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Abstract. — Let F a GLþð3Þ and consider the right polar decomposition F ¼ RpðF Þ �U into an

orthogonal factor RpðF Þ a SOð3Þ and a symmetric, positive definite factor U ¼
ffiffiffiffiffiffiffiffiffiffiffi
F TF

p
a PSymð3Þ.

In 1940 Giuseppe Grioli proved that

argmin
R A SOð3Þ

kRTF � 1k2 ¼ fRpðF Þg ¼ argmin
R A SOð3Þ

kF � Rk2:

This variational characterization of the orthogonal factor RpðF Þ a SOðnÞ holds in any dimension

nb 2 (a result due to Martins and Podio-Guidugli). In a similar spirit, we characterize the optimal
rotations

rpolarm; mc ðF Þ :¼ argmin
R A SOðnÞ

fmksymðRTF � 1Þk2 þ mckskewðRTF � 1Þk2g

for given weights m > 0 and mc b 0. We identify a classical parameter range mc b m > 0 for which

Grioli’s theorem is recovered and a non-classical parameter range m > mc b 0 giving rise to a
new type of globally energy-minimizing rotations which can substantially deviate from RpðF Þ. In
mechanics, the weighted energy subject to minimization appears as the shear-stretch contribution

in any geometrically nonlinear, quadratic, and isotropic Cosserat theory.
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1. Introduction

In 1940 Giuseppe Grioli proved a variational characterization of the orthogonal
factor of the polar decomposition [12]. In order to state this result, let
RpðFÞ a SOðnÞ be the unique rotation characterized as the orthogonal factor of
the right polar decomposition of

F ¼ RpðFÞUðFÞ; F a GLþðnÞ;ð1:1Þ

where UðF Þ ¼ RpðF ÞTF ¼
ffiffiffiffiffiffiffiffiffiffi
F TF

p
a PSymðnÞ denotes the symmetric positive

definite factor (which, in mechanics, is referred to as the Biot stretch tensor).



Grioli’s original result1 is the important special case of space dimension n ¼ 3
of the following

Theorem 1.1 (Grioli’s theorem [3, 12, 15]). Let nb 2 and kXk2 :¼ tr½X TX � the
Frobenius norm. Then for any F a GLþðnÞ, it holds

argmin
R A SOðnÞ

kRTF � 1k2 ¼ fRpðF Þg; and thus

min
R A SOðnÞ

kRTF � 1k2 ¼ kU � 1k2:
ð1:2Þ

The polar factor RpðFÞ a SOðnÞ is the unique energy-minimizing rotation for any
given F a GLþðnÞ in any dimension nb 2, see, e.g., [15]. This optimality prop-
erty has an interesting geometric interpretation following from the orthogonal
invariance of the Frobenius norm

kRTF � 1k2 ¼ kF � Rk2 ¼ dist2euclidðF ;RÞð1:3Þ

which reveals a connection to the problem class of matrix distance (or nearness)
problems. In elasticity, a distance of a deformation gradient ( jacobian matrix)
F :¼ ‘j a GLþðnÞ to a rotation SOðnÞ is of interest as a measure for the energy
induced by local changes in length.

In this contribution, we consider a weighted analog of Grioli’s theorem moti-
vated by Cosserat theory and present the energy-minimizing (optimal) rotations
characterized by

Problem 1.2 (Weighted optimality). Let nb 2. Compute the set of optimal
rotations

argmin
R A SOðnÞ

Wm;mcðR;F Þð1:4Þ

:¼ argmin
R A SOðnÞ

fmksymðRTF � 1Þk2 þ mckskewðRTF � 1Þk2g

for given F a GLþðnÞ and weights m > 0, mc b 0. Here, symðX Þ :¼ 1
2 ðX þ X TÞ

and skewðX Þ :¼ 1
2 ðX � X TÞ denote the symmetric and skew-symmetric parts of

X a Rn�n, respectively.

Note that Grioli’s theorem stated above is recovered for the case of equal weights
m ¼ mc > 0. In order to express the connection to the variational characterization
of the polar factor RpðF Þ, we have introduced the following notation

Definition 1.3 (Relaxed polar factor(s)). Let m > 0 and mc b 0. We denote the
set-valued mapping that assigns to a given parameter F a GLþðnÞ its associated

1An exposition of the original contribution of Grioli in modernized notation has been recently

made available in [24].

574 a. fischle and p. neff



set of energy-minimizing rotations by

rpolarm;mcðF Þ :¼ argmin
R A SOðnÞ

Wm;mcðR;F Þ:

In the weighted case, the polar factor RpðFÞ is always critical but not always
optimal. In general the global minimizers rpolarm;mcðF Þ depend on the parameters
m > 0 and mc b 0 and can substantially deviate from RpðF Þ.

The optimal rotations in the weighted case rpolarm;mcðFÞ have been worked
out in two and three space dimensions by the present authors in a series of papers
[9, 10]; cf. also [8] and [21, 26] for earlier related work. A visualization of the
mechanism of optimal Cosserat rotations in dimension n ¼ 3 for an idealized
nano-indentation was given in [11] and shows that the optimal rotations can pro-
duce interesting non-classical patterns. A final proof of optimality in any dimen-
sion nb 2 has been obtained by Borisov and the authors in [2] and is based on a
new characterization of real square roots of real symmetric matrices. This contri-
bution presents an overview of these results omitting the proofs for which we
refer to the original contributions.

Our study of the energy-minimizing rotations rpolarm;mcðF Þ is motivated by a
particular Cosserat (micropolar) theory [19], i.e., a continuum theory with addi-
tional degrees of freedom R a SOðnÞ. In this context, the objective function
Wm;mcðR;F Þ subject to minimization in Problem 1.2 determines the shear-stretch
contribution to the strain energy in any nonlinear, quadratic, and isotropic
Cosserat theory, see also [1, 6, 14, 17, 27, 28]. The arguments to the shear-stretch
energy Wm;mcðR;F Þ are the deformation gradient field F :¼ ‘j : W ! GLþðnÞ
and the microrotation field R : W ! SOðnÞ evaluated at a given point of the
domain W. A full Cosserat continuum model furthermore contains an additional
curvature energy term [25] and a volumetric energy term, see, e.g., [20] or [21].

It is always possible to express the local energy contribution in a Cosserat
model as W ¼ W ðUÞ, where U :¼ RTF is the first Cosserat deformation tensor.
This reduction follows from objectivity requirements and has already been
observed by the Cosserat brothers [4, p. 123, eq. (43)], see also [7] and [16]. Since
U is in general non-symmetric, the most general isotropic and quadratic local
energy contribution which is zero at the reference state is given by

mksymðU � 1Þk2 þ mckskewðU � 1Þk2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
“shear-stretch energy”

þ l

2
tr½U � 1Þ�2|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

“volumetric energy”

:ð1:5Þ

The last term will be discarded in the following, since it couples the rotational
and volumetric response, a feature not present in the well-known isotropic linear
Cosserat models.2

2The Cosserat brothers never proposed any specific expression for the local energy W ¼ W ðUÞ.
The chosen quadratic ansatz for W ¼ W ðUÞ is motivated by a direct extension of the quadratic
energy in the linear theory of Cosserat models, see, e.g. [13, 22, 23]. We always consider a true

volumetric-isochoric split in our applications.
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From the perspective of Cosserat theory, the optimal rotations rpolarm;mcðFÞ
yield insight into the important limit case of vanishing characteristic length
Lc ¼ 0.3 In this context, we can interpret the solutions of (1.4) as an energetically
optimal mechanical response of the field R a SOðnÞ of Cosserat microrotations to
a given deformation gradient F :¼ ‘j a GLþðnÞ.

