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ABSTRACT. — We apply the method of periodic unfolding to a classical homogenization problem
for a parabolic equation. With respect to previous literature, we allow for capacity-like coefficients
in the diffusion equation oscillating both in space and time, with general independent scales. Our
approach relies upon a generalization of the unfolding technique to the time-periodic case.
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1. INTRODUCTION

In this paper we develop an approach to the homogenization of parabolic prob-
lems with oscillating coefficients based on the method of periodic unfolding.
Specifically we introduce operators of time-periodic unfolding modeled after the
operators of space-periodic unfolding introduced and applied in [9, 10, 11, §].
The first part of the paper contains results of more general interest which may
possibly be applied in different frameworks from the one dealt with here.

Our interest in problems exhibiting oscillations in time originally arised from
mathematical models with boundary conditions involving alternating pores (see
[20]). Such conditions switch between a closed state and an open one, either peri-
odically or according to a random scheme. As shown in [4], the limiting behavior
of problems of this kind sharply depends on the relative scalings of the time and
space variables; see also [6] for a MonteCarlo test of the model. In [5] oscillations
in the boundary conditions have been coupled to time periodic changes in the
diffusivity coefficient as a device to reproduce the selection capability exhibited
by biological membranes.

The first author is a member of the Gruppo Nazionale per I’Analisi Matematica, la Probabilita
e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). The
second author is a member of the Gruppo Nazionale per la Fisica Matematica (GNFM) of the
Istituto Nazionale di Alta Matematica (INdAM).
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Let us compare our approach here to previous literature. The unfolding oper-
ator we define is essentially a suitable extension of its purely spatial counterpart
in [9, 10], and some of the theory already established in the quoted papers carries
over to our case. However some significant differences appear in the limiting
behavior of the operator, due to the degenerate character of the available esti-
mates of the time derivative of the unknown in the approximating differential
problem. As a technical remark, we note that in this connection the need arises
for both the space oscillation operator introduced in [10] and the space-time
oscillation operator, see Definition 2.4. In [19, 21] the authors use unfolding in
the space variables with a parametric dependence on time, to study a parabolic
problem.

The papers [14, 12, 13] study problems similar to the one investigated in this
paper, by means of two-scale convergence. With respect to those papers we cover
more general cases in the following instances: First, we allow the space and time
oscillation periods, respectively 7 and &, to vanish in the limit according to any
rate, instead of assuming that T = ¢" for some r > 0. Second, we can handle the
case when the time derivative in the diffusion equation is multiplied by a coeffi-
cient oscillating in time, usually arising as a capacity coefficient in applications.
On the other hand we require more regularity for the diffusion matrix. This
assumption however enables us to partially answer a question raised in [12], see
Remark 4.3 below, and is used only in the estimation procedure and not in the
homogenization process. We also quote [15, 18] where the two-scales technique
is applied to multiscale problems.

The cases when the capacity term is constant and 7 = &", r > 0 were investi-
gated also in [7, Chapter I1] by means of asymptotic expansion techniques. There
one can find also some formal comments on the case of an oscillating capacity
coefficient. Here we deal rigorously with some of such problems.

A case of sign changing capacity oscillating in space was also treated in [2, 3]
again by means of asymptotic expansions. We also quote [17] for the nonlinear
case when 7t = ¢.

In Section 2 we introduce the basic definitions and properties of the time-
periodic unfolding operator, which are of general scope. We identify two possible
limiting behaviors depending on the relative magnitude of 7 and ¢, which we call
fast and slow oscillations in time (subsections 2.4 and 2.5 respectively). Notice
that this classification relies on the degeneracy of the estimate of the time deriva-
tive, whose L?> norm we assume to behave in the limit as =" (see (2.37)). The
parameter m provides, roughly speaking, the threshold value of ¢ as 7', As a
matter of fact, m = 1/2 in the rest of the paper excepting Section 6.

In Section 3 we introduce the diffusion problem and obtain the relevant
estimates needed for the homogenization process. Here we state precisely our
assumptions.

In Section 4 we deal with the homogenization in the case of fast oscillations.
Actually one has to discriminate the two subcases
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In Section 5 we consider the case of slow oscillations, where

82

——0, asegt—0.
T

Section 6 is devoted to a case where a stable estimate in the L2 norm of the time
derivative is available, i.e., m = 0, and

T
-—¢>0, aseg1—0.
&

As a consequence a greater generality is possible in the choice of the capacity
term multiplying the time derivative in the equation.

In Sections 4, 5, 6 we determine weak formulations of the homogenized
problems. Finally in Section 7 we provide a more precise formulation of such
problems, relying upon factorization and cell functions.

2. THE TIME-PERIODIC UNFOLDING OPERATOR
2.1. Notation

Throughout the paper ¢ > 0 denotes the space period of the microstructure, and
likewise 7 > 0 denotes its time period. Though this is not explicitly stressed by
the notation for the sake of simplicity, we always assume that two sequences are
given: ¢; — 0, t; — 0 as i — oo. The limiting behavior of quantities depending on
¢ and 7 is denoted by

lim
&,7—0

In the other notation for the sake of simplicity we drop as a general rule the
dependence on &, and write u,, 7, and so on. The symbol y denotes a generic
positive constant independent of &, 7.

2.2. Definitions

Let Q c R" be a bounded connected open set with Lipschitz boundary, and set
Y=0,)", Z£=(0,1), 0=YxZ Qr=Qx(0,7T).
Considering the tiling of R" given by the sets &(é + V), & € Z" we define

E,={¢ecZV|e(c+Y)CQ), Q :interior{ U e(&+ }_’)};

ﬂ:&e&DM<H+Q£T} A =Q, x T..

Here and in the definitions below [r] denotes the integer part of r € R.
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For x € R" and ¢ € [0, +0) we define

- (2D
ol =

Then we introduce the space and the space-time cell containing (x, ¢) as

o[, 2) esa=o(3,+2) (]2

The following operator is a space-time version of the space unfolding operator
introduced in [9].

and also denote

~

DEerINITION 2.1 (Time-periodic unfolding operator). For w Lebesgue-
measurable on Q7 the time-periodic unfolding operator 7 is defined as

X t
Ta(w)(x, 9, 1,5) = w (s L] . +ey, T L] + rs), (x,y,t,8) € A; x O,
0, otherwise.

Clearly for wy, w; as in Definition 2.1
(2.1) T(wiwa) = T (w1) T2 (wr).
We need both an average operator in space-time and one in space only.

DEerFINITION 2.2 (Local average operators). Let w be integrable in Q. The
space-time average operator is defined by

1 / .
_ w(,0)dldo, if (x,t) € A,
(22> ﬂr(”’) (x) 1) = Nt O:(x,1) &0 o
0, otherwise.

For 7 = r( [ﬂ + s) we define the space average operator as

1 _ .
(23) Y (9)(x, £, 5) = S_N/Y(,) w(g, £)d, if (x,t,5) € A; X X,

0, otherwise.

REMARK 2.3. From our definitions it follows

(2.4) M (W)(x, 1) = //Q.%(w) (x,t,y,8)dyds = Mp(T-(W))(x, 1),
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where in general .#; denotes the integral average on the set /. We also have

(2.5) M(W)(x,1,5) = / T(w)(x, y, t,8)dy = My (T-(w))(x,1,5). O

Y

In practice the average operators will be mostly used in connection with the
oscillation operators which we define presently.

DEFINITION 2.4. Let w be as in Definition 2.2. The space-time oscillation oper-
ator is defined as

(2.6) Ze(w)(x, y;1,5) = [Te(w) = A (W)](x, , 1, 9),

and the space oscillation operator is defined as

(2.7) Z(w)(x,p,t,8) = [T(w) — ﬁf(w)](x, Vi t,S). O

Notice that

(2.8) Z(w) =20 (w) — My (Z:(w)).
2.3. Basic properties of the operator I,

In this Subsection we collect some properties of the operators defined in Subsec-
tion 2.2. First we state a list of results for the sake of further reference; their
proofs can be given essentially as in [10] and are therefore mostly omitted. Indeed
in them the time variable does not play any special role.

