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Abstract. — We apply the method of periodic unfolding to a classical homogenization problem

for a parabolic equation. With respect to previous literature, we allow for capacity-like coe‰cients
in the di¤usion equation oscillating both in space and time, with general independent scales. Our

approach relies upon a generalization of the unfolding technique to the time-periodic case.

Key words: Homogenization, unfolding technique, time oscillations, parabolic di¤erential
equations

Mathematics Subject Classification: 35B27, 35K10

1. Introduction

In this paper we develop an approach to the homogenization of parabolic prob-
lems with oscillating coe‰cients based on the method of periodic unfolding.
Specifically we introduce operators of time-periodic unfolding modeled after the
operators of space-periodic unfolding introduced and applied in [9, 10, 11, 8].
The first part of the paper contains results of more general interest which may
possibly be applied in di¤erent frameworks from the one dealt with here.

Our interest in problems exhibiting oscillations in time originally arised from
mathematical models with boundary conditions involving alternating pores (see
[20]). Such conditions switch between a closed state and an open one, either peri-
odically or according to a random scheme. As shown in [4], the limiting behavior
of problems of this kind sharply depends on the relative scalings of the time and
space variables; see also [6] for a MonteCarlo test of the model. In [5] oscillations
in the boundary conditions have been coupled to time periodic changes in the
di¤usivity coe‰cient as a device to reproduce the selection capability exhibited
by biological membranes.
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Let us compare our approach here to previous literature. The unfolding oper-
ator we define is essentially a suitable extension of its purely spatial counterpart
in [9, 10], and some of the theory already established in the quoted papers carries
over to our case. However some significant di¤erences appear in the limiting
behavior of the operator, due to the degenerate character of the available esti-
mates of the time derivative of the unknown in the approximating di¤erential
problem. As a technical remark, we note that in this connection the need arises
for both the space oscillation operator introduced in [10] and the space-time
oscillation operator, see Definition 2.4. In [19, 21] the authors use unfolding in
the space variables with a parametric dependence on time, to study a parabolic
problem.

The papers [14, 12, 13] study problems similar to the one investigated in this
paper, by means of two-scale convergence. With respect to those papers we cover
more general cases in the following instances: First, we allow the space and time
oscillation periods, respectively t and e, to vanish in the limit according to any
rate, instead of assuming that t ¼ er for some r > 0. Second, we can handle the
case when the time derivative in the di¤usion equation is multiplied by a coe‰-
cient oscillating in time, usually arising as a capacity coe‰cient in applications.
On the other hand we require more regularity for the di¤usion matrix. This
assumption however enables us to partially answer a question raised in [12], see
Remark 4.3 below, and is used only in the estimation procedure and not in the
homogenization process. We also quote [15, 18] where the two-scales technique
is applied to multiscale problems.

The cases when the capacity term is constant and t ¼ er, r > 0 were investi-
gated also in [7, Chapter II] by means of asymptotic expansion techniques. There
one can find also some formal comments on the case of an oscillating capacity
coe‰cient. Here we deal rigorously with some of such problems.

A case of sign changing capacity oscillating in space was also treated in [2, 3]
again by means of asymptotic expansions. We also quote [17] for the nonlinear
case when t ¼ e.

In Section 2 we introduce the basic definitions and properties of the time-
periodic unfolding operator, which are of general scope. We identify two possible
limiting behaviors depending on the relative magnitude of t and e, which we call
fast and slow oscillations in time (subsections 2.4 and 2.5 respectively). Notice
that this classification relies on the degeneracy of the estimate of the time deriva-
tive, whose L2 norm we assume to behave in the limit as t�m (see (2.37)). The
parameter m provides, roughly speaking, the threshold value of e as t1�m. As a
matter of fact, m ¼ 1=2 in the rest of the paper excepting Section 6.

In Section 3 we introduce the di¤usion problem and obtain the relevant
estimates needed for the homogenization process. Here we state precisely our
assumptions.

In Section 4 we deal with the homogenization in the case of fast oscillations.
Actually one has to discriminate the two subcases

t

e2
! 0;

t

e2
! l > 0; as e; t ! 0:
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In Section 5 we consider the case of slow oscillations, where

e2

t
! 0; as e; t ! 0:

Section 6 is devoted to a case where a stable estimate in the L2 norm of the time
derivative is available, i.e., m ¼ 0, and

t

e
! l > 0; as e; t ! 0:

As a consequence a greater generality is possible in the choice of the capacity
term multiplying the time derivative in the equation.

In Sections 4, 5, 6 we determine weak formulations of the homogenized
problems. Finally in Section 7 we provide a more precise formulation of such
problems, relying upon factorization and cell functions.

2. The time-periodic unfolding operator

2.1. Notation

Throughout the paper e > 0 denotes the space period of the microstructure, and
likewise t > 0 denotes its time period. Though this is not explicitly stressed by
the notation for the sake of simplicity, we always assume that two sequences are
given: ei ! 0, ti ! 0 as i ! l. The limiting behavior of quantities depending on
e and t is denoted by

lim
e; t!0

In the other notation for the sake of simplicity we drop as a general rule the
dependence on e, and write ut, Tt and so on. The symbol g denotes a generic
positive constant independent of e, t.

2.2. Definitions

Let W � RN be a bounded connected open set with Lipschitz boundary, and set

Y ¼ ð0; 1ÞN ; S ¼ ð0; 1Þ; Q ¼ Y � S; WT ¼ W� ð0;TÞ:

Considering the tiling of RN given by the sets eðxþ Y Þ, x a ZN we define

Xe ¼ fx a ZN j eðxþ YÞ � Wg; ŴWe ¼ interior
[
x AXe

eðxþ Y Þ
( )

;

T̂Tt ¼ t a ð0;TÞ j t t

t

� �
þ 1

� �
aT

� �
; Lt ¼ ŴWe � T̂Tt:

Here and in the definitions below ½r� denotes the integer part of r a R.
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For x a RN and t a ½0;þlÞ we define

x

e

� �
Y

¼ x1

e

� �
; . . . ;

xN

e

� �� �
;

and also denote

x ¼ e
x

e

� �
Y

þ x

e

� �
Y

� �
; t ¼ t

t

t

� �
þ t

t

� �� �
:

Then we introduce the space and the space-time cell containing ðx; tÞ as

YeðxÞ ¼ e
x

e

� �
Y

þ Y

� �
; Qtðx; tÞ ¼ e

x

e

� �
Y

þ Y

� �
� t

t

t

� �
þ S

� �
:

The following operator is a space-time version of the space unfolding operator
introduced in [9].

Definition 2.1 (Time-periodic unfolding operator). For w Lebesgue-
measurable on WT the time-periodic unfolding operator Tt is defined as

TtðwÞðx; y; t; sÞ ¼
w e

x

e

� �
Y

þ ey; t
t

t

� �
þ ts

� �
; ðx; y; t; sÞ a Lt �Q;

0; otherwise.

8<: r

Clearly for w1, w2 as in Definition 2.1

Ttðw1w2Þ ¼ Ttðw1ÞTtðw2Þ:ð2:1Þ

We need both an average operator in space-time and one in space only.

Definition 2.2 (Local average operators). Let w be integrable in WT . The
space-time average operator is defined by

MtðwÞðx; tÞ ¼
1

eNt

Z
Qtðx; tÞ

wðz; yÞ dz dy; if ðx; tÞ a Lt;

0; otherwise.

8<:ð2:2Þ

For t ¼ t t
t

� �
þ s

	 

we define the space average operator as

~MMtðwÞðx; t; sÞ ¼
1

eN

Z
YeðxÞ

wðz; tÞ dz; if ðx; t; sÞ a Lt � S;

0; otherwise.

8<:ð2:3Þ r

Remark 2.3. From our definitions it follows

MtðwÞðx; tÞ ¼
ZZ

Q

TtðwÞðx; t; y; sÞ dy ds ¼ MQðTtðwÞÞðx; tÞ;ð2:4Þ
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where in general MI denotes the integral average on the set I . We also have

~MMtðwÞðx; t; sÞ ¼
Z
Y

TtðwÞðx; y; t; sÞ dy ¼ MY ðTtðwÞÞðx; t; sÞ:ð2:5Þ r

In practice the average operators will be mostly used in connection with the
oscillation operators which we define presently.

Definition 2.4. Let w be as in Definition 2.2. The space-time oscillation oper-
ator is defined as

ZtðwÞðx; y; t; sÞ ¼ ½TtðwÞ �MtðwÞ�ðx; y; t; sÞ;ð2:6Þ

and the space oscillation operator is defined as

~ZZtðwÞðx; y; t; sÞ ¼ ½TtðwÞ � ~MMtðwÞ�ðx; y; t; sÞ:ð2:7Þ r

Notice that

~ZZtðwÞ ¼ ZtðwÞ �MY ðZtðwÞÞ:ð2:8Þ

2.3. Basic properties of the operator Tt

In this Subsection we collect some properties of the operators defined in Subsec-
tion 2.2. First we state a list of results for the sake of further reference; their
proofs can be given essentially as in [10] and are therefore mostly omitted. Indeed
in them the time variable does not play any special role.

In the following p a ½1;lÞ unless otherwise noted. Also, functions depending
only on the microscopic variables ðy; sÞ, or only on ðx; tÞ, are often considered
trivially extended to WT �Q.

