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Abstract. — The notion of H-measures, introduced by the author and applied to propagation

e¤ects for wave equations is recalled, and extended to similar questions for linearized elasticity.
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A little less than twenty years ago, I wrote (for Annali della Scuola Normale
Superiore di Pisa) an article [Ta98] in memory of Ennio De Giorgi, entitled
Homogenization and Hyperbolicity, where I discussed about finite propagation
speeds in homogenization, for the wave equation, the Maxwell–Heaviside system
in electromagnetism, and the Cauchy–Lamé equation in linearized elasticity).
[For his unification of electricity and magnetism, Maxwell used ideas about æther
which led him to an enormous system of 26 equations, and it was not an easy
task for Heaviside to deduce the system which one uses now, hence it is fair to
both of them to call it the Maxwell–Heaviside system. Cauchy wrote the elas-
ticity equation rq2t ui �

P
j qjsij ¼ fi for density r, displacement u, force f , and

his stress tensor s. Using a linearization for a 2-dimensional analogue of a 1-
dimensional computation by D. Bernoulli for a vibrating string, he obtained
a constitutive law s ¼ 2meþ m divðuÞI , with 2eij ¼ qiuj þ qjui. Lamé noticed that
the general law for an isotropic material is s ¼ 2meþ l divðuÞI , so that it is fair
to both of them to call the elasticity equation with two parameters the Cauchy–
Lamé equation.]

I have written many times how sad I find that so many study problems of
‘‘fake mechanics’’ using G-convergence, which is not a way to honour the mem-
ory of Ennio De Giorgi: those who consider themselves his followers should learn
that minimization of potential energy is not physics, since total energy is conserved.
If energy hides at mesoscopic levels, one should learn where it goes. For elasticity,
one should work with the hyperbolic system governing the evolution, and not
only with stationary solutions, of course.

One flaw of thermodynamics is that it gives no intuition of what internal
energy is, and how it moves around at various mesoscopic levels and in various
directions. As a way to analyse this situation, I want to check here what the



transport theorem of H-measures says for linearized elasticity, although I have
pointed out its defects, but seismologists seem to use only linearized elasticity;
however, they also seem to use only isotropic materials, but I want to address
the question in a possibly anisotropic material.

I had introduced H-measures for the question of small amplitude homogeniza-
tion: they describe at quadratic order the oscillations and concentration e¤ects
in a weakly converging sequence. I then found how to use them for studying
propagation for sequences of solutions to some hyperbolic systems (like those
mentioned above), but when I wrote the results in [Ta90], I showed the results
in opposite order, because I found the propagation result more important: it
gave at last a definition of what a curved beam of light is (the fake scalar light
for the wave equation or the real polarized light for the Maxwell–Heaviside
system).

My feeling is that nobody cared, maybe because one thought that it was
already known.

The classical computations of geometrical optics are for the scalar wave equa-
tion (with smooth coe‰cients), and not for more general hyperbolic systems, and
they concern solutions which look like distorted plane waves (and not like curved
beams of light out of which nothing may happen), and in this framework one
shows that there exists an asymptotic expansion for large frequency n for which
an amplitude satisfies a transport equation which needs the gradient of a phase,
itself a solution of an Hamilton–Jacobi equation valid only away from caustics.

I proved that for all sequences of solutions of a scalar wave equation (with
smooth coe‰cients) converging weakly (i.e. in the limit of infinite frequency) an
H-measure satisfies a first order partial di¤erential equation, and this equation
tells where energy and momentum go, but they do not see a phase, since they use
no characteristic length; there is no di‰culty having many curved beams going
through the same point ðx; tÞ but with di¤erent directions. My method also has
the advantage to extend to a class of hyperbolic systems.

Lars Hörmander studied propagation of microlocal regularity, which takes
place out of a wave front set, which is a no-man’s land, but a curved beam of light
should not be considered a no-man’s land, since one wants to know how much
energy or momentum it carries; computations of particular solutions showing
explicit forms of non-regularity (called singularities) are shown, and it may be
propaganda to speak of propagation of singularities: why look at such details
when one does not see the essential, energy?

1. Basics of h-measures

I worked in an open set W � RN , and I defined a kind of ‘‘pseudo-di¤erential
calculus’’ on L2ðWÞ, but modulo compact operators. [Patrick Gérard, who intro-
duced H-measures [Gé91] and variants in a slightly di¤erent way than me and
for di¤erent reasons, wrote that one cannot define H-measures (which he called
microlocal defect measures, a not so good name) on manifolds, but I have men-
tioned that one should use a manifold with a volume form.]
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For b a LlðWÞ, the multiplication operator Mb is defined by

Mbu ¼ bu for u a L2ðWÞ : kMbkLðL2ðWÞ;L2ðWÞÞ ¼ kbkLlðWÞ:ð1:1Þ

For a a LlðRNÞ, the operator Pa is defined by

FPau ¼ aFu for u a L2ðRNÞ : kPakLðL2ðRN Þ;L2ðRN ÞÞ ¼ kakLlðRN Þ;ð1:2Þ

where F is the Fourier transform, with inverse F, given (using the notation of
Laurent Schwartz) by

FuðxÞ ¼
Z
RN

e�2ipðx;xÞuðxÞ dx; for u a L1ðRNÞ;ð1:3Þ

FvðxÞ ¼
Z
RN

eþ2ipðx;xÞvðxÞ dx; for v a L1ðRNÞ;

which extend into isometries on L2ðRNÞ. For defining H-measures I restricted my
attention to

a a CðSN�1Þ; extended as a
� x

jxj

�
on RNnf0g;ð1:4Þ

but variants are useful, for which I refer to my book [Ta10]. Technically, a is de-
fined on the space of half-lines, i.e. the quotient of RNnf0g by the equivalence
relation that x is equivalent to rx for all r > 0.

Lemma 1.1 (first commutation lemma). If a satisfies (1.4) and b a C0ðRNÞ, then
the commutator ½Pa;Mb� ¼ PaMb �MbPa is a compact operator on L2ðRNÞ.

Proof. One approaches uniformly b by a sequence bn a SðRNÞ such that Fbn
has compact support, in jxja rn. Since a limit in norm of compact operators is
compact, and since ½Pa;Mb� is the limit in norm of ½Pa;Mbn �, it su‰ces to show
that each ½Pa;Mbn � (or F½Pa;Mbn �) is a compact operator. One then has

F½Pa;Mbn �vðxÞ ¼
Z
RN

Fbnðx� hÞðaðxÞ � aðhÞÞFvðhÞ dh;ð1:5Þ

and one wants to decompose the kernel Kðx; hÞ ¼ Fbnðx� hÞðaðxÞ � aðhÞÞ into
two pieces, one bounded by ejFbnðx� hÞj and one in L2ðRN � RNÞ; the first piece
gives an operator bounded by a convolution operator, of norma ekFbnkL1ðRN Þ,

the second one is an Hilbert–Schmidt operator, hence compact; if one can do this
for all e > 0, then F½Pa;Mbn � is a limit in norm (as e ! 0) of compact operators,
and is then compact.

Using the uniform continuity of a on the unit sphere SN�1, one has

jaðxÞ � aðhÞja e if
x

jxj �
h

jhj

����
����a dðeÞ;ð1:6Þ
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and since one only needs to consider pairs with jx� hja rn, one finds that

jx� hja rn and minfjxj; jhjgb rn
dðeÞ imply

x

jxj �
h

jhj

����
����a dðeÞ;ð1:7Þ

on the other piece maxfjxj; jhjga rn
dðeÞ þ rn, and the restriction of K is in

L2ðRN � RNÞ. [Thanks to a result of Raphaël Coifman, Rochberg, and Weiss
[C-R-W76], the conclusion of Lemma 1.1 is true if b a LlðRNÞBVMOðRNÞ.]