In the following p € [1, c0) unless otherwise noted. Also, functions depending
only on the microscopic variables (y,s), or only on (x,¢), are often considered
trivially extended to Q7 x Q.

PROPOSITION 2.5. The operator 7, : L (Qr) — L?(Qr x Q) is linear and con-
tinuous.
In addition for all w € L?(Qr) we have

(2.9) 1 7= Lr@rx0) < Wl Loiar)s

and

(2.10) / wdxdt—// T.(w)dxdrdyds s/ |w| dxdz.
QT QTXQ Ar

LEMMA 2.6. Let ¢ € W'Y (Qr x Q), and define

(2.11) 6 (x, 1) :¢(x,t,g7£), (x,1) € Qr,
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where ¢ has been extended by Q-periodicity to Qr x RN Then in Qr x O

J T (AT — 5¢ g a¢
(2.12) ST =T (E) + 7 (g)
and
(2.13) V,T(¢7) = eT(Vidp) + T(V,9).

PRrOOF. To prove (2.12) we note
X t X t

(L, vl e [
ely T ely T
X t

oo enelf] +mms)]n
ely T

= % eE +é ! + 8, 1,8

7‘[51 ely yaf_[ T8, ), XAT
09 [ [x t

t=-\é|Z| TemT|Z| TS V8 ) XA

os \ lely T i

- (@) )

Equation (2.13) can be proved similarly. O

LTk s) =

2l
1 /1

PROPOSITION 2.7. For ¢ measurable on Q, extended by Q-periodicity to the
whole of RY x R, define the sequence

X t

¢ (x, 1) = ¢(E’?)’ (x,7) e RY xR.

Then

@) ey = (g
Moreover, if ¢ € LP(Q) as ¢,t — 0

(2.15) T(¢7) — ¢, strongly in L?(Qr x Q).

If there exist V¢, % € L?(Q) then

(2.16) V,(7:(67) = Vyh,  strongly in L"(Qr x 0),

(2.17) L) — 24, strongly in L@ x Q).
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ProprosiTION 2.8 (Convergences). Let {w.} be a sequence of functions in
L?(Qr).

If w, — w strongly in L?(Qr) as e, — 0, then
(2.18) T:(we) — w, strongly in L*(Qr x Q).
If we only assume that (2.18) holds true and that w, > C > 0, then we have

(2.19) T.(w)y — w7l strongly in L?(Qr x Q).

If w; is a bounded sequence of functions in L?(Qr), p > 1, then up to a subsequence

(2.20) Te(w,) — W, weakly in L?(Qr x Q),
and
(2.21) we — Mo(W), weakly in L?(Qr).

REMARK 2.9. We apply (2.19) to the case w, = ¢°, ¢* as in (2.11). Actually the
only classes for which (2.18) is known to hold in this context, are sums of the fol-
lowing cases: ¢ = fi(x,1) f2(y,5), ¢ € LP(Y x E; C(Qr)), ¢ € LP(Qr; C(Y x X)).
In all such cases 7. (¢") — ¢ strongly in L?(Qr x Q) (see [1, 9, 10]). O

The following result may give a fairly precise picture of the compactness of
unfolded sequences of functions.

PROPOSITION 2.10. Let w e L?(Qr). Assume that if he RY, ze R, E C Qr
with |h| + |z| + |E| < 6 then

(2.22) / |w(x—|—h,t—|—z)—w(x,t)|pdxdt+/|w(x,t)|pdxdl£w(5),
Qr E

where @ : [0,+00) — [0,400) is an increasing function with »(0) = 0. In (2.22) w
is extended to 0 out of Qr. Then if |hi| + |ha| + |z1| + |22| <0,

(2.23) /2 i | Ze(W)(x + hy,t+ 21,y + hay s+ 22) — To(u)(x, 8, v, 9)|
RNt
< yo(y(0+e+1)).

ProOF. We give the details of the proof for translations in the space variables;
the general case is similar. Let us denote here for all v: R* — R, he RY,5 >0

Uh(xay) :U(x+hvy)v Dh(xvy) :U(X,y—l—/’l);
Qr0) ={(x,1) € Qr|dist((x, 1), 0Qr) < d};
A —h={(x,1) e RNV | (x + h,1) e A}



670 M. AMAR, D. ANDREUCCI AND D. BELLAVEGLIA

Then we compute

e2) [ 17 - T
R2N+Z

_/A CiA / |JC(W)WJF/A\(Af—m/QLZ(W)'])
own B CE, el +)
] oo

Notice that for a suitable y = y(N)

O:(x, 1) N [AN(A: = h)] #0 implies  Q:(x,1) C Qr(y(|h| +2));

then by means of a standard change of variable (see [10, Proposition 2.5]) the
second integral on the right hand side of (2.24) is bounded by

/ lw|? dxdr < w(y(|h] + ¢)).
((1hl+¢))

The first integral there can be majorized in the same way.
As to the last integral in (2.24) we recall that for any two real numbers ry, 1,
we have

[}’1 + 1’2] = [1’1] + [}’2] +j, Je€ {0, 1}.
Thus

=],
& +ey=c¢|—| +e|l-| +e+ey,
Y €ly ¢ly

for a & = &(e,x,h) € {0,1}". Then we have in any case
x+h t X t
(2.25) wle +ey,t|-|+Ts ) —wle|l—| +ey,t|-|+7TS$
ey T ely T
X t
w(e[—] —|—ki+£y,r[—} —|—rs>
& Y T

p

P

<

M)

i=1

o], el

)
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where denoting {&;} = {0,1}" we have set
h
ki = S[J +e&i, kil < p(N)(|h] +¢).
Y

On the right hand side of (2.25) w is defined as 0 if its arguments is outside of Q7.
With this convention, the integral of each summand on the right hand side of
(2.25) can be bounded above by

(2.26) /A lw(x + ki ) — w(x, 1)|” dxdt < w(ki]) < o(y(Jh] + ¢)).

Next we consider translations in the microscopic space variables; we have

t
(2.27) / | T (W), — T(w)|" = / w (e F] +ey,t {—] + rs)
o axievell \ LEly g
x [
TR
A‘[XQII é Y !
() el
—wle|=| +ey,T|-|+7TS8
&ly T

On=Y,xX Y,={yeY|y+heY}.

p

?

where

The last integral in (2.27) can be bounded essentially as in (2.26). The first inte-
gral on the right hand side in (2.27) equals after a change of variable

)+

We conclude by observing that (the sum below is extended to all cells contained
in A;)

/h w(x,?)|” dxdzs, where A = {(x, 1) e A,
A

T

ALl < D010 ) A AL <7 Vel 0\l < 7l o

Notice that as a consequence of Definition 2.2 and of Lemma 2.6, if we
whr(Qr)
(2.28) V,Z,(w) =V, Z(w) = eT(V,w),

(2.29) Ze(w) = 1T (wy).

0s
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THEOREM 2.11. Let {w.} be a sequence converging strongly to w in L?(0, T
Wlr(Q)), as e,t — 0, then

(2.30) T:(Vw;) — Vw, strongly in L (Qr x Q),
| ,

(2.31) ~Z(we) — y°-Vw, strongly in LP(Qr x Z; WhP(Y)),
€

where

yCZ(yl—%,yz—%,...,yN—%).