Proposition 2.5. The operator Tt : L
pðWTÞ ! LpðWT �QÞ is linear and con-

tinuous.
In addition for all w a LpðWTÞ we have

kTtðwÞkL pðWT�QÞ a kwkL pðWT Þ;ð2:9Þ

and Z
WT

w dx dt�
ZZ

WT�Q

TtðwÞ dx dt dy ds
���� ����a Z

Lt

jwj dx dt:ð2:10Þ

Lemma 2.6. Let f a W 1;1ðWT �QÞ, and define

ftðx; tÞ ¼ f
�
x; t;

x

e
;
t

t



; ðx; tÞ a WT ;ð2:11Þ
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where f has been extended by Q-periodicity to WT � RNþ1. Then in WT �Q

q

qs
TtðftÞ ¼ tTt

�qf
qt



þTt

�qf
qs



;ð2:12Þ

and

‘yTtðftÞ ¼ eTtð‘xfÞ þTtð‘yfÞ:ð2:13Þ

Proof. To prove (2.12) we note

q

qs
TtðftÞðx; t; y; sÞ ¼ q

qs
f e

x

e

� �
Y

þ ey; t
t

t

� �
þ ts;

x

e

� �
Y

þ y;
t

t

� �
þ s

� �� �
wLt

¼ q

qs
f e

x

e

� �
Y

þ ey; t
t

t

� �
þ ts; y; s

� �� �
wLt

¼ t
qf

qt
e
x

e

� �
Y

þ ey; t
t

t

� �
þ ts; y; s

� �
wLt

þ qf

qs
e
x

e

� �
Y

þ ey; t
t

t

� �
þ ts; y; s

� �
wLt

¼ tTt

�qf
qt



þTt

�qf
qs



:

Equation (2.13) can be proved similarly. r

Proposition 2.7. For f measurable on Q, extended by Q-periodicity to the
whole of RN � R, define the sequence

ftðx; tÞ ¼ f
�x
e
;
t

t



; ðx; tÞ a RN � R:

Then

TtðftÞðx; y; t; sÞ ¼ fðy; sÞ; ðx; y; t; sÞ a Lt;

0; otherwise:

�
ð2:14Þ

Moreover, if f a LpðQÞ as e; t ! 0

TtðftÞ ! f; strongly in L pðWT �QÞ:ð2:15Þ

If there exist ‘yf,
qf
qs

a LpðQÞ then

‘yðTtðftÞÞ ! ‘yf; strongly in L pðWT �QÞ;ð2:16Þ

q

qs
ðTtðftÞÞ ! q

qs
f; strongly in L pðWT �QÞ:ð2:17Þ
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Proposition 2.8 (Convergences). Let fwtg be a sequence of functions in
L pðWTÞ.

If wt ! w strongly in L pðWTÞ as e; t ! 0, then

TtðwtÞ ! w; strongly in L pðWT �QÞ:ð2:18Þ

If we only assume that (2.18) holds true and that wt bC > 0, then we have

Ttðw�1
t Þ ! w�1; strongly in L pðWT �QÞ:ð2:19Þ

If wt is a bounded sequence of functions in L
pðWTÞ, p > 1, then up to a subsequence

TtðwtÞ * ŵw; weakly in L p WT �Qð Þ;ð2:20Þ

and

wt * MQðŵwÞ; weakly in L pðWTÞ:ð2:21Þ

Remark 2.9. We apply (2.19) to the case wt ¼ ft, ft as in (2.11). Actually the
only classes for which (2.18) is known to hold in this context, are sums of the fol-
lowing cases: f ¼ f1ðx; tÞ f2ðy; sÞ, f a LpðY � S;CðWTÞÞ, f a LpðWT ;CðY � SÞÞ.
In all such cases TtðftÞ ! f strongly in LpðWT �QÞ (see [1, 9, 10]). r

The following result may give a fairly precise picture of the compactness of
unfolded sequences of functions.

Proposition 2.10. Let w a LpðWTÞ. Assume that if h a RN, z a R, E � WT

with jhj þ jzj þ jEja d thenZ
WT

jwðxþ h; tþ zÞ � wðx; tÞj p dx dtþ
Z
E

jwðx; tÞj p dx dtaoðdÞ;ð2:22Þ

where o : ½0;þlÞ ! ½0;þlÞ is an increasing function with oð0Þ ¼ 0. In (2.22) w
is extended to 0 out of WT . Then if jh1j þ jh2j þ jz1j þ jz2ja d,Z

R2Nþ2
jTtðwÞðxþ h1; tþ z1; yþ h2; sþ z2Þ �TtðutÞðx; t; y; sÞjð2:23Þ

a goðgðdþ eþ tÞÞ:

Proof. We give the details of the proof for translations in the space variables;
the general case is similar. Let us denote here for all v : R2N ! R, h a RN , d > 0

vhðx; yÞ ¼ vðxþ h; yÞ; vhðx; yÞ ¼ vðx; yþ hÞ;
WTðdÞ ¼ fðx; tÞ a WT j distððx; tÞ; qWTÞ < dg;
Lt � h ¼ fðx; tÞ a RNþ1 j ðxþ h; tÞ a Ltg:
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Then we computeZ
R2Nþ2

jTtðwÞh �TtðwÞj pð2:24Þ

¼
Z
ðLt�hÞnLt

Z
Q

jTtðwÞhj p þ
Z
LtnðLt�hÞ

Z
Q

jTtðwÞj p

þ
Z
ðLt�hÞBLt

Z
Q

����w e
xþ h

e

� �
Y

þ ey; t
t

t

� �
þ ts

� �

� w e
x

e

� �
Y

þ ey; t
t

t

� �
þ ts

� �����p:
Notice that for a suitable g ¼ gðNÞ

Qtðx; tÞB ½LtnðLt � hÞ�A j implies Qtðx; tÞ � WTðgðjhj þ eÞÞ;

then by means of a standard change of variable (see [10, Proposition 2.5]) the
second integral on the right hand side of (2.24) is bounded byZ

WT ðgðjhjþeÞÞ
jwj p dx dtaoðgðjhj þ eÞÞ:

The first integral there can be majorized in the same way.
As to the last integral in (2.24) we recall that for any two real numbers r1, r2

we have

½r1 þ r2� ¼ ½r1� þ ½r2� þ j; j a f0; 1g:

Thus

e
xþ h

e

� �
Y

þ ey ¼ e
x

e

� �
Y

þ e
h

e

� �
Y

þ exþ ey;

for a x ¼ xðe; x; hÞ a f0; 1gN . Then we have in any case

w e
xþ h

e

� �
Y

þ ey; t
t

t

� �
þ ts

� �
� w e

x

e

� �
Y

þ ey; t
t

t

� �
þ ts

� ����� ����pð2:25Þ

a
X2N

i¼1

����w e
x

e

� �
Y

þ ki þ ey; t
t

t

� �
þ ts

� �

� w e
x

e

� �
Y

þ ey; t
t

t

� �
þ ts

� �����p;
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where denoting fxig ¼ f0; 1gN we have set

ki ¼ e
h

e

� �
Y

þ exi; jkija gðNÞðjhj þ eÞ:

On the right hand side of (2.25) w is defined as 0 if its arguments is outside of WT .
With this convention, the integral of each summand on the right hand side of
(2.25) can be bounded above byZ

Lt

jwðxþ ki; tÞ � wðx; tÞj p dx dtaoðjkijÞaoðgðjhj þ eÞÞ:ð2:26Þ

Next we consider translations in the microscopic space variables; we haveZ
R2Nþ2

jTtðwÞh �TtðwÞj p ¼
Z
Lt�½QnQh�

w e
x

e

� �
Y

þ ey; t
t

t

� �
þ ts

� ����� ���� pð2:27Þ

þ
Z
Lt�Qh

����w e
x

e

� �
Y

þ eyþ eh; t
t

t

� �
þ ts

� �

� w e
x

e

� �
Y

þ ey; t
t

t

� �
þ ts

� ����� p;
where

Qh ¼ Yh � S; Yh ¼ fy a Y j yþ h a Yg:

The last integral in (2.27) can be bounded essentially as in (2.26). The first inte-
gral on the right hand side in (2.27) equals after a change of variableZ

Lh
t

jwðx; tÞj p dx dt; where Lh
t ¼ ðx; tÞ a Lt

���� x

e

� �
Y

a YnYh

� �
:

We conclude by observing that (the sum below is extended to all cells contained
in Lt)

jLh
t ja

X
i

jQtðxi; tiÞBLh
t ja g

X
i

eNtjQnQhja gjhj: r

Notice that as a consequence of Definition 2.2 and of Lemma 2.6, if w a
W 1;pðWTÞ

‘yZtðwÞ ¼ ‘y
~ZZtðwÞ ¼ eTtð‘xwÞ;ð2:28Þ

q

qs
ZtðwÞ ¼ tTtðwtÞ:ð2:29Þ
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Theorem 2.11. Let fwtg be a sequence converging strongly to w in L pð0;T ;
W 1;pðWÞÞ, as e; t ! 0, then

Ttð‘wtÞ ! ‘w; strongly in L pðWT �QÞ;ð2:30Þ
1

e
~ZZtðwtÞ ! yc � ‘w; strongly in L pðWT � S;W 1;pðY ÞÞ;ð2:31Þ

where

yc ¼
�
y1 �

1

2
; y2 �

1

2
; . . . ; yN � 1

2



:

Let p > 1 and let fwtg be a sequence converging weakly to w in L pð0;T ;
W 1;pðWÞÞ. Then, up to a subsequence, there exists ~ww ¼ ~wwðx; y; t; sÞ a LpðWT � S;
W 1;p

per ðYÞÞ, MY ð~wwÞ ¼ 0, such that as e; t ! 0

Ttð‘wtÞ * ‘wþ ‘y ~ww; weakly in L pðWT �QÞ;ð2:32Þ
1

e
~ZZtðwtÞ * yc � ‘wþ ~ww; weakly in L pðWT � S;W 1;pðY ÞÞ:ð2:33Þ

Proof. The limit in (2.30) follows from the strong convergence of ‘wt and
Proposition 2.8. To prove (2.31) we note that, applying the Poincaré–Wirtinger
inequality in Y to the function 1

e
~ZZtðwtÞ � yc � ‘w and (2.30), we get

1

e
~ZZtðwtÞ � yc � ‘w

���� ����
L pðWT�QÞ

ð2:34Þ

a g ‘y

�1
e

~ZZtðwtÞ


� ‘w

���� ����
L pðWT�QÞ

! 0:

Now we turn to the proof of (2.32) and (2.33). Since ‘y

	
1
e
~ZZtðwtÞ



¼ Ttð‘wtÞ, the

limit relation (2.33) implies (2.32).
Then noting that ‘y

	
1
e
~ZZtðwtÞ



is bounded in LpðWT �QÞ we have

1

e
~ZZtðwtÞ � yc � ‘w

���� ����
L pðWT�QÞ

a g ‘y

�1
e

~ZZtðwtÞ


� ‘w

���� ����
L pðWT�QÞ

aK ;ð2:35Þ

where K is a positive constant independent of e and t. Then there exists
~wwðx; y; t; sÞ a LpðWT � S;W 1;pðYÞÞ such that, up to a subsequence

1

e
~ZZtðwtÞ � yc � ‘w * ~ww; weakly in LpðWT � S;W 1;pðYÞÞ:ð2:36Þ

It is easy to show that MY

	
1
e
~ZZtðwtÞ � yc � ‘w



¼ 0, so that MY ð~wwÞ ¼ 0. The Y

periodicity of ~ww can be proven following the lines of the proof in Theorem 3.5
of [10]. r
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Next we deal with results connected with scalings specific to parabolic problems.
For example the following proposition should be compared with Proposition 3.1
of [10], where a di¤erent scaling appears.

