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Abstract. — We obtain estimates for the Kantorovich transportation costs along solutions to dif-

ferent Fokker–Planck–Kolmogorov equations for measures with the same di¤usion part but with
di¤erent drifts and di¤erent initial conditions. We give applications of such estimates to the study

of the well-posedness for nonlinear equations.
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1. Introduction

In the present paper we derive and study estimates for the Kantorovich trans-
portation costs along probability solutions for the linear Fokker–Planck–
Kolmogorov (FPK) equations for probability measures mt and st on Rd ,
t a ½0;T �, with di¤erent drifts and di¤erent initial conditions

qtmt ¼ traceD2ðQðx; tÞmtÞ � divðB1ðx; tÞmtÞ; mjt¼0 ¼ m0

qtst ¼ traceD2ðQðx; tÞstÞ � divðB2ðx; tÞstÞ; sjt¼0 ¼ s0:

We also develop an alternative method of the study of well-posedness and stabil-
ity of solutions to the nonlinear FPK equations

qtrt ¼ traceD2ðQðx; tÞrtÞ � divðBðr; x; tÞrtÞ; rjt¼0 ¼ r0;ð1:1Þ

based on such estimates for linear equations.
Recently, FPK equations have been actively studied from the functional-

analytical, variational and as well from the probabilistic point of view. Interesting
connections between diverse approaches have been found (a survey of the current
state of studies is provided in [3]). Estimates connecting transportation costs
along solutions with cost functional between initial data and even coe‰cients
play a great role not only for the study of such qualitative properties of solutions
as uniqueness or stability, but also for numerical simulations. In this context esti-
mates for transportation costs along solutions to equations with di¤erent drift
terms are particularly interesting.



In Section 2 we derive estimates for the Kantorovich transportation cost func-
tional along solutions of FPK equations with di¤erent dissipative drifts. To do
this, we partially use ideas from [13]. Since these ideas can not be directly applied
in the case of di¤erent drifts and to nonlinear equations, new methods and ideas
should be used. In the present paper extension to these cases has been done for
the Kantorovich functionals with bounded cost functions. Moreover, we admit
time-dependent coe‰cients and a non-constant di¤usion matrix Q. We note that
the requirement of dissipativity is not really restrictive – in typical physical exam-
ples, the drift term is the gradient of a concave function, i.e. is dissipative. Section
3 is concerned with applications of these estimates to the study of the well-
posedness of the Cauchy problem for nonlinear FPK equations. Well-posedness
for nonlinear equations has been studied by many authors even in a more general
setting (see, for example, [7, 11, 9, 10]). However, we present an alternative
approach to this problem that is applicable in the case of dissipative drifts. A sim-
ilar method of treating well-posedness via estimates for the costs along solutions
to linear equations was used in [5].

Let us introduce some notation and give basic definitions. By Cl
0 ðRdÞ and

Cl
0 ðRd � ð0;TÞÞ we denote the classes of infinitely smooth compactly supported

functions on Rd and Rd � ð0;TÞ, respectively. For shortness of notation we shall
always drop the subscript Rd when integrating over the whole space. We shall
say that a measure r on Rd � ½0;T � is given by a family of probability measures
ðrtÞt A ½0;T � on Rd (and write rðdx dtÞ ¼ rtðdxÞ dt or simply r ¼ rt dt) if rt b 0,

rtðRdÞ ¼ 1, for each Borel set U the function t 7! rtðUÞ is measurable andZ T

0

Z
f dr ¼

Z T

0

Z
f drt dt Ef a Cl

0 ðRd � ð0;TÞÞ:

Given a probability measure r0 on Rd , a symmetric Borel measurable matrix
Qðx; tÞ and a Borel measurable mapping Bðx; tÞ : Rd � ½0;T � ! Rd , consider the
following Cauchy problem for the linear FPK equation:

qtrt ¼ traceðQðx; tÞD2rtÞ � divðBðx; tÞrtÞ; rjt¼0 ¼ r0:ð1:2Þ

Here D2 denotes the Hessian matrix with respect to the spacial variables. Denote
the elements of the di¤usion matrix Qðx; tÞ by qijðx; tÞ, 1a i; ja d and the ele-
ments of the vector drift Bðx; tÞ by b jðx; tÞ, 1a ja d. Set

Lf ¼ qijðx; tÞq2xixjfþ biðx; tÞqxif;

where the summation over all repeated indices is taken. We shall say that a mea-
sure rðdx dtÞ ¼ rtðdxÞ dt is a solution to the Cauchy problem (1.2) if the map-
pings qijðx; tÞ, biðx; tÞ, 1a i; ja d; are Borel and belong to L1ðr;U � ½0;T �Þ for
each ball U � Rd , and for each test function j a Cl

0 ðRdÞ we haveZ
j drt ¼

Z
j dr0 þ

Z t

0

Z
Lj drs dsð1:3Þ
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for all t a ½0;T �. Occasionally it is more convenient to use an equivalent defini-
tion (see [4]), more precisely, the identityZ

fðx; tÞ drt ¼
Z

fðx; 0Þ dr0 þ
Z t

0

Z
½qsfþ Lf� drs ds;ð1:4Þ

for all t a ½0;T � and all test functions f a C2;1ðRd � ½0;TÞÞBCðRd � ½0;T �Þ that
are identically zero outside a ball U � Rd . If we know a priori that the drift term
B is integrable over Rd � ½0;T � with respect to the measure drs ds and f is not
of compact support, but has two continuous bounded derivatives, then (1.4)
also holds true for such f (to show this, it su‰ces to use the standard truncation
argument).