Let p>1 and let {w,} be a sequence converging weakly to w in L?(0,T,
Wr(Q)). Then, up to a subsequence, there exists w = w(x, y,t,5) € L?(Qr x X;
Wl (Y)), Aly(W) = 0, such that as e,7 — 0

(2.32)  F(Vw;) = Vw+V,m, weakly in L?(Qr x Q),

1 -~
(2.33) " (W) — y<-Vw+w, weakly in L?(Qr x X; WP (Y)).

ProoOF. The limit in (2.30) follows from the strong convergence of Vw, and
Proposition 2.8. To prove (2.31) we note that, applying the Poincaré—Wirtinger
inequality in Y to the function 1 Z;(w.) — y¢ - Vw and (2.30), we get

I - :
(2.34) H— Ze(we) — - Vw
é L7(QrxQ)
1 -
< y’ v, (7 gf;(wf)) —Vw ~0.
& Lr(Qrx0)

Now we turn to the proof of (2.32) and (2.33). Since V, (1 Z,(w;)) = Z.(Vw,), the
limit relation (2.33) implies (2.32).
Then noting that V, ( Z;(w;)) is bounded in L?(Q7 x Q) we have

v, (é ,@;T(wf)) —Vw <K

?

(2.35) H%,@i(wf) — ¢ Vw

<)

LP(Qrx0Q) L7(QrxQ)

where K is a positive constant independent of ¢ and 7. Then there exists
w(x, y,t,8) € LP(Qr x Z; WP(Y)) such that, up to a subsequence

(2.36) Z(we) — y¢-Vw — W, weakly in L?(Qr x X; Whr(Y)).

™ | =

It is easy to show that .y (L %, (w,) — y¢- Vw) =0, so that .#y (%) = 0. The Y
periodicity of w can be proven following the lines of the proof in Theorem 3.5
of [10]. O
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Next we deal with results connected with scalings specific to parabolic problems.
For example the following proposition should be compared with Proposition 3.1
of [10], where a different scaling appears.

PROPOSITION 2.12. Let p > 1 and let {w.} be a sequence converging weakly in
LP(0,T; WhP(Q)) to w, and also satisfying the estimate

ow,
(2.37) ‘ " <7,
ot Lr(Qr)
with 0 <m < 1. Then
(2.38) T+(we) — w, weakly in L?(Qr; W'P(Q)).

ProoOF. Using (2.9), (2.12) and (2.13) owing to the stated weak convergence of
{w:} we have the estimates

(2.39) Hf%(WT)HLﬂ(QTxQ) = ||Wr||Lﬂ(QT) =7

(2.40) VT2 (w r)”Lp(QTxQ) = 5||VWr||Lp(QT) =7e
0 m OWe

(2.41) T(we) < glomfl gm0 <yl
0s Lr(QrxQ) ot Lr(Qr)

so that there exist a subsequence and w € L?(Qz; W7(Q)) such that

(2.42) T.(w;) — W, weakly in L?(Q; W'2(Q)),
(2.43) V,7:(w:) — 0, strongly in L?(Qr x Q),

0
(2.44) 6—9}(“}1) — 0, strongly in L?(Qr x Q),

s

and V,w = P—Vf 0, so that w does not depend on y and s. Then from (2.21) we
have

w(x, 1) = Mo(W)(x,t) = w(x,1). 0
Next we prove the following

LeEMMA 2.13. If(2.37) is in force with p > 1,0 <m < 1, then
(243) / / |- (w) (x, 1) ‘/%( ) (x, ZS)|pdxdtdyds<yTP(1 m).
Qr

PrOOF. For (x,7) € A; and recalling that 7= 7([{] +s), we have on applying
twice Holder inequality
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(2.46) MW (x, 1) — Me(W)(x,1,5)
1

eVt Jo,(x,0)

Tliﬂl o ’ ’ N oy 1]
< dAdldo ) (eVz)
Nt /Qf(x.,t)/t' &)
1-1 P ;
T ow

- — (8, 1) didC) )

er </Qf(x,t> z

Then after integrating over Q7 x Q and changing variables

w(,0) —w({ 1)]dldo

1

ow
a (cv ;“)

IA

(-2, A—tlf

z=——-, o=

€ T
we find
(2.47) / /|J% w)(x,8) — M (w)(x, t,5)|” dxdedyds
Qr
ow b
/ / / - +ze |-+ ot || dodzdxdrdyds
Qr ol T
aw|” (1—m)
=1’ T, (x,z,t,0)dxdtdzdo < yr? ,
Qr JQ 0
where we have made use of (2.9) and of (2.37). O

2.4. Fast oscillations in time

We assume here that

z.lfm

(2.48)

p < Ce (0,+0),

where 0 < m < 1. Actually there are different subcases which are treated in the
following results.

PROPOSITION 2.14. Let {w.} be a sequence converging strongly to w in L?(0, T’
Wr(Q)) and satisfying the estimate (2.37) with 0 <m < 1. If

l—m

(2.49) lim =0,

e,t—0 &
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then
1
(2.50) ~Z(w.) — y°-Vw strongly in L?(Qr; W'(Q)).
€
PRrROOF. To prove (2.50) we first note that
1 1
_ — _ g — g
(2.51) Vi (52e00)) = v, (2 72000)) = Z(Vawe) = Vo,

in L?(Q7 x Q) where we used property (2.13) and (2.18) applied to V,w. From
(2.9), (2.12) and assumptions (2.37), (2.49) we obtain

£ )

(%)

ow,

ot

Lr(QrxQ)

(2.52) H% e gff(wr))

Lr(QrxQ)

T
&

Lr(QrxQ)

1-m

T
<y—- 0
Y B — U,

T e

Lr(Qr)

as ¢,7 — 0. Having disposed of the convergence of the derivatives, we turn to the
sequence itself. We may apply the Poincaré—Wirtinger inequality in Q to the
function Z;(w;)/e — y¢ - Vw, since its mean value in Q vanishes. We obtain that

(2.53) H%gff(wf) — )¢V

Lr(QrxQ)

+
Lr(QrxQ)

y % (% gf(}v‘[))

goes to 0 as &, 7 — 0 as a consequence of (2.51) and (2.52). O

v, (% fﬁ(w,)) —Vw

<]
Lr(QrxQ)

ProrosiTION 2.15. Let {w.} be a sequence converging strongly to w in
Wl’p(QT).
Ift— lase,t— 0, then

strongly in L (Qr x Q),

(2.54) ﬁ(aw,) . ow

o)

1 : I\ 0
(2.55) Efff(wf) — - Vw+ /(s - E) a_v: strongly in L?(Qr; W7 (Q)).

ProOOF. Convergence (2.54) follows from the assumed strong convergence and
from Proposition 2.8. Equation (2.55) can be proven reasoning as in the proof
of Proposition 2.14. |
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THEOREM 2.16. Let p > 1 and let {w.} be a sequence converging weakly to w in
L?(0, T; WhP(Q)) and satisfying the estimate (2 37) with 0 <m < 1. If (2.49) is
in force, then up to a subsequence there exists w € L?(Qr; WW (Q)) such that as
&7 —0

(2.56) T(Vw:) = Vw+Vyw,  weakly in L(Qr x Q),

1 :

(2.57) ~Z(we) — ¥ -Vw i,  weakly in L?(Qr; W (Q)).
€

Actually Mo(w) = 0 and

(2.58) — =0,

so that w = w(x, t, ).