Remark 1.4 (Vanishing Cosserat couple modulus mc). The correct choice of the
so-called Cosserat couple modulus mc b 0 for specific materials and boundary
value problems is an interesting open question. There are indications that a
non-vanishing mc > 0 has never been experimentally observed and that such a
choice is at least debatable [18]. The limit case mc ¼ 0 is hence of particular
interest.

We want to stress that although the term Wm;mcðR;F Þ subject to minimization in
(1.4) is quadratic in the nonsymmetric microstrain tensor U � 1 ¼ RTF � 1, see,
e.g., [6], the associated minimization problem with respect to R is nonlinear due
to the multiplicative coupling RTF and the geometry of SOðnÞ.

Remark 1.5 (Existence of global minimizers). The energy Wm;mcðR;F Þ is a
polynomial in the matrix entries, hence Wm;mc a ClðSOðnÞ;RÞ. Further, since
the Lie group SOðnÞ is compact and qSOðnÞ ¼ j, the global extrema of Wm;mc
are attained at interior points.

The previous remark hints at a possible solution strategy for Problem 1.2. If
all the critical points RcritðFÞ a SOðnÞ of Wm;mcðR;F Þ can be computed4, then a
direct comparison of the associated critical energy levels Wm;mcðRcrit;FÞ allows
to determine the critical branches which are energy-minimizing. Clearly, any
minimizing critical branch realizes the reduced Cosserat shear-stretch energy
defined as

W red
m;mc

: GLþðnÞ ! Rþ
0 ; W red

m;mc
ðF Þ :¼ min

R A SOðnÞ
Wm;mcðR;F Þ:ð1:6Þ

At first, a solution of Problem 1.2 in three space dimensions was out of reach
(let alone the n-dimensional problem). Therefore, we first restrict our atten-
tion to the planar case, where we can base our computations on the standard

3This identification requires that the volume term decouples from the microrotation R, e.g.,

W volðUÞ :¼ l

4
ðdet½U � � 1Þ2 þ 1

det½U �
� 1

� �2
" #

:

This requirement is quite natural and is satisfied by all linear Cosserat models [18, 22, 23].

4The smooth manifold SOðnÞ has empty boundary. This implies that a critical point for given
F a GLþðnÞ satisfies d

dtWm; mc ðRðtÞ;FÞjt¼0 ¼ 0 for every smooth curve of rotations RðtÞ : ð�e; eÞ !
SOðnÞ passing through Rð0Þ ¼ Rcrit.
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parametrisation

R : ½�p; p� ! SOð2Þ � R2�2; RðaÞ :¼ cos a �sin a

sin a cos a

� �
ð1:7Þ

by a rotation angle.5
It turns out that there are at most two optimal planar rotations rpolarem;mcðF Þ

in the non-classical parameter range m > mc b 0 and we distinguish these by a
sign. The corresponding optimal rotation angles of rpolarem;mcðF Þ are denoted by
aem;mcðF Þ. The non-classical minimizers coincide with the polar factor RpðF Þ in the
compressive regime of F a GLþð2Þ, but deviate otherwise.

The computation of the global minimizers in dependence of F is not com-
pletely obvious even for the planar case. Hence, the following simplifications of
the minimization problem are helpful.

First, it is useful to introduce

Definition 1.6 (Parameter rescaling). Let m > mc b 0. We define the singular
radius rm;mc by

rm;mc :¼
2m

m� mc
> 0; and further define lm;mc :¼

rm;mc
r1;0

¼ m

m� mc
;ð1:8Þ

as the induced scaling parameter. Note that r1;0 ¼ 2 and l1;0 ¼ 1. Further, we
define the parameter rescaling given by

~FFm;mc :¼ l�1
m;mc

F ¼ m� mc
m

F a GLþðnÞ:ð1:9Þ

For m > 0 and mc ¼ 0, we obtain ~FFm;0 ¼ F , i.e., the rescaling is only e¤ective for
mc > 0.

Regarding the material parameters, we proved in [9] that for any dimension
nb 2, it is in fact su‰cient to restrict our attention to two parameter pairs:
ðm; mcÞ ¼ ð1; 1Þ, the classical case, and ðm; mcÞ ¼ ð1; 0Þ, the non-classical case.
Hence, somewhat surprisingly, the solutions for arbitrary m > 0 and mc b 0 can
be recovered from these two limit cases. This is the content of

Lemma 1.7 (Parameter reduction). Let nb 2 and let F a GLþðnÞ, then

mc b m > 0 ) Wm;mcðR;F ÞPW1;1ðR;FÞ; and

m > mc b 0 ) Wm;mcðR;F ÞPW1;0ðR; ~FFm;mcÞ:
ð1:10Þ

Here, the equivalence notation means that the energies give rise to the same
global minimizers which we can also state as

5Note that p and �p are mapped to the same rotation. In this text, we implicitly choose p over

�p for the rotation angle whenever uniqueness is an issue.
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Corollary 1.8.

rpolarm;mcðF Þ ¼
rpolar1;1ðF Þ ¼ fRpðFÞg; if mc b m > 0

rpolar1;0ð ~FFm;mcÞ; if m > mc b 0

(
:ð1:11Þ

Another important observation can be made introducing the rotation

R̂R :¼ QTRTRpQð1:12Þ

which acts relative to the polar factor RpðF Þ in the coordinate system given by
the columns of Q which span a positively oriented frame of principal directions
of U . This allows us to transform

QTðsymðRTFÞ � 1ÞQ ¼ QTðsymðRTRpQDQTÞ � 1ÞÞQð1:13Þ
¼ symðQTRTRpQDQTQ�QTQÞ
¼ symðQTRTRpQ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

¼:R̂R

D� 1Þ ¼ symðR̂RD� 1Þ:

For fixed choice of Q a SOðnÞ, the inverse transformation allows to reconstruct
the absolute rotation uniquely

R ¼ ðQR̂RQTRT
p Þ

T ¼ RpQR̂RTQT :ð1:14Þ

Hence, in the non-classical parameter range represented by the limit case
ðm; mcÞ ¼ ð1; 0Þ, the minimization problem can be reduced to the following prob-
lem for the optimal relative rotations.

Problem 1.9. Let nb 2. Compute the set of energy-minimizing relative
rotations

rpolar1;0ðDÞ :¼ argmin
R̂R A SOðnÞ

W1;0ðR̂R;DÞ ¼ argmin
R̂R A SOðnÞ

ksymðR̂RD� 1Þk2 � SOðnÞ:ð1:15Þ

The decisive point in the solution of Problem 1.9 in dimensions nb 3 is the char-
acterization of the set of relative rotations R̂R a SOðnÞ satisfying the particular
symmetric square condition

ðR̂RD� 1Þ2 a SymðnÞ

which is equivalent to the Euler-Lagrange equations.
After having set the stage of the optimization problem on SOðnÞ, this overview

is now structured as follows: in the next Section 2, we consider in some detail the
planar problem which allows for a complete solution by elementary techniques
and which presents already the essential geometry which unfolds in dimensions
nb 3. In Section 3, we provide the complete solution for the three-dimensional
case as well as the corresponding reduced energy expression in terms of singular
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values of F . We also provide a geometrical interpretation that allows to view
the minimization problem for mc ¼ 0 as a distance problem. Furthermore, we
provide a discussion for which deformation gradients we can only have the clas-
sical response RpðF Þ. Finally, in Section 4, we present our results for the general
n-dimensional case.