2. Estimates for kantorovich transportation costs along solutions

to linear equations with different drifts

In this section, we shall focus on two solutions of the linear FPK equation with
di¤erent initial conditions and di¤erent drifts. Fix T > 0. Given probability mea-
sures m0 and s0 on Rd , a symmetric Borel measurable matrix Qðx; tÞ and Borel
measurable mappings Bm;Bs : R

d � ½0;T � ! Rd , consider the two corresponding
Cauchy problems

qtmt ¼ traceðQðx; tÞD2mtÞ � divðBmðx; tÞmtÞ; mjt¼0 ¼ m0ð2:1Þ
qtst ¼ traceðQðx; tÞD2stÞ � divðBsðx; tÞstÞ; sjt¼0 ¼ s0:

The indices m and s in the drift coe‰cients are merely used to distinguish the dif-
ferent drifts and don’t indicate any dependence on the solution.

Given a monotone nonnegative continuous function h on R with hð0Þ ¼ 0, we
introduce the Kantorovich h-cost functional between the probability measures m
and s by

Chðm; sÞ :¼ inf
p APðm;sÞ

Z
Rd�Rd

hðjx� yjÞ dpðx; yÞ;ð2:2Þ

where Pðm; sÞ is the set of couplings between m and s. Recall that a probability
measures p on Rd � Rd belongs to Pðm; sÞ if and only if pðE � RdÞ ¼ mðEÞ and
pðRd � EÞ ¼ sðEÞ for each Borel set E � Rd . If h is a concave function with
hðrÞ > 0 for r > 0, then Ch defines a distance on the space of probability measures
and turns it into a complete metric space with the topology that coincides with
the usual weak one (see [1, Proposition 7.1.5]). Another important example is
given by hðrÞ ¼ minfjrj p; 1g for some pb 1. In this case C

1=p
h turns the space of

probability measures into a complete metric space. Moreover, convergence with
respect to this metric is equivalent to the weak convergence (see [6, Th. 1.1.9]).

We assume that a monotone non-decreasing continuous bounded cost func-
tion h with hð0Þ ¼ 0 is fixed. Set khkl :¼ supz ARd hðjzjÞ < l.
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Throughout the paper we assume that the following regularity condition
holds:

(A1) The di¤usion matrix Qðx; tÞ has uniformly bounded elements with uni-
formly bounded first derivatives. Moreover, it is strictly elliptic: there exists
n > 0 such that Eðx; tÞ a Rd � ½0;T �

3Qðx; tÞy; y4b njyj2 Ey a Rd :ð2:3Þ

Theorem 2.1. Let (A1) hold. Let ðmtÞt A ½0;T � and ðstÞt A ½0;T � be solutions to (2.1)
with initial conditions m0 and s0, respectively. Suppose that the drift term Bm is
l-dissipative in x, i.e.,

3Bmðx; tÞ � Bmðy; tÞ; x� y4a lkx� yk2ð2:4Þ

for all x; y a Rd and all t a ½0;T �. Let

Bmðx; tÞ � lx;Bsðx; tÞ � lx a L2ðRd � ½0;T �; dðms þ ssÞ dsÞð2:5Þ

Then

Chltðmt; stÞaChðm0; s0Þ þ khkl �
�Z t

0

Z
n�1jBm � Bsj2 dss ds

�1=2
ð2:6Þ

�
�
1þ

Z t

0

Z
n�1jBm � Bsj2 dss ds

�1=2
;

for all t a ½0;T �, where hsðrÞ :¼ hðre�sÞ.

Remark 2.1. Bound (2.6) is obviously asymmetric in measure: we impose dis-
sipativity on Bm, and the integration in the right-hand side is taken over s. This
property might be interesting from the point of view of possible numerical simu-
lations. Indeed, if we want to solve a FPK equation

qtmt ¼ traceðQðx; tÞD2mtÞ � divðBðx; tÞmtÞ

with a dissipative drift B, we can approximate the drift by ‘‘better’’ drifts Bn

and solve the FPK equations with those drifts. Then (2.6) controls the transpor-
tation costs between the desired solution mt and the approximative solution mn

t

in terms of the distance between the drifts integrated with respect to the known
solution mn.

