| <
max|y(x)| < ||4]|.. Taking into account that ab <2 'ya®+ (2y)"'b? with
y = ||A],, we arrive at

! .2 >l 2
2/ /|Vf| dods < ||h||OO+T°C/ /\A,ﬁ—BG| do, ds
0 0
t
+/0 /|\/éVf|2dasds.

Cancelling alike terms and recalling (2.17), we get
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(2.18) /(Iﬁd,ut + / Vdo, < Cy(uy, 00) +1- RE + ||A| v %02

. (/t/ B, — B,|? do, ds)l/z,
0

where

t 12
rpi= <1+v1/0 /|A,‘§—Bg|2dasds) .

Step 7. Limits as ¢ — 0 and k — oo. Deriving the estimate-2. First of all, we
recall that

Af(x,t) — Ai(x,t) fora.e. (x,1) € R x [0, 77,

and the measures doyds and d(u, + oy)ds have strictly positive densities on
RY x [0, T] with respect to Lebesgue measure. Thus,

Af(x,t) — Ar(x,t)dogds-a.e. and d(u, + o,) ds-a.e.

Since for each k the mappings A} and A; are bounded, Lebesgue’s dominated
convergence theorem yields

t t
/ /|AZ—BG|2dasds—>/ /|Ak—B,,2dasds, e— 0,
0 0

t t
/ /|A,§—B,,|d(,ux+ax)ds—>/ /|Ak—Bﬂ|d(/¢S+oS)ds, £ 0.
0 0
Next, we recall that

lim Ag(x,¢) = Bu(x,t) forae. (x,7) e R? x [0, T].

k— o0

Similarly, taking into account (2.5), one can apply Lebesgue’s dominated conver-
gence theorem and get

! 1/2
lim limR; =0, lim limr; = (1 +/ /vl By — BJ|2das ds) )
0

k—o0 e—0 k—o0 e—0

Hence one can pass in (2.18) to the limits as ¢ — 0, then let K — co and obtain
Cr 5 1/2
(2.19) /¢d,u, +/lpdo‘, < Cu(uy,00) + ||h|w(/ /v |B, — B,|” do ds)
0

t 1/2
x(l—l—v_l/o /|Bﬂ—BJ|2dasds) .
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Passing to the supremum over (¢,y/) € d);l’ and using Step 3, we obtain

' -1 2 1/2
Cula ) = Culpigon) + Wil ([ [ v7118, Bl o)

t 1/2
x(l—l—vl/o /|Bﬂ—BJ|2d0'SdS> ,

which is the required estimate (2.6) with 1 = 0. |

3. APPLICATIONS TO NONLINEAR EQUATIONS

In this section we focus on applications of the obtained estimates to the study of
the well-posedness of the Cauchy problem for nonlinear FPK equations.

Given a continuous positive function o on [0, 7], 7 € (0, 7] and a nonnegative
continuous function ¥ (x) on R? with ¥ (x) — 400 as |x| — +oo, let us define the
classes of measures

M. (V)= {:u = (:ut)te[o,r] : / V(x)dp, <o), t € [077]}7

M.(V) ={ﬂ= (H)iepo,q Sup]/V(X)dﬂ,<+00}-

tel0,7

Throughout this section we assume that a non-degenerate d x d-matrix Q(x,?)
satisfying (A1) is fixed. Suppose that for each measure u = p, dt € My(V') a Borel

mapping
B(IL‘"") = B(:u) : Rd X [07 T] - Rd

is defined. Consider the Cauchy problem for the nonlinear FPK equation

(3.1) dut, = trace(Q(x, ()D*pt,) — div(B(u, x, 1), 1l,—o = Ho-

Again denote the elements of the diffusion matrix Q(x,7) by ¢¥(x,1), 1 <i,j <d
and the elements of the vector drift B(u, x,t) by b/(u,x,t), 1 < j <d. Set

Lup = q"(x, 007 ¢+ b' (1, x, )04,

where the summation over all repeated indices is taken. As above, we call a mea-
sure u = p,dt, t € [0, T| a solution to (3.1) if identity (1.3) holds with L, in place
of L. Let us introduce the following assumptions about the drift:

(B1) The drift term B is A-dissipative in x, i.e., for every measure £ € M (V') one
has

(3.2) (B x,1) — B(pt, y,1),x — yga < Alx — ||

for all x, y € RY and all 7 € [0, T7.
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(B2) for all measures x and ¢ from M7 (V') one has
(3.3) B(p, x, 1) — Ax € LX(R? x [0, T), d(u, + o) ds).