2. Optimal rotations in two space dimensions

In this section, we consider

Problem 2.1 (The planar minimization problem). Let F a GLþð2Þ, m > 0 and
mc b 0. The task is to compute the set of optimal microrotation angles

argmin
a A ½�p;p�

fmksymðRðaÞTF � 12Þk2 þ mcksymðRðaÞTF � 12Þk2g;ð2:1Þ

where

RðaÞ :¼ cos a �sin a

sin a cos a

� �
a SOð2Þ and

F11 F12

F21 F22

� �
a GLþð2Þ:

In this case we can compute explicit representations of optimal planar rotations
for the Cosserat shear-stretch energy by elementary means. The parameter re-
duction strategy described by Lemma 1.7 allows us to concentrate our e¤orts
towards the construction of explicit solutions to Problem 2.1 on two representa-
tive pairs of parameter values m and mc. The classical regime is characterized by
the limit case ðm; mcÞ ¼ ð1; 1Þ and the unique minimizer is given by the polar fac-
tor RpðF Þ for any dimension nb 2.

The non-classical case represented by ðm; mcÞ ¼ ð1; 0Þ turns out to be much
more interesting and we compute all global non-classical minimizers rpolar1;0ðF Þ
for n ¼ 2. This is the main contribution of this section. Furthermore, we derive
the associated reduced energy levels W red

1;1 ðFÞ and W red
1;0 ðFÞ which are realized

by the corresponding optimal Cosserat microrotations. Finally, we reconstruct
the minimizing rotation angles for general values of m and mc from the classical
and non-classical limit cases.

2.1. Explicit solution for the classical parameter range: mc b m > 0

The polar factor RpðF Þ is uniquely optimal for the classical parameter range in
any dimension nb 2. Let us give an explicit representation for n ¼ 2 in terms
of ap a ð�p; p�. In view of the parameter reduction, distilled in Lemma 1.7, it suf-
fices to compute the set of optimal rotation angles for the representative limit case
ðm; mcÞ ¼ ð1; 1Þ.

Thus, to obtain an explicit representation of ap a ð�p; p� which characterizes
the polar factor RpðF Þ in dimension n ¼ 2, we consider
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argmin
a A ½�p;p�

W1;1ðRðaÞ;FÞð2:2Þ

¼ argmin
a A ½�p;p�

cos a �sin a

sin a cos a

� �T
F11 F12

F21 F22

� �
� 1 0

0 1

� �" #�����
�����
2

:

Let us introduce the rotation J :¼ 0 �1

1 0

� �
a SOð2Þ. Its application to a vector

v a R2 corresponds to multiplication with the imaginary unit i a C. In what fol-
lows, the quantities tr½F � ¼ F11 þ F22 and tr½JF � ¼ �F21 þ F12 play a particular
role and we note the identity

tr½F �2 þ tr½JF �2 ¼ kFk2 þ 2 det½F � ¼ tr½U �2:ð2:3Þ

The reduced energy W red
1;1 ðF Þ :¼ minR A SOðnÞ W1;1ðR;FÞ realized by the polar fac-

tor RpðFÞ can be shown to be the euclidean distance of an arbitrary F in Rn�n to
SOðnÞ. For n ¼ 2, we obtain

Theorem 2.2 (Euclidean distance to planar rotations). Let F a GLþð2Þ, then

W red
1;1 ðFÞ ¼ dist2ðF ; SOð2ÞÞ ¼ kU � 1k2 ¼ kFk2 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kFk2 þ 2 det½F �

q
þ 2:ð2:4Þ

The unique optimal rotation angle realizing this minimial energy level satisfies the
equation

sin ap
cos ap

� �
¼ 1

tr½U �
�tr½JF �
tr½F �

� �
:ð2:5Þ

In particular, we have apðFÞ ¼ �signðtr½JF �Þ � arccos tr½F �
tr½U �

� �
a ½�p; p�.

Corollary 2.3 (Explicit formula for RpðFÞ). Let F a GLþð2Þ, then the polar
factor RpðF Þ has the explicit representation

RpðF Þ ¼ RðapÞ :¼
cos ap �sin ap

sin ap cos ap

� �
¼ 1

tr½U �
tr½F � tr½JF �

�tr½JF � tr½F �

� �
:ð2:6Þ

2.2. The limit case ðm; mcÞ ¼ ð1; 0Þ for m > mc b 0

We now approach the more interesting non-classical limit case ðm; mcÞ ¼ ð1; 0Þ
and compute the optimal rotations for Wm;mcðR;F Þ. Note that, due to Lemma
1.7, this limit case represents the entire non-classical parameter range m > mc b 0.

Theorem 2.4 (The formally reduced energy W red
1;0 ðF Þ). Let F a GLþð2Þ. Then,

the formally reduced energy

W red
1;0 ðFÞ :¼ min

R A SOð2Þ
W1;0ðR;FÞ :¼ min

R A SOð2Þ
ksymðRTF � 1Þk2ð2:7Þ
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is given by

W red
1;0 ðFÞ ¼

kU � 1k2 ¼ tr½ðU � 1Þ2� ¼ dist2ðF ; SOð2ÞÞ; if tr½U � < 2
1
2 kFk

2 � det½F � ¼ 1
2 tr½U �2 � 2 det½U �; if tr½U �b 2:

(
ð2:8Þ

It is well-known that any orthogonally invariant energy density W ðF Þ admits a
representation in terms of the singular values of F , i.e., in the eigenvalues of U .
Let us give this representation.

Corollary 2.5 (Representation of W red
1;0 ðF Þ in the singular values of F ). Let

F a GLþð2Þ and denote its singular values by ni, i ¼ 1; 2. The representation of
W red

1;0 ðF Þ in the singular values of F is given by

W red
1;0 ðF Þ ¼ W red

1;0 ðn1; n2Þ ¼
ðn1 � 1Þ2 þ ðn2 � 1Þ2; if n1 þ n2 < 2
1
2 ðn1 � n2Þ2; if n1 þ n2 b 2:

(
ð2:9Þ

Note that the previous formulae are independent of the enumeration of the sin-
gular values.

2.2.1. Optimal relative rotations for m ¼ 1 and mc ¼ 0. Our next goal is to
compute explicit representations of the rotations rpolare1;0ðF Þ which realize

the minimal energy level in the non-classical limit case ðm; mcÞ ¼ ð1; 0Þ. This
is the content of the next theorem for which we now prepare the stage with the
following

Lemma 2.6. Let D ¼ diagðn1; n2Þ > 0, i.e, a diagonal matrix with strictly positive
diagonal entries. Then, assuming tr½D�b 2, the equation tr½RðbÞD� ¼ 2 has the fol-
lowing solutions

be¼earccos
2

tr½D�

� �
a � p

2
;
p

2

� 	
:ð2:10Þ

For tr½D� < 2, there exists no solution, but we can define b ¼ be :¼ 0 by continuous
extension.

Our Figure 2.1 shows a plot of the optimal relative rotation angle bðtr½U �Þ.
In the classical parameter range 0 < tr½U �a 2, apðF Þ is uniquely optimal
and b vanishes identically. In tr½U � ¼ 2, a classical pitchfork bifurcation
occurs. In particular, due to tr½Uð12Þ� ¼ tr½12� ¼ 2, the identity matrix is a
bifurcation point of beðF Þ. Further, we note that the branches beðtr½U �Þ ¼
earccosð2=tr½U �Þ are not di¤erentiable at tr½U � ¼ 2. This has implications on
the interaction of the Cosserat shear-stretch energy with the Cosserat curvature
energy Wcurv.