Proof. Let ðmtÞt A ½0;T � and ðstÞt A ½0;T � satisfy the assumptions of the theorem. Ac-
cording to [2], the measures mt and st have strictly positive densities with respect

to Lebesgue measure on Rd for each t a ½0;T �. We split the proof of (2.6) into
several steps.
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Step 1. Reduction to the dissipative case (l ¼ 0). We rescale the problem, keeping
the cost function unchanged, in order to reduce the problem to the case of a dis-
sipative drift Bm. To this end we use the rescaling procedure from [13] with the
opposite sign (since our drift term and the drift term in the cited work have the
opposite signs). For completeness, we provide this rescaling procedure: for lA 0
define the change of time

sðtÞ :¼
Z t

0

e�2lr dr ¼ 1� e�2lt

2l
; tðsÞ ¼ �lnð1� 2lsÞ

2l
; s a ½0;SlÞ;

where Sl ¼ þl for l < 0 and Sl ¼ 1=ð2lÞ for l > 0. For the measures mt and
st we introduce their rescaled versions rm

s and rs
s : for each Borel set E � Rd set

rw
s ðEÞ :¼ wtðsÞðeltðsÞEÞ for w ¼ m; s. We observe that Chðrm

s ; r
s
s Þ ¼ Chltðmt; stÞ:

Since Bm is l-dissipative, Am :¼ Bm � lI is dissipative. Define the rescaled di¤u-
sion coe‰cient by

~QQðy; sÞ :¼ QðtðsÞ; eltðsÞyÞ

and the rescaled drifts by

~BBwðy; sÞ :¼ eltðsÞBwðtðsÞ; eltðsÞyÞ; ~AAwðy; sÞ :¼ eltðsÞAwðtðsÞ; eltðsÞyÞ; w ¼ m; s:

Note that ~AAm is also a dissipative operator. The measure m ¼ mt dt is a solu-
tion to

qtmt ¼ traceðQD2mtÞ � divðBmmtÞ

if and only if the rescaled version rm ¼ r
m
t dt is a solution to

qtr
m
t ¼ traceð ~QQD2r

m
t Þ � divð ~AAmr

m
t Þ;ð2:7Þ

moreover, (2.5) holds true if and only if for all nonnegative s1 < s2 aSðTÞ < Sl

one has Z s2

s1

Z
j ~AAmðx; sÞj2 drm

s ds < þl:

The integrability statement follows immediately from the change of variables for-
mula, identity (2.7) can be verified explicitly: it su‰ces to consider the change of
variables Xðx; tÞ :¼ ðe�ltx; sðtÞÞ and calculate the derivatives. A similar statement
holds for s and rs. This means that it is su‰cient to prove (2.6) only in the case
l ¼ 0, i.e., in the case of a dissipative drift term Bm.

Step 2. Approximation of the drift term. We construct a family of smooth (in
both variables) bounded Lipschitz (as functions of x) dissipative operators
Ae

kðx; tÞ approximating the dissipative drift term Bmðx; tÞ.
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For each t the operator Bmð�; tÞ can be approximated by Lipschitz in x
bounded dissipative operators Akð�; tÞ (see [13, Th. 2.4, 2.5]): for each t a ½0;T �

lim
k!l

Akðx; tÞ ¼ Bmðx; tÞ for a:e: ðxÞ a Rd and sup
x ARd

jAkðx; tÞja k þ 1:ð2:8Þ

Let us fix a nonnegative function h a Cl
0 ð½0;T �Þ such that khkL1ð½0;T �Þ ¼ 1 and

introduce the family of mollifiers heðtÞ :¼ hðt=eÞ. Since for each k the mapping
Akðx; tÞ is bounded, the mappings Ae

kðx; tÞ :¼ heðtÞ � Akðx; tÞ have bounded deriv-
atives of all orders with respect to t and converge to Akðx; tÞ as e ! 0 for a.e.
ðx; tÞ a Rd � ½0;T �. Notice that Ae

k also have bounded first order derivatives with
respect to the spacial variables. Moreover, Ae

k are dissipative in x:

3Ae
kðx; tÞ � Ae

kðy; tÞ; x� y4 ¼ heðtÞ � 3Akðx; tÞ � Akðy; tÞ; x� y4a 0:

Finally, we define operators Le
k as follows: for ðx; sÞ a Rd � ½0;T � we set

Le
k ½f�ðx; sÞ :¼ traceðQðx; sÞD2fðx; sÞÞ þ 3Ae

kðx; sÞ;‘xfðx; sÞ4; fð�; sÞ a C2ðRdÞ:

Step 3. Reduction of the class of test functions. It is well-known (see, for example,
[15, Th. 1.3]) that the problem (2.2) admits a dual formulation: define the class
Fh as

Fh :¼ fðf;cÞ a L1ðmÞ � L1ðnÞ : fðxÞ þ cðyÞa hðjx� yjÞg:

Hence

Chðm; sÞ ¼ sup
ðf;cÞ AFh

Z
f dmþ

Z
c ds:ð2:9Þ

An important observation ([16, Lemma 2.3]) is that in the case of a bounded cost
function h the supremum in the dual problem (2.9) can be taken over the follow-
ing smaller class of functions Fd

h for any d > 0:

Fd
h :¼ FhBCl

0 ðRdÞB fðf;cÞ : inf c > �d and supca khklg:ð2:10Þ

The proof is based on the fact that functions j and c can be shifted by di¤erent
constants and truncated in such a way that the new pair ðj0;c0Þ is still admissible
and the value in (2.9) does not decrease:Z

j0 dmþ
Z

c0 dsb

Z
j dmþ

Z
c ds and

inf
Rd

c0 ¼ 0; sup
Rd

c0 a khkl; sup
Rd

j0 b 0:

If we want to deal with smooth compactly supported functions, then the bounds
become a bit worse and lead to the class (2.10).
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In the sequel we shall take the supremum in (2.9) over the class Fb
h of admis-

sible pairs of Cl
0 ðRdÞ-functions such that kckl a khkl.