PROOF. In order to prove (2.57) we appeal to Poincaré—Wirtinger inequality as
in the proof of Proposition 2.14. Indeed we have

1 c 1 a,
(2.59) Hgfff(wf) —y°-Vw Vy(gff(wf)) —Vw

Sy‘

LP(QrxQ) Lr(QrxQ)

o e

Lr(QrxQ)

Recalling (2.28) and the stated weak convergence, the first term on the right hand
side of (2.59) is uniformly bounded on ¢, 7. When we recall also (2.29), we have

7 ()

Then the whole right hand side of (2.59) is uniformly bounded on ¢, 7 and there
exists w € L?(Qp; W?(Q)) such that, up to a subsequence

Tlfm

= <y

(2.60) H— - wf
LP(Qrx0) €

Lr(QrxQ)

1
(2.61) ~Ze(we) = - Vw — b, weakly in L7 (Qr; whr(Q)),

that is (2.57).
Since by construction .#g (2 Z;(w:) — y©- Vw) = 0, then .Zp(w) = 0.
Taking into account (2.28) again we see that the limit relation (2.57) implies
(2.56).
On invoking (2.49), we see that (2.60) and (2.57) imply (2.58).
It remains to prove the Y-periodicity of w, which can be done following [10].
O
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REMARK 2.17. Under the assumptions of Theorem 2.16, we can of course apply
also Theorem 2.11. The two functions w and w so determined however coincide,
since we may apply Lemma 2.13 in

~ 1 l—m %7: ) — (W,
Z(we) — =2 (w,) = T [ <W ) M. (W )] _ -
& & 7l-m

™ | —

THEOREM 2.18. Let p > 1 and let {w.} be a sequence converging weakly to w in
LP(0, T; WP(Q)) and satisfying the estimate (2.37) with 0 < m < 1. If (2.48) is in
force, then up to a subsequence, there exists w € LP(Qr; Wple*r” (Q)) such that as

e, 7 — 0(2.56) and (2.57) hold true and .#y(W) = 0. Moreover

(2.62) %f(aawt) - %—f

weakly in L? (Qr x Q).

ProOOF. The proof stays essentially unchanged from the one of Theorem 2.16.
Indeed the only difference is that the rightmost hand side in (2.60) does not tend
to 0. Actually this was used only to prove (2.58) which is not relevant here.
However, by the same token, we have to provide an argument to prove the
X-periodicity of w. We introduce a test function € 6,°(Qr x Y), and compute

(2.63) /Q T /Y é[gf(x, 2 1) — Za(x, 1, 0V (x, v, 1) ddy dr
o[y LG el )
—wf< {g}y—i—ey,r[;])}tp(x,y, f) dxdyds

:i/QT/Ym(ng+ey,fm>[lp(x,y,tr)lp(x,y,z)]dxdydz

- é/gr /Yff(wf)(x, VL)Y (x, p,t —1) — Y(x, p, 1) dxdyds

_T o l//(xvyvt_f)_lll(xayvl)
_E/QT/Y,/T(WT)(x, »,1,0) dxdyd:.

T

Next we observe the trace inequality

(2.64) 17 (we) (-5 Ol Loy

a/‘
<700 i+ 7 55 72000 .
Lr(Qrx0

m OWz

< K.
ot

<wellpoy + 22| o
LrP(Qr
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Then using Holder inequality we get

(2.65)

| [ o) = 22t ) ey < K,
Qr

as &,7 — 0. Combining this with (2.57), considering that y¢ - Vw does not depend
on s, and that ¥ € L?(Qr x Q), we get

@66 [ [ B ) =iy, O ) dxdydi = 0
Qg

implying that w is Z-periodic. O
REMARK 2.19. The convergence in (2.62) allows us to avoid the unloading of
the time derivative onto the test function in the homogenization process, sce
(4.17), (4.18). In turn this avoids the appearance of non-local terms as in [12],
see Remark 4.3 below. O

In the case m =0 Theorem 2.18 is replaced with the following stronger
formulation.

THEOREM 2.20. Let p > 1 and let {w.} be a sequence converging weakly to w in
WP (Qr), and satisfying estimate (2.37) with m = 0. If

(2.67) lim ~ =/ e (0, +),

then there exists w € W?(Qr x Q) such that

(2.68) T (Vw:) — Vw+V,w, weakly in L?(Qr x Q),
ow w
> T K . p
(2.69) ,/T< @t) — wy +—/ , weakly in L?(Qr x Q),

1 , 1 .
(2.70) Efl,(w,) — y°-Vw+ /(s - 5) w; W, weakly in LP(Qr; W' (Q)).

Here W is periodic in Q and is such that . y(w) = 0.

The proof of Theorem 2.20 can be easily given along the lines of the proof of
Theorem 2.16. The periodicity of w follows reasoning as in Theorem 3.5 in [10],
since in this case the time derivative is controlled as the space gradient.

REMARK 2.21. In fact even under the assumptions of Theorem 2.20, Theorem
2.18 is valid excepting the periodicity of w. In fact in Theorem 2.20 w =
w—"/(s—1/2)w,. O
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2.5. Slow oscillations in time
We assume here that

(2.71) lim

&,7—0 ‘L']fm

207

fora given 0 <m < 1.

PROPOSITION 2.22. Let {w.} be a bounded sequence in LP(0,T; W'r(Q)),
satisfying (2.37) and (2.71). Then

e 1+o 1 p . » lp
(2.72) (—) Ej,(wf) — 0, strongly in L?(Qr; W7(Q)),

Tl
forallo >0,0<r<1—m Wecan take a =0ifr <1 —m.

PROOF. Since Z,(w,) has zero average in Q, we may apply Poincaré—Wirtinger
inequality to it, obtaining

(2.73) H%Q’T(w,)

LP(QrxQ)

)

1
v, (f :”ff(w,))
€
Lr(QrxQ)

<]

o)

which yields, when invoking the properties of 7, and (2.37),

L/’(QT

(2.74) ‘ %&C(WT)

Lr(QrxQ)
1—m
<K(1+5—).
&

T
< ’))HZ(VW‘E)”L”(QTXQ) + VE

()

Lr(QrxQ)

We multiply (2.74) by (¢/t")"™, r, o as in the statement, and infer the sought
after limiting relation. O

REMARK 2.23. We single out for future reference (proof of Theorem 5.2) the
following immediate consequences of the results in this Section: if w € W7(Qr)
and ¢/7" — 0, then for any given « > 0,0 <r<laseg 7t — 0

ow ow
g (2 il . P
(2.75) JT(&t) o strongly in L?(Q7 x Q),
(2.76) T(Vw) — Vw, strongly in L?(Q7 x Q),
1 : .
(2.77) ~Z,(w) — y¢-Vw, strongly in L”(Qr x X; W (Y)),

e 1+ 1 . p 1.p
(2.78) (—) EFZT(W) — 0, strongly in L?(Qr; WHP(Q)). 0

T’
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3. A PARABOLIC HOMOGENIZATION PROBLEM

3.1. Assumptions

Let a:QrxQ—R, a:QrxY —R a:Qp xX— R be measurable func-
tions. We assume that they satisfy the uniform estimates

(3.1) 0<Cl'<aa,a<C< o0,
for some C > 1. Let then

t
AT t) = (%, 05,0), = S (1, 0,),
T

be a sequence of N x N matrices such that for all 7 > 0

(32) N, <C, ij=1,...,N; ¢ &>C7NeP, ¢eRV.

We also assume that a; [respectively a,, .«7°] are Lipschitz continuos in # [respec-
tively in x, (7,s)] and that

Oay| |Oay| |07 |0/
. —, == <
(3.3) ot |ox;|"| ot || os | ¢
foralli=1,..., N and for all relevant arguments. We denote

X t X t
at(x,t) = a(x, t,g,;), aj(x,t) = a (x, t,;), ay(x,t) = ax (x, t,;).

We always assume that A%, a*, af, aj are measurable in Q7. This is known to be
the case for functions in the classes of Remark 2.9.