Proposition 2.12. Let p > 1 and let fwtg be a sequence converging weakly in
L pð0;T ;W 1;pðWÞÞ to w, and also satisfying the estimate

tm
qwt

qt

���� ����
L pðWT Þ

a g;ð2:37Þ

with 0am < 1. Then

TtðwtÞ * w; weakly in L pðWT ;W
1;pðQÞÞ:ð2:38Þ

Proof. Using (2.9), (2.12) and (2.13) owing to the stated weak convergence of
fwtg we have the estimates

kTtðwtÞkL pðWT�QÞ a kwtkL pðWT Þ a g;ð2:39Þ
k‘yTtðwtÞkL pðWT�QÞ a ek‘wtkL pðWT Þ a ge;ð2:40Þ

q

qs
TtðwtÞ

���� ����
L pðWT�QÞ

a t1�m tm
qwt

qt

���� ����
L pðWT Þ

a gt1�m;ð2:41Þ

so that there exist a subsequence and ŵw a LpðWT ;W
1;pðQÞÞ such that

TtðwtÞ * ŵw; weakly in LpðW;W 1;pðQÞÞ;ð2:42Þ
‘yTtðwtÞ ! 0; strongly in LpðWT �QÞ;ð2:43Þ
q

qs
TtðwtÞ ! 0; strongly in LpðWT �QÞ;ð2:44Þ

and ‘yŵw ¼ qŵw
qs
¼ 0, so that ŵw does not depend on y and s. Then from (2.21) we

have

wðx; tÞ ¼ MQðŵwÞðx; tÞ ¼ ŵwðx; tÞ: r

Next we prove the following

Lemma 2.13. If (2.37) is in force with p > 1, 0ama 1, thenZ
WT

Z
Q

jMtðwÞðx; tÞ � ~MMtðwÞðx; t; sÞj p dx dt dy dsa gt pð1�mÞ:ð2:45Þ

Proof. For ðx; tÞ a Lt and recalling that t ¼ t t
t

� �
þ s

	 

, we have on applying

twice Hölder inequality
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MtðwÞðx; tÞ � ~MMtðwÞðx; t; sÞð2:46Þ

¼ 1

eNt

Z
Qtðx; tÞ

½wðz; yÞ � wðz; tÞ� dz dy

a
t1�

1
p

eNt

Z
Qtðx; tÞ

Z y

t

qw

ql
ðz; lÞ

���� ���� p dl dz dy
 !1

p

ðeNtÞ1�
1
p

a
t1�

1
p

e
N
p

Z
Qtðx; tÞ

qw

ql
ðz; lÞ

���� ���� p dl dz
 !1

p

:

Then after integrating over WT �Q and changing variables

z ¼
z� e x

e

� �
Y

e
; s ¼

l� t t
t

� �
t

we find Z
WT

Z
Q

jMtðwÞðx; tÞ � ~MMtðwÞðx; t; sÞj p dx dt dy dsð2:47Þ

a

Z
WT

Z
Q

t p

Z
Q

qw

ql
e
x

e

� �
Y

þ ze; t
t

t

� �
þ st

� ����� ����p ds dz dx dt dy ds
¼ t p

Z
WT

Z
Q

Tt
qw

qt

���� ����p� �
ðx; z; t; sÞ dx dt dz dsa gt pð1�mÞ;

where we have made use of (2.9) and of (2.37). r

2.4. Fast oscillations in time

We assume here that

t1�m

e
aC a ð0;þlÞ;ð2:48Þ

where 0am < 1. Actually there are di¤erent subcases which are treated in the
following results.

Proposition 2.14. Let fwtg be a sequence converging strongly to w in L pð0;T ;
W 1;pðWÞÞ and satisfying the estimate (2.37) with 0am < 1. If

lim
e; t!0

t1�m

e
¼ 0;ð2:49Þ
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then

1

e
ZtðwtÞ ! yc � ‘w strongly in L pðWT ;W

1;pðQÞÞ:ð2:50Þ

Proof. To prove (2.50) we first note that

‘y

�1
e
ZtðwtÞ



¼ ‘y

�1
e
TtðwtÞ



¼ Ttð‘xwtÞ ! ‘xw;ð2:51Þ

in LpðWT �QÞ where we used property (2.13) and (2.18) applied to ‘xw. From
(2.9), (2.12) and assumptions (2.37), (2.49) we obtain

q

qs

�1
e
ZtðwtÞ


���� ����
L pðWT�QÞ

¼ q

qs

�1
e
TtðwtÞ


���� ����
L pðWT�QÞ

ð2:52Þ

¼ t

e
Tt

�qwt

qt


���� ����
L pðWT�QÞ

a
t

e

qwt

qt

���� ����
L pðWT Þ

a g
t1�m

e
! 0;

as e; t ! 0. Having disposed of the convergence of the derivatives, we turn to the
sequence itself. We may apply the Poincaré–Wirtinger inequality in Q to the
function ZtðwtÞ=e� yc � ‘w, since its mean value in Q vanishes. We obtain that

1

e
ZtðwtÞ � yc � ‘w

���� ����
L pðWT�QÞ

ð2:53Þ

a g ‘y

�1
e
ZtðwtÞ



� ‘w

���� ����
L pðWT�QÞ

þ g
q

qs

�1
e
ZtðwtÞ


���� ����
L pðWT�QÞ

goes to 0 as e; t ! 0 as a consequence of (2.51) and (2.52). r

Proposition 2.15. Let fwtg be a sequence converging strongly to w in
W 1;pðWTÞ.

If t
e
! l as e; t ! 0, then

Tt

�qwt

qt



! qw

qt
; strongly in L pðWT �QÞ;ð2:54Þ

1

e
ZtðwtÞ ! yc � ‘wþ l

�
s� 1

2


 qw
qt

strongly in L pðWT ;W
1;pðQÞÞ:ð2:55Þ

Proof. Convergence (2.54) follows from the assumed strong convergence and
from Proposition 2.8. Equation (2.55) can be proven reasoning as in the proof
of Proposition 2.14. r
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Theorem 2.16. Let p > 1 and let fwtg be a sequence converging weakly to w in
L pð0;T ;W 1;pðWÞÞ and satisfying the estimate (2.37) with 0am < 1. If (2.49) is
in force, then up to a subsequence there exists ŵw a LpðWT ;W

1;p
per ðQÞÞ such that as

e; t ! 0

Ttð‘wtÞ * ‘wþ ‘yŵw; weakly in L pðWT �QÞ;ð2:56Þ
1

e
ZtðwtÞ * yc � ‘wþ ŵw; weakly in L pðWT ;W

1;pðQÞÞ:ð2:57Þ

Actually MQðŵwÞ ¼ 0 and

qŵw

qs
¼ 0;ð2:58Þ

so that ŵw ¼ ŵwðx; t; yÞ.

Proof. In order to prove (2.57) we appeal to Poincaré–Wirtinger inequality as
in the proof of Proposition 2.14. Indeed we have

1

e
ZtðwtÞ � yc � ‘w

���� ����
L pðWT�QÞ

a g ‘y

�1
e
ZtðwtÞ



� ‘w

���� ����
L pðWT�QÞ

ð2:59Þ

þ g
q

qs

�1
e
ZtðwtÞ


���� ����
L pðWT�QÞ

:

Recalling (2.28) and the stated weak convergence, the first term on the right hand
side of (2.59) is uniformly bounded on e, t. When we recall also (2.29), we have

q

qs

�1
e
ZtðwtÞ


���� ����
L pðWT�QÞ

¼ t

e
Tt

�qwt

qt


���� ����
L pðWT�QÞ

a g
t1�m

e
:ð2:60Þ

Then the whole right hand side of (2.59) is uniformly bounded on e, t and there
exists ŵw a LpðWT ;W

1;pðQÞÞ such that, up to a subsequence

1

e
ZtðwtÞ � yc � ‘w * ŵw; weakly in LpðWT ;W

1;pðQÞÞ;ð2:61Þ

that is (2.57).
Since by construction MQ

	
1
e
ZtðwtÞ � yc � ‘w



¼ 0, then MQðŵwÞ ¼ 0.

Taking into account (2.28) again we see that the limit relation (2.57) implies
(2.56).