I then introduced the class of symbols of the form

sðx; xÞ ¼
X
m

amðxÞbmðxÞ; with
X
m

kamkCðSN�1ÞkbmkC0ðWÞ ¼ k < þl;ð1:8Þ

and I associated the standard operator Ss defined by

Ss ¼
X
m

PamMbm a LðL2ðWÞ;L2ðRNÞÞ; with kSskLðL2ðWÞ;L2ðRN ÞÞ a k;ð1:9Þ

and Ss does not depend upon the decomposition (1.8) since one has

FSsuðxÞ ¼
Z
W

e�2ipðx;xÞs
�
x;

x

jxj

�
uðxÞ dxð1:10Þ

a:e: x a RN for u a L1ðWÞBL2ðWÞ:

I defined an operator of symbol s to be any operator from L2ðWÞ to L2ðRNÞ
which di¤ers from Ss by a compact operator. In the case W ¼ RN , using the first
commutation lemma (Lemma 1.1), one example is

Ls ¼
X
m

MbmPam a LðL2ðRNÞ;L2ðRNÞÞ; with kLskLðL2ðRN Þ;L2ðRN ÞÞak;ð1:11Þ

and Ls does not depend upon the decomposition (1.8) since one has

LsuðxÞ ¼
Z
RN

eþ2ipðx;xÞs
�
x;

x

jxj

�
FuðxÞ dx; for u a L1ðRNÞBL2ðRNÞ:ð1:12Þ

Then I deduced the existence of H-measures:

Theorem 1.1 (existence of H-measures). If U n converges to 0 in L2
locðW;R pÞ

weak, then there exists a subsequence Um and an H-measure m, which is an Hermi-
tian symmetric non-negative p� p matrix of Radon measures on W� SN�1 such
that: for every j; k a f1; . . . ; pg, for every j1; j2 a CcðWÞ, for every operators
Ls1 ;Ls2 a LðL2ðWÞ;L2ðRNÞÞ with symbols s1, s2, one hasZ

RN

Ls1ðj1Um
j ÞLs2ðj2Um

k Þ dx ! 3mjk; s1j1s2j24:ð1:13Þ
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Sketch of proof. It su‰ces to show (1.13) for operators of the form PaMb and
since the b can be included in j1 or j2, one just needs to extract (by a Cantor
diagonal argument) a subsequence such that for a countable dense set of
c a CðSN�1Þ and for j1, j2 in a countable set, union of countable dense sets
of CKl

ðWÞ (where Kl is an increasing sequence of compact sets with union W),

lim
m!l

Z
RN

Fðj1Um
j ÞFðj2Um

k Þc
� x

jxj

�
dx ¼ Lðj1; j2;cÞ exists;ð1:14Þ

and using the first commutation lemma (Lemma 1.1) one deduces then that

Lðj1; j2;cÞ only depends upon j1j2 and c:ð1:15Þ

This limit then defines a linear continuous mapping from CcðWÞ into the dual
of CðSN�1Þ, i.e. the (Banach) space of Radon measures on SN�1, denoted

MðSN�1Þ. Using the kernel theorem of Laurent Schwartz, this operator has a
kernel belonging to D 0ðW� SN�1Þ, and that the distribution kernel is actually a
Radon measure results from non-negativity, since for j1 ¼ j2 and cb 0 the limit
isb 0. Since Jacques-Louis Lions had told me that he had taught with Lars
Gårding an explicit construction of the kernel theorem (and I had looked at
their simplified proof [G-L59], which uses Fourier transform and Sobolev spaces),
I decided to avoid the kernel theorem in [Ta90] and my proof just uses Functional
Analysis, in particular Hilbert–Schmidt operators. When I wrote my book [Ta10],
I noticed that the referee from Math Reviews for [G-L59] attributed the idea to
Leon Ehrenpreis [Eh56] (which I did not read).

Besides noticing that m ¼ 0 is equivalent to Um converging stronly to 0 in
L2
locðW;R pÞ, I observed that linear di¤erential constraints on Un imply pointwise

algebraic constraints on m:

Lemma 1.2 (localization principle). If

Xp
j¼1

q

qxj

�XN
k¼1

AjkU
n
k

�
! 0 in H�1

loc ðWÞ strong;ð1:16Þ

with all Ajk a CðWÞ, then the H-measure m ( for any subsequence) satisfies

Xp
j¼1

XN
k¼1

xjAjkðxÞmkl ¼ 0 in W� SN�1; for l ¼ 1; . . . ; p:ð1:17Þ

Proof. Multiplying by j a C1
c ðWÞ gives the same property for jUn since a

sequence which converges weakly to 0 in L2ðWÞ converges strongly to 0 in
H�1

loc ðWÞ. Applying ð�DÞ�1=2, and noticing that all the terms have compact sup-
port (because of the truncation by j), (1.16) implies

Xp
j¼1

Rj

�XN
k¼1

AjkU
n
k

�
! 0 in L2ðRNÞ strong;ð1:18Þ
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where the Riesz operator Rj has symbol i
xj
jxj . One then applies the defining

property of H-measures (in Theorem 1.1) to the subsequence Um and one
deduces (1.17) multiplied by j, which one then lets vary.

Example 1.1 (scalar case). Let un * 0 in L2
locðWÞ weak and correspond to a

scalar H-measure m ðb 0Þ;

if
X
j

bj
qun

qxj
! 0 in H�1

loc ðWÞ strong; with bj a C1ðWÞ; j ¼ 1; . . . ;N;ð1:19Þ

then Pm ¼ 0 in W� SN�1; with Pðx; xÞ ¼
X
j

bjðxÞxj in W� RN ;

so that the support of m is included in the zero set of P, hence the name I chose
for the e¤ect. If the zero set of P is empty, then m ¼ 0.

Example 1.2 (gradients). Let U n * 0 in L2
locðW;RNÞ weak and correspond to

an H-measure m;

if
qUn

j

qxk
� qUn

k

qxj
! 0 in H�1

loc ðWÞ strong; j; k ¼ 1; . . . ;N;ð1:20Þ

then mjk ¼ xjxkp; j; k ¼ 1; . . . ;N in W� SN�1;

for a scalar non-negative Radon measure p in W� SN�1:

Similarly, in the vector-valued case

if un
i * 0 in H 1

locðWÞ weak; i ¼ 1; . . . ; p;ð1:21Þ

and V n
ij ¼

qun
i

qxj
; i ¼ 1; . . . ; p; j ¼ 1; . . . ;N;

corresponds to an H-measure m;

then mij; lm ¼ xjxmpil ; i; l ¼ 1; . . . ; p; j;m ¼ 1; . . . ;N; in W� SN�1;

for a p� p non-negative Hermitian symmetric matrix

of Radon measures p in W� SN�1:

Indeed, from
qV n

ij

qxk
� qV n

ik

qxj
¼ 0, one deduces that xkmij; lm ¼ xjmik; lm, and multiplying

by xk and summing in k gives mij; lm ¼ xjni; lm (with ni; lm ¼
P

k xkmik; lm); Hermitian
symmetry then gives xjni; lm ¼ mlm; ij ¼ xmnl; ij and multiplying by xj and summing

in j gives ni; lm ¼ xmpil (with pil ¼
P

m xjnl; ij).

Example 1.3 (wave equation). Let un * 0 in H 1
locðð0;TÞ �WÞ weak and (using

x0 ¼ t) gradt;x u
n correspond to an H-measure m, satisfying (by Example 1.2)
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mjk ¼ xjxkp for j; k ¼ 0; . . . ;N in ð0;TÞ �W� SN. If un satisfies a ‘‘wave-like’’
equation

q

qt

�
r
qun

qt

�
�
XN
j;k¼1

q

qxj

�
Cjk

qun

qxk

�
! 0 in H�1

loc ðð0;TÞ �WÞ strong;ð1:22Þ

with r; Cjk a Cðð0;TÞ �WÞ; j; k ¼ 1; . . . ;N;

then p satisfies Qp ¼ 0 in ð0;TÞ �W� SN ;

with Q ¼ rðt; xÞx20 �
XN
j;k¼1

Cjkðt; xÞxjxk in ð0;TÞ �W� RNþ1:

[It is a wave equation if r > 0 and C is symmetric positive definite, but it is ellip-
tic if r > 0 and C is negative definite, in which case the zero set of Q is empty,
hence p ¼ 0.]

Indeed, the localization principle (Lemma 1.2) gives xlQp ¼ 0 for every l, and
multiplying by xl and summing in l gives (1.22).

Example 1.4 (linearized elasticity). For Nb 2, let un
i * 0 in H 1

locðð0;TÞ �WÞ
weak for i ¼ 1; . . . ;N, and (using x0 ¼ t) V n

ij ¼
qun

i

qxj
( for j ¼ 0; . . . ;N) correspond to

an H-measure m, satisfying (by Example 1.2) mij; lm ¼ xjxmpil in ð0;TÞ �W� SN

for i; l ¼ 1; . . . ;N, and j;m ¼ 0; . . . ;N. Let un satisfy a ‘‘Cauchy–Lamé-like’’
system

q

qt

�
r
qun

i

qt

�
�
XN
j¼1

qsn
ij

qxj
! 0 in H�1

loc ðð0;TÞ �WÞ strong; i ¼ 1; . . . ;N;ð1:23Þ

with sn
ij ¼

XN
k; l¼1

Cij;kle
n
kl ; e

n
ij ¼

1

2

� qun
i

qxj
þ
qun

j

qxi

�
; i; j ¼ 1; . . . ;N;

and r; Cij;kl ¼ Cji;kl ¼ Cij; lk a Cðð0;TÞ �WÞ; i; j; k; l ¼ 1; . . . ;N:

[It is a Cauchy–Lamé system if r > 0 and if C satisfies some symmetry and
positivity requirement.]