Let f € L?*(Q7) be the source term in the diffusion equation (see (3.5)). In fact
all our results in this paper are still valid if we more generally allow f to depend
on the unknown, i.e., if we let /' : Qr x R — R be measurable and

(3-4) (e tu)| <g(x,0) + Clul,  (x,t,u) € Qr X R,

where g € L?(Qr). Here we must assume f to be Lipschitz continuous in the
variable u uniformly with respect to (x,?) € Qr. Essentially this greater gener-
ality is possible owing to the strong convergence result of Corollary 3.4. We have
chosen to present the proofs in the slightly simpler case f = f(x,¢) in order to
achieve a more compact presentation.
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3.2. Estimates

Consider the parabolic problem

(3.5) 1}%—&Wme:f, (x,1) € Qr,
(3.6) u(x,1) =0, (x,1) € 0Q x [0, T7,
(3.7) u(x,0) = uj(x), xeQ.

Here for a given initial data uy € L?(Q), we let {u} be a sequence in W, *(Q)
such that uf — ug strongly in L*(Q), and ||ug|| wig) < C/V/7, where C depends
on ||u0||L2(Q)-

In the following propositions we assume all the needed smoothness of the
solution u,, whose existence is classical under standard regularity assumptions
(see [16]). This can be done by means of an approximation procedure of the
data and coefficients in the equation.

PROPOSITION 3.1. Let u, be the solution to problem (3.5)—(3.7). We have the
standard energy estimate

T
(3.8) max /ufdx+/ /|Vu,|2dxdt£y,
0<t<T Jo 0o Ja

where y is a constant independent of 1.

PrOOF. Choose u,/aj as a test function in (3.5) and integrate by parts in Qr, to
getforall 7e (0,7)

1
/aluz(t // ap) u; +// — Vu, - Vu, — // Uy — Vu, Va;
2 |a
d Ur 1 o/ 2
—/Q/Ofa—g‘Fz/Qal(”o)-

Thus by means of Cauchy—Schwarz inequality and of our structural assumptions
we infer

69 [ 1wl // Vit <yl// ) +// 17+ [ ) ]

Next Gronwall’s inequality yields

/hm%ag% 0<i<T
Q

Finally on letting 7 — T in (3.9) we obtain (3.8). O
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ProPoSITION 3.2. Forallt >0

6uT

(3.10)

dxdf+ v max / |V |*(£) dx < ,

0<t<T

where vy is a constant independent of t.

PrROOF. We select ””T as a testing function in (3.5) so that on integrating by parts
in the space Varlables we get

s [ [ o s [

Hence

(3.12) / / 5”7 / /a (A"Vu, - Vu,)
_/ /a‘%fvur Vu, — = / /&ZTTWT Vu,
s

The second integral on the left hand side of (3.12) can be evaluated exactly. After
an application of Cauchy—Schwarz inequality we are led to

(3.13) / / auf /IVMT!
gg/‘/wm%w/‘/ﬁ+g/wm%

whence (3.10) follows by taking (3.8) and our assumption ||Vugl|;2q) < C/V/7
into account, and making the obvious remark that 7" in the proof can be replaced
with any 7 € (0, 7). O

ProposITION 3.3 (Time compactness). If0 < g < T/2 there exists y = y(a) > 0
such that for any 0 < h < a/2 we have

T—0o
(3.14) / /|uf(x,l+h) — (o, 1) dx ds
o Q

< (1 + el 2 + 1V F2 gy Ve

PRrOOF. Letag e (0,7/2),0 < h < /2, and define

t+h
%un——aq[ (v, 5) ds,
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where (e C}(6/2,T —a/2) is a nonnegative function such that (=1 in
(6,T — o) and |{'| < y/o. In this proof for any v = v(x, ) we denote ¥(x,) =
v(x,t+h).

Testing equation (3.5) written at times ¢ and respectively ¢ 4 /& with ¢, /aj and
respectively ¢, /al we get on subtracting the two integral formulations

r ~ 5g0h r —~ -
D A A b R NG A

The first integral on the left hand side of (3.15) equals

(3.16) / /alur aju, {C /tr+huf(x,s)ds+ci[ﬁf—uf]}
= [ i + /0 i aile [t o
/ /uT i, — u){[af — aj].

Clearly the first term on the right hand side of (3.16) essentially is the one esti-
mated in the statement. The second integral there can be majorized by means of

Holder inequality by
/ +(x,5)ds

G170 //”2|uf| L (//T”/z

2
= yHuTHLZ(QT)\/Z'

2)%

The third term on the right hand side of (3.16) is estimated, invoking the time
regularity of a;, by

Tfa'/Z _
(3.18) y /Q / L i ] < gl

We turn to estimating the other terms in (3.15). The second integral there can be
treated as in (3.17). The third and fourth integrals in (3.15) can be bounded in the
same way, that is
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T —_— ¢
(3.19) AV, v (2
Q

T— 0/2
<11,/
/ /T o/2 |Vu ||Vaf|
T—a/2
< ¥l | [ /
t+h 3
/ u(x, s) ds
t

< YIVuell 2o (I Vitell 2, + HMT”LZ(QT))\/E'

t+h

Vu.(x,s)ds

t+h
/ u(x,s)ds
t

2

/ Vu,(x,s)ds

+

Finally the integral on the right hand side of (3.15) is dealt with by a similar and
even simpler argument, contributing a quantity

(3.20) ISz el 2 ) V-
Collecting estimates (3.15)—(3.20) we prove at once (3.14). O
COROLLARY 3.4. By extracting a subsequence if needed we may assume

(3.21)  u, — u, strongly in L*(Qr) and wealkly in C(0, T; L*(Q));
(3.22)  Vu, — Vu, weakly in L*(Q7).

PrOOF. Both claims follow straightforwardly from Propositions 3.1 and 3.3, and
from classical results. |

3.3. A special case

Let us look also at the following problem

(3.23)  a'(x, z)% — div (Af(x, g) Vuf) - f, (x,1) € Qr,
(3.24) u(x,1) =0, (x,1) € 0Q x [0, T1,
(3.25) u(x,0) = up(x), xeQ.

1,2
Here we assume uy € W,;""(Q).
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ProrosiTION 3.5. Ifu) € WOI’Z(Q) then the solution to (3.23)—(3.25) satisfies

T roup? 2 2
(3.26) / / (7) dxdf+ max / (e(x, 1) + Vit (x, 0)?) dx < 7,
o Ja\ot Q

0<t<T

where y is independent of t.

PrOOF. We multlply (3.23) against %F %: and integrate by parts in the space vari-
ables, reasoning as in the proof of Proposmon 3.2. In the simpler case at hand we
immediately get

(3.27) / / a“f / AVu(T) - Vuo (T)
;/A Vi - Vuo+/ /fauf

The estimates of ‘;‘; and Vu, follow upon an application of Cauchy—Schwarz
inequality. Finally the estimate of u, is simply a consequence of the standard
formula

"ou,
u (x, 1) = up(x) +/ —(x,z)dz. O
0 52

REMARK 3.6. Clearly Corollary 3.4 is still in force under the assumptions of
Proposition 3.5. O
4. THE LIMIT PROBLEM IN THE CASE OF FAST OSCILLATIONS IN TIME

We look here at the case
(4.1) T < yez,

and assume throughout that there exist bounded functions B: Q7 x O — RY 2,
b : Qr x Y — Rand b, : Qr x X — R such that

(4.2) T.(A7) — B, strongly in L'(Q7 x Q),
T.(af) — by, strongly in L'(Qr x Y),
T.(al) — by, strongly in L'(Qr x Z).

We also need assume

(4.5) T.(af,)) — by,  weakly in L*(Qr x Y),
T.(Va3) — Vby, strongly in L'(Qr x Z),
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and the convergence at time 1 = 0

(4.7) T:(af(0)) — b1(0), weakly in L*(Q x Y).