On invoking (2.49), we see that (2.60) and (2.57) imply (2.58).
It remains to prove the Y -periodicity of ŵw, which can be done following [10].

r
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Remark 2.17. Under the assumptions of Theorem 2.16, we can of course apply
also Theorem 2.11. The two functions ŵw and ~ww so determined however coincide,
since we may apply Lemma 2.13 in

1

e
~ZZtðwtÞ �

1

e
ZtðwtÞ ¼

t1�m

e

½MtðwtÞ � ~MMtðwtÞ�
t1�m

: r

Theorem 2.18. Let p > 1 and let fwtg be a sequence converging weakly to w in
L pð0;T ;W 1;pðWÞÞ and satisfying the estimate (2.37) with 0 < m < 1. If (2.48) is in
force, then up to a subsequence, there exists ŵw a LpðWT ;W

1;p
per ðQÞÞ such that as

e; t ! 0 (2.56) and (2.57) hold true and MQðŵwÞ ¼ 0. Moreover

t

e
Tt

�qwt

qt



! qŵw

qs
; weakly in L pðWT �QÞ:ð2:62Þ

Proof. The proof stays essentially unchanged from the one of Theorem 2.16.
Indeed the only di¤erence is that the rightmost hand side in (2.60) does not tend
to 0. Actually this was used only to prove (2.58) which is not relevant here.

However, by the same token, we have to provide an argument to prove the
S-periodicity of ŵw. We introduce a test function c a Cl

c ðWT � YÞ, and computeZ
WT

Z
Y

1

e
½Ztðx; y; t; 1Þ �Ztðx; y; t; 0Þ�cðx; y; tÞ dx dy dtð2:63Þ

¼ 1

e

Z
WT

Z
Y

�
wt e

x

e

� �
Y

þ ey; t
t

t

� �
þ t

� �

� wt e
x

e

� �
Y

þ ey; t
t

t

� �� ��
cðx; y; tÞ dx dy dt

¼ 1

e

Z
WT

Z
Y

wt e
x

e

� �
Y

þ ey; t
t

t

� �� �
½cðx; y; t� tÞ � cðx; y; tÞ� dx dy dt

¼ 1

e

Z
WT

Z
Y

TtðwtÞðx; y; t; 0Þ½cðx; y; t� tÞ � cðx; y; tÞ� dx dy dt

¼ t

e

Z
WT

Z
Y

TtðwtÞðx; y; t; 0Þ
cðx; y; t� tÞ � cðx; y; tÞ

t
dx dy dt:

Next we observe the trace inequality

kTtðwtÞð�; �; �; 0ÞkL pðWT�Y Þð2:64Þ

a gkTtðwtÞkL pðWT�QÞ þ g
q

qs
TtðwtÞ

���� ����
L pðWT�QÞ

a gkwtkL pðWT Þ þ gt1�m tm
qwt

qt

���� ����
L pðWT Þ

aK :
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Then using Hölder inequality we getZ
WT

Z
Y

1

e
½Ztðx; y; t; 1Þ �Ztðx; y; t; 0Þ�cðx; y; tÞ dx dy dt

���� ����aK
t

e
! 0;ð2:65Þ

as e; t ! 0. Combining this with (2.57), considering that yc � ‘w does not depend
on s, and that qŵw

qs
a LpðWT �QÞ, we getZ

WT

Z
Y

½ŵwðx; y; t; 1Þ � ŵwðx; y; t; 0Þ�cðx; y; tÞ dx dy dt ¼ 0;ð2:66Þ

implying that ŵw is S-periodic. r

Remark 2.19. The convergence in (2.62) allows us to avoid the unloading of
the time derivative onto the test function in the homogenization process, see
(4.17), (4.18). In turn this avoids the appearance of non-local terms as in [12],
see Remark 4.3 below. r

In the case m ¼ 0 Theorem 2.18 is replaced with the following stronger
formulation.

Theorem 2.20. Let p > 1 and let fwtg be a sequence converging weakly to w in
W 1;pðWTÞ, and satisfying estimate (2.37) with m ¼ 0. If

lim
e; t!0

t

e
¼ l a ð0;þlÞ;ð2:67Þ

then there exists w
�
a W 1;pðWT �QÞ such that

Ttð‘wtÞ * ‘wþ ‘yw
�
; weakly in L pðWT �QÞ;ð2:68Þ

Tt

�qwt

qt



* wt þ

w
�
s

l
; weakly in L pðWT �QÞ;ð2:69Þ

1

e
ZtðwtÞ * yc � ‘wþ l

�
s� 1

2



wt þ w

�
; weakly in L pðWT ;W

1;pðQÞÞ:ð2:70Þ

Here w
�
is periodic in Q and is such that MQðw

� Þ ¼ 0.

The proof of Theorem 2.20 can be easily given along the lines of the proof of
Theorem 2.16. The periodicity of w

�
follows reasoning as in Theorem 3.5 in [10],

since in this case the time derivative is controlled as the space gradient.

Remark 2.21. In fact even under the assumptions of Theorem 2.20, Theorem
2.18 is valid excepting the periodicity of ŵw. In fact in Theorem 2.20 w

� ¼
ŵw� lðs� 1=2Þwt. r
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2.5. Slow oscillations in time

We assume here that

lim
e; t!0

e

t1�m
¼ 0;ð2:71Þ

for a given 0am < 1.

Proposition 2.22. Let fwtg be a bounded sequence in L pð0;T ;W 1;pðWÞÞ,
satisfying (2.37) and (2.71). Then� e

tr


1þa 1

e
ZtðwtÞ ! 0; strongly in L pðWT ;W

1;pðQÞÞ;ð2:72Þ

for all a > 0, 0 < ra 1�m. We can take a ¼ 0 if r < 1�m.

Proof. Since ZtðwtÞ has zero average in Q, we may apply Poincaré–Wirtinger
inequality to it, obtaining

1

e
ZtðwtÞ

���� ����
L pðWT�QÞ

ð2:73Þ

a g ‘y

�1
e
ZtðwtÞ


���� ����
L pðWT�QÞ

þ g
q

qs

�1
e
ZtðwtÞ


���� ����
L pðWT�QÞ

;

which yields, when invoking the properties of Tt and (2.37),

1

e
ZtðwtÞ

���� ����
L pðWT�QÞ

ð2:74Þ

a gkTtð‘wtÞkL pðWT�QÞ þ g
t

e
Tt

�qwt

qt


���� ����
L pðWT�QÞ

aK
�
1þ t1�m

e



:

We multiply (2.74) by ðe=trÞ1þa, r, a as in the statement, and infer the sought
after limiting relation. r

Remark 2.23. We single out for future reference (proof of Theorem 5.2) the
following immediate consequences of the results in this Section: if w a W 1;pðWTÞ
and e=tr ! 0, then for any given a > 0, 0 < ra 1 as e, t ! 0

Tt

�qw
qt



! qw

qt
; strongly in LpðWT �QÞ;ð2:75Þ

Ttð‘wÞ ! ‘w; strongly in LpðWT �QÞ;ð2:76Þ
1

e
~ZZtðwÞ ! yc � ‘w; strongly in LpðWT � S;W 1;pðYÞÞ;ð2:77Þ � e

tr


1þa 1

e
ZtðwÞ ! 0; strongly in LpðWT ;W

1;pðQÞÞ:ð2:78Þ r

679the time-periodic unfolding operator and applications



3. A parabolic homogenization problem

3.1. Assumptions

Let a : WT �Q ! R, a1 : WT � Y ! R, a2 : WT � S ! R be measurable func-
tions. We assume that they satisfy the uniform estimates

0 < C�1
a a; a1; a2 aC < l;ð3:1Þ

for some C > 1. Let then

Atðx; tÞ ¼ At
�
x; t;

x

e
;
t

t



; At ¼ Atðx; t; y; sÞ;

be a sequence of N �N matrices such that for all t > 0

kAt
ij klaC; i; j ¼ 1; . . . ;N; Atx � xbC�1jxj2; x a RN :ð3:2Þ

We also assume that a1 [respectively a2, A
t] are Lipschitz continuos in t [respec-

tively in x, ðt; sÞ] and that

qa1

qt

���� ����; qa2

qxi

���� ����; qAt

qt

���� ����; qAt

qs

���� ����aC;ð3:3Þ

for all i ¼ 1; . . . ;N and for all relevant arguments. We denote

atðx; tÞ ¼ a
�
x; t;

x

e
;
t

t



; at

1ðx; tÞ ¼ a1

�
x; t;

x

e



; at

2ðx; tÞ ¼ a2

�
x; t;

t

t



:

We always assume that At, at, at
1, a

t
2 are measurable in WT . This is known to be

the case for functions in the classes of Remark 2.9.
Let f a L2ðWTÞ be the source term in the di¤usion equation (see (3.5)). In fact

all our results in this paper are still valid if we more generally allow f to depend
on the unknown, i.e., if we let f : WT � R ! R be measurable and

j f ðx; t; uÞja gðx; tÞ þ Cjuj; ðx; t; uÞ a WT � R;ð3:4Þ

where g a L2ðWTÞ. Here we must assume f to be Lipschitz continuous in the
variable u uniformly with respect to ðx; tÞ a WT . Essentially this greater gener-
ality is possible owing to the strong convergence result of Corollary 3.4. We have
chosen to present the proofs in the slightly simpler case f ¼ f ðx; tÞ in order to
achieve a more compact presentation.
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3.2. Estimates

Consider the parabolic problem

at
1a

t
2

qut

qt
� divðAt‘utÞ ¼ f ; ðx; tÞ a WT ;ð3:5Þ

utðx; tÞ ¼ 0; ðx; tÞ a qW� ½0;T �;ð3:6Þ
utðx; 0Þ ¼ ut

0ðxÞ; x a W:ð3:7Þ

Here for a given initial data u0 a L2ðWÞ, we let fut
0g be a sequence in W

1;2
0 ðWÞ

such that ut
0 ! u0 strongly in L2ðWÞ, and kut

0kW 1; 2ðWÞ aC=
ffiffiffi
t

p
, where C depends

on ku0kL2ðWÞ.
In the following propositions we assume all the needed smoothness of the

solution ut, whose existence is classical under standard regularity assumptions
(see [16]). This can be done by means of an approximation procedure of the
data and coe‰cients in the equation.

Proposition 3.1. Let ut be the solution to problem (3.5)–(3.7). We have the
standard energy estimate

max
0ataT

Z
W

u2t dxþ
Z T

0

Z
W

j‘utj2 dx dta g;ð3:8Þ

where g is a constant independent of t.