Then p satisfies

x20rpi; r �
XN
k¼1

AikðeÞpkr ¼ 0 in ð0;TÞ �W� SN ; i; r ¼ 1; . . . ;N;ð1:24Þ

with e ¼ ðx1; . . . ; xNÞ, where AðeÞ is the acoustic tensor:

AikðeÞ ¼
XN
j; l¼1

Cij;klejel ; i; k ¼ 1; . . . ;N in ð0;TÞ �W� RN :ð1:25Þ
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Indeed, the localization principle (Lemma 1.2) gives for each i an equation
valid for all pairs of indices ðr; sÞ, and it appears to be the ith equation in (1.24)

multiplied by xs: since x a SN , not all xs may vanish, and one obtains (1.24). If at
a point ðt0; x0Þ a ð0;TÞ �W and ðx0; eÞ a SN the matrix AðeÞ � x20rI is invertible,
then it is true in an open neighbourhood (since the coe‰cients are continuous),
and on this set (1.24) implies that p ¼ 0, and one deduces that

the support of p is included in the set where detðAðeÞ � x20rIÞ ¼ 0:ð1:26Þ

The acoustic tensor was introduced for the study of plane-waves for the
constant coe‰cient case: taking h a SN�1, one looks for a plane-wave solution
of the form uiðx; tÞ ¼ fiððx; hÞ � vtÞ, i ¼ 1; . . . ;N, i.e. having (phase) velocity v;
one finds that f 00 is an eigenvector of AðhÞ for the eigenvalue rv2 (because
f 00 ¼ 0 corresponds to constant qui

qxj
, so that nothing changes, and it is not called

a wave). [It is a phase velocity, and not a group velocity, but I have shown in
[Ta98] that, under an hypothesis of very strong ellipticity, and for coe‰cients
only depending upon x, that the maximum phase velocity in a direction serves
also as maximum group velocity in that direction.]

The computations shown for Example 1.4 are about having sequences of
solutions which converge weakly but not strongly, without imposing them any
particular form, like plane-waves (again a di¤erence between there exists and
for all ).

In hyperbolic cases, one may be able to obtain some partial di¤erential equa-
tions on H-measures, which express in some way how the oscillations and concen-
tration e¤ects (which the H-measures take into account) propagate, but the proof
uses smoothness hypotheses.

Lemma 1.3 (second commutation lemma). For W ¼ RN, if a a LipðSN�1Þ
(extended as a

� x

jxj
�
in RNnf0g),

if b a X 1ðRNÞ ¼ b a FL1ðRNÞ
���� qbqxj a FL1ðRNÞ; j ¼ 1; . . . ;N

� �
; thenð1:27Þ

the commutator ½Pa;Mb� maps L2ðRNÞ into H 1ðRNÞ;
if also a a C1ðSN�1Þ; then

q

qxj
½Pa;Mb� has symbol xj

XN
k¼1

qa

qxk

qb

qxk
; for j ¼ 1; . . . ;N:

[In [Ta90], I used a result of Alberto Calderón for improving the regularity
hypotheses, but I shall only use here my initial approach.]

Proof. One must bound the norm in L2ðRNÞ of

jxjF½Pa;Mb�vðxÞ ¼ jxj
Z
RN

Fbðx� hÞðaðxÞ � aðhÞÞFvðhÞ dh;ð1:28Þ
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in terms of the norm in L2ðRNÞ of Fv. Let k be the Lipschitz constant of a on
SN�1, so that

jaðxÞ � aðhÞja k
x

jxj �
h

jhj

����
����a kjx� hj

minfjxj; jhjg ; x; h a RNnf0g;ð1:29Þ

then one bounds jxj jaðxÞ � aðhÞj in two di¤erent ways:

if jxja jhj; then jxj jaðxÞ � aðhÞja kjx� hj;ð1:30Þ

if jxjb jhj; then jxj jaðxÞ � aðhÞja jx� hj jaðxÞ � aðhÞj þ jhj jaðxÞ � aðhÞj

a jx� hj2kakLlðRN Þ þ kjx� hj;

from which the first part of (1.27) follows.
For proving the second part of (1.27), one approaches (in X 1ðRNÞ norm) b

by a sequence bn a SðRNÞ such that Fbn has compact support, in jxja rn.
Since

F
� q

qxj
½Pa;Mbn �

�
vðxÞ ¼

Z
RN

Fbnðx� hÞ2ipxjðaðxÞ � aðhÞÞFvðhÞ dh;ð1:31Þ

and one only considers jx� hja rn, one improves (1.29) by considering a Taylor
expansion at order 1,

a
� x

jxj

�
� a
� h

jhj

�
¼ ‘a

� x

jxj

�
�
� x

jxj �
h

jhj

�
þ error;ð1:32Þ

assuming that minfjxj; jhjgb r, with r large, hence
�� x

jxj �
h

jhj
��a jx�hj

minfjxj; jhjg a
rn
r
is

small; the error in (1.32) is bounded using the modulus of uniform continuity

of ‘a on SN�1, so that it isa e
�� x

jxj �
h

jhj
��a ejx�hj

minfjxj; jhjg with e
� rn

r

�
tending to 0 as

r tends to l; in bounding the corresponding term in (1.31), there is a multi-
plying factor 2pjxjj, taken care of by using jxjaminfjxj; jhjg þ rn, and this term
then corresponds to an operator of normaCekbnkX 1ðRN ÞkakLipðRN Þ, with C

tending to 2p as r tends to l. In order to make the standard operator of symbol
snðx; xÞ ¼ xj

PN
k¼1

qa
qxk

qbn
qxk

appear, one introduces a second small term by replacing

in the right side of (1.32)
h

jhj by
h

jxj , and the di¤erence isa
j jxj�jhj j
jxj jhj a

jx�hj
jxj jhj a

jx�hj
rjxj ,

and this correction corresponds to an operator of norma 2p
r
kbnkX 1ðRN ÞkakLipðRN Þ.

Of course, one puts together all the corresponding integrals over the set
minfjxj; jhjg < r, which is included in the set maxfjxj; jhjg < rþ rn, and such
terms correspond to Hilbert–Schmidt operators, which are compact; this shows
that the di¤erence between F

�
q
qxj

½Pa;Mbn �
�
and FSsn is a compact operator,

since it is a limit in norm (as r tends to l) of compact operators.
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Then, as n tends to l, one notices that F
�

q
qxj

½Pa;Mbn �
�
converges in norm to

F
�

q
qxj

½Pa;Mb�
�
, that FSsn converges in norm to FSs, so that the di¤erence of

these two limits is the limit in norm of compact operators, hence is compact.

Corollary 1.1. For W ¼ RN, if a a C1ðSN�1Þ (extended as a
�

x

jxj
�
in RNnf0g),

and b a X 1ðRNÞ

Pab
qu

qxj
¼ b

qðPauÞ
qxj

þ Lu; for u a L2ðRNÞ;ð1:33Þ

with L having symbol xjfa; bg; j ¼ 1; . . . ;N;

where the Poisson bracket is defined for two functions on RN � RN by

f f ; gg ¼
XN
j¼1

� qf

qxj

qg

qxj
� qf

qxj

qg

qxj

�
:ð1:34Þ

[For an Hamiltonian system
dqj

dt
¼ qH

qpj
,
dpj

dt
¼ � qH

qqj
(the first example of which was

written by Lagrange for a question of perturbation of an elliptic orbit in celes-

tial mechanics), the sign chosen for the Poisson bracket is such that
dFðq; pÞ

dt
¼

fH;Fg ¼
P

j¼1
qH
qpj

qF
qqj

� qH
qqj

qF
qpj

for all smooth functions F .]

Proof. Indeed, Pab
qu
qxj

¼ Pa
qðbuÞ
qxj

� Pa
qb
qxj

u, and the first term is q
qxj

Pabu ¼
q
qxj

½Pa;Mb�uþ q
qxj

bPau, i.e. Luþ q
qxj

bPau by the second commutation lemma

(Lemma 1.3), while the second term is � qb
qxj

Pauþ Ku for a compact operator K

by the first commutation lemma (Lemma 1.1), and q
qxj

bPau� qb
qxj

Pau ¼ b q
qxj

Pau.