About the known cases of convergences of the type above see Remark 2.9.
ProPOSITION 4.1. Let (4.1) be in force and let u, be the solution of problem

(3.5)—(3.7). Then there exist ue L*(0,T, W"2(Q)) and i € L*(Qr; WI}‘,,Z(Q))
such that M o(it) = 0 and up to a subsequence

(4.8) u; — u, weakly in L*(0, T; W'2(Q)),
(4.9) T(u;) — weakly in L*(Qr; W2(Q)),
(4.10) To(Vuy) — Vu+ Vi,  weakly in L*(Qr x Q),
(4.11) (0141) weakly in L*(Qr x Q).

The convergence u, — u is in fact strong in L>(Qr), so that from Proposition 2.8 it
follows T.(u;) — u strongly in L*(Qr x Q).

PrOOF. The claim readily follows from Proposition 2.12, Theorem 2.18 and
Corollary 3.4, by taking into account the estimates proved in Section 3. O

THEOREM 4.2. Let (4.1)—(4.7) be in force, and assume
(4.12) lim — =/ € (0, 0).

Then the pair (u,u) as in Proposition 4.1 is the unique solution (in the class speci-
fied in the Proposition) of

(4.13) /Q/{ u(bid), + ¢ byi¥ + B[V.u

4V, {Vy (f) +b2V ‘I’] }dxdtdyds

:/QT/Z[£¢dxdtds+/Q/yuo(x)qﬁ(x,O)bl(x,O, y)dxdy,

for all ¢ € W2(Qr) with ¢(x,t) =0 on 0Q x [0,T] and ¢(x,T) =0, and ¥ €
L2(Qr x 5 WLA(Y))
PrOOF. First we prove the macroscopic part of (4.13), i.e., the equality itself
with ¥ = 0. To this end we do not need (4.12).

We use ¢/aj as a test function for equation (3.5), where ¢ € ¥ (Qr) with
¢ =0o0ndQ x [0, 7] and ¢(x, T) = 0. Integrating by parts in Q7 we get
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Ve _4 V"g] dxdi

4.14) - / wilal, + af g dx di + / AVu,
Q]‘

QT

& (a3)

f= / dxdt—l—/ 5(X)p(x,0)af(x,0) dx.
Q

Qr a2

Unfolding the equation above we get

(4.15) /Q / (F(a)) T ) Tl ) + To(aT) T ) To($)}

o[ / 077787 (L)

2

/Q T / )7V 79 72(Va5) (7 (aiz))z
T T 7. !
-/ T /Q 7N70)7 ()

+ / / 7(u) 7+($(0)) 72 (af (0)) dxdy + R,

where R* = o(1), as ¢,7 — 0. Then taking the limit ¢, 7 — 0 and recalling Propo-
sition 4.1 as well as (2.18), (2.19), (4.2)—(4.7), we get

(4.16) / /{ biug, — biug + B(Vau +V, )(Zf ¢Vb€2)}dxdzdyds
Qr

/Q ¢dxdtds+//u0¢x 0)b1(x,0, y) dxdy,

amounting to the differential equation in the macroscopic variables.
Next we turn to the proof of the equation in the microscopic quantities, where
we first appeal to (4.12). We use a test function

=290 00(3,2).

& T

where ¢ is the same as above and € WPIUZ(Q) is extended periodically both in y

and s to the whole R¥"!. So testing (3.5) with ® and then integrating by parts
gives

(4.17) /Q{Z “a 5”1¢¢+ AVu, - (V(Iﬁ)lﬁ—l—g%ATVuT.(V},zp)¢}dxdz

- / L fodxdr.
Qr ¢
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Then unfolding we get
@) [ [ 2777 (5) 7070 dvdedyds
Qr Qé‘ 61‘
[ 57707 0) 79,0 dwdrdy s
Qr JQ
_ / / S TN T (Vi) (V) T:() ddrdy ds
Qr JQ

f¢¢ dxdr+ R".

Qr €

In the limit as ¢, 7 — 0 the right hand side vanishes. The left hand side, by virtue
of Proposition 4.1, converges to

(4.19) /Q /Q {asbibydy + £B(Vu + V,@) ¢V, } dxdidy ds.

By the density of the tensor product #*(Qr)® WI}E,Z(Q) in L>(Qr xX;

W,,2(Y)) these results hold for every ¥ € L*(Qr x %; W[}erz( Y)). If we select for
the sake of formal symmetry a test function ®/aj, minor modifications to the
argument above yield (4.13).

The uniqueness is proved in a rather standard fashion, exploiting the linearity
of the problem. If (u;,#;), i = 1,2, are two solutions of the problem, we essen-
tially take as testing functions ¢ = u; — up, ¥ = ) — i, after unloading the time
derivative on u; again, via a Steklov averaging procedure. Here we use also
Gronwall’s theorem and thus, if f is allowed to depend on u, its Lipschitz conti-
nuity in u. =]

REMARK 4.3. The microscopic part of our homogenized equation (4.13) does
not contain any non-local term, as found instead in [12, formula (3.5)]. Indeed

[12, Remark 3.4] stated that such a term is zero if, in our notation, i— is uni-
formly bounded in L?(Qr). Therefore, here we have shown that the non-local
term vanishes also under the weaker estimate (2.37), m = 1/2. In our approach
this bound follows from the regularity in (3 3). However the regularity of the
matrix .o/° is used only to estimate ‘”f and is irrelevant in the homogenization
process.

Finally, we remark that the function u; in the notation of [12] can be written
as

ul(xa L, , S) = it(x, It S) - %Y(il)(xa Z S),

for u as in Theorem 4.2. O
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THEOREM 4.4. Let (4.1)—(4.4) be in force, and assume

T
(4.20) Llirfo 2 =0.

Let the pair (u,it) be as in Proposition 4.1. Then ot = u(x,t, y), i.e., ii; =0, and
(u, @) is the solution of

(4.21) /Q /{—u big), + B[V + V] {V (Zi) +b12VylPdedzdyds

_ /Q T /2 Lpavar+ /Q / ()¢ (x, 0)b1 (x, 0, y) dx dy,

for all ¢ € W12(Qr) with ¢(x,t) =0 on 0Q x [0, T] and ¢(x,T) =0, and ¥ €

2 1,2
LAQr; Wy (Y)).
ProOF. The proof of the macroscopic differential equation is the same as in
Theorem 4.2.

Concerning the microscopic equation, we remark that when (4.20) is in force,

then & does not depend on s (see Theorem 2.16). Then we test the equation (3.5)
with a function

with ¢ € €*(Qr), ¢(x,T) =0 and € Wpl“z(Y) extended periodically to the
whole R", obtaining

(4.22) /Q AV (Vo))

. Vo ¢Va; U4
:g/QT{auT@tp—l—altur(/ﬁlp AVu, (a2 (a)2)¢ o }dxdt

9
a3

te /Q U (x)a (x, 0)(x, 0)¢(§) dx.

Clearly the right hand side of (4.22) vanishes as ¢, 7 — 0. When we unfold the left
hand side we obtain in the limit

(4.23) /Q ) / )7(Vur)7 f(fzﬁ)«%(VyW%(%)

2
- /QT /Qb—Z (Vu + Vyﬁ)¢vylﬁ =0.
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Owing to the density of the tensor product %*(Qr)® W, (Y) in
L*(Qr; W;e*rz(Y)), from (4.23) we obtain (4.21) for every ¥ € L*(Qr; Wplcj,,z(Y)),
concluding the proof.

The uniqueness of solutions follows as in Theorem 4.2. a

5. THE LIMIT PROBLEM IN THE CASE OF SLOW OSCILLATIONS IN TIME

We consider here the case
(5.1) lim & = 0.