Proof. Choose ut=a
t
2 as a test function in (3.5) and integrate by parts in WT , to

get for all t a ð0;TÞ

1

2

Z
W

at
1u

2
t ðtÞ �

1

2

Z
W

Z t

0

ðat
1Þtu2t þ

Z
W

Z t

0

At

at
2

‘ut � ‘ut �
Z
W

Z t

0

ut
At

jat
2j

2
‘ut � ‘at

2

¼
Z
W

Z t

0

f
ut

at
2

þ 1

2

Z
W

at
1ðut

0Þ
2:

Thus by means of Cauchy–Schwarz inequality and of our structural assumptions
we inferZ

W

jutj2ðtÞ þ
Z
W

Z t

0

j‘utj2 a g

Z
W

Z t

0

jutj2 þ
Z
W

Z t

0

j f j2 þ
Z
W

ðut
0Þ

2

" #
:ð3:9Þ

Next Gronwall’s inequality yieldsZ
W

jutj2ðtÞa g; 0 < t < T :

Finally on letting t ! T in (3.9) we obtain (3.8). r
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Proposition 3.2. For all t > 0

t

Z T

0

Z
W

�qut
qt


2
dx dtþ t max

0ataT

Z
W

j‘utj2ðtÞ dxa g;ð3:10Þ

where g is a constant independent of t.

Proof. We select qut
qt

as a testing function in (3.5) so that on integrating by parts
in the space variables we getZ T

0

Z
W

at
1a

t
2

�qut
qt


2
þ
Z T

0

Z
W

At‘ut � ‘
qut

qt
¼
Z T

0

Z
W

f
qut

qt
:ð3:11Þ

Hence Z T

0

Z
W

at
1a

t
2

�qut
qt


2
þ 1

2

Z T

0

Z
W

q

qt
ðAt‘ut � ‘utÞð3:12Þ

� 1

2

Z T

0

Z
W

qAt

qt
‘ut � ‘ut �

1

2

Z T

0

Z
W

qAt

qs

1

t
‘ut � ‘ut

¼
Z T

0

Z
W

f
qut

qt
:

The second integral on the left hand side of (3.12) can be evaluated exactly. After
an application of Cauchy–Schwarz inequality we are led toZ T

0

Z
W

�qut
qt


2
þ
Z
W

j‘utj2ðTÞð3:13Þ

a
g

t

Z T

0

Z
W

j‘utj2 þ g

Z T

0

Z
W

f 2 þ g

Z
W

j‘ut
0j

2;

whence (3.10) follows by taking (3.8) and our assumption k‘ut
0kL2ðWÞ aC=

ffiffiffi
t

p

into account, and making the obvious remark that T in the proof can be replaced
with any t a ð0;TÞ. r

Proposition 3.3 (Time compactness). If 0 < s < T=2 there exists g ¼ gðsÞ > 0
such that for any 0 < h < s=2 we haveZ T�s

s

Z
W

jutðx; tþ hÞ � utðx; tÞj2 dx dtð3:14Þ

a gð1þ kutk2L2ðWT Þ þ k‘utk2L2ðWT ÞÞ
ffiffiffi
h

p
:

Proof. Let s a ð0;T=2Þ, 0 < h < s=2, and define

jhðx; tÞ ¼ �zðtÞ
Z tþh

t

utðx; sÞ ds;
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where z a C1
0 ðs=2;T � s=2Þ is a nonnegative function such that z ¼ 1 in

ðs;T � sÞ and jz 0ja g=s. In this proof for any v ¼ vðx; tÞ we denote ~vvðx; tÞ ¼
vðx; tþ hÞ.

Testing equation (3.5) written at times t and respectively tþ h with jh=a
t
2 and

respectively jh= eat
2a
t
2 we get on subtracting the two integral formulations

�
Z T

0

Z
W

½ eat
1a
t
1 eutut � at

1ut�
qjh
qt

�
Z T

0

Z
W

½fat
1tat
1t eutut � at

1tut�jhð3:15Þ

þ
Z T

0

Z
W

fAtAt‘eutut � ‘�jheat
2a
t
2



�
Z T

0

Z
W

At‘ut � ‘
�jh
at
2




¼
Z T

0

Z
W

~ffeat
2a
t
2

� f

at
2

" #
jh:

The first integral on the left hand side of (3.15) equalsZ T

0

Z
W

½ eat
1a
t
1 eutut � at

1ut� z 0
Z tþh

t

utðx; sÞ dsþ z½eutut � ut�
� �

ð3:16Þ

¼
Z T

0

Z
W

½eutut � ut�2zat
1 þ

Z T

0

Z
W

½ eat
1a
t
1 eutut � at

1ut�z 0
Z tþh

t

utðx; sÞ ds

þ
Z T

0

Z
W

eutut½eutut � ut�z½ eat
1a
t
1 � at

1�:

Clearly the first term on the right hand side of (3.16) essentially is the one esti-
mated in the statement. The second integral there can be majorized by means of
Hölder inequality by

gkz 0kl
�Z

W

Z T�s=2

s=2

jeututj2 þ jutj2

1

2

Z
W

Z T�s=2

s=2

Z tþh

t

utðx; sÞ ds
���� ����2

 !1
2

ð3:17Þ

a gkutk2L2ðWT Þ
ffiffiffi
h

p
:

The third term on the right hand side of (3.16) is estimated, invoking the time
regularity of a1, by

g

Z
W

Z T�s=2

s=2

jeututjðjeututj þ jutjÞj eat
1a
t
1 � a1ja gkutk2L2ðWT Þh:ð3:18Þ

We turn to estimating the other terms in (3.15). The second integral there can be
treated as in (3.17). The third and fourth integrals in (3.15) can be bounded in the
same way, that is
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Z T

0

Z
W

fAtAt‘eutut � ‘�jheat
2a
t
2


�����
�����ð3:19Þ

a g

Z
W

Z T�s=2

s=2

‘eututeat
2a
t
2

�����
�����
Z tþh

t

‘utðx; sÞ ds
���� ����

þ g

Z
W

Z T�s=2

s=2

j‘eututj j‘ eat
2a
t
2jeat

2a
t
2
2

Z tþh

t

utðx; sÞ ds
���� ����

a gk‘utkL2ðWT Þ

 Z
W

Z T�s=2

s=2

Z tþh

t

‘utðx; sÞ ds
���� ����2

þ
Z tþh

t

utðx; sÞ ds
���� ����2

!1
2

a gk‘utkL2ðWT Þðk‘utkL2ðWT Þ þ kutkL2ðWT ÞÞ
ffiffiffi
h

p
:

Finally the integral on the right hand side of (3.15) is dealt with by a similar and
even simpler argument, contributing a quantity

gk f kL2ðWT ÞkutkL2ðWT Þ
ffiffiffi
h

p
:ð3:20Þ

Collecting estimates (3.15)–(3.20) we prove at once (3.14). r

Corollary 3.4. By extracting a subsequence if needed we may assume

ut ! u; strongly in L2ðWTÞ and weakly in Cð0;T ;L2ðWÞÞ;ð3:21Þ

‘ut ! ‘u; weakly in L2ðWTÞ:ð3:22Þ

Proof. Both claims follow straightforwardly from Propositions 3.1 and 3.3, and
from classical results. r

3.3. A special case

Let us look also at the following problem

atðx; tÞ qut
qt

� div
�
At
�
x;
x

e



‘ut



¼ f ; ðx; tÞ a WT ;ð3:23Þ

utðx; tÞ ¼ 0; ðx; tÞ a qW� ½0;T �;ð3:24Þ
utðx; 0Þ ¼ u0ðxÞ; x a W:ð3:25Þ

Here we assume u0 a W
1;2
0 ðWÞ.
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Proposition 3.5. If u0 a W
1;2
0 ðWÞ then the solution to (3.23)–(3.25) satisfiesZ T

0

Z
W

�qut
qt


2
dx dtþ max

0ataT

Z
W

ðutðx; tÞ2 þ j‘utðx; tÞj2Þ dxa g;ð3:26Þ

where g is independent of t.

Proof. We multiply (3.23) against qut
qt

and integrate by parts in the space vari-
ables, reasoning as in the proof of Proposition 3.2. In the simpler case at hand we
immediately get Z T

0

Z
W

at
�qut
qt


2
þ 1

2

Z
W

At‘utðTÞ � ‘utðTÞð3:27Þ

a
1

2

Z
W

At‘u0 � ‘u0 þ
Z T

0

Z
W

f
qut

qt
:

The estimates of qut
qt

and ‘ut follow upon an application of Cauchy–Schwarz
inequality. Finally the estimate of ut is simply a consequence of the standard
formula

utðx; tÞ ¼ u0ðxÞ þ
Z t

0

qut

qz
ðx; zÞ dz: r

Remark 3.6. Clearly Corollary 3.4 is still in force under the assumptions of
Proposition 3.5. r

4. The limit problem in the case of fast oscillations in time

We look here at the case

ta ge2;ð4:1Þ

and assume throughout that there exist bounded functions B : WT �Q ! RN 2

,
b1 : WT � Y ! R and b2 : WT � S ! R such that

TtðAtÞ ! B; strongly in L1ðWT �QÞ;ð4:2Þ
Ttðat

1Þ ! b1; strongly in L1ðWT � YÞ;ð4:3Þ
Ttðat

2Þ ! b2; strongly in L1ðWT � SÞ:ð4:4Þ

We also need assume

Ttðat
1tÞ * b1t; weakly in L2ðWT � YÞ;ð4:5Þ

Ttð‘at
2Þ ! ‘b2; strongly in L1ðWT � SÞ;ð4:6Þ
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and the convergence at time t ¼ 0

Teðat
1ð0ÞÞ * b1ð0Þ; weakly in L2ðW� Y Þ:ð4:7Þ

About the known cases of convergences of the type above see Remark 2.9.