Step 4. The adjoint problem. Fix an admissible pair ðf;cÞ a Fb
h . The smoothness

of operators Ae
k imply (see [14, Th. 3.2.1]) that the following adjoint problems

have solutions g; f a C2;1
b ðRd � ½0; t�Þ:

qsgþLe
k g ¼ 0; gð�; tÞ ¼ fð�Þ and qs f þLe

k f ¼ 0; f ð�; tÞ ¼ cð�Þð2:11Þ

First, due to the maximum principle (see [14, Th. 3.1.1]) we have

sup
Rd�½0; t�

jgja sup
Rd

jfj; sup
Rd�½0; t�

j f ja sup
Rd

jcj:ð2:12Þ

Let us derive some bounds for j‘gj and j‘f j. The method of doing this is inspired
by the Bernstein estimates. Set for shortness Ae

k :¼ ða1; . . . ; adÞ. Set vðx; tÞ :¼
j‘gj2 þ kg2 � t, where k will be chosen below. Explicit computations give (the
summation over all repeated indices is assumed)

ðqs �Le
k Þv ¼ð2:11Þ 2qxkgðqxkqijq2xixj gþ qxka

iqxigÞð2:13Þ
� 2qijq2xkxigq

2
xkxj

g� 2kqijqxigqxj g� 1:

Due to dissipativity, DAe
k defines a negative quadratic form and

qxkgqxka
iqxig ¼ ðDAe

k‘g;‘gÞa 0:

By this observation, (2.3) and the Cauchy inequality 2aba ca2 þ c�1b2 with
c ¼ 2n, the right-hand side of (2.13) is dominated by

oc�1j‘gj2 þ c
X
i; j

ðq2xixj gÞ � 2n
X
i; j

ðq2xixj gÞ � 2nkj‘gj2 � 1

¼ Wj‘gj2 � 2nkj‘gj2 � 1;

where o :¼ 2maxfjqxkqijjg and W :¼ o � ð2nÞ�1 depend only on the di¤usion
matrix and not on the drift. Letting k :¼ W � ð2nÞ�1, we get

ðqs �Le
k Þva�1:

Therefore, the maximum principle ensures

max
Rd�½0; t�

jvja max
Rd

jvðx; 0ÞjC max
Rd

j‘fj2 þ k max
Rd

jfj2;

hence

sup
Rd�½0; t�

j‘gðx; sÞja
�
max
Rd

j‘fj2 þ k max
Rd

jfj2
�1=2

¼: C1:ð2:14Þ
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Similarly,

sup
Rd�½0; t�

j‘f ðx; sÞja
�
max
Rd

j‘cj2 þ k max
Rd

jcj2
�1=2

þ t ¼: C2:ð2:15Þ

Set l :¼ C1 þ C2.
Finally, let us prove the crucial assertion: if the pair ðj;cÞ is admissible and

f and g solve (2.11), then gðx; 0Þ þ f ðy; 0Þa hðjx� yjÞ. In the case QC I this
was proved in [13, Th. 3.1]. In the general case the proof almost repeats the
case Q ¼ I , but we sketch it for completeness. By approximating h from above,
we can assume without loss of generality that h a C1ðRÞ. Let Hðy1; y2Þ :¼
hðjy1 � y2jÞ and

0a xðy1; y2Þ ¼ xðy2; y1Þ ¼
hðjy1�y2jÞ
jy1�y2j if y1A y2

0 if y1 ¼ y2

(
:

First assume that

qsgþLe
k g > 0; qs f þLe

k f > 0:

Suppose that zðy1; y2; sÞ :¼ gðy1; sÞ þ f ðy2; sÞ �Hðy1; y2Þ attains a local maxi-
mum at ðY1;Y2;SÞ and S < t. Then qszðY1;Y2;SÞ ¼ qsgðY1;SÞ þ qs f ðY2;SÞa0,

‘y1zðY1;Y2;SÞ ¼ ‘y2zðY1;Y2;SÞ ¼ 0

) ‘y1gðY1;SÞ ¼ �‘y2 f ðY2;SÞ ¼ xðY1;Y2ÞðY1 � Y2Þ

and, due to dissipativity,

Ae
kðY1;SÞ‘y1gðY1;SÞ þ Ae

kðY2;SÞ‘y2 f ðY2;SÞ
¼ xðY1;Y2Þ3Ae

kðY1;SÞ � Ae
kðY2;SÞ;Y1 � Y24a 0:

Since zðY1 þ z;Y2 þ z;SÞ as a function of z has a local maximum at z ¼ 0 and Q
is positive definite, traceQD2z ¼ traceQðY1;SÞD2gþ traceQðY2;SÞD2f a 0,
where

Qðy1; y2; sÞ :¼
Qðy1Þ 0

0 Qðy2Þ

� �
:

Summing up, we get

ðqsgþLe
k gÞ þ ðqs f þLe

k f Þa 0;

this contradiction means that the local maximum can be attained only at S ¼ t.
Now we proceed to the equality. Setting for some e; d > 0

ge; dðy1; sÞ :¼ gðy1; sÞ � dðt� sÞ � ee�sjy1j2;
fe; dðy2; sÞ :¼ f ðy2; sÞ � dðt� sÞ � ee�sjy2j2
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and computing qs þLe
k , we arrive at the previous case for e, d small enough

(since all the coe‰cients of the di¤erential operator are bounded). Passing to the
limit as e; d ! 0, we obtain the desired assertion.