ProPOSITION 5.1. Let (5.1) be in force and let u, be the solution of problem
(3.5)~(3.7). Then there exist u € L*(0, T, W"2(Q)) and it € L*(Qr x X; W),2(Y))
such that My (i) = 0 and up to a subsequence

(5.2) Uy — u, weakly in L*(0, T; Wh(Q)),
(5.3) T (uz) — u, weakly in L*(Qr; W2(Q)),
(5.4) To(Vuy) — Vu+ Vi, weakly in L*(Qr x Q).

The convergence u, — u is in fact strong in L>(Qr), so that from Proposition 2.8
Sollows T (u;) — u strongly in L*(Qr x Q).

ProOOF. The claim follows at once from Theorem 2.11, Proposition 2.12 and
Corollary 3.4, on invoking the estimates of Section 3. |

THEOREM 5.2. Let (4.2)—(4.7) be in force, and also assume (5.1). Then the pair
(u, 1) as in Proposition 5.1 is the unique solution of the problem

(5.5) /Q T /Q { —u(br@), + B[Vyu + Vil [Vx ([i) + blzvyly} } dxdrdyds

_ /Q T /2 Z:¢dxdt+ /Q /Y o (x) g (x, 0)b1 (x, 0, y) dx dy,

for all ¢ € Wh2(Qr) with =0 on 0Q x [0,T] and ¢(x,T) =0, and ¥ €
L2(Qr x Z; WLH(Y)).

PrROOF. The macroscopic differential equation (4.16) can be proved as in
Theorem 4.2.

Next we introduce a test function
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where ¢ € € (Qr) with ¢ = 0 on 6Q x [0, T] and ¢(x, T) = 0, and yy € W.2(Q),

per

with (y,0) =0, ¥(y,1) = 0. We understand  to be extended periodically both
in y and s to the whole RV*!. Then testing (3.5) with ® and integrating by parts
we get

(5.6) /QT{—gafufqﬁlﬁS + AVu, - (Vylp)a%} dxdr
_ ¢ : ¢ Sy
= e/QT{u,(al )W —AVu, - (Va_g)w +a—§} dxdr.

The right hand side of (5.6) goes to zero as ¢, 7 — 0. Unfolding the left hand side
we see that it equals

sy [ (L@ wz 7.

+/QT/Q{%(Ar)ﬂ(Vur)«%(¢)«%(vy¢),z(%)}+RT

2
= J1+J,+ R

As a consequence of Theorem 2.11 we have as ¢,7 — 0

(5.8) Jy — /Q /Q B(vwvya).(vylp)bi’z.

Next we show that the term J; is vanishing in the limit. By recalling Definitions
2.2 and 2.4 we find

82
59 n=-2[ [ awzan@nw)
Qr JQ

2
& 1
-— — M () T2(a7) T() T (b) = T + Ji2.
T QrJo &
By taking into account Proposition 2.22 with m = r = 1/2 and o = 1, we see that
Ji1 — 0ase v — 0. We split J, again, as in

&2 1
(510)  Jn=-% / M) D) T () )
Qr JQO

&2 1
S22 T 70 = S+
T QrJo &

Again we have Jj» — 0 as ¢,7 — 0 by virtue of Remark 2.23 (with m =r=1/2
and o = 1).
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Next we invoke Lemma 2.6 and specifically (2.12) to write

2
(5.11) Jm:—% . Qé/%f(uf)ﬂf(qu(a{)%/C(tﬁ).

Recalling that / is zero both at s = 0 and at s = 1 we have after integrating by
parts and using (2.12)

&2 1 0
(5.12) J121—? o, QZ%T<MT)%T(¢)(aJ

—/Q//% Ta)T-(}) — .

By a routine density argument, we see that (5.5) is in force for all test functions as
claimed in the statement.
The uniqueness of solutions follows as in Theorem 4.2. |

6. THE LIMIT PROBLEM IN THE CASEm =0, 7 ~ ¢

Here we find a homogenized formulation for problem (3.23)—(3.25) in the special
case where (2.67) holds true. We assume throughout that the requirements in
Subsection 3.1 are fulfilled. We are also going to require that there exist bounded
functions B: Q x ¥ — RV’ , b: QO — R such that

(6.1) T(A7) — B, stronglyin L'(Q x Y),
(6.2) T.(a") — b, strongly in L'(Q7 x Q).
Owing to estimate (3.26), in the notation of Section 2 we may take m = 0.

PROPOSITION 6.1. Let (2.67) be in force and let u, be the solution of problem
(3.23)=(3.25). Then there exist u € L*(0, T; W"2(Q)) and i € L*(Qz; W,;2(Q))
such that Mo(ut) = 0 and up to a subsequence

(6.3) U, — u, weakly in W'(Qr),
(6.4) T(u) — u, weakly in L*(Qr; W2(Q)),
(6.5) T(Vu;) — Vu+V,u, weakly in L*(Qr x Q),
Ju ou ou
g (277 27 e . 2
(6.6) ,/T( 6t> 5T / 2 weakly in L*(Qr x Q).

The convergence u, — u is in fact strong in L>(Qr), so that from Proposition 2.8 it
follows T, (u;) — u strongly in L*(Qr x Q).
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ProoF. The claim follows from Proposition 2.12, Theorem 2.20 and Remark
3.6, by taking into account the estimates proved in Subsection 3.3. O

THEOREM 6.2. Let (6.1)—(6.2) be in force. Then the pair (u,ut) as in Proposition
6.1 solves

(6.7) /Q /Q (Gt + V)b + BIV st + V, ][V + V,¥]} dx dr dy ds

—/Q éf(ﬁdxdtds,

for all ¢ € L*>((0,T) x Z; WH2(Q)) with ¢ =0 on 0Q x [0, T] for a.e. s € X, and
Y e L2(Qr x Z; WLAHY)).
IfV.b € L*(Qr x Q) such solution is unique.

PRrROOF. To prove the macroscopic part of equation (6.7), we test (3.23) with the
time-oscillating function

Tl 1) = f
¢ (X, t) - ¢<x7 t: T)?
for ¢ € L>(Z; 4 (Qr)), and ¢ = 0 for (x, ) € 0Q x [0, T], obtaining
auf T T T T
(68) / ¢+/ AV, Vo = [ 147
o 0 Qr Qr

On unfolding we are led to

/Q/ au, 7l TWTW)+/QT/Q%(A’)%(WT)%(V¢T)

// 7+ R
Qr

Then taking the limit ¢, 7 — 0, recalling (6.1), (6.2), Proposition 6.1 and Remark
2.9 we get

(6.10) /QT/Q(u,+/‘1i’ts)b¢+/gr/QB(qu+Vyil)Vx¢:/QT/Efqﬁ.

Next we prove the microscopic part of equation (6.7). For this purpose we test
the equation (3.23) with a function
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where ¢ € 6% (Qr) with 9 =0 on dQ x [0,7], and Y € W,;>(Q) is extended
periodically both in y and s to the whole R¥*!, obtaining

u,
I e
—o [ AV (Voyiss [ fob
QT QT

The right hand side of equation (6.11) goes to zero as ¢, 7 — 0. Unfolding the left
hand side we see that it equals

(6.12) /Q / T(Vu) T (V) T(p) + R".

Recalling Proposition 6.1, as ¢,7 — 0 we get from (6.11)—(6.12)

(6.13) / /Q BVt + Vi) (V) =

By a routine density argument we see that (6.7) is in force for all test functions as
claimed in the statement.