Proposition 4.1. Let (4.1) be in force and let ut be the solution of problem
(3.5)–(3.7). Then there exist u a L2ð0;T ;W 1;2ðWÞÞ and ûu a L2ðWT ; W 1;2

per ðQÞÞ
such that MQðûuÞ ¼ 0 and up to a subsequence

ut * u; weakly in L2ð0;T ;W 1;2ðWÞÞ;ð4:8Þ
TtðutÞ * u; weakly in L2ðWT ;W

1;2ðQÞÞ;ð4:9Þ
Ttð‘utÞ * ‘uþ ‘yûu; weakly in L2ðWT �QÞ;ð4:10Þ

t

e
Tt

�qut
qt



*

qûu

qs
; weakly in L2ðWT �QÞ:ð4:11Þ

The convergence ut ! u is in fact strong in L2ðWTÞ, so that from Proposition 2.8 it
follows TtðutÞ ! u strongly in L2ðWT �QÞ.

Proof. The claim readily follows from Proposition 2.12, Theorem 2.18 and
Corollary 3.4, by taking into account the estimates proved in Section 3. r

Theorem 4.2. Let (4.1)–(4.7) be in force, and assume

lim
e; t!0

t

e2
¼ l a ð0;lÞ:ð4:12Þ

Then the pair ðu; ûuÞ as in Proposition 4.1 is the unique solution (in the class speci-
fied in the Proposition) ofZ

WT

Z
Q

�
�uðb1fÞt þ l�1b1ûusCþ B½‘xuð4:13Þ

þ ‘yûu� ‘x

� f

b2



þ 1

b2
‘yC

� ��
dx dt dy ds

¼
Z
WT

Z
S

f

b2
f dx dt dsþ

Z
W

Z
Y

u0ðxÞfðx; 0Þb1ðx; 0; yÞ dx dy;

for all f a W 1;2ðWTÞ with fðx; tÞ ¼ 0 on qW� ½0;T � and fðx;TÞ ¼ 0, and C a
L2ðWT � S;W 1;2

per ðYÞÞ.

Proof. First we prove the macroscopic part of (4.13), i.e., the equality itself
with C ¼ 0. To this end we do not need (4.12).

We use f=at
2 as a test function for equation (3.5), where f a ClðWTÞ with

f ¼ 0 on qW� ½0;T � and fðx;TÞ ¼ 0. Integrating by parts in WT we get
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�
Z
WT

ut½at
1ft þ at

1tf� dx dtþ
Z
WT

At‘ut �
‘f

at
2

� f
‘at

2

ðat
2Þ

2

" #
dx dtð4:14Þ

¼
Z
WT

f
f

at
2

dx dtþ
Z
W

ut
0ðxÞfðx; 0Þat

1ðx; 0Þ dx:

Unfolding the equation above we get

�
Z
WT

Z
Q

fTtðat
1ÞTtðutÞTtðftÞ þTtðat

1tÞTtðutÞTtðfÞgð4:15Þ

þ
Z
WT

Z
Q

TtðAtÞTtð‘utÞTtð‘fÞTt

� 1
at
2



�
Z
WT

Z
Q

TtðAtÞTtð‘utÞTtðfÞTtð‘at
2Þ
�
Tt

� 1

at
2



2
¼
Z
WT

Z
Q

Ttð f ÞTtðfÞTt

� 1
at
2



þ
Z
W

Z
Y

Ttðut
0ÞTtðfð0ÞÞTtðat

1ð0ÞÞdx dyþ Rt;

where Rt ¼ oð1Þ, as e; t ! 0. Then taking the limit e; t ! 0 and recalling Propo-
sition 4.1 as well as (2.18), (2.19), (4.2)–(4.7), we getZ

WT

Z
Q

�b1uft � b1tufþ Bð‘xuþ ‘yûuÞ
�‘f
b2

� f
‘b2

b22


� �
dx dt dy dsð4:16Þ

¼
Z
WT

Z
S

f

b2
f dx dt dsþ

Z
W

Z
Y

u0fðx; 0Þb1ðx; 0; yÞ dx dy;

amounting to the di¤erential equation in the macroscopic variables.
Next we turn to the proof of the equation in the microscopic quantities, where

we first appeal to (4.12). We use a test function

F ¼ t

e
fðx; tÞc

�x
e
;
t

t



;

where f is the same as above and c a W 1;2
per ðQÞ is extended periodically both in y

and s to the whole RNþ1. So testing (3.5) with F and then integrating by parts
gives Z

WT

t

e
at
1a

t
2

qut

qt
fcþ t

e
At‘ut � ð‘fÞcþ t

e2
At‘ut � ð‘ycÞf

� �
dx dtð4:17Þ

¼
Z
WT

t

e
f fc dx dt:
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Then unfolding we getZ
WT

Z
Q

t

e
Ttðat

1ÞTtðat
2ÞTt

�qut
qt



TtðfÞTtðcÞ dx dt dy dsð4:18Þ

þ
Z
WT

Z
Q

t

e2
TtðAtÞTtð‘utÞTtðfÞTtð‘ycÞ dx dt dy ds

¼ �
Z
WT

Z
Q

t

e
TtðAtÞTtð‘utÞTtð‘fÞTtðcÞ dx dt dy ds

þ
Z
WT

t

e
f fc dx dtþ Rt:

In the limit as e; t ! 0 the right hand side vanishes. The left hand side, by virtue
of Proposition 4.1, converges toZ

WT

Z
Q

fûusb1b2fcþ lBð‘uþ ‘yûuÞf‘ycg dx dt dy ds:ð4:19Þ

By the density of the tensor product ClðWTÞnW 1;2
per ðQÞ in L2ðWT � S;

W 1;2
per ðYÞÞ these results hold for every C a L2ðWT � S;W 1;2

per ðY ÞÞ. If we select for
the sake of formal symmetry a test function F=at

2, minor modifications to the
argument above yield (4.13).

The uniqueness is proved in a rather standard fashion, exploiting the linearity
of the problem. If ðui; ûuiÞ, i ¼ 1; 2, are two solutions of the problem, we essen-
tially take as testing functions f ¼ u1 � u2, C ¼ ûu1 � ûu2, after unloading the time
derivative on ui again, via a Steklov averaging procedure. Here we use also
Gronwall’s theorem and thus, if f is allowed to depend on u, its Lipschitz conti-
nuity in u. r

Remark 4.3. The microscopic part of our homogenized equation (4.13) does
not contain any non-local term, as found instead in [12, formula (3.5)]. Indeed

[12, Remark 3.4] stated that such a term is zero if, in our notation, qut
qt

is uni-
formly bounded in L2ðWTÞ. Therefore, here we have shown that the non-local
term vanishes also under the weaker estimate (2.37), m ¼ 1=2. In our approach
this bound follows from the regularity in (3.3). However the regularity of the
matrix At is used only to estimate qut

qt
and is irrelevant in the homogenization

process.
Finally, we remark that the function u1 in the notation of [12] can be written

as

u1ðx; t; y; sÞ ¼ ûuðx; y; t; sÞ �MY ðûuÞðx; t; sÞ;

for ûu as in Theorem 4.2. r
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Theorem 4.4. Let (4.1)–(4.4) be in force, and assume

lim
e; t!0

t

e2
¼ 0:ð4:20Þ

Let the pair ðu; ûuÞ be as in Proposition 4.1. Then ûu ¼ ûuðx; t; yÞ, i.e., ûus ¼ 0, and
ðu; ûuÞ is the solution ofZ

WT

Z
Q

�uðb1fÞt þ B½‘xuþ ‘yûu� ‘x

� f
b2



þ 1

b2
‘yC

� �� �
dx dt dy dsð4:21Þ

¼
Z
WT

Z
S

f

b2
f dx dtþ

Z
W

Z
Y

u0ðxÞfðx; 0Þb1ðx; 0; yÞ dx dy;

for all f a W 1;2ðWTÞ with fðx; tÞ ¼ 0 on qW� ½0;T � and fðx;TÞ ¼ 0, and C a
L2ðWT ;W

1;2
per ðY ÞÞ.

Proof. The proof of the macroscopic di¤erential equation is the same as in
Theorem 4.2.

Concerning the microscopic equation, we remark that when (4.20) is in force,
then ûu does not depend on s (see Theorem 2.16). Then we test the equation (3.5)
with a function

F ¼ e
fðx; tÞ
at
2ðx; tÞ

c
�x
e



;

with f a ClðWTÞ, fðx;TÞ ¼ 0 and c a W 1;2
per ðYÞ extended periodically to the

whole RN , obtainingZ
WT

At‘utð‘ycÞ
f

at
2

ð4:22Þ

¼ e

Z
WT

at
1utftcþ at

1tutfc� At‘ut �
�‘f
at
2

� f‘at
2

ðat
2Þ

2



cþ f f

c

a2

( )
dx dt

þ e

Z
W

ut
0ðxÞat

1ðx; 0Þfðx; 0Þc
�x
e



dx:

Clearly the right hand side of (4.22) vanishes as e; t ! 0. When we unfold the left
hand side we obtain in the limitZ

WT

Z
Q

TtðAtÞTtð‘utÞTtðfÞTtð‘ycÞTt

� 1

at
2



ð4:23Þ

!
Z
WT

Z
Q

B

b2
ð‘uþ ‘yûuÞf‘yc ¼ 0:
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Owing to the density of the tensor product ClðWTÞnW 1;2
per ðY Þ in

L2ðWT ;W
1;2
per ðY ÞÞ, from (4.23) we obtain (4.21) for every C a L2ðWT ;W

1;2
per ðYÞÞ,

concluding the proof.
The uniqueness of solutions follows as in Theorem 4.2. r

5. The limit problem in the case of slow oscillations in time

We consider here the case

lim
e; t!0

e2

t
¼ 0:ð5:1Þ

Proposition 5.1. Let (5.1) be in force and let ut be the solution of problem
(3.5)–(3.7). Then there exist u a L2ð0;T ;W 1;2ðWÞÞ and ~uu a L2ðWT � S;W 1;2

per ðYÞÞ
such that MY ð~uuÞ ¼ 0 and up to a subsequence

ut * u; weakly in L2ð0;T ;W 1;2ðWÞÞ;ð5:2Þ
TtðutÞ * u; weakly in L2ðWT ;W

1;2ðQÞÞ;ð5:3Þ
Ttð‘utÞ * ‘uþ ‘y~uu; weakly in L2ðWT �QÞ:ð5:4Þ

The convergence ut ! u is in fact strong in L2ðWTÞ, so that from Proposition 2.8
follows TtðutÞ ! u strongly in L2ðWT �QÞ.