Theorem 2.7 (Optimal non-classical microrotation angles ae1;0). Let

F a GLþð2Þ and consider ðm; mcÞ ¼ ð1; 0Þ. The optimal rotation angles for W1;0
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are given by

ae1;0ðF Þ ¼
apðF Þ ¼ arccos

tr½F �
tr½U �

� �
; if tr½U � < 2

apðF Þe arccos 2
tr½U �

� �
; if tr½U �b 2:

8<
:ð2:11Þ

2.3. Expressions for general non-classical parameter choices

The reduction for m and mc in Lemma 1.7 asserts that the optimal rotations for
arbitrary values of m > 0 and mc b 0 can be reconstructed from the limit cases
ðm; mcÞ ¼ ð1; 1Þ and ðm; mcÞ ¼ ð1; 0Þ. We now detail this procedure which essen-
tially exploits Definition 1.6.

Note first that the rescaled deformation gradient ~FFm;mc :¼ l�1
m;mc

F induces a
rescaled stretch tensor

~UUm;mc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~FFm;mcÞ

T ~FFm;mc

q
¼ l�1

m;mc
�U :ð2:12Þ

The right polar decomposition takes the form ~FFm;mc ¼ Rpð ~FFm;mcÞ ~UUm;mc . From
Rpð ~FFm;mcÞ ¼ ~FFm;mc

~UU�1
m;mc

follows the scaling invariance Rpð ~FFm;mcÞ ¼ RpðFÞ. For the
non-classical parameter range m > mc b 0, the quantity

tr½ ~UUm;mc � ¼ tr½l�1
m;mc

�U � ¼
r1;0

rm;mc
tr½U �ð2:13Þ

plays an essential role. This leads us to

tr½ ~UUm;mc �b 2 ¼ r1;0 , tr
r1;0

rm;mc
�U

" #
b r1;0 , tr½U �b rm;mc :ð2:14Þ

Figure 2.1. Plot of the two optimal relative rotation angles be1;0 ¼earccos 2
tr½U �

� �
for the

non-classical limit case ðm; mcÞ ¼ ð1; 0Þ. Note the pitchfork bifurcation in tr½U � ¼ r1;0 ¼ 2.
For 0 < tr½U � < 2, the polar angle ap is uniquely optimal and the relative rotation angle b
vanishes identically.
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In particular, this implies that the bifurcation in tr½U � allowing for non-classical
optimal planar rotations is characterized by the singular radius rm;mc :¼

2m
m�mc

.

Theorem 2.8. Let F a GLþð2Þ. For mc b m > 0 the optimal microrotation angle
is given by

am;mcðF Þ ¼ apð ~FFm;mcÞ ¼ apðFÞ ¼ arccos
tr½F �
tr½U �

� �
:ð2:15Þ

For m > mc b 0, the two optimal rotation angles are given by

aem;mcðFÞ ¼ ae1;0ð ~FFm;mcÞ ¼
apðF Þ ¼ arccos

tr½F �
tr½U �

� �
; if tr½U � < rm;mc

apðF ÞH arccos
rm; mc
tr½U �

� �
; if tr½U �b rm;mc :

8<
:ð2:16Þ

2.4. Optimal rotations for planar simple shear

We now apply our previous optimality results to simple shear deformations

Fg :¼
1 g

0 1

� �
; g a R:ð2:1Þ

The energy-minimizing rotation angles am;mcðgÞ :¼ am;mcðFgÞ for simple shear can
be explicitly computed; see also [26] for previous results.

In the classical parameter range mc b m > 0 represented by the limit case
ðm; mcÞ ¼ ð1; 1Þ the polar rotation RpðFgÞ is uniquely optimal.

Let us collect some properties of simple shear Fg. We have kFgk2 ¼ 2þ g2 and
det½Fg� ¼ 1, i.e., simple shear is volume preserving for any amount g. This allows
us to compute

tr½Ug� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kFgk2 þ 2 det½Fg�

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ g2

p
b 2:ð2:2Þ

Thus, we have

Corollary 2.9 (Optimal non-classical Cosserat rotations for simple shear).
Let ðm; mcÞ ¼ ð1; 0Þ and let Fg a GLþð2Þ be a simple shear of amount g a R. Then,

gA 0 ) rpolare1;0ðFgÞARpðFgÞ:ð2:3Þ

Remark 2.10 (Symmetry of the first Cosserat deformation tensor U in simple
shear). A simple shear Fg by a non-zero amount gA 0 automatically generates
an optimal microrotational response rpolareðFgÞ which deviates from the contin-
uum rotation RpðF Þ. This implies that the associated first Cosserat deformation
tensor U

e
1;0ðFgÞ :¼ rpolare1;0ðFgÞTFg is not symmetric for any gA 0.

3. Optimal rotations in three space dimensions

In this section, we discuss
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Problem 3.1 (Weighted optimality in dimension n ¼ 3). Let m > 0 and mc b 0.
Compute the set of optimal rotations

argmin
R A SOð3Þ

Wm;mcðR;F Þð3:1Þ

:¼ argmin
R A SOð3Þ

fmksymðRTF � 1Þk2 þ mckskewðRTF � 1Þk2g

for given parameter F a GLþð3Þ with distinct singular values n1 > n2 > n3 > 0.

The polar factor RpðF Þ is the unique minimizer for Wm;mcðR;FÞ in the classical
parameter range mc b m > 0, in all dimensions nb 2, see [15, 24].

Since the classical parameter domain mc b m > 0 is very well understood, we
focus entirely on the non-classical parameter range m > mc b 0. Furthermore,
due to the parameter reduction described by Lemma 1.7, which holds for all
dimensions nb 2, it su‰ces to solve the non-classical limit case ðm; mcÞ ¼ ð1; 0Þ,
since

argmin
R A SOð3Þ

Wm;mcðR;FÞ ¼ argmin
R A SOð3Þ

W1;0ðR; ~FFm;mcÞ:ð3:2Þ

On the right hand side, we notice a rescaled deformation gradient

~FFm;mc :¼ l�1
m;mc

� F a GLþð3Þ

which is obtained from F a GLþð3Þ by multiplication with the inverse of the
induced scaling parameter lm;mc :¼

m

m�mc
> 0. We note that we use the previous nota-

tion throughout the text and further introduce the singular radius rm;mc :¼
2m

m�mc
.

It follows that the set of optimal Cosserat rotations can be described by

rpolarm;mcðFÞ ¼ rpolar1;0ð ~FFm;mcÞð3:3Þ

for the entire non-classical parameter range m > mc b 0. We are therefore mostly
concerned with the case mc ¼ 0 in the present text. Note that for all m > 0, we
have the equality

rpolarem;0ðF Þ ¼ rpolare1;0ðFÞ:ð3:4Þ

3.1. The locally energy-minimizing Cosserat rotations rpolarem;mcðFÞ

We briefly present the geometric characterization of the optimal Cosserat rota-
tions rpolarem;mcðF Þ obtained in [10]. Let R a SOð3Þ and let S2 � R3 denote the
unit 2-sphere. We make use of the well-known angle-axis parametrization of
rotations which we write as ½a; r�6, where a a ð�p; p� denotes the rotation angle
and r a S2 specifies the oriented rotation axis.

We recall that it is su‰cient to solve for the relative rotation, i.e., we consider

6The angle-axis parametrization is singular, but this is not an issue for our exposition.
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Problem 3.2 (Diagonal form of weighted optimality in n ¼ 3). Let m > 0 and
mc b 0 and let D ¼ diagðn1; n2; n3Þ with n1 > n2 > n3 > 0. Compute the set of opti-
mal relative rotations

argmin
R̂R A SOð3Þ

Wm;mcðR̂R
T ;DÞð3:5Þ

:¼ argmin
R̂R A SOð3Þ

fmksymðR̂RD� 1Þk2 þ mckskewðR̂RD� 1Þk2g:

We stress that the rotation angle of the relative rotation R̂R is implicitly reversed
due to the correspondence RT $ R̂R.