For generalizing the second commutation lemma (Lemma 1.3) to a larger
class of operators, it is the standard operators which should be used, with a
natural change of definition for the class of symbols:

sðx; xÞ ¼
X
m

amðxÞbmðxÞ with
X
m

kamkC 1ðSN�1ÞkbmkX 1ðRN Þ < þl:ð1:35Þ

Lemma 1.4. If S1, S2 are the standard operators with symbols s1, s2 satisfying
(1.35), then

q

qxj
½S1;S2� has symbol xjfs1; s2g:ð1:36Þ

Proof. It follows from the case S1 ¼ PaMb, S2 ¼ PcMd : let A ¼ ½Mb;Pc� and
B ¼ ½Md ;Pa�, then, using the fact that q

qxj
, Pa, and Pc commute, and that Mb

and Md commute, one has
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q

qxj
ðPaMbPcMd � PcMdPaMbÞð1:37Þ

¼ Pa

q

qxj
ððAþ PcMbÞMdÞ � Pc

q

qxj
ððBþ PaMdÞMbÞ

¼ Pa

q

qxj
AMd þ PaPc

q

qxj
MbMd � Pc

q

qxj
BMdMb � PcPa

q

qxj
MdMb

¼ Pa

q

qxj
AMd � Pc

q

qxj
BMdMb; which has symbol

aðxjfb; cgÞd � cðxjfd; agÞb ¼ xjðafb; cgd þ bfa; dgcÞ ¼ xjfab; cdg:

2. Transport effects

In order to work with partial di¤erential equations in an open set W � RN , I need
a local version of the space X 1ðRNÞ used in (1.27), and since X 1ðRNÞ � C1

0 ðRNÞ,
because FL1ðRNÞ � C0ðRNÞ, I choose

X 1
locðWÞ ¼ fb a C1ðWÞ j jb a X 1ðRNÞ for all j a Cl

c ðWÞg:ð2:1Þ

[For 1a pa 2, one has Ws;pðRNÞ � FL1ðRNÞ for s > N
p
, hence Ws;pðRNÞ �

X 1ðRNÞ for s > 1þ N
p
, and one may replace Cl

c ðWÞ in (2.1) by the Hölder space

Cm;a
c ðWÞ if mþ a > 1þ N

2 .]
In [Ta90], I studied the transport property when un satisfies a first order scalar

equation (like in Example 1.1), and I used a right side fn not necessarily linked to
un: it was useful as a first step toward creating a theory for semi-linear equations
(which is not yet done), but in such a case one needs to consider the H-measure
for a subsequence ðum; fmÞ, and the transport equation for m11 (i.e. the H-measure
for um) has a source term involving m12; using the localization principle (Lemma
1.2) and the non-negative Hermitian symmetry of H-measures (Theorem 1.1),
both the supports of m11 and m12 are included in the zero set of P (defined in
1.19), although the support of m22 may not be included in it.

Here, I just want to consider the case where fn ¼ Ssun, for the standard opera-
tor Ss with symbol s.

Theorem 2.1. If un converges weakly to 0 in L2ðWÞ and corresponds to an
H-measure m and if

XN
j¼1

bj
qun

qxj
þ Ssun ! 0 in L2

locðWÞ strong;ð2:2Þ

with b1; . . . ; bN real and belonging to X 1
locðWÞ, then m satisfies
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Pðx; xÞm ¼ 0 in W� SN�1; with Pðx; xÞ ¼
XN
j¼1

bjðxÞxj in W� RN ;ð2:3Þ

3m; fF;Pg þ ð2<s� divðbÞÞF4 ¼ 0 for all F a C1
c ðW� SN�1Þ:

Proof. The first part of (2.3) was seen in (1.19). For j a C1
c ðWÞ, and

c a Cl
c ðWÞ real and equal to 1 on supportðjÞ (so that cj ¼ j), jun satisfies

XN
j¼1

cbj
qðjunÞ
qxj

�
�XN

j¼1

bj
qj

qxj

�
un þ Ssjun ! 0 in L2ðRNÞ strong;ð2:4Þ

since the commutator ½Ss; j� is compact on L2ðRNÞ by the first commutation
lemma (Lemma 1.1). Since cbj a X 1ðRNÞ by the definition (2.1), one may apply
Pa to (2.4) with a a C1ðSN�1Þ, and use Corollary 1.1 of the second commutation
lemma (Lemma 1.3), and obtain

XN
j¼1

cbj
qðPajunÞ

qxj
þ Ljun � Pa

�XN
j¼1

bj
qj

qxj

�
un þ PaSsjun ! 0ð2:5Þ

in L2ðRNÞ strong; with L having symbol
XN
j¼1

xjfa;cbjg:

The next step is to multiply (2.5) by jun and add the complex conjugate of (2.4)
multiplied by Pajun, and it is here that the hypothesis that the bj and c are real
is used:

the quantityð2:6Þ

XN
j¼1

cbj
qðPajunjunÞ

qxj
þ
�
Ljun � Pa

�XN
j¼1

bj
qj

qxj

�
un þ PaSsjun

�
jun

þ Pajun

�
Ssjun �

�XN
j¼1

bj
qj

qxj

�
un

�

then tends to 0 in L1ðRNÞ strong. One then integrates (2.6) against a test function
w a Cl

c ðWÞ and one takes the limit as n tends to l, which makes the H-measure
m appear:*

m;�ajj
X
j

qðcbjwÞ
qxj

þ
�X

j

xjfa;cbjgj� a
�X

j

bj
qj

qxj

�
þ asj

�
jwð2:7Þ

þ ajw
�
sj�

X
j

bj
qj

qxj

�+
¼ 0:
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Since each term has a j or j, one may replace c by 1. One then observes that

the terms �ajj
PN

j¼1
qðbjwÞ
qxj

, �a
�PN

j¼1 bj
qj

qxj

�
jw, and �ajw

PN
j¼1 bj

qj

qxj
add up to

�a
PN

j¼1
qðbjjjwÞ

qxj
, and the remaining terms also use jjw, but one may simply

say that one may choose w and then take j equal to 1 on the support of w, so
that (2.7) becomes

m;�a
XN
j¼1

qðbjwÞ
qxj

þ
�XN

j¼1

xjfa; bjg
�
wþ aswþ asw

* +
¼ 0ð2:8Þ

for all w a Cl
c ðWÞ; a a C1ðSN�1Þ:

Then one observes that

for F ¼ aw; fF;Pg ¼
XN
k¼1

qa

qxk
w
�XN

j¼1

xj
qbj

qxk

�
�
XN
k¼1

a
qw

qk
bkð2:9Þ

¼
�XN

j¼1

xjfa; bjg
�
w�

XN
j¼1

a
qw

qj
bj;

so that in (2.8) m is applied to fF;Pg þ ð2<s� divðbÞÞF, proving (2.3) in the
particular case F ¼ aw. One deduces (2.3) by an argument of density of linear
combinations of tensor products.

Equation (2.3) is a first order partial di¤erential equation in ðx; xÞ for m,
written in weak form so that the partial derivatives appear on the test function
F; the characteristic curves for this equation are given by

dxj

dt
¼ qP

qxj
;

dxj

dt
¼ � qP

qxj
; j ¼ 1; . . . ;N;ð2:10Þ

which imply that P is constant, and one only uses those curves corresponding to
P ¼ 0 since the support of m is included there. However, it is useful to forget the

constraint x a SN�1, and observe that one uses the quotient space of RNnf0g by
the equivalence relation that x is equivalent to rx for all r > 0: using SN�1 is just
a way of picking an element in each equivalence class (which is a half-ray).

If one chooses two initial data for (2.10), ðxðt0Þ; xðt0ÞÞ and ðx 0ðt0Þ; x 0ðt0ÞÞ
with x 0ðt0Þ ¼ xðt0Þ but x 0ðt0Þ ¼ lxðt0Þ, then the solution has x 0ðtÞ ¼ xðtÞ and
x 0ðtÞ ¼ lxðtÞ for all t, i.e. (2.10) induces an evolution equation for half-rays,
explaining why (2.10) is called an equation for bicharacteristic rays.

In (2.10), the equation for x is independent of x, and once x is known the
equation for x is linear, so that existence and uniqueness of solutions of (2.10)
holds if the coeficients bj are locally Lipschitz continuous.