Proof. The claim follows at once from Theorem 2.11, Proposition 2.12 and
Corollary 3.4, on invoking the estimates of Section 3. r

Theorem 5.2. Let (4.2)–(4.7) be in force, and also assume (5.1). Then the pair
ðu; ~uuÞ as in Proposition 5.1 is the unique solution of the problemZ

WT

Z
Q

�uðb1fÞt þ B½‘xuþ ‘y~uu� ‘x

� f
b2



þ 1

b2
‘yC

� �� �
dx dt dydsð5:5Þ

¼
Z
WT

Z
S

f

b2
f dx dtþ

Z
W

Z
Y

u0ðxÞfðx; 0Þb1ðx; 0; yÞ dx dy;

for all f a W 1;2ðWTÞ with f ¼ 0 on qW� ½0;T � and fðx;TÞ ¼ 0, and C a
L2ðWT � S;W 1;2

per ðYÞÞ.

Proof. The macroscopic di¤erential equation (4.16) can be proved as in
Theorem 4.2.

Next we introduce a test function

F ¼ efðx; tÞc
�x
e
;
t

t



at
2ðx; tÞ

�1;
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where f a ClðWTÞ with f ¼ 0 on qW� ½0;T � and fðx;TÞ ¼ 0, and c a W 1;2
per ðQÞ,

with cðy; 0Þ ¼ 0, cðy; 1Þ ¼ 0. We understand c to be extended periodically both
in y and s to the whole RNþ1. Then testing (3.5) with F and integrating by parts
we get Z

WT

� e

t
at
1utfcs þ At‘ut � ð‘ycÞ

f

at
2

� �
dx dtð5:6Þ

¼ e

Z
WT

utðat
1fÞtc� At‘ut �

�
‘

f

at
2



cþ f fc

at
2

� �
dx dt:

The right hand side of (5.6) goes to zero as e; t ! 0. Unfolding the left hand side
we see that it equalsZ

WT

Z
Q

� e

t
Ttðat

1ÞTtðutÞTtðfÞTtðcsÞ
� �

ð5:7Þ

þ
Z
WT

Z
Q

TtðAtÞTtð‘utÞTtðfÞTtð‘ycÞTt

� 1

at
2


� �
þ Rt

¼: J1 þ J2 þ Rt:

As a consequence of Theorem 2.11 we have as e; t ! 0

J2 !
Z
WT

Z
Q

Bð‘uþ ‘y~uuÞ � ð‘ycÞ
f

b2
:ð5:8Þ

Next we show that the term J1 is vanishing in the limit. By recalling Definitions
2.2 and 2.4 we find

J1 ¼ � e2

t

Z
WT

Z
Q

1

e
ZtðutÞTtðat

1ÞTtðfÞTtðcsÞð5:9Þ

� e2

t

Z
WT

Z
Q

1

e
MtðutÞTtðat

1ÞTtðfÞTtðcsÞ ¼: J11 þ J12:

By taking into account Proposition 2.22 with m ¼ r ¼ 1=2 and a ¼ 1, we see that
J11 ! 0 as e; t ! 0. We split J12 again, as in

J12 ¼ � e2

t

Z
WT

Z
Q

1

e
MtðutÞMtðfÞTtðat

1ÞTtðcsÞð5:10Þ

� e2

t

Z
WT

Z
Q

1

e
ZtðfÞMtðutÞTtðat

1ÞTtðcsÞ ¼: J121 þ J122:

Again we have J122 ! 0 as e; t ! 0 by virtue of Remark 2.23 (with m ¼ r ¼ 1=2
and a ¼ 1).
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Next we invoke Lemma 2.6 and specifically (2.12) to write

J121 ¼ � e2

t

Z
WT

Z
Q

1

e
MtðutÞMtðfÞTtðat

1Þ
q

qs
TtðcÞ:ð5:11Þ

Recalling that c is zero both at s ¼ 0 and at s ¼ 1 we have after integrating by
parts and using (2.12)

J121 ¼
e2

t

Z
WT

Z
Q

1

e
MtðutÞMtðfÞ

� q
qs

Ttðat
1Þ


TtðcÞð5:12Þ

¼ e

Z
WT

Z
Q

MtðutÞMtðfÞTtðat
1tÞTtðcÞ ! 0:

By a routine density argument, we see that (5.5) is in force for all test functions as
claimed in the statement.

The uniqueness of solutions follows as in Theorem 4.2. r

6. The limit problem in the case m ¼ 0, tP e

Here we find a homogenized formulation for problem (3.23)–(3.25) in the special
case where (2.67) holds true. We assume throughout that the requirements in
Subsection 3.1 are fulfilled. We are also going to require that there exist bounded
functions B : W� Y ! RN 2

, b : Q ! R such that

TtðAtÞ ! B; strongly in L1ðW� Y Þ;ð6:1Þ

TtðatÞ ! b; strongly in L1ðWT �QÞ:ð6:2Þ

Owing to estimate (3.26), in the notation of Section 2 we may take m ¼ 0.

Proposition 6.1. Let (2.67) be in force and let ut be the solution of problem
(3.23)–(3.25). Then there exist u a L2ð0;T ;W 1;2ðWÞÞ and u

�
a L2ðWT ;W

1;2
per ðQÞÞ

such that MQðu
�Þ ¼ 0 and up to a subsequence

ut * u; weakly in W 1;2ðWTÞ;ð6:3Þ

TtðutÞ * u; weakly in L2ðWT ;W
1;2ðQÞÞ;ð6:4Þ

Ttð‘utÞ * ‘uþ ‘yu
�
; weakly in L2ðWT �QÞ;ð6:5Þ

Tt

�qut
qt



*

qu

qt
þ l�1 qu

�

qs
; weakly in L2ðWT �QÞ:ð6:6Þ

The convergence ut ! u is in fact strong in L2ðWTÞ, so that from Proposition 2.8 it
follows TtðutÞ ! u strongly in L2ðWT �QÞ.
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Proof. The claim follows from Proposition 2.12, Theorem 2.20 and Remark
3.6, by taking into account the estimates proved in Subsection 3.3. r

Theorem 6.2. Let (6.1)–(6.2) be in force. Then the pair ðu; u�Þ as in Proposition
6.1 solvesZ

WT

Z
Q

fðut þ l�1u
�
sÞbfþ B½‘xuþ ‘yu

� �½‘xfþ ‘yC�gdx dt dy dsð6:7Þ

¼
Z
WT

Z
S

f f dx dt ds;

for all f a L2ðð0;TÞ � S;W 1;2ðWÞÞ with f ¼ 0 on qW� ½0;T � for a.e. s a S, and

C a L2ðWT � S;W 1;2
per ðY ÞÞ.

If ‘xb a LlðWT �QÞ such solution is unique.

Proof. To prove the macroscopic part of equation (6.7), we test (3.23) with the
time-oscillating function

ftðx; tÞ ¼ f
�
x; t;

t

t



;

for f a L2ðS;ClðWTÞÞ, and f ¼ 0 for ðx; tÞ a qW� ½0;T �, obtainingZ
WT

qut

qt
atft þ

Z
WT

At‘ut � ‘ft ¼
Z
WT

f ft:ð6:8Þ

On unfolding we are led toZ
WT

Z
Q

Tt

�qut
qt



TtðatÞTtðftÞ þ

Z
WT

Z
Q

TtðAtÞTtð‘utÞTtð‘ftÞð6:9Þ

¼
Z
WT

Z
Q

Ttð f ÞTtðftÞ þ Rt:

Then taking the limit e; t ! 0, recalling (6.1), (6.2), Proposition 6.1 and Remark
2.9 we getZ

WT

Z
Q

ðut þ l�1u
�
sÞbfþ

Z
WT

Z
Q

Bð‘xuþ ‘yu
�Þ‘xf ¼

Z
WT

Z
S

f f:ð6:10Þ

Next we prove the microscopic part of equation (6.7). For this purpose we test
the equation (3.23) with a function

ejðx; tÞc
�x
e
;
t

t
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where j a ClðWTÞ with j ¼ 0 on qW� ½0;T �, and c a W 1;2
per ðQÞ is extended

periodically both in y and s to the whole RNþ1, obtainingZ
WT

At‘ut � ð‘ycÞj ¼ �e

Z
WT

at qut

qt
jcð6:11Þ

� e

Z
WT

At‘ut � ð‘jÞcþ e

Z
WT

f jc:

The right hand side of equation (6.11) goes to zero as e; t ! 0. Unfolding the left
hand side we see that it equalsZ

WT

Z
Q

TtðAtÞTtð‘utÞTtð‘ycÞTtðjÞ þ Rt:ð6:12Þ

Recalling Proposition 6.1, as e; t ! 0 we get from (6.11)–(6.12)Z
WT

Z
Q

Bð‘xuþ ‘yu
�Þð‘ycÞj ¼ 0:ð6:13Þ

By a routine density argument we see that (6.7) is in force for all test functions as
claimed in the statement.