The computation of the solutions to Problem 3.2 by computer algebra to-
gether with a statistical verification are the core results obtained in [10] which
we present next.

Proposition 3.3 (Energy-minimizing relative rotations for ðm; mcÞ ¼ ð1; 0Þ).
Let n1 > n2 > n3 > 0 be the singular values of F a GLþð3Þ. Then the energy-
minimizing relative rotations solving Problem 3.2 are given by

R̂Re
1;0ðFÞ :¼

cos b̂be1;0 �sin b̂be1;0 0

sin b̂be1;0 cos b̂be1;0 0

0 0 1

0
B@

1
CA;ð3:6Þ

where the optimal rotation angles b̂be1;0 a � p
2 ;

p
2


 �
are given by

b̂be1;0ðFÞ :¼
0; if n1 þ n2 a 2;

earccos 2
n1þn2

� �
; if n1 þ n2 b 2:

(
ð3:7Þ

Thus, in the non-classical regime n1 þ n2 b 2, we obtain the explicit expression

R̂Re
1;0ðFÞ :¼

2
n1þn2

H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

n1þn2

� �2r
0

e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

n1þn2

� �2r
2

n1þn2
0

0 0 1

0
BBBBB@

1
CCCCCA:ð3:8Þ

In the classical regime n1 þ n2 a 2, we simply obtain the relative rotation
R̂Re

1;0ðFÞ ¼ 1, and there is no deviation from the polar factor RpðF Þ at all.

Note that, due to the parameter reduction Lemma 1.7, it is always possible to
recover the optimal rotations rpolarem;mcðF Þ for general non-classical parameter

choices m > mc b 0 from the non-classical limit case ðm; mcÞ ¼ ð1; 0Þ; cf. [9] and
[10] for details.

3.2. Geometric and mechanical aspects of optimal Cosserat rotations

It seems natural to introduce
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Definition 3.4 (Maximal mean planar stretch and strain). Let F a GLþð3Þ
with singular values n1 b n2 b n3 > 0. We introduce the maximal mean planar
stretch ummp and the maximal mean planar strain smmp as follows:

ummpðFÞ :¼
n1 þ n2

2
; and

smmpðFÞ :¼
ðn1 � 1Þ þ ðn2 � 1Þ

2
¼ ummpðF Þ � 1:

ð3:9Þ

In order to describe the bifurcation behavior of rpolarem;mcðF Þ as a function of the
parameter F a GLþð3Þ, it is helpful to partition the parameter space GLþð3Þ.

Definition 3.5 (Classical and non-classical domain). To any pair of material
parameters ðm; mcÞ in the non-classical range m > mc b 0, we associate a classical

domain DC
m;mc

and a non-classical domain DNC
m;mc

. Here,

DC
m;mc

:¼ fF a GLþð3Þ j smmpð ~FFm;mcÞa 0g; and

DNC
m;mc

:¼ fF a GLþð3Þ j smmpð ~FFm;mcÞb 0g;
ð3:10Þ

respectively.

It is straight-forward to derive the following equivalent characterizations

DC
m;mc

¼ fF a GLþð3Þ j ummpðF Þa lm;mcg

¼ F a GLþð3Þ j n1 þ n2 a rm;mc :¼
2m

m� mc

� 
;

DNC
m;mc

¼ fF a GLþð3Þ j ummpðF Þb lm;mcg

¼ F a GLþð3Þ j n1 þ n2 b rm;mc :¼
2m

m� mc

� 
:

ð3:11Þ

On the intersection DC
m;mc

BDNC
m;mc

¼ fF a GLþð3Þ j smmpðFÞ ¼ 0g, the mini-
mizers rpolarem;mcðF Þ coincide with the polar factor RpðFÞ. This can be seen from

the form of the optimal relative rotations in Proposition 3.3. More explicitly, in
dimension n ¼ 3 and in the non-classical limit case ðm; mcÞ ¼ ð1; 0Þ, we have:

DC
1;0 :¼ fF a GLþð3Þ j smmpðFÞa 0g; and

DNC
1;0 :¼ fF a GLþð3Þ j smmpðF Þb 0g:

ð3:12Þ

Since the maximal mean planar strain smmpðF Þ is related to strain, this indicates a
particular (possibly new) type of tension-compression asymmetry.

Towards a geometric interpretation of the energy-minimizing Cosserat rota-
tions rpolare1;0ðF Þ in the non-classical limit case ðm; mcÞ ¼ ð1; 0Þ, we reconsider
the spectral decomposition of U ¼ QDQT from the principal axis transformation
in Section 1. Let us denote the columns of Q a SOð3Þ by qi a S2, i ¼ 1; 2; 3. Then
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q1 and q2 are orthonormal eigenvectors of U which correspond to the largest
two singular values n1 and n2 of F a GLþð3Þ. More generally, we introduce the
following

Definition 3.6 (Plane of maximal stretch). The plane of maximal stretch is the
linear subspace

PmsðF Þ :¼ spanðfq1; q2gÞ � R3

spanned by the two eigenvectors q1, q2 of U associated with the two largest sin-
gular values n1 > n2 > n3 > 0 of the deformation gradient F a GLþð3Þ.

We recall that, due to the parameter reduction Lemma 1.7, it is always possible to
recover the optimal rotations

rpolarm;mcðF Þ :¼ argmin
R A SOð3Þ

Wm;mcðR;F Þð3:13Þ

for a general choice of non-classical parameters m > mc b 0 from the non-classical
limit case ðm; mcÞ ¼ ð1; 0Þ. However, we defer the explicit procedure for a bit since
it is quite instructive to interpret this distinguished non-classical limit case first.

Remark 3.7 (rpolare1;0ðFÞ in the classical domain). For smmpðF Þa 0 the maxi-
mal mean planar strain is non-expansive. By definition, we have F a DC

1;0 in
the classical domain, for which the energy-minimizing relative rotation is given
by R̂R1;0ðFÞ ¼ 1 and there is no deviation from the polar factor. In short
rpolare1;0ðF Þ ¼ RpðF Þ.

Let us now turn to the more interesting non-classical case F a DNC
1;0 .

Figure 3.1. Action of rpolare1; 0ðFÞ in axes of principal stretch for a stretch ellipsoid with
half-axes ðn1; n2; n3Þ ¼ ð4; 2; 1=2Þ. The plane of maximal stretch PmsðFÞ is depicted in
blue. The cylinder along q3 ? PmsðFÞ illustrates that the axis of rotation is the eigenvector
q3 of U associated with the smallest singular value n3 ¼ 1=2 of F . The thin cylinder [blue]
bisecting the opening represents the relative rotation angle b̂b ¼ 0 and corresponds to
RpðFÞ. The outer two cylinders [red] correspond to the two non-classical minimizers

rpolare1;0ðFÞ. The enclosed angles b̂be1;0 ¼earccos 2
n1þn2

� �
are the optimal relative rotation

angles. This reveals the major symmetry of the non-classical minimizers.