A localization procedure is needed on open sets W, since I stated the second
commutation lemma (Lemma 1.3) and its Corollary 1.1 on RN , but any improve-
ment of the regularity hypothesis for b there will permit to improve the regularity
hypothesis in Theorem 2.1 and in other applications.
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A key point is that the equation (or system) considered must have a sesqui-
linear conservation law for complex solutions, even though one may be only
interested in real solutions, since the localization in x results from using ‘‘pseudo-
di¤erential’’ operators, which may map real functions into complex functions.

Lemma 2.1. Let r;Cjk; j; k ¼ 1; . . . ;N a C2ðð0;TÞ �WÞ be real with C symmet-
ric, and satisfy rb a, Cb aI for some a > 0. Assume that v a C0ð0;T ;H 1ðWÞÞB
C1ð0;T ;L2ðWÞÞ satisfies

q

qt

�
r
qv

qt

�
�
XN
j;k¼1

q

qxj

�
Cjk

qv

qxk

�
¼ f a L2ðð0;TÞ �WÞ;ð2:11Þ

then

f
qv

qt
þ f

qv

qt
¼ q

qt

�
r
qv

qt

qv

qt
þ
XN
j;k¼1

Cjk

qv

qxj

qv

qxk

�
ð2:12Þ

�
XN
j;k¼1

q

qxj

�
Cjk

qv

qxk

qv

qt
þ Cjk

qv

qxk

qv

qt

�

þ qr

qt

qv

qt

qv

qt
�
XN
j;k¼1

qCjk

qt

qv

qxj

qv

qxk

in the sense of distributions in ð0;TÞ �W:

Sketch of proof. Formally, (2.11) implies (2.12) by developing the derivatives of
products and regrouping the terms, but second order derivatives of v appear in
the computation, hence it is not a proof.

A proof relies on the well-posedness of the wave equation with appropriate
boundary conditions.

Since (2.12) is local, one just needs to show it for jv with j a Cl
c ðð0;TÞ �WÞ,

equal to 1 on an open set, where (2.12) is then proved. If the support of j is
included in ð0;TÞ � o for an open set o, then jv solves the wave equation with
Dirichlet conditions on the boundary of o (and 0 initial data), and (2.12) is just
the non-integrated form of the identity of energy (one may separate the real part
and the imaginary part of (2.11) since the coe‰cients are real), applied to test
functions wðxÞgðtÞ for example. However, although one derivative in t on the
coe‰cients serves for constructing (weak) solutions with u a Llð0;T ;H 1

0 ðoÞÞ
and qu

qt
a Llð0;T ;L2ðoÞÞ, the proof which I taught in 1974/75 at University of

Wisconsin (in a graduate course whose lecture notes, written by graduate students
of John Nohel, were gathered in [Ta78]) was for r constant and C independent
of t, and here (and later for the linearized elasticity system) I use a more general
framework (already used by Jacques-Louis Lions in his first book [Li61]), and
the analogous proof seems to require two derivatives in t (see Appendix): first
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one proves regularity in t, then one shows uniqueness of weak solutions, which
implies that u a C0ð½0;T �;H 1

0 ðoÞÞBC1ð½0;T �;L2ðoÞÞ, and finally one shows
that u satisfies an identity of energy.

Theorem 2.2. Let un a C0ð0;T ;H 1ðWÞÞBC1ð0;T ;L2ðWÞÞ be a sequence of
solutions of a wave equation

q

qt

�
r
qun

qt

�
�
XN
j;k¼1

q

qxj

�
Cjk

qun

qxk

�
ð2:13Þ

þ
XN
j¼0

S j qu
n

qxj
! 0 in L2

locðð0;TÞ �WÞ strong;

with r;Cjk a X 1
locðð0;TÞ �WÞBC2ðð0;TÞ �WÞ, j; k ¼ 1; . . . ;N, r being real > 0

and the matrix C being real symmetric positive definite (but since the coe‰cients
are smooth, one may replace C by its symmetric part, and absorb the lower order

terms that this creates into the operators S1; . . . ;SN ), and S0; . . . ;SN being the stan-

dard operators with symbols s0; . . . ; sN. Assume that un * 0 in H 1
locðð0;TÞ �WÞ

weak and (using x0 ¼ t) that gradt;x u
n corresponds to an H-measure m, satisfying

(by Example 1.2) mjk ¼ xjxkp for j; k ¼ 0; . . . ;N; then p satisfies

Qp ¼ 0 in ð0;TÞ �W� SN ; with Q ¼ rðt; xÞx20 �
XN
j;k¼1

Cjkðt; xÞxjxkð2:14Þ

in ð0;TÞ �W� RNþ1; and

p; fC;Qg þ
XN
j¼0

ðxjs j þ xjs
jÞC

* +
¼ 0; for all C a C1

c ðð0;TÞ �W� SNÞ:

Proof. The first part of (2.14) was seen in (1.22). For j a C2
c ðð0;TÞ �WÞ, and

c a Cl
c ðð0;TÞ �WÞ real and equal to 1 on supportðjÞ, jun satisfies

q

qt

�
cr

qðjunÞ
qt

�
�
XN
j;k¼1

q

qxj

�
cCjk

qðjunÞ
qxk

�
þ
XN
j¼0

S j qðjunÞ
qxj

þ An ! 0ð2:15Þ

in L2ðRNþ1Þ strong;

since the commutator of S j and Mj is compact and applied to a weakly converg-
ing sequence gives a strongly converging sequence, and the terms which are linear
in un (with no derivatives) converge to 0 in L2ðRNþ1Þ strong (by the compact

embedding of H 1 into L2
loc); finally, the term An is linear in the derivatives qun

qxk
,

k ¼ 0; . . . ;N, with coe‰cients containing one of the derivatives
qj

qxl
, l ¼ 0; . . . ;N,

and these terms will disappear later, by taking j equal to 1 on the support of a
test function w a C2

c ðð0;TÞ �WÞ.
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Since by the definition (2.1) cr;cCjk a X 1ðRNÞ, j; k ¼ 1; . . . ;N, one may
apply Pa to (2.15) with a a C1ðSN�1Þ, and use Corollary 1.1 of the second com-
mutation lemma (Lemma 1.3), and obtain

q

qt

�
cr

qðPaju
nÞ

qt

�
�
XN
j;k¼1

q

qxj

�
cCjk

qðPaju
nÞ

qxk

�
þ Pa

XN
j¼0

S j qðjunÞ
qxj

ð2:16Þ

þ PaA
n þ

XN
k¼0

Lk qðjunÞ
qxk

! 0 in L2ðRNþ1Þ strong;

L0; Lk having symbol x0fa;crg and
XN
j¼1

xjfa;cCjkg; k ¼ 1; . . . ;N:

One then wants to apply Lemma 2.1 to v ¼ Paju
n, and apply a test function

w a C2
c ðð0;TÞ �WÞ. Choosing j (hence c) equal to 1 on the support of w, the

term involving An disappears, and a few limits get simpler.

The term similar to q
qt

�
r qv

qt
qv
qt
þ
PN

j;k¼1 Cjk
qv
qxj

qv
qxk

�
applied to w gives at the

limit

lim
n

Z
R�RN

� qw

qt

�
r
qðPaju

nÞ
qt

qðPajunÞ
qt

ð2:17Þ

þ
X
j;k

Cjk

qðPaju
nÞ

qxj

qðPajunÞ
qxk

�
dt dx

¼ � qw

qt

�
rm00 þ

X
j;k

Cjkmjk

�
; aa

* +

¼ � p;
�
rx20 þ

X
j;k

Cjkxjxk

� qw
qt

aa

* +
:

The term similar to �
PN

j;k¼1
q
qxj

�
Cjk

qv
qxk

qv
qt
þ Cjk

qv
qxk

qv
qt

�
applied to w gives at

the limit

lim
n

Z
R�RN

X
j;k

qw

qxj

�
Cjk

qðPaju
nÞ

qxk

qðPajunÞ
qt

ð2:18Þ

þ Cjk

qðPajunÞ
qxk

qðPaju
nÞ

qt

�
dt dx

¼
XN
j;k¼1

qw

qxj
Cjk2mk0; aa

� 	
¼ p; 2x0

XN
j¼1

�XN
k¼1

Cjkxk

� qw

qxj
aa

* +
:
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The term similar to
qr

qt
qv
qt

qv
qt
�
PN

j;k¼1
qCjk

qt
qv
qxj

qv
qxk

applied to w gives at the limit

lim
n

Z
R�RN

w
� qr
qt

qðPaju
nÞ

qt

qðPajunÞ
qt

ð2:19Þ

�
X
j;k

qCjk

qt

qðPaju
nÞ

qxj

qðPajunÞ
qxk

�
dt dx

¼ w
� qr
qt

m00 �
X
j;k

qCjk

qt
mjk

�
; aa

* +

¼ p;
� qr
qt

x20 �
X
j;k

qCjk

qt
xjxk

�
waa

* +
:

The term similar to f qv
qt
applied to w gives at the limit

lim
n

Z
R�RN

�w
�
Pa

XN
j¼0

S j qðjunÞ
qxj

þ
XN
k¼0

Lk qðjunÞ
qxk

� qðPajunÞ
qt

dt dxð2:20Þ

¼ � w
�XN

j¼0

s jmj0

�
; aa

* +
� w

�
x0fa; rgm00 þ

XN
j;k¼1

xjfa;Cjkgmk0
�
; a

* +

¼ � p; x0

�XN
j¼0

s jxj

�
waaþ x0

�
x20fa; rg þ

XN
j;k¼1

xjxkfa;Cjkg
�
wa

* +
:

The term similar to f qv
qt
applied to w gives at the limit

� p; x0

�XN
j¼0

s jxj

�
waaþ x0

�
x20fa; rg þ

XN
j;k¼1

xjxkfa;Cjkg
�
wa

* +
:ð2:21Þ

One must then write that the sum of (2.17), (2.18), and (2.19) is equal to the
sum of (2.20) and (2.21), but a good way to gather the terms is to use the
function F ¼ waa, and to make the Poisson bracket fx0F;Qg appear (with
Q ¼ rx20 �

PN
j;k¼1 Cjkxjxk).

In (2.17), one notices that rx20 �
PN

j;k¼1 Cjkxjxk ¼ 2rx20 since Q ¼ 0 on the

support of p, hence (2.17) is p applied to �x0
qQ

qx0

qF
qt
.

(2.18) is p applied to �x0
P

j
qQ

qxj

qF
qxj

.

(2.19) is p applied to
qQ

qt
F, which is only a part of the expected term

qQ

qt

qðx0FÞ
qx0

.

The sum of (2.20) and (2.21) has p applied to �x0F
P

jðs jxj þ s jxjÞ, and
then p applied to �x0ðx20fa; rg þ

PN
j;k¼1 xjxkfa;CjkgÞwa and p applied to
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�x0ðx20fa; rg þ
PN

j;k¼1 xjxkfa;CjkgÞwa, and by developing the Poisson brackets
in these last two terms, one finds exactly the missing part of the Poisson bracket
fx0F;Qg, and the equation obtained is (2.14) with C ¼ x0F.

Since x0 does not vanish on the support of p (due to the sign condition
on r), and since linear combinations (with complex coe‰cients) of terms of the
form waa can approach any smooth function in ðx; xÞ, one deduces that (2.14)
holds.

Equation (2.14) is a first order partial di¤erential equation in ðx; xÞ for p,
written in weak form so that the partial derivatives appear on the test function
C; the characteristic curves for this equation are given by

dxj

dt
¼ qQ

qxj
;

dxj

dt
¼ � qQ

qxj
; j ¼ 1; . . . ;N;ð2:22Þ

which imply that Q is constant, and one only uses those curves corresponding
to Q ¼ 0 since the support of p is included there. As for (2.10), it is useful to

forget the constraint x a SN , and use the quotient space of RNþ1nf0g by the
equivalence relation that x is equivalent to rx for all r > 0: if one chooses two dif-
ferent initial data for (2.22), ðxðt0Þ; xðt0ÞÞ and ðx 0ðt0Þ; x 0ðt0ÞÞ with x 0ðt0Þ ¼ xðt0Þ
but x 0ðt0Þ ¼ lxðt0Þ, then the solution has x 0ðtÞ ¼ xðltÞ and x 0ðtÞ ¼ lxðltÞ for all
t, i.e. (2.22) induces an evolution equation for half-rays, and (2.22) is an equation
for bicharacteristic rays.

Since
qQ

qxj
is quadratic in x, the solution without the constraint x a SN could

blow up, and it then seems better to impose the constraint and consider instead

dxj

dt
¼ qQ

qxj
;

dxj

dt
¼ � qQ

qxj
þ
�XN

k¼1

xk
qQ

qxk

� xj

jxj2
; j ¼ 0; . . . ;N:ð2:23Þ

Since (2.23) for j ¼ 0 contains dt
dt
¼ 2rx0, which does not vanish (because on

Q ¼ 0 one has x0A 0), one may use t for parametrizing the bicharacteristic rays:

for j ¼ 1; . . . ;N one has
dxj

dt
¼ �2ðCxÞj, so that

dx

dt
¼ � Cx

rx0
:ð2:24Þ

which may be interpreted as a local group velocity, that at which the energy
propagates for high frequencies corresponding to the Fourier direction ðx0; xÞ.
The phase velocity is only defined for plane waves: if for a unit spatial vector
h a SN�1 one considers functions of the form f ððx; hÞ � vtÞ, then the phase veloc-
ity (in the direction h) is v; if one considers highly oscillatory f then their Fourier
transform use points going to infinity in the direction of ð�v; h; Þ in RNþ1, so that
(if the sequences converges weakly to 0 in L2

locðRNþ1) the H-measure will be

Dirac masses in the two directionseðx0; xÞ with v ¼ � x0
jxj and h ¼ x

jxj .
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Without the not so natural constraint ðx0; xÞ a SN , x0 has dimension T�1 and
x has dimension L�1, while C

r
has dimension L2T�2, so that both

Cx

rx0
and

x0
jxj have

dimension LT�1.
As pointed out by Patrick Gérard (after [Ta90], where I only considered the

case of coe‰cients depending upon x), the usual hypothesis for ensuring unique-
ness of solutions of (2.22) or (2.23) is local Lipschitz continuity, which uses
second order derivatives of the coe‰cients (r and Cij, i; j ¼ 1; . . . ;N), which I
assume bounded here, but the abstract framework shown in the Appendix only
requires second derivatives in t.

If v a L2ðRNÞ (or L2ðRNþ1Þ here), then Fvð�xÞ ¼ FvðxÞ, so that the H-
measure corresponding to a sequence of real functions charges as much a direction
�x than the direction x, and one cannot send a ‘‘beam of light’’ in a direction
without sending also a ‘‘beam of light’’ in the opposite direction: for headlights
of a car, the source of light is near the focus of a (piece of a) parabolic mirror,
and (in the approximation of geometrical optics) all the reflected rays are parallel
to the direction of its axis.

In order to show the analogue of Lemma 2.1 for linearized elasticity (Nb 2),
one adds hypotheses (to those stated in (1.23) for Example 1.4), of symmetry,
positivity, and regularity. For symmetry, one adds

Cij;kl ¼ Ckl; ij; i; j; k; l ¼ 1; . . . ;N in ð0;TÞ �W;ð2:25Þ

so that the acoustic tensor AðeÞ defined in (1.25) is symmetric. For positivity, one
adds

there exists a > 0;
XN

i; j;k; l¼1

Cij;klMijMkl b ajMj2ð2:26Þ

for all symmetric M; a:e: in ð0;TÞ �W;

which is the very strong ellipticity condition, more constraining than the strong
ellipticity condition

there exists a > 0; AðeÞb ajej2I for all e a RN ; a:e: in ð0;TÞ �W;ð2:27Þ

(or strong Legendre–Hadamard condition) which is the condition (2.26) only
for matrices M ¼ an eþ en a. [I wrote that I do not know physical reasons
for imposing (2.26), but (2.27) expresses the positivity of speeds for plane waves.
Georges Verchery pointed out a derivation of (2.26) based on argument of
thermodynamics, but my point is that thermodynamics is a faulty theory,
which pretends to describe macroscopic properties without paying attention to
meso-structures, and I advocate developing a better physical theory, incorporat-
ing information about transport at mesoscopic levels, describing heat as a sum
of various modes propagating energy in various directions, using variants of
H-measures, as I am trying here.]
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Lemma 2.2. Let r;Cij;kl ; i; j; k; l ¼ 1; . . . ;N a C2ðð0;TÞ �WÞ be real, with
rb a > 0, and C satisfying the symmetries in (1.23), (2.25), and the very strong
ellipticity condition (2.26). Let v1; . . . ; vN a C0ð0;T ;H 1ðWÞÞBC1ð0;T ;L2ðWÞÞ
satisfy

q

qt

�
r
qvi

qt

�
�
XN

j;k; l¼1

q

qxj

�
Cij;kl

qvk

qxl

�
¼ fi a L2ðð0;TÞ �WÞ; i ¼ 1; . . . ;N;ð2:28Þ

then, in the sense of distributions in ð0;TÞ �W

q

qt

�XN
i¼1

r
qvi

qt

qvi

qt
þ

XN
i; j;k; l¼1

Cij;kl
qvk

qxl

qvi

qxj

�
ð2:29Þ

�
XN

i; j;k; l¼1

q

qxj

�
Cij;kl

qvk

qxl

qvi

qt
þ Cij;kl

qvk

qxl

qvi

qt

�

¼
XN
i¼1

qr

qt

qvi

qt

qvi

qt
þ

XN
i; j;k; l¼1

qCij;kl

qt

qvk

qxl

qvi

qxj
þ
XN
i¼1

�
fi
qvi

qt
þ fi

qvi

qt

�
:

Sketch of proof. Formally, (2.28) implies (2.29) by developing the derivatives
of products and regrouping the terms, but second order derivatives of v1; . . . vN
appear in the computation, hence it is not a proof, and a proof relies on the
well-posedness of the linearized elasticity system with appropriate boundary
conditions.