Step 5. Deriving the estimate-1. Plugging solutions of (2.11) into identity (1.4),
we get

Z
f dmt �

Z
gðx; 0Þ dm0 ¼ �

Z t

0

Z
ðAe

kðx; sÞ � BmÞ � ‘gðx; sÞ dms ds;Z
c dst �

Z
f ðx; 0Þ ds0 ¼ �

Z t

0

Z
ðAe

kðx; sÞ � BsÞ � ‘f ðx; sÞ dss ds:

Because of (2.14),

Z
f dmt �

Z
gðx; 0Þ dm0 a l

Z t

0

Z
jAe

k � Bmj dms ds:

Note that

Z
c dst �

Z
f ðx; 0Þ ds0

a

Z t

0

Z
jAe

k � Bmj � j‘f j dss dsþ
Z t

0

Z
jBm � Bsj � j‘f j dss ds

a
ð2:15Þ

l

Z t

0

Z
jAe

k � Bmj dss dsþ
Z t

0

Z
jBm � Bsj � j‘f j dss ds:

Summing up these inequalities, we get

Z
f dmt þ

Z
c dst a

Z
gðx; 0Þ dm0 þ

Z
f ðx; 0Þ ds0 þ l � Re

k

þ
Z t

0

Z
jBm � Bsj � j‘f j dss ds;

where

Re
k :¼

Z t

0

Z
jAe

k � Bmj dðms þ ssÞ ds:

According to Step 4 we have gðx; 0Þ þ f ðy; 0Þa hðjx� yjÞ. Thus,
Z

gðx; 0Þ dm0 þ
Z

f ðx; 0Þ ds0 aChðm0; s0Þ:ð2:16Þ
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So we get

Z
f dmt þ

Z
c dst aChðm0; s0Þ þ l � Re

k þ
Z t

0

Z
jBm � Bsj � j‘f j dss ds:ð2:17Þ

Step 6. Integral bound for ‘f . The last term in the right-hand side of (2.17) is
dominated by

�Z t

0

Z
n�1jBm � Bsj2 dss ds

�1=2
�
�Z t

0

Z
j

ffiffiffiffi
Q

p
‘f j2 dss ds

�1=2
:

To estimate the second multiplier, i.e., k
ffiffiffiffi
Q

p
‘f k2L2ðRd�½0;T �;dss dsÞ, note that f 2 is

a function of class C2;1
b ðRd � ½0; tÞÞBCðRd � ½0;T �Þ and it can be plugged into

identity (1.4) for the measure s:Z
c2 dst �

Z
f 2ðx; 0Þ ds0

¼
Z t

0

Z
ðqs þ LsÞ f 2 dss ds

¼
Z t

0

Z
2f ðqs f þ traceðQD2f Þ þ 3Bs;‘f 4Þ þ 2j‘f j2 dss ds

¼ �
Z t

0

Z
2f 3Ae

k � Bs;‘f 4þ 2j‘f j2 dss ds:

Hence

2

Z t

0

Z
j‘f j2 dss dsa

Z
c2 dst �

Z
f 2ðx; 0Þ ds0

þ 2maxj f ðx; tÞj
Z t

0

Z
n�1=2jAe

k � Bsj � j
ffiffiffiffi
Q

p
‘f j dss ds:

The maximum principle (2.12) and relation (2.10) imply that maxj f ðx; tÞja
maxjcðxÞja khkl. Taking into account that aba 2�1ga2 þ ð2gÞ�1

b2 with
g ¼ khkl, we arrive at

2

Z t

0

Z
j‘f j2 dss dsa khk2l þ khk2l

n

Z t

0

Z
jAe

k � Bsj2 dss ds

þ
Z t

0

Z
j

ffiffiffiffi
Q

p
‘f j2 dss ds:

Cancelling alike terms and recalling (2.17), we get
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Z
f dmt þ

Z
c dst aChðm0; s0Þ þ l � Re

k þ khkln�1=2 � rekð2:18Þ

�
�Z t

0

Z
jBm � Bsj2 dss ds

�1=2
;

where

rek :¼
�
1þ n�1

Z t

0

Z
jAe

k � Bsj2 dss ds
�1=2

:

Step 7. Limits as e ! 0 and k ! l. Deriving the estimate-2. First of all, we
recall that

Ae
kðx; tÞ ! Akðx; tÞ for a:e: ðx; tÞ a Rd � ½0;T �;

and the measures dss ds and dðms þ ssÞ ds have strictly positive densities on
Rd � ½0;T � with respect to Lebesgue measure. Thus,