587grioli’s theorem with weights and the relaxed-polar mechanism



Remark 3.8 (rpolare1;0ðFÞ in the non-classical domain). If F a DNC
1;0 , then by

definition smmpðF Þ > 0 and the maximal mean planar strain is expansive. The
deviation of the non-classical energy-minimizing rotations rpolare1;0ðFÞ from the
polar factor Rp is measured by a rotation in the plane of maximal stretch PmsðFÞ
given by RpðFÞT rpolare1;0ðFÞ ¼ QðFÞR̂RH

1;0ðF ÞQðF ÞT . The rotation axis is the
eigenvector q3 associated with the smallest singular value n3 > 0 of F and the
relative rotation angle is given by b̂bH1;0ðF Þ ¼ H arccosð1=ummpðF ÞÞ. The rotation
angles increase monotonically towards the asymptotic limits

lim
ummpðFÞ!l

b̂be1;0ðF Þ ¼e
p

2
:

In axis-angle representation, we obtain

R̂Re
1;0ðF ÞC ½earccosð1=ummpðF ÞÞ; ð0; 0; 1Þ�; andð3:14Þ

RT
p rpolare1;0ðF ÞC ½Harccosð1=ummpðF ÞÞ; q3�:ð3:15Þ

Figure 3.2. Pitchfork bifurcation diagram for rpolarem;mcðFÞ for m > mc b 0. Let us express

the energy-minimizers rpolarem;mcðFÞ in terms of the maximal mean planar stretch

ummpð ~FFm;mcÞ of the rescaled deformation gradient ~FFm;mc :¼ l�1
m;mc

F . For values F a DC
m;mc

,

we have 0 < ummp a lm;mc and the polar factor RpðFÞ is uniquely energy-minimizing.

In contrast, for F a DNC
m;mc

, lm;mc a ummp < l, there are two non-classical minimizers

rpolarem;mcðFÞ. In this regime, the polar factor is no longer optimal but it is still a crit-

ical point. At the branching point ummpð ~FFm;mcÞ ¼ lm;mc the minimizers all coincide:
rpolar�m;mcðFÞ ¼ RpðFÞ ¼ rpolarþm;mcðFÞ. For mc ! m, the branching point escapes to infin-

ity which asymptotically recovers the behavior in the classical parameter range mc b
m > 0.
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Corollary 3.9 (An explicit formula for rpolarem;mcðF Þ). For the non-classical
limit case ðm; mcÞ ¼ ð1; 0Þ we have the following formula for the energy-minimizing
Cosserat rotations:

rpolare1;0ðFÞ :¼
RpðF Þ; if F a DC

1;0;

RpðF ÞQðF ÞR̂RH
1;0ðFÞQðF ÞT ; if F a DNC

1;0 :

(
ð3:16Þ

For general values of the weights in the non-classical range m > mc b 0, we obtain

rpolarem;mcðF Þ :¼ rpolare1;0ð ~FFm;mcÞ;ð3:17Þ

where ~FFm;mc :¼ l�1
m;mc

F is obtained by rescaling the deformation gradient with the

inverse of the induced scaling parameter lm;mc :¼
m

m�mc
> 0.

Note that the previous definition is relative to a fixed choice of the orthonormal
factor QðFÞ a SOð3Þ in the spectral decomposition of U ¼ QDQT . Further,
right from their variational characterization, one easily deduces that the energy-

minimizing rotations satisfy rpolarem;mcðQFÞ ¼ Q rpolarem;mcðFÞ, for anyQ a SOð3Þ,
i.e., they are objective functions; cf. Remark 3.10.

The domains of the piecewise definition of rpolare1;0ðFÞ in Corollary 3.9 indi-
cate a certain tension-compression asymmetry in the material model character-
ized by the Cosserat shear-stretch energy W1;0ðR;F Þ. We can also make a second
important observation. To this end, consider a smooth curve FðtÞ : ð�e; eÞ !
GLþð3Þ. If the eigenvector q3ðtÞ a S2 associated with the smallest singular value
n3ðtÞ changes its orientation along this curve, then the rotation axis of rpolare1;0ðFÞ
flips as well. E¤ectively, the sign of the relative rotation angle b̂be1;0ðF Þ is negated
which may lead to jumps. This can happen, e.g., if F ðtÞ passes through a defor-
mation gradient with a non-simple singular value, but it may also depend on
details of the specific algorithm used for the computation of the eigenbasis.

For the classical range mc b m > 0, the polar factor and the relaxed polar
factor(s) coincide and trivially share all properties. This is no longer true for the
non-classical parameter range mc b m > 0 and we compare the properties for that
range in our next remark. More precisely, we present a detailed comparison of
the well-known features of the polar factor Rp which are of fundamental impor-
tance in the context of mechanics.

Remark 3.10 (RpðF Þ vs. rpolarðF Þ for the non-classical range m > mc b 0). Let
nb 2 and F a GLþðnÞ. The polar factor RpðFÞ a SOðnÞ obtained from the polar
decomposition F ¼ RpðF ÞU is always unique and satisfies:

ðObjectivityÞ RpðQ � F Þ ¼ Q �RpðF Þ ðEQ a SOðnÞÞ;
ðIsotropyÞ RpðF �QÞ ¼ RpðF Þ �Q ðEQ a SOðnÞÞ;
ðScaling invarianceÞ Rpðl � FÞ ¼ RpðF Þ ðEl > 0Þ;
ðInversion symmetryÞ RpðF �1Þ ¼ RpðF Þ�1:

ð3:18Þ
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The relaxed polar factor(s) rpolarm;mcðF Þ � SOðnÞ is in general multi-valued and,
due to its variational characterization, satisfies:

ðObjectivityÞ rpolarm;mcðQ � F Þ ¼ Q � rpolarm;mcðF Þ ðEQ a SOðnÞÞ;
ðIsotropyÞ rpolarm;mcðF �QÞ ¼ rpolarm;mcðF Þ �Q ðEQ a SOðnÞÞ:ð3:19Þ

For the particular dimensions k ¼ 2; 3, our explicit formulae imply that there
exist particular instances l� > 0 and F � a GLþðkÞ, for which we have

ðBroken scaling invarianceÞ rpolarem;mcðl
� � F �ÞA rpolarðF �Þ; and

ðBroken inversion symmetryÞ rpolarem;mcðF
��1Þ A rpolarðF �Þ�1:

ð3:20Þ

This can be directly inferred from the partitioning of GLþðkÞ ¼ DC
m;mc

ADNC
m;mc

and the respective piecewise definition of the relaxed polar factor(s), see Corollary
3.9.

We interpret these broken symmetries as a (generalized) tension-compression
asymmetry.

3.3. The reduced Cosserat shear-stretch energy

We now introduce the notion of a reduced energy as the energy level realized by
the energy-minimizing rotations rpolarm;mcðFÞ.

Definition 3.11 (Reduced Cosserat shear-stretch energy). The reduced
Cosserat shear-stretch energy is defined as

W red
m;mc

: GLþðnÞ ! Rþ
0 ; W red

m;mc
ðF Þ :¼ min

R A SOðnÞ
Wm;mcðR;FÞ:ð3:21Þ

Besides the previous definition, we also have the following equivalent means for
the explicit computation of the reduced energy

W red
m;mc

ðF Þ ¼ Wm;mcðrpolar
e
m;mc

ðF Þ;F Þ; and

W red
m;mc

ðF Þ ¼ W red
m;mc

ðDÞ :¼ min
R̂R A SOðnÞ

Wm;mcðR̂R;DÞ ¼ Wm;mcðR̂R
e
m;mc

;DÞ:ð3:22Þ

Lemma 3.12 (The reduced Cosserat shear-stretch energy Wred
1;0ðFÞ in terms of sin-

gular values). Let F a GLþð3Þ and n1 > n2 > n3 > 0 the ordered singular values
of F. Then the reduced Cosserat shear-stretch energy Wred

1;0ðF Þ admits the following
piecewise representation

Wred
1;0ðF Þ ¼

ðn1 � 1Þ2 þ ðn2 � 1Þ2 þ ðn3 � 1Þ2 ¼ kU � 1k2;
if n1 þ n2 a 2; i:e:; F a DC

1;0;

1
2 ðn1 � n2Þ2 þ ðn3 � 1Þ2;

if n1 þ n2 b 2; i:e:; F a DNC
1;0 :

8>>>><
>>>>:
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Our next step is to reveal the form of the reduced energy for the entire non-
classical parameter range m > mc b 0 which involves the parameter reduction
lemma, but we have to be a bit careful.