We start with the question of uniqueness and stability of probability solutions to
(3.1). As above, we assume that a continuous non-decreasing monotone bounded
cost function /2 with /4(0) = 0 is fixed. Given a non-negative non-decreasing func-
tion G, set

U du
G.(r) ::/r TNk

COROLLARY 3.1. Fix a non-negative continuous function V(x) on RY with
V(x) — 400 as |x| — +oo such that V e L"(R?; uy) n L' (R; 60). Assume that
the coefficients of equation (3.1) satisfy (A1), (B1) and (B2) with this V. Moreover,
assume that that for each two measures jt = (1,),c (0.7 and (1),c(0, 71 in Mr(V)
one has

(3.4) |B(u,x,t) — B(o,x,1)| </ V(x)G(Cp(u,,0v))

for some non-negative increasing function G such that G.(0) = +oo.
Then every two solutions (1), 7 and (1), 1o, 71 of problem (3.1) in the class
My (V) with initial data p, and oy, respectively, satisfy the inequality

Ch, (1 00) < (GTH(GL(2(Chlpg, 00))7) — et))'V?

for all t € [0, T), where G.' is the inverse function to G* and ¢ > 0 is a positive
constant.

ExampPLE 3.1. Assumptions (B1), (B2) and (3.4) are fulfilled, for example, for
the drift terms of the form

M%mﬂ=ﬂ@/ﬂ%ﬁ@b&

with 0 < H(x) < /V(x) and a J-dissipative in the first variable kernel k(- )
such that

[e(x, ¥) = Ke(z, y)| < h(lx = y]).

Proor oF CoOrROLLARY 3.1. First of all, if x is a solution to (3.1) and the
assumptions of Corollary 3.1 are fulfilled, then the linear FPK equation

0ip, = trace(Q(x, Z)szz) — div(B(u, x, t)p,), Pt|z:0 = Hy

has a solution p = u that satisfies the assumptions of Theorem 2.1; similarly o is a
solution to a linear equation with the drift term B(o,-,-). Hence one can apply
(2.6) with B,(-,-) = B(u,-,-) and B,(-,-) = B(a,-,-).
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Next, arguing as at Step 1 of the proof of Theorem 2.1, we can assume that
the drift term B is dissipative. With condition (3.4) in hand, estimate (2.6) takes
the form

1/2

33 Gl < Culuson) il Vo Ta( [ 6 (Culio)) )
2

! 1
X (1 +v_1a/ Gz(Ch(uS,aS))ds) ,
0

where a = sup, (g 7y / V(x)dy, < +oo and v is the ellipticity constant of Q.
Note that C;(y,,0;) < ||h]|,. Then (3.5) can be reduced to a weaker inequality

(3.6) Ci(,,00) < Cr( g, 00) +K(/OIG2<C/1(,US70'S))dS>1/2

with K = ||A| Vv 1o (14+v7!. TG2(||h||OO))1/2. Squaring (3.6) and using the
inequality (b + ¢)* < 2b? + 2¢2, we get

t
Ci(y,00)° < 2Ch( o, 00)° + 2K* / G*(Ci(py, o)) ds.
0

If 1y = oo, then uniqueness follows immediately by the explicit integration. In
the general case a Gronwall type inequality (see, for example, [8, Th. 27]) implies
that

Coluy,00) < (G2 (Go(2(Cilhg, 00))°) — 2K70) 12
This completes the proof. |
A particular case G(u) = u of this latter estimate is especially interesting:

COROLLARY 3.2. Let u and o be two solutions to (3.1) as in Theorem 3.1 with
G(u) = u. Then for some N > 0 one has

Ch;,;(:utv O-t) < \/ECh(,uo, O-O)eNl-
In particular, if the drift is dissipative (A = 0) or A < 0, then
Ci(y,01) < V2Ch( g, 00)e™".

In some cases estimate (2.6) enables us to establish existence of a solution to
the nonlinear equation (3.1). To show this, consider /(r) = min{|r|”, 1} for some
p > 1. Recall that in this case C,i ?(u,,0,) is a metric and turns the space of
probability measures into a complete metric space. Moreover, convergence with
respect to this metric is equivalent to weak convergence (see [6, Th. 1.1.9]).
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COROLLARY 3.3. Suppose there exists a function V e C*(R?), V > 1 such that
V(x) — +o0 as |x| — 400 and there exists a positive function A on [0,+00) such
that