Since the coe‰cients (r, Cij;kl , i; j; k; l ¼ 1; . . . ;N) are real, one may separate
the real part and the imaginary part of (2.28), and at the end add the results
for the real part and for the imaginary part. Since (2.29) is local, one just
needs to show it for jv1; . . . jvN with j a Cl

c ðð0;TÞ �WÞ, equal to 1 on an
open set, where (2.29) is then proved. If the support of j is included in
ð0;TÞ � o for an open set o, these functions solve the linearized elasticity system
with Dirichlet conditions on the boundary of o (and 0 initial data), and (2.29)
is just the non-integrated form of the identity of energy. Like for the proof of
Lemma 2.1, one uses an abstract result shown in Appendix: first one proves
regularity in t, then one shows uniqueness of weak solutions, which implies that
vi a C0ð½0;T �;H 1

0 ðoÞÞBC1ð½0;T �;L2ðoÞÞ, i ¼ 1; . . . ;N, and finally one shows
that they satisfy an identity of energy.

In order to avoid technicalities, I now want to check what the method gives
concerning transport of H-measures for the homogeneous linearized elasticity
system with constant coe‰cients.

Theorem 2.3. Let un
i a C0ð0;T ;H 1ðWÞÞBC1ð0;T ;L2ðWÞÞ, i ¼ 1; . . . ;N be a

sequence of solutions of a linearized elasticity system

q

qt

�
r
qun

i

qt

�
�
XN

j;k; l¼1

q

qxj

�
Cij;kl

qun
k

qxl

�
¼ 0 in ð0;TÞ �W; i ¼ 1; . . . ;N;ð2:30Þ
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with constant r > 0, Cij;kl , i; j; k; l ¼ 1; . . . ;N satisfying the symmetry conditions
(1.23) and (2.25), and the very strong ellipticity condition (2.26). Assume that

un
i * 0 in H 1

locðð0;TÞ �WÞ weak for i ¼ 1; . . . ;N, and (using x0 ¼ t) V n
ij ¼

qun
i

qxj

( for j ¼ 0; . . . ;N) correspond to an H-measure m, satisfying (by Example 1.2)
mij; lm ¼ xjxmpil for i; l ¼ 1; . . . ;N, and j;m ¼ 0; . . . ;N. By (1.26) the support of p

is included in the set where detðAðeÞ � x20rIÞ ¼ 0, with x ¼ ðx0; eÞ and the acoustic
tensor AðeÞ defined in (1.25), and p satisfies

q

qt

��
rx20

X
i

pii

�
þ
�X

i;k

AikðeÞpki
��

ð2:31Þ

�
X
i; j;k

q

qxj

�
x0

qAikðeÞ
qxj

pki þ pik

2

�
¼ 0 in W� SN :

Proof. For j a C2
c ðð0;TÞ �WÞ, jun

i , i ¼ 1; . . . ;N solves

q

qt

�
r
qðjun

i Þ
qt

�
�
XN

j;k; l¼1

q

qxj

�
Cij;kl

qðjun
kÞ

qxl

�
ð2:32Þ

¼ gn
i þ hn

i in R� RN ; i ¼ 1; . . . ;N;

where

gn
i ¼ 2

qj

qt
r
qun

i

qt
�
XN

j;k; l¼1

2
qj

qxj
Cij;kl

qun
k

qxl
in R� RN ; i ¼ 1; . . . ;N;ð2:33Þ

hn
i tends strongly to 0 in L2ðR� RNÞ:

By taking j ¼ 1 on the support of a test function w, the contributions of the gn
i ,

i ¼ 1; . . . ;N to the equation for the H-measure disappear, since they contain the
derivatives of j, which are 0 on the support of w.

For a a C1ðSN�1Þ one may apply Pa to (2.32) and obtain

q

qt

�
r
qðPaju

n
i Þ

qt

�
�
XN

j;k; l¼1

q

qxj

�
Cij;kl

qðPaju
n
kÞ

qxl

�
¼ Pag

n
i þ Pah

n
ið2:34Þ

in R� RN ; i ¼ 1; . . . ;N;

avoiding Corollary 1.1 of the second commutation lemma (Lemma 1.3), since the
coe‰cients are constant.

One then applies Lemma 2.2 to vi ¼ Paju
n
i , i ¼ 1; . . . ;N, and one uses a test

function w a C2
c ðð0;TÞ �WÞ, but choosing j equal to 1 on the support of w, so

that the limits are
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lim
n

q

qt

�XN
i¼1

r
qðPaju

n
i Þ

qt

qPaju
n
i

qt
þ

XN
i; j;k; l¼1

Cij;kl
qðPaju

n
kÞ

qxl

qPaju
n
i

qxj

�
;w

* +
ð2:35Þ

¼ �
XN
i¼1

mi0; i0; raa
qw

qt

� 	
�

XN
i; j;k; l¼1

mkl; ij;Cij;klaa
qw

qt

� 	

¼ �
XN
i¼1

pii; rx
2
0aa

qw

qt

� 	
�
XN
i;k¼1

pki;
�XN

j; l¼1

Cij;klxjxl

�
aa

qw

qt

* +
:

and

lim
n

�
X
i; j;k; l

q

qxj

�
Cij;kl

qðPaju
n
kÞ

qxl

qPaju
n
i

qt
þ Cij;kl

qPaju
n
k

qxl

qðPaju
n
i Þ

qt

�
;w

* +
ð2:36Þ

¼
XN

i; j;k; l¼1

mkl; i0 þ mi0;kl ;Cij;klaa
qw

qxj

� 	

¼
XN
i;k¼1

pki þ pik; x0

�XN
j; l¼1

Cij;klxlaa
qw

qxj

�* +
;

and the other terms tend to 0. If one denotes F ¼ aaw, then one has proved

� rx20

�XN
i¼1

pii

�
þ
XN
i;k¼1

AikðeÞpki;
qF

qt

* +
ð2:37Þ

þ
XN

i; j;k¼1

pki þ pik

2
; x0

qAikðeÞ
qxj

qF

qxj

� 	
¼ 0;

recalling that e is the spatial part of x (of components x1; . . . ; xN ). Using linear
combinations of these special F permits to use any smooth function, hence the
partial di¤erential equation (2.31).

One notices that (2.31) has no derivatives in x of the H-measure p, since they
come from the variations in ðt; xÞ of the coe‰cients, which here are assumed
constant.

For the transport of the H-measure p, one completes (2.31) with (1.24), i.e.
x20rpi; r ¼

PN
k¼1 AikðeÞpkr for i; r ¼ 1; . . . ;N, which implies that on the support of

p an eigenvalue of AðeÞ is x20r, i.e. (1.26).
The situation for linearized elasticity is then not exactly like that for a scalar

first order equation or a wave equation: after using the quadratic conservation
law behind the balance of (total) energy, one must still use the consequences of
the localization principle, and (1.24) contains more information than (1.26).
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Let us check what these equations say in the isotropic case, where m is the
shear modulus and l the Lamé parameter, and the very strong ellipticity condi-
tion corresponds to m > 0, 2mþNl > 0:

sij ¼ 2meij þ l divðuÞdij ; i; j ¼ 1; . . . ;N; so thatð2:38Þ

AðeÞ ¼ mjej2I þ ðmþ lÞen e; e a RN ; with eigenvalues and eigenvectors

lPðeÞ ¼ ð2mþ lÞjej2; with eigenvector proportional to e ðmultiplicity 1Þ;

lSðeÞ ¼ mjej2; with eigenvector any f orthogonal to e; ðmultiplicity N-1Þ;

the index P recalling (longitudinal) P-waves or pressure waves (divðuÞ satisfies a
wave equation), and the index S recalling (transverse) S-waves or shear waves
(curlðuÞ satisfies a wave equation).