Remark 3.13 (Reduced energies and the parameter reduction lemma). The
parameter reduction in Lemma 1.7 is the key step in the computation of the min-
imizers for general non-classical material parameters m > mc b 0. It might be
tempting, but we have to stress that the general form of the reduced energy can-
not be obtained by rescaling the singular values ni 7! l�1

m;mc
ni in the singular value

representation of W red
1;0 .

Theorem 3.14 (W red
m;mc

as a function of the singular values). Let F a GLþðnÞ
and n1 > n2 > n3 > 0, the ordered singular values of F and let m > mc b 0, i.e., a
non-classical parameter set. Then the reduced Cosserat shear-stretch energy
W red

m;mc
: GLþð3Þ ! Rþ

0 admits the following explicit representation

W red
m;mc

ðF Þ

¼
mððn1 � 1Þ2 þ ðn2 � 1Þ2 þ ðn3 � 1Þ2Þ ¼ mkU � 1k2; F a DC

m;mc
;

m
2 ðn1 � n2Þ2 þ mðn3 � 1Þ2 þ mc

2 ððn1 þ n2Þ � rm;mcÞ
2 � mc

2 � r2m;mc ; F a DNC
m;mc

:

8<
:

Remark 3.15 (On mc as a penalty weight). Let us consider the contribution of
the skew-term to W red

m;mc
given by

mc
2
ððn1 þ n2Þ � rm;mcÞ

2

as a penalty term for F a GLþð3Þ arising for material parameters in the non-
classical parameter range m > mc b 0. This leads to a simple but interesting obser-
vation for strictly positive mc > 0. The minimizers F a GLþð3Þ for the penalty
term satisfy the bifurcation criterion

n1 þ n2 ¼ rm;mc

for rpolarem;mcðF Þ. In this case R̂Re
m;mc

¼ 1 which implies that R̂Re
m;mc

D� 1 a Symð3Þ,
i.e., it is symmetric. Hence, the skew-part vanishes entirely which minimizes the
penalty. In numerical applications, a rotation field R approximating rpolareðF Þ
can be expected to be unstable in the vicinity of the branching point n1 þ n2Q
rm;mc . Hence, a penalty which explicitly rewards an approximation to the bifurca-

tion point seems to be a delicate property. In strong contrast, for the case when
the Cosserat couple modulus is zero, i.e., mc ¼ 0, the penalty term vanishes
entirely. This hints at a possibly more favorable qualitative behavior of the model
in that case; cf. [18].

We recall that the tangent bundle T SOðnÞ is isomorphic to the product
SOðnÞ � soðnÞ as a vector bundle. This is commonly referred to as the left trivial-
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ization, see, e.g., [5]. With this we can minimize over the tangent bundle in the
following

Lemma 3.16. Let F a Rn�n. Then

inf
R A SOðnÞ
A A soðnÞ

kRTF � 1� Ak2 ¼ min
R A SOðnÞ

ksymðRTF � 1Þk2 ¼: min
R A SOðnÞ

W1;0ðR;F Þ:

In the non-classical limit case ðm; mcÞ ¼ ð1; 0Þ, the preceding lemma yields a geo-
metric characterization of the reduced Cosserat shear-stretch energy as a distance
which we find remarkable.

Corollary 3.17 (Characterization of W red
1;0 as a distance). Let nb 2 and con-

sider F a GLþðnÞ with singular values n1 b n2 b � � �b nn > 0, i.e., not necessarily
distinct. Then the reduced Cosserat shear-stretch energy W red

1;0 : GLþðnÞ ! Rþ
0

admits the following characterization as a distance

W red
1;0 ðF Þ ¼ dist2euclidðF ; SOðnÞð1þ soðnÞÞÞ:ð3:23Þ

Here, disteuclid denotes the euclidean distance function.

Figure 3.3. Energy isosurfaces of W red
1;0 considered as a function of the unordered singular

values n1; n2; n3 > 0 of F a GLþð3Þ. The displayed contour levels are 0:1, 0:4 and 0:8.
On the right, we have removed a piece from the non-classical cylindrical parts (red) of
the energy level 0:8 which reveals the spherical shell of the classical part (green). Note
that a computation of these level surfaces via Monte Carlo minimization yields the same
result (but at a much lower resolution).

592 a. fischle and p. neff



3.4. Alternative criteria for the existence of non-classical solutions

For m > mc > 0, i.e., for strictly positive mc > 0, the singular radius satisfies

rm;mc :¼
2m

m�mc
> 2. We now define a quite similar constant, namely

zm;mc :¼ rm;mc � r1;0 ¼
2mc

m� mc
> 0:ð3:24Þ

Furthermore, we define the e-neighborhood of a set X � Rn�n relative to the
euclidean distance function as

NeðXÞ :¼ fY a Rn�n j disteuclidðY ;XÞ < eg:

Lemma 3.18 (Classical SOð3Þ-neighborhood for mc > 0). Let m > mc > 0,
F a GLþð3Þ and zm;mc :¼

2mc
m�mc

> 0. Then we have the following inclusion

N1
2z

2
m; mc

ðSOð3ÞÞ � DC
m;mc

:ð3:25Þ

In other words, for all F a GLþð3Þ satisfying disteuclidðF ; SOð3ÞÞ ¼ kU � 1k2 <
1
2 z

2
m;mc

, the polar factor Rp is the unique minimizer of Wm;mcðR;FÞ.

Lemma 3.19. Let F a SLð3Þ, i.e., det½F � ¼ n1n2n3 ¼ 1, where n1 b n2 b n3 > 0
are ordered singular values of F , not necessarily distinct. Then

SLð3Þ � DNC
1;0 ;ð3:26Þ

i.e., F induces a strictly non-classical minimizer. Equivalently, det½F � ¼ 1 implies
the estimate n1 þ n2 b 2.

Remark 3.20. If we make the stronger assumption n1 > n2 > n3 > 0, we obtain
a strict inequality n1 þ n2 > 2. In that case, F a DNC

1;0 nDC
1;0 is strictly non-

classical.

Figure 3.4. Illustration of a euclidean e-neighborhood of SOð3Þ � R3�3.
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Corollary 3.21. Let m > 0, F a SLþð3Þ and assume that n1 > n2 > n3 > 0.
Then

F a DNC
m;0 nDC

m;0;ð3:27Þ

i.e., the minimizers rpolarem;0ðF ÞARp are strictly non-classical.

4. Optimal rotations in general dimension

The key insight for the solution of the minimization problem in general dimen-
sion nb 2 is a new approach to the analysis of the critical points. The Euler-
Lagrange equations for W1;0ðR;F Þ are equivalent to

ðR̂RD� 1Þ2 a SymðnÞ:ð4:1Þ

This is a symmetric square condition for the relative rotation R̂R, since

ðXðR̂RÞÞ2 ¼ S a SymðnÞ; where X ðR̂RÞ :¼ R̂RD� 1 a Rn�n:ð4:2Þ

As it is su‰cient to compute the optimal relative rotation R̂R, we simply set R ¼ R̂R
for the rest of this section.