In order to prove uniqueness of solutions, we preliminarily remark that by
virtue of (6.7) we may write for any solution ðu; u�Þ

u
�ðx; t; y; sÞ ¼ u�ðx; t; yÞ þ uðx; t; sÞ;ð6:14Þ

where u� is the unique solution of

divyðBðx; yÞ½‘xuþ ‘yu
��Þ ¼ 0

such that MY ðu�Þ ¼ 0 and u� is Y -periodic. Then MSðuÞ ¼ 0 and

qu
�

qs
¼ qu

qs
ð6:15Þ

does not depend on y. Next we invoke again the integral equation (6.7). Take
there

fðx; t; sÞ ¼ jðx; tÞ
MY ðbÞðx; t; sÞ

;ð6:16Þ

for j satisfying the requirements in the statement, and obtainZ
WT

Z
Q

ðut þ l�1u
�
sÞjþ B½‘xuþ ‘yu

� � ‘x

� j

MY ðbÞ



þ ‘yC

� �� �
dx dt dy dsð6:17Þ

¼
Z
WT

Z
S

f
j

MY ðbÞ
dx dt ds:
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The contribution of the term u
�
sj vanishes by periodicity. Then we are back to a

formulation similar e.g., to (4.21), and can proceed accordingly. That is to say,
given two solutions ðu1; u

�
1Þ, ðu2; u

�
2Þ we may conclude u1 ¼ u2. Thus u

�
1 ¼ u�

2 by
the definition of u�

i . We make use a last time of (6.7), and of (6.15), to inferZ
WT

Z
S

l�1ðu1s � u2sÞMY ðbÞðx; t; sÞfðx; t; sÞ dx dt ds ¼ 0;

whence

u1s � u2s ¼ 0:

It follows u1 ¼ u2 since MSðu1Þ ¼ MSðu2Þ ¼ 0. r

Remark 6.3. One can see that as a di¤erence from the other macroscopic
equations obtained in the homogenization limit in this paper, the macroscopic
part of (6.7) contains a residual microscopic time derivative u

�
s. In contrast, the

term ûus in (4.13) belongs to the microscopic equation. See also Remark 7.6. r

Remark 6.4. The case investigated in this Section is actually covered by Theo-
rem 5.2, if we take at ¼ at

1a
t
2, so that b ¼ b1b2. Here we show how to reconcile

equations (5.5) and (6.7). In the latter take

fðx; t; sÞ ¼ jðx; tÞ
b2ðx; t; sÞ

;

where j is admissible as in Theorem 5.2. Observe that in the resulting equation,
owing to the periodicity of u

�
in s, we haveZ

WT

Z
Q

l�1u
�
sðx; t; y; sÞb1ðx; t; yÞjðx; tÞ dx dt dy ds ¼ 0:

After integrating by parts the term utb1j we recover (5.5), since C=b2 is admis-
sible whenever C is. r

7. Reduction to the macroscopic scale

In order to reduce the homogenized problems for the three di¤erent scalings of
the parameters e, t to macroscopic formulations, we first introduce the cell func-
tions wi. Let us denote the elements of the limit matrix in (4.2) by

Bðx; t; y; sÞ ¼ ðbi; jðx; t; y; sÞÞ1ai; jaN :

Definition 7.1. If (4.12) is in force, for 1a iaN the functions wiðx; t; y; sÞ
satisfy MQðwiÞ ¼ 0 and are the Q-periodic solutions of the problem

l�1b1ðx; y; tÞwis �
XN
j;k¼1

q

qyj

�bj;kðx; t; y; sÞ
b2ðx; t; sÞ

qðwi � yiÞ
qyk



¼ 0 in WT �Q:ð7:1Þ
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If (4.20) is in force, for 1a iaN the functions wiðx; t; yÞ satisfy MY ðwiÞ ¼ 0 and
are the Y -periodic solutions of the problem

XN
j;k¼1

q

qyj

�
MS

�bj;k
b2



ðx; t; yÞ qðwi � yiÞ

qyk



¼ 0 in WT � Y :ð7:2Þ

If (5.1) is in force, for 1a iaN the functions wiðx; t; y; sÞ satisfy MY ðwiÞ ¼ 0 and
are the Y -periodic solutions of the problem

XN
j;k¼1

q

qyj

�bj;kðx; t; y; sÞ
b2ðx; t; sÞ

qðwi � yiÞ
qyk



¼ 0 in WT �Q:ð7:3Þ r

Next we prove

Theorem 7.2. Let u denote the limit of the sequence futg of solutions to prob-
lems (3.5)–(3.7), obtained in Theorems 4.2, 4.4 and 5.2.

Then u is the solution of the following homogenized problem

ahomut � divðAhom‘uÞ � Ehom � ‘u ¼ F homf ; ðx; yÞ a WT ;ð7:4Þ
uðx; tÞ ¼ 0; ðx; tÞ a qW� ð0;TÞ;ð7:5Þ
uðx; 0Þ ¼ u0ðxÞ; x a W;ð7:6Þ

where

ahomðx; tÞ ¼ MY ðb1Þ;ð7:7Þ

Ahomðx; tÞ ¼ MQ

�B
b2

ðI � ½‘yw1j . . . j‘ywN �Þ


;ð7:8Þ

Ehomðx; tÞ ¼ MQ

�
BðI � ½‘yw1j . . . j‘ywN �Þ

‘xb2

jb2j2


;ð7:9Þ

F homðx; tÞ ¼ MS

� 1
b2



;ð7:10Þ

and the wi have been introduced in Definition 7.1.

Proof. If (4.12) is in force, we factorize as

ûuðx; t; y; sÞ ¼ �‘xuðx; tÞ �
XN
i¼1

wiðx; t; y; sÞei; ðx; t; y; sÞ a WT �Q;ð7:11Þ

where wi is defined by (7.1). By using (7.11) in (4.13) with f ¼ 0 we obtain the
problem (7.1) in the microscopic space-time cell, which is satisfied thanks to our
definition of wi. Then considering (4.13) with C ¼ 0 and using again (7.11), we get
equation (7.4).
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The formulations in the other cases are obtained in a similar way. Namely if
(4.20) is in force, we use the factorization

ûuðx; t; yÞ ¼ �‘xuðx; tÞ �
XN
i¼1

wiðx; t; yÞei; ðx; t; yÞ a WT � Y ;ð7:12Þ

where wi is defined by (7.2). If instead (5.1) is in force we write

~uuðx; t; y; sÞ ¼ �‘xuðx; tÞ �
XN
i¼1

wiðx; t; y; sÞei; ðx; y; t; sÞ a WT �Q;ð7:13Þ

where wi is defined by (7.3). r

7.1. The case m ¼ 0, tP e

In this case the elements bi; j of the limit matrix in (6.1) depend only on ðx; yÞ.

Definition 7.3. If (2.67) is in force, for 1a iaN the functions wiðx; yÞ satisfy
MY ðwiÞ ¼ 0 and are the Y -periodic solutions of the problem

XN
j;k

q

qyj

�
bj;kðx; yÞ

qðwi � yiÞ
qyk



¼ 0; ðx; yÞ a W� Y :ð7:14Þ r

Theorem 7.4. Let u denote the limit of the sequence futg of solutions to prob-
lems (3.23)–(3.25), obtained in Theorem 6.2.

Then u is the solution of the homogenized problem (7.4)–(7.6), where

ahomðx; tÞ ¼ 1;ð7:15Þ

Ahomðx; tÞ ¼ MQ

� B

MY ðbÞ
ðI � ½‘yw1j . . . j‘ywN �Þ



;ð7:16Þ

Ehomðx; tÞ ¼ MQ

�
BðI � ½‘yw1j . . . j‘ywN �Þ‘x

� 1

MY ðbÞ




;ð7:17Þ

F homðx; tÞ ¼ MS

� 1

MY ðbÞ



;ð7:18Þ

and wi are as in Definition 7.3.

Proof. In (6.7) we split u
�ðx; t; y; sÞ as in (6.14), and factorize as

u
�ðx; t; y; sÞ ¼ �‘xuðx; tÞ �

XN
i¼1

wiðx; yÞei þ uðx; t; sÞ;ð7:19Þ

ðx; t; y; sÞ a WT �Q;

697the time-periodic unfolding operator and applications



where wi is defined by (7.14). By using (7.19) in (6.7) with f ¼ 0 we obtain the
problem (7.14) in the microscopic space cell, which is satisfied thanks to our def-
inition of wi. Then considering (6.7) with C ¼ 0 and recalling that f ¼ fðx; t; sÞ,
we get in the distribution senseZ

Y

utðx; tÞbðx; t; y; sÞ dyþ
Z
Y

l�1u
�
sðx; t; y; sÞbðx; t; y; sÞ dyð7:20Þ

�
Z
Y

divxðBð‘xuðx; tÞ þ ‘yu
�ÞÞ ¼ f ðx; tÞ:

Then using the factorization (7.19) in (7.20) we obtain

MY ðbÞut þMY ðbÞl�1us � divxðMY ðBÞ‘xuÞð7:21Þ
þ divxðMY ðB‘ywiÞ‘xuÞ ¼ f :

Next, on dividing by MY ðbÞ and integrating in S we get

ut þ
Z
S

l�1us dsþMQ

�
BðI � ½‘yw1j . . . j‘ywN �Þ‘x

� 1

MY ðbÞ




‘xuð7:22Þ

� divx MQ

� B

MY ðbÞ
ðI � ½‘yw1j . . . j‘ywN �Þ



‘xu

� �
¼ MS

� f

MY ðbÞ



:

The thesis follows once we note that the second term on the left hand side of
(7.22) vanishes since u is S-periodic. r

Remark 7.5. It is worthwhile remarking the following characterization of u.
From equation (7.21) we get the di¤erential equation in the variable s

us ¼ l �ut þ
1

MY ðbÞ
divxðMY ðBðI � ½‘yw1j . . . j‘ywN �ÞÞ‘xuÞ þ

f

MY ðbÞ

� �
:

Of course this equation should be understood in the suitable weak sense of (6.7),
and complemented with the information that u is S-periodic and MSðuÞ ¼ 0.

Remark 7.6. Though u
�
s disappears from the single scale formulation of (6.7),

actually its presence forces one to divide by MY ðbÞ as in (7.22), therefore imply-
ing the structure in (7.15)–(7.18). r
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