In order to prove uniqueness of solutions, we preliminarily remark that by
virtue of (6.7) we may write for any solution (u, i)

(6.14) u(x,t,y,8) =u*(x,t,y) +a(x,1t,s),
where u* is the unique solution of
divy(B(x, y)[Viu+ Vyu']) =0
such that .#y(u*) = 0 and u* is Y-periodic. Then .#x(u) = 0 and

ou  On

.1 =z
(6.15) os Os

does not depend on y. Next we invoke again the integral equation (6.7). Take
there

(6.16) $(x,1,5) = %

for ¢ satisfying the requirements in the statement, and obtain

(6.17) /Q / {(u, + Vi) g + B[V + Vi) {Vx (L) + vy\y} } dxdrdyds

»
/Qr/f%Y(b dxdzds.
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The contribution of the term up vanishes by periodicity. Then we are back to a
formulation similar e.g., to (4.21), and can proceed accordingly. That is to say,
given two solutions (u,), (u2,1;) we may conclude u; = u,. Thus uj = u; by
the definition of u;. We make use a last time of (6.7), and of (6.15), to infer

/ / ¢ Witys — ding) My (b)(x, t,5)p(x, t,5) dxdrds = 0,
QT z
whence
’/_lls - 7/_‘23' =0.
It follows &, = @, since Mx (i) = Mx (i) = 0. 0

REMARK 6.3. One can see that as a difference from the other macroscopic
equations obtained in the homogenization limit in this paper, the macroscopic
part of (6.7) contains a residual microscopic time derivative u,. In contrast, the
term i in (4.13) belongs to the microscopic equation. See also Remark 7.6. 0O

REMARK 6.4. The case investigated in this Section is actually covered by Theo-
rem 5.2, if we take a® = afaj, so that b = b;b,. Here we show how to reconcile
equations (5.5) and (6.7). In the latter take

_ 9%
¢(X, L, S) - mv

where ¢ is admissible as in Theorem 5.2. Observe that in the resulting equation,
owing to the periodicity of # in s, we have

/ / ¢ Vag(x, b, y,5)bi(x, t, y)p(x, t) dxdedy ds = 0.
Qr JQ

After integrating by parts the term u,b;¢p we recover (5.5), since ¥/b, is admis-
sible whenever VW is. O

7. REDUCTION TO THE MACROSCOPIC SCALE

In order to reduce the homogenized problems for the three different scalings of
the parameters ¢, 7 to macroscopic formulations, we first introduce the cell func-
tions y;. Let us denote the elements of the limit matrix in (4.2) by

B(X, Ly, S) = (bi,j(xa Ly, s))lgi,jgN'

DErINITION 7.1. If (4.12) is in force, for 1 <i < N the functions y;(x, ¢, y,s)
satisfy .#o(y;) = 0 and are the Q-periodic solutions of the problem

(71) filbl(x, y, t)){is . Z ﬁ (b],k(xa Ly, S) a(%z yz)) —0 in QT % Q

G2\ ba(xits) e
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If (4.20) is in force, for 1 < i < N the functions y;(x, ¢, y) satisfy .#y(y;) = 0 and
are the Y-periodic solutions of the problem

(7.2) ;N_:l@i (,/%z( )(x, t,y) %) =0 mnQrxY.

If (5.1) is in force, for 1 < i < N the functions y;(x, ¢, y, s) satisfy .#y(y;) = 0 and
are the Y-periodic solutions of the problem

N
0 (bjk(x,t,9,5) 0(x; — yi) _ .
(7.3) leﬁ ( by(x,1,5) Vi ) =0 inQrx0. =

Next we prove

THEOREM 7.2. Let u denote the limit of the sequence {u.} of solutions to prob-
lems (3.5)—(3.7), obtained in Theorems 4.2, 4.4 and 5.2.
Then u is the solution of the following homogenized problem

(7.4) aomy, — diV(A’"’”’Vu) — E"om vy = Fhomy, (x,v) € Qr,

(7.5) u(x, 1) =0, (x,1) € 0Q x (0,T),
(7.6) u(x,0) =up(x), xeQ,
where
(7.7) am(x, 1) = My (by),
(18) A, ) = g (o (1= Wyl - VD),
(19) 7 (,0) = (B~ Wy W) ).
om 1
(7.10) Fhm(x, 1) = s b—z),

and the y; have been introduced in Definition 7.1.

ProOF. If (4.12) is in force, we factorize as

N
(7.11)  a(x,t,y,5) = —Vu(x,1) - Z)([(x, t,y,s)e, (x,t,y,5) €QrxQ,

i=1

where y; is defined by (7.1). By using (7.11) in (4.13) with ¢ = 0 we obtain the
problem (7.1) in the microscopic space-time cell, which is satisfied thanks to our
definition of ;. Then considering (4.13) with ¥ = 0 and using again (7.11), we get
equation (7.4).
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The formulations in the other cases are obtained in a similar way. Namely if
(4.20) is in force, we use the factorization

(7.12)  a(x,t,y) = =Viu(x,1) -

NE

Xi(xv lv )’)C’h (X, Zv )’) € QT X Y;
1

where y; is defined by (7.2). If instead (5.1) is in force we write

[M]=

(7.13) a(x,t,y,5) = =Vou(x,t)- Yy yxi(x,t,y,8e, (x,,15) €Qrx Q,

where y; is defined by (7.3). O
7.1. The case m =0, 1 ~ ¢

In this case the elements b; ; of the limit matrix in (6.1) depend only on (x, y).

DeFINITION 7.3. If (2.67) is in force, for 1 <i < N the functions y;(x, y) satisfy
My (y;) = 0 and are the Y-periodic solutions of the problem

N .
(7.14) Zkai< ik (X, y)%) =0, (x,y))eQxY. O

THEOREM 7.4. Let u denote the limit of the sequence {u.} of solutions to prob-
lems (3.23)—(3.25), obtained in Theorem 6.2.
Then u is the solution of the homogenized problem (7.4)—(7.6), where

(7.15) a""(x, 1) =1,

116) A ) = g s = Wl Vo))

117) B ) = g (BU = Wl M)V (5 55) )
(7.18) Fhom(x ) = s (ﬂ: (b)),

and y; are as in Definition 7.3.

PROOF. In (6.7) we split u(x, 1, y,s) as in (6.14), and factorize as
N
(719) I’Ol(xv Ly, S) = _qu(xv t) ’ ZX[(xv y)ei + ﬂ(xv Z S)7
i1

(x7t’y7s) EQTX Q’
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where y; is defined by (7.14). By using (7.19) in (6.7) with ¢ = 0 we obtain the
problem (7.14) in the microscopic space cell, which is satisfied thanks to our def-
inition of y;. Then considering (6.7) with ¥ = 0 and recalling that ¢ = ¢(x, 1, ),
we get in the distribution sense

(7.20) /Yu,(x, 0b(x,t, y,s)dy + /Y/_lfls(x, t,y,8)b(x,t,y,5)dy
—/ divy(B(Vyu(x, 1) + Vi) = f(x,1).
Y

Then using the factorization (7.19) in (7.20) we obtain

(7.21) My (b)u; + Ay (D) ity — div(My(B)Vu)
+ div, ( My (BV,y;)Viu) = f.

Next, on dividing by .#y(b) and integrating in £ we get

(7.22)  w+ /Z /-lasdsJF/MQ(B(I— [Vyxll---IVny])Vx(m))Vx“

_ div, [//Q (%@) I = [Vl ... |Vy)(N])>qu] — M (ﬂj(b)).

The thesis follows once we note that the second term on the left hand side of
(7.22) vanishes since # is Z-periodic. O

REMARK 7.5. It is worthwhile remarking the following characterization of .
From equation (7.21) we get the differential equation in the variable s

f

o 1 )
iy ={|—u +—— div (My(BUI = [Vyy1] - - - [Vyxn])) Viu) + m )

My (D)

Of course this equation should be understood in the suitable weak sense of (6.7),
and complemented with the information that @ is X-periodic and .#5(z1) = 0.

REMARK 7.6. Though u disappears from the single scale formulation of (6.7),
actually its presence forces one to divide by .#y(b) as in (7.22), therefore imply-
ing the structure in (7.15)—(7.18). O
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