(L V) (x,1) < A(2(0))(1 + V(x))

for each o € C*[0,T), 7 € [0, T), each (x,t) € R? x [0, T] and each € M ,(V).
Assume that the coefficients in (3.1) satisfy (A1), (B1) and (B2) with this function
V. Assume also that B(¢") — B(c) in L*(RY x [0, T),do,ds) as n — oo if mea-
sures o"(dxdt) = o'(dx)dt converge weakly to a measure o(dxdt) = o,(dx)dt
on the strip R x [0, T). Then, for every probability measure p* such that V €
L'(RY; u*), there exists a (local) probability solution 1= (t)iefo, o to (3.1) with
initial condition u*. '

ExAMPLE 3.2. Let k(x, y) be a bounded function that is A-dissipative in the first
variable for every y € R?. Let Q(x,7) be a matrix satisfying (A1). Then the
Cauchy problem (3.1) with

m%%g:/MLMWMW

satisfies all assumptions of Theorem 3.3 with ¥ (x) = 1 + |x|* and any probability
measure v with finite second moment.

ExAMPLE 3.3. Let ¥ >0 be a convex C>-function on R?. Let g(x) be a
J-dissipative function such that |g| < /7. Let Q(x,7) be a matrix satisfying
(Al) and k(y) be a nonnegative continuous bounded function. Then the Cauchy
problem (3.1) with

B, x. 1) = g(x) / k() dug()

satisfies all assumptions of Theorem 3.3 with any probability measure v that inte-
grates V.

ExampLE 3.4. Fix a € (0,1) and a matrix Q satisfying (Al). Then the Cauchy
problem (3.1) with

B(u,x, 1) = —(1x|"""x) =

satisfies all assumptions of Theorem 3.3 with ¥ (x) = 1 + |x|* and any probability
measure v with finite second moment (cf. [11, Proposition 2.1]).

PrOOF OF COROLLARY 3.3. As above, without loss of generality we can assume
that the drift term is dissipative. Let ¢ € M, ,(}') for some 7, o. Consider the
equation

ity = trace(Q(x, 1)D*p,) — div(B(o, x, O)p,), g = p*-
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Note that the dissipativity of the drift ensures that it is bounded locally in (x, ¢).
Hence under the assumptions of the theorem there exists a unique probability
solution zt = (#;), (9, In M:(V') (see [12, Theorem 3.6]). Therefore, the mapping
O: M, ,(V)— M(V) given by

1= 0(0) & dip, = trace(Q(x, 1) D) — div(B(o, x, ), g = 1*

is well-defined. It is obvious that the solutions to (3.1) are exactly the fixed points
of the mapping ©.
Let us define the subclass N (V) of the class M, ,(V') as follows:

N (V)

— {ﬂe M. ,(V): ’/(p(X)d(ut—us)

K(t,0,¢) :=sup{|L.p(x,1)|, (x,7) € RY x [0,7],ue M, ,(V)}.

< K(t,0,9) - |i— 5| Vp e cm%ef’)},

where

Obv10usly, 15 1s a convex set. By [11, Corollary 4] there exist &(z) > 0 and

e (0, T] such that @(Nz z(V')) C Nz ;(V). Moreover, the class N; z( V') is a com-
pact set in the topology of weak convergence of measures on the strip R¢ x [0, 1]
by [11, Corollary 1]. Let us verify the continuity of the mapping ® on N; z(V).
Suppose that a sequence ¢” = (') € N; 4(V) converges weakly to o = (g;) €
N: (V). Set u" := 0(c"), u:= O(o). Due to (2.17) we have (with b = B(o) and
b, = B(a,) for shortness)

g 1/2
Chl(p, 1) < / /|b —p| daéds) (1+/0 /lbn—b|2dasds)

Our conditions imply that the right-hand side tends to zero as n — co. Hence u}
converges to x, with respect to the metric C), P and thus converges weakly. Let us
show that u" converges to 1 on the strip [R{d [0,7]. Fix a continuous bounded
function {(x, 7). Then for each ¢ € [0, 7] we have

[t — [ cnndu, n— .
Since the measures u' are probability measures and { is bounded, the integrals
on the right-hand side are uniformly bounded and converge pointwise (with re-
spect to ¢ € [0,7]) to / {(x, 1) du,. Therefore, Lebesgue’s dominated convergence

theorem ensures that

/Of/f(x,l)dﬂfdte/;/C(x,z)dﬂtd[’ " oo,
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By definition this means that the sequence " converges weakly to x on the strip
R? x [0, 7].

Summarizing, we have a continuous mapping ® of the convex compact set
N: 4(V) into itself. The Schauder fixed-point theorem ensures that there exists a
fixed point of ® in N; 4(V), i.e., there exists a solution u = (1), 7 to (3.1) with
initial condition z*. O
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