Ae
kðx; tÞ ! Akðx; tÞ dss ds-a:e: and dðms þ ssÞ ds-a:e:

Since for each k the mappings Ae
k and Ak are bounded, Lebesgue’s dominated

convergence theorem yieldsZ t

0

Z
jAe

k � Bsj2 dss ds !
Z t

0

Z
jAk � Bsj2 dss ds; e ! 0;

Z t

0

Z
jAe

k � Bmj dðms þ ssÞ ds !
Z t

0

Z
jAk � Bmj dðms þ ssÞ ds; e ! 0:

Next, we recall that

lim
k!l

Akðx; tÞ ¼ Bmðx; tÞ for a:e: ðx; tÞ a Rd � ½0;T �:

Similarly, taking into account (2.5), one can apply Lebesgue’s dominated conver-
gence theorem and get

lim
k!l

lim
e!0

Re
k ¼ 0; lim

k!l
lim
e!0

rek ¼
�
1þ

Z t

0

Z
n�1 � jBm � Bsj2 dss ds

�1=2
:

Hence one can pass in (2.18) to the limits as e ! 0, then let k ! l and obtainZ
f dmt þ

Z
c dst aChðm0; s0Þ þ khkl

�Z t

0

Z
n�1jBm � Bsj2 dss ds

�1=2
ð2:19Þ

�
�
1þ n�1

Z t

0

Z
jBm � Bsj2 dss ds

�1=2
:
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Passing to the supremum over ðf;cÞ a Fb
h and using Step 3, we obtain

Chðmt; stÞaChðm0; s0Þ þ khkl
�Z t

0

Z
n�1jBm � Bsj2 dss ds

�1=2

�
�
1þ n�1

Z t

0

Z
jBm � Bsj2 dss ds

�1=2
;

which is the required estimate (2.6) with l ¼ 0. r

3. Applications to nonlinear equations

In this section we focus on applications of the obtained estimates to the study of
the well-posedness of the Cauchy problem for nonlinear FPK equations.

Given a continuous positive function a on ½0;T �, t a ð0;T � and a nonnegative
continuous function VðxÞ on Rd with VðxÞ ! þl as jxj ! þl, let us define the
classes of measures

Mt;aðVÞ ¼ m ¼ ðmtÞt A ½0; t� :
Z

VðxÞ dmt a aðtÞ; t a ½0; t�
� �

;

MtðVÞ ¼ m ¼ ðmtÞt A ½0; t� : sup
t A ½0; t�

Z
VðxÞ dmt < þl

( )
:

Throughout this section we assume that a non-degenerate d � d-matrix Qðx; tÞ
satisfying (A1) is fixed. Suppose that for each measure m ¼ mt dt a MTðVÞ a Borel
mapping

Bðm; � ; �ÞCBðmÞ : Rd � ½0;T � ! Rd

is defined. Consider the Cauchy problem for the nonlinear FPK equation

qtmt ¼ traceðQðx; tÞD2mtÞ � divðBðm; x; tÞmtÞ; mtjt¼0 ¼ m0:ð3:1Þ

Again denote the elements of the di¤usion matrix Qðx; tÞ by qijðx; tÞ, 1a i; ja d
and the elements of the vector drift Bðm; x; tÞ by b jðm; x; tÞ, 1a ja d. Set

Lmf ¼ qijðx; tÞq2xixjfþ biðm; x; tÞqxif;

where the summation over all repeated indices is taken. As above, we call a mea-
sure m ¼ mt dt, t a ½0;T � a solution to (3.1) if identity (1.3) holds with Lm in place
of L. Let us introduce the following assumptions about the drift:

(B1) The drift term B is l-dissipative in x, i.e., for every measure m a MTðVÞ one
has

3Bðm; x; tÞ � Bðm; y; tÞ; x� y4Rd a lkx� yk2ð3:2Þ

for all x; y a Rd and all t a ½0;T �.
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(B2) for all measures m and s from MTðVÞ one has

Bðm; x; tÞ � lx a L2ðRd � ½0;T �; dðms þ ssÞ dsÞ:ð3:3Þ

We start with the question of uniqueness and stability of probability solutions to
(3.1). As above, we assume that a continuous non-decreasing monotone bounded
cost function h with hð0Þ ¼ 0 is fixed. Given a non-negative non-decreasing func-
tion G, set

G�ðrÞ :¼
Z 1

r

du

G2ð
ffiffiffi
u

p
Þ :

Corollary 3.1. Fix a non-negative continuous function VðxÞ on Rd with
VðxÞ ! þl as jxj ! þl such that V a L1ðRd ; m0ÞBL1ðRd ; s0Þ. Assume that
the coe‰cients of equation (3.1) satisfy (A1), (B1) and (B2) with this V. Moreover,
assume that that for each two measures m ¼ ðmtÞt A ½0;T � and ðstÞt A ½0;T � in MTðVÞ
one has

jBðm; x; tÞ � Bðs; x; tÞja
ffiffiffiffiffiffiffiffiffiffiffi
VðxÞ

p
GðChðmt; stÞÞð3:4Þ

for some non-negative increasing function G such that G�ð0Þ ¼ þl.
Then every two solutions ðmtÞt A ½0;T � and ðstÞt A ½0;T � of problem (3.1) in the class

MTðVÞ with initial data m0 and s0, respectively, satisfy the inequality

Chltðmt; stÞa ðG�1
� ðG�ð2ðChðm0; s0ÞÞ

2Þ � ctÞÞ1=2

for all t a ½0;T �, where G�1
� is the inverse function to G� and c > 0 is a positive

constant.