One might suspect that the critical points of W1;0ðR;DÞ are connected to real
matrix square roots of real symmetric matrices. And indeed, the structure of the
set of critical points of W1;0ðR;DÞ can be revealed quite elegantly by a specific
characterization of the set of real matrix square roots of real symmetric matrices.
Note that this characterization [2, Thm. 2.13], which is similar in spirit to the
standard representation theorem for orthogonal matrices OðnÞ as block matrices,
seems not to be known in the literature. Due to this representation, the square
roots of interest can always be orthogonally transformed into a block-diagonal
representation which reduces the minimization problem from arbitrary dimen-
sion n > 2 into decoupled one- and two-dimensional subproblems. These can
then be solved independently. From this point of view, a non-classical minimizer
in n ¼ 3, simultaneously solves a one-dimensional and a two-dimensional sub-
problem. The one-dimensional problem determines the rotation axis of the
optimal rotations, while the two-dimensional subproblem determines the optimal
rotation angles.

The degenerate cases of optimal Cosserat rotations arising for recurring
parameter values ni, i ¼ 1; 2; 3, in the diagonal parameter matrix D a DiagðnÞ
has not been treated previously in [10], but is also accessible with the general
approach. Note that this case corresponds to the special case of two or more
equal principal stretches ni which is an important highly symmetric corner case
in mechanics.

Combining the results of the two preceding sections, we can now describe
the critical values of the Cosserat shear-stretch energy W1;0ðR;DÞ which are
attained at the critical points. The main result of this section is a procedure
(algorithm) which traverses the set of critical points in a way that reduces the
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Figure 3.5. Optimal relative rotation angles b̂bMC
m;mc

for multiple non-classical values m >
mc b 0. The angles are obtained by stochastic (Monte Carlo) minimization of Wm;mcðR;FÞ.
The dashed blue curve shows the predicted value for b̂be1;0ðn1 þ n2Þ and the dashed red line
marks the expected bifurcation point at rm;mc . For a direct comparison, we provide Figure

3.6 on page 596 which shows the classical limit case ðm; mcÞ ¼ ð1; 1Þ; see also Figure 3.2 on
page 588 for an illustration and a more precise description of the bifurcation behavior
predicted by our proposed formula rpolarem;mcðFÞ.
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energy at every step of the procedure and finally terminates in the subset of global
minimizers.

Technically, we label the critical points by certain partitions of the index set
f1; . . . ; ng containing only subsets I with one or two elements. We note that the
subsets I and a choice of sign for det½RI � uniquely characterize a critical point
R a SOðnÞ.

Let us give an outline of the energy-decreasing traversal strategy starting from
a given labeling partition (i.e., critical point):

1. Choose the positive sign det½RI � ¼ þ1 for each subset of the partition.
2. Disentangle all overlapping blocks for n > 3 (cf. Lemma 4.5).
3. Successively shift all 2� 2-blocks to the lowest possible index, i.e., collect the

blocks of size two as close to the upper left corner of the matrix R as possible
(cf. Lemma 4.3).

4. Introduce as many additional 2� 2-blocks by joining adjacent blocks of size 1
as the constraint ni þ nj > 2 allows (cf. Lemma 4.3).

The next theorem connects the value of W1;0ðR;DÞ realized by a critical point
with its labeling partition and the choice of determinants det½RI � which charac-
terize it.

Theorem 4.1 (Characterization of critical points and values). Let the entries
n1 > n2 > . . . > nn > 0 of D a DiagðnÞ. Then the critical points R a SOðnÞ can be
classified according to partitions of the index set f1; . . . ; ng into subsets of size one
or two and choices of signs for the determinant det½RI � for each subset I . The sub-

Figure 3.6. Optimal relative rotation angle b̂bMC
1;1 obtained from stochastic (Monte Carlo)

minimization for the classical limit case m ¼ mc ¼ 1. We observe that the relative rotation
angle vanishes up to numerical accuracy, since the polar factor RpðFÞ is always optimal in
perfect accordance with Grioli’s theorem, see [24] and [9, Cor. 2.4, p. 5]. More precisely,
this corresponds to the prediction b̂be1; 1ðn1 þ n2Þ ¼ 0.
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sets of size two I ¼ fi; jg satisfy

ni þ nj > 2; det½RI � ¼ þ1; and

jni � njj > 2; det½RI � ¼ �1:

�

The corresponding critical values are given by

W1;0ðR;DÞ ¼
X
I¼fig

det½RI �¼1

ðni � 1Þ2 þ
X
I¼fig

det½RI �¼�1

ðni þ 1Þ2

þ
X

I¼fi; jg
det½RI �¼1

1

2
ðni � njÞ2 þ

X
I¼fi; jg

det½RI �¼�1

1

2
ðni þ njÞ2:

Remark 4.2 (On non-distinct entries of D). If we allow

n1 b n2 b � � �b nn > 0

for the entries of D, then the D- and R-invariant subspaces Vi are not necessarily
coordinate subspaces. This produces non-isolated critical points but does not
change the formula for the critical values.

In order to compute the global minimizers R a SOðnÞ for the Cosserat shear-
stretch energy W1;0ðR;DÞ, we have to compare all the critical values which cor-
respond to the di¤erent partitions and choices of the signs of the determinants in
the statement of Theorem 4.1. We may, however, assume that det½RI � ¼ þ1 for
all subsets I , see [2] for further details.

The following lemma shows that blocks of size two are always favored when-
ever they exist.

Lemma 4.3 (Comparison lemma). If ni þ nj > 2 then the di¤erence between
the critical values of W1;0ðR;DÞ corresponding to the choice of a size two subset
I ¼ fi; jg as compared to the choice of two size one subsets fig, f jg is given
by

� 1

2
ðni þ nj � 2Þ2:

Let us rewrite W1;0ðR;DÞ in a slightly di¤erent form in order to distill the con-
tributions of the size two blocks in the partition.

Corollary 4.4. For the choices of det½RI � ¼ 1 there holds

W1;0ðR;DÞ ¼ ksymðRD� 1Þk2 ¼
Xn

i¼1

ðni � 1Þ2 � 1

2

X
I¼fi; jg

ðni þ nj � 2Þ2:
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To study the global minimizers for the Cosserat shear-stretch energy in arbitrary
dimension nb 4, we need to investigate the relative location of the size two sub-
sets of the partition.

Lemma 4.5. Let R a SOðnÞ be a global minimizer for W1;0ðR;DÞ. Then R cannot
contain overlapping size two subsets, i.e., I ¼ fi1; i4g, J ¼ fi2; i3g, with i1 < i2 <
i3 < i4.

We are now ready to state the result in the general n-dimensional case.

Theorem 4.6. Let n1 > n2 > � � � nn > 0 be the entries of D. Let us fix the maxi-
mum k for which n2k�1 þ n2k > 2. Any global minimizer R a SOðnÞ corresponds to
the partition of the form

f1; 2g t f3; 4g t � � � t f2k � 1; 2kg t f2k þ 1g t � � � t fng

and the global minimum of W1;0ðR;DÞ is given by

W red
1;0 ðDÞ :¼ min

R A SOðnÞ
ksymðRD� 1Þk2 ¼

Xn

i¼1

ðni � 1Þ2 � 1

2

Xk
i¼1

ðn2i�1 þ n2i � 2Þ2

¼ 1

2

Xk

i¼1

ðn2i�1 � n2iÞ2 þ
Xn

i¼2kþ1

ðni � 1Þ2:

Remark 4.7. The number of global minimizers in the above theorem is 2k,
where k is the number of blocks of size two in the preceding characterization of
a global minimizer as a block diagonal matrix. All global minimizers are block
diagonal, similar to the previously discussed n ¼ 3 case.
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