Example 3.1. Assumptions (B1), (B2) and (3.4) are fulfilled, for example, for
the drift terms of the form

Bðm; x; tÞ ¼ HðxÞ
Z

kðx; yÞ dmtðyÞ

with 0aHðxÞa
ffiffiffiffiffiffiffiffiffiffiffi
VðxÞ

p
and a l-dissipative in the first variable kernel kð� ; �Þ

such that

jkðx; yÞ � kðz; yÞja hðjx� yjÞ:

Proof of Corollary 3.1. First of all, if m is a solution to (3.1) and the
assumptions of Corollary 3.1 are fulfilled, then the linear FPK equation

qtrt ¼ traceðQðx; tÞD2rtÞ � divðBðm; x; tÞrtÞ; rtjt¼0 ¼ m0

has a solution r ¼ m that satisfies the assumptions of Theorem 2.1; similarly s is a
solution to a linear equation with the drift term Bðs; � ; �Þ. Hence one can apply
(2.6) with Bmð� ; �Þ ¼ Bðm; � ; �Þ and Bsð� ; �Þ ¼ Bðs; � ; �Þ.
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Next, arguing as at Step 1 of the proof of Theorem 2.1, we can assume that
the drift term B is dissipative. With condition (3.4) in hand, estimate (2.6) takes
the form

Chðmt; stÞaChðm0; s0Þ þ khkl
ffiffiffiffiffiffiffiffiffiffi
n�1a

p �Z t

0

G2ðChðms; ssÞÞ ds
�1=2

ð3:5Þ

�
�
1þ n�1a

Z t

0

G2ðChðms; ssÞÞ ds
�1=2

;

where a ¼ supt A ½0;T �

Z
VðxÞ dmt < þl and n is the ellipticity constant of Q.

Note that Chðmt; stÞa khkl. Then (3.5) can be reduced to a weaker inequality

Chðmt; stÞaChðm0; s0Þ þ K
�Z t

0

G2ðChðms; ssÞÞ ds
�1=2

ð3:6Þ

with K ¼ khkl
ffiffiffiffiffiffiffiffiffiffi
n�1a

p
� ð1þ n�1 � TG2ðkhklÞÞ1=2: Squaring (3.6) and using the

inequality ðbþ cÞ2 a 2b2 þ 2c2, we get

Chðmt; stÞ
2
a 2Chðm0; s0Þ

2 þ 2K 2

Z t

0

G2ðChðms; ssÞÞ ds:

If m0 ¼ s0, then uniqueness follows immediately by the explicit integration. In
the general case a Gronwall type inequality (see, for example, [8, Th. 27]) implies
that

Chðmt; stÞa ðG�1
� ðG�ð2ðChðm0; s0ÞÞ

2Þ � 2K 2tÞÞ1=2

This completes the proof. r

A particular case GðuÞ ¼ u of this latter estimate is especially interesting:

Corollary 3.2. Let m and s be two solutions to (3.1) as in Theorem 3.1 with
GðuÞ ¼ u. Then for some N > 0 one has

Chltðmt; stÞa
ffiffiffi
2

p
Chðm0; s0ÞeNt:

In particular, if the drift is dissipative ðl ¼ 0Þ or l < 0, then

Chðmt; stÞa
ffiffiffi
2

p
Chðm0; s0ÞeNt:

In some cases estimate (2.6) enables us to establish existence of a solution to
the nonlinear equation (3.1). To show this, consider hðrÞ ¼ minfjrj p; 1g for some
pb 1. Recall that in this case C

1=p
h ðmt; stÞ is a metric and turns the space of

probability measures into a complete metric space. Moreover, convergence with
respect to this metric is equivalent to weak convergence (see [6, Th. 1.1.9]).
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Corollary 3.3. Suppose there exists a function V a C2ðRdÞ, V b 1 such that
VðxÞ ! þl as jxj ! þl and there exists a positive function L on ½0;þlÞ such
that

ðLmVÞðx; tÞaLðaðtÞÞð1þ VðxÞÞ

for each a a Cþ½0;T �, t a ½0;T �, each ðx; tÞ a Rd � ½0;T � and each m a Mt;aðVÞ.
Assume that the coe‰cients in (3.1) satisfy (A1), (B1) and (B2) with this function
V. Assume also that BðsnÞ ! BðsÞ in L2ðRd � ½0;T �; dss dsÞ as n ! l if mea-
sures snðdx dtÞ ¼ sn

t ðdxÞ dt converge weakly to a measure sðdx dtÞ ¼ stðdxÞ dt
on the strip Rd � ½0;T �. Then, for every probability measure m� such that V a
L1ðRd ; m�Þ, there exists a (local ) probability solution m ¼ ðmtÞt A ½0; t� to (3.1) with
initial condition m�.

Example 3.2. Let kðx; yÞ be a bounded function that is l-dissipative in the first

variable for every y a Rd . Let Qðx; tÞ be a matrix satisfying (A1). Then the
Cauchy problem (3.1) with

Bðm; x; tÞ ¼
Z

kðx; yÞ dmtðyÞ

satisfies all assumptions of Theorem 3.3 with VðxÞ ¼ 1þ jxj2 and any probability
measure n with finite second moment.

Example 3.3. Let V > 0 be a convex C2-function on Rd . Let gðxÞ be a
l-dissipative function such that jgja

ffiffiffiffi
V

p
. Let Qðx; tÞ be a matrix satisfying

(A1) and kðyÞ be a nonnegative continuous bounded function. Then the Cauchy
problem (3.1) with

Bðm; x; tÞ ¼ gðxÞ
Z

kðyÞ dmtðyÞ

satisfies all assumptions of Theorem 3.3 with any probability measure n that inte-
grates V .

Example 3.4. Fix a a ð0; 1Þ and a matrix Q satisfying (A1). Then the Cauchy
problem (3.1) with

Bðm; x; tÞ ¼ �ðjxja�1
xÞ � mt

satisfies all assumptions of Theorem 3.3 with VðxÞ ¼ 1þ jxj2 and any probability
measure n with finite second moment (cf. [11, Proposition 2.1]).

Proof of Corollary 3.3. As above, without loss of generality we can assume
that the drift term is dissipative. Let s a Mt;aðVÞ for some t, a. Consider the
equation

qtmt ¼ traceðQðx; tÞD2mtÞ � divðBðs; x; tÞmtÞ; m0 ¼ m�:
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Note that the dissipativity of the drift ensures that it is bounded locally in ðx; tÞ.
Hence under the assumptions of the theorem there exists a unique probability
solution m ¼ ðmtÞt A ½0; t� in MtðVÞ (see [12, Theorem 3.6]). Therefore, the mapping

Y : Mt;aðVÞ ! MtðVÞ given by

m ¼ YðsÞ , qtmt ¼ traceðQðx; tÞD2mtÞ � divðBðs; x; tÞmtÞ; m0 ¼ m�

is well-defined. It is obvious that the solutions to (3.1) are exactly the fixed points
of the mapping Y.

Let us define the subclass Nt;aðVÞ of the class Mt;aðVÞ as follows:

Nt;aðVÞ

:¼
�
m a Mt;aðVÞ :

Z
jðxÞ dðmt � msÞ

����
����aKðt; a; jÞ � jt� sj Ej a Cl

0 ðRdÞ
�
;

where

Kðt; a; jÞ :¼ supfjLmjðx; tÞj; ðx; tÞ a Rd � ½0; t�; m a Mt;aðVÞg:

Obviously, Nt;a is a convex set. By [11, Corollary 4] there exist aðtÞ > 0 and
t a ð0;T � such that YðNt;aðVÞÞ � Nt;aðVÞ. Moreover, the class Nt;aðVÞ is a com-
pact set in the topology of weak convergence of measures on the strip Rd � ½0; t�
by [11, Corollary 1]. Let us verify the continuity of the mapping Y on Nt;aðVÞ.
Suppose that a sequence sn ¼ ðsn

t Þ a Nt;aðVÞ converges weakly to s ¼ ðstÞ a
Nt;aðVÞ. Set mn :¼ YðsnÞ, m :¼ YðsÞ. Due to (2.17) we have (with b ¼ BðsÞ and
bn ¼ BðsnÞ for shortness)

Chðmn
t ; mtÞa

�Z t

0

Z
jbn � bj2 dss ds

�1=2
�
�
1þ

Z t

0

Z
jbn � bj2 dss ds

�1=2
:

Our conditions imply that the right-hand side tends to zero as n ! l. Hence mn
t

converges to mt with respect to the metric C
1=p
h and thus converges weakly. Let us

show that mn converges to m on the strip Rd � ½0; t�. Fix a continuous bounded
function zðx; tÞ. Then for each t a ½0; t� we haveZ

zðx; tÞ dmn
t !

Z
zðx; tÞ dmt; n ! l:

Since the measures mn
t are probability measures and z is bounded, the integrals

on the right-hand side are uniformly bounded and converge pointwise (with re-

spect to t a ½0; t�) to
Z

zðx; tÞ dmt. Therefore, Lebesgue’s dominated convergence

theorem ensures thatZ t

0

Z
zðx; tÞ dmn

t dt !
Z t

0

Z
zðx; tÞ dmt dt; n ! l:
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By definition this means that the sequence mn converges weakly to m on the strip
Rd � ½0; t�.

Summarizing, we have a continuous mapping Y of the convex compact set
Nt;aðVÞ into itself. The Schauder fixed-point theorem ensures that there exists a
fixed point of Y in Nt;aðVÞ, i.e., there exists a solution m ¼ ðmÞt A ½0; t� to (3.1) with
initial condition m�. r
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