Since by (1.26) the support of p is included in the set where detðAðeÞ � x20rIÞ
¼ 0, it selects two disjoint closed sets of ‘‘SN ’’ (because the coe‰cients do not
depend upon ðt; xÞ):

SN
P ; defined by x20r ¼ ð2mþ lÞjej2;ð2:39Þ

SN
S ; defined by x20r ¼ mjej2;

and (1.24), which expresses the localization principle (Lemma 1.2), means that p
decomposes into two parts living in disjoint open sets, pP in a neighbourhood of
ð0;TÞ �W� SN

P with support in ð0;TÞ �W� SN
P , and pS in a neighbourhood

of ð0;TÞ �W� SN
S with support in ð0;TÞ �W� SN

S , having the form

pP
jk ¼ ejekn

P; j; k ¼ 1; . . . ;N; nP a non-negative Radon measureð2:40Þ

with support in ð0;TÞ �W� SN
P ;

pS
jk ¼ Mjkn

S; j; k ¼ 1; . . . ;N; nS a non-negative Radon measure

with support in ð0;TÞ �W� SN
S ;

and M Hermitian symmetricb 0; nS-integrable;

with ðMe; eÞ ¼ 0; nS-almost everywhere:

[Without x a SN , (2.39) is consistent with
m

r
and l

r
having dimension L2T�2, but

imposing x a SN gives x20 ¼ 2mþl

2mþlþr
on SN

P and x20 ¼ m

2mþlþr
on SN

S , where one

adds quantities with di¤erent dimensions.]
By taking r ¼ i in (1.24) and summing in i one obtains

XN
i;k¼1

AikðeÞpki ¼ rx20

XN
i¼1

pii in ð0;TÞ �W� SN ;ð2:41Þ
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so that the t derivative term in (2.31) is 2 q
qt
ðrx20

PN
i¼1 piiÞ, and by (2.40)

XN
i¼1

pii ¼
jej2nP on ð0;TÞ �W� SN

P

traceðMÞnS on ð0;TÞ �W� SN
S

(
:ð2:42Þ

The xj derivative term in (2.31) is �
PN

i;k¼1

�
x0

qAikðeÞ
qxj

pkiþpik
2

�
, and since by (2.38)

AikðeÞ ¼ mjej2dik þ ðmþ lÞeiek, and remembering that e is a notation for the
spatial part of x, one has

qAikðeÞ
qxj

¼ 2mxjdik þ ðmþ lÞðxkdij þ xidkjÞ;ð2:43Þ

i; j; k ¼ 1; . . . ;N in ð0;TÞ �W� RNþ1:

The sum to consider has a di¤erent form on SN
P or SN

S

�
XN
i;k¼1

x0
qAikðeÞ
qxj

pki þ pik

2
ð2:44Þ

¼ �2ð2mþ lÞx0xjjej2nP on ð0;TÞ �W� SN
P ;

�2mx0xj traceðMÞnS on ð0;TÞ �W� SN
S ;

(

since by (2.40) Me is 0 nS-almost everywhere on ð0;TÞ �W� SN
S .

On ð0;TÞ �W� SN
P one then has

PN
i¼1 pii ¼ jej2nP satisfying a first order

transport equation, in the direction
�2ð2mþlÞx0

2rx20
e, i.e.

�ð2mþlÞ
rx0

e, which when com-

pared to (2.24) is what one expects for the wave equation satisfied by divðunÞ.
Similarly, on ð0;TÞ �W� SN

S one has
PN

i¼1 pii ¼ traceðMÞnS satisfying a first

order transport equation, in the direction
�2mx0
2rx20

e, i.e.
�m

rx0
e, which when compared

to (2.24) is what one expects for the wave equation satisfied by curlðunÞ.
However, if on ð0;TÞ �W� SN

P the trace
PN

i¼1 pii permits to recover what
p is there, one does not recover what p is on ð0;TÞ �W� SN

S using only
traceðMÞnS.

There is then more work to do for the question of transport of H-measures in
linearized elasticity.

Another type of question which I hope to address in the future is to clarify
the question of initial data, or more generally of boundary e¤ects, like reflection
e¤ects for beams of light, but there are also e¤ects at internal interfaces (between
di¤erent materials), like refraction e¤ects for beams of light.

Using my multiscales H-measures, which I introduced in [Ta15], or new and
more e‰cient microlocal tools, I also hope to address in the future the question
of explaining the formal computations of Joe Keller’s Geometrical Theory of
Di¤raction (GTD), and in particular an experimental observation which I learned
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from Michel Gondran, and an interesting 1818 episode which he mentions in his
book with his son [G-G14]: for a prize of Académie des Sciences in Paris, on the
subject of di¤raction, Fresnel had imagined an hypothetic medium called æther
(which was thought to exist until the 1887 experiment of Michelson and Morley),
but a member of the jury (Poisson) who disliked the wave nature of light (and
preferred Newton’s idea of a particle nature of light) found that Fresnel’s ideas
imply that there would be a bright spot in the middle of the shadow of a solid
opaque sphere illuminated by a point source, which he thought nonsense; how-
ever, the president of the jury (Arago) was a partisan of the wave nature of light,
and he ordered it to be checked in a careful experiment, and the spot is there,
which one now calls either the Poisson spot or the Arago spot.

Since Joe Keller had mentioned to me that his computations of light creeping
into the shadow remind of the tunneling e¤ect in quantum mechanics, except that
light does not go through the obstacle, but around the obstacle, there is much
more than questions about light behind studying his formal computations.

3. Appendix

One considers a second order equation (not necessarily hyperbolic, since the x
variable is not explicit in this abstract framework) in the classical framework
with three separable Hilbert spaces (sometimes attributed to Gel’fand) which I
learned from Jacques-Louis Lions: V (with norm k � k) dense in H (with norm
j � j), identified to its dual H 0, so that H is dense in V 0 (with dual norm k � k�);
the equation is

d

dt

�
M

du

dt

�
þ Au ¼ f in ð0;TÞ; with initial data uð0Þ ¼ a;

du

dt
ð0Þ ¼ b;ðA1Þ

with

M a C0ð½0;T �;LðH;HÞÞ; dM

dt
a L1ð0;T ;LðH;HÞÞ;ðA2Þ

M �ðtÞ ¼ MðtÞ for all t a ½0;T �;
and there exists g > 0 such that ðMh; hÞb gjhj2 for all h a H;

and

A a C0ð½0;T �;LðV ;V 0ÞÞ; dA

dt
a L1ð0;T ;LðV ;V 0ÞÞ;ðA3Þ

A�ðtÞ ¼ AðtÞ for all t a ½0;T �;
and there exists a > 0 such that 3Av; v4V 0;V b akvk2 for all v a V :

Under the hypotheses (A2)–(A3) one first proves an existence result for weak
solutions:
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if f a L1ð0;T ;HÞ; u0 a V ; u1 a H; there exists u a Llð0;T ;VÞ;ðA4Þ
du

dt
a Llð0;T ;HÞ; uð0Þ ¼ a; which makes sense since u a Lipð½0;T �;HÞ;

weak solution of ðA1Þ in the sense thatZ T

0

�
�
�
M

du

dt
; e
� dj
dt

þ 3Au; e4V 0;Vj
�
dt

¼
Z T

0

ð f ; eÞj dtþ ðMð0Þb; eÞjð0Þ;

for all e a V ; j a C1ð½0;T �Þ; with jðTÞ ¼ 0;

so that M
du

dt
is absolutely continuous in V 0; with initial data Mð0Þb:

This is proved using a method attributed to Galerkin, but also to Faedo (and to
Ritz), where for a ‘‘Galerkin basis’’ (linearly independent elements of V which
span a dense subspace in V , hence of H) w1; . . . one looks for an approximate
solution un a Vn ¼ spanfw1; . . . ;wng satisfying

� d

dt

�
M

dun

dt

�
;wj

�
þ 3Aun;wj4V ;V 0 ¼ ð f ;wjÞ in ð0;TÞ; j ¼ 1; . . . ; n; withðA5Þ

unð0Þ ¼ an a Vn ðconverging to a in VÞ;
dun

dt
ð0Þ ¼ bn a Vn ðconverging to b in HÞ;

which is an ordinary di¤erential equation whose global existence is proved by
finding bounds independent of t and convergence (of a subsequence) in corre-
sponding weak or weak � topologies is proved by having bounds independent
of n: they follow from taking in (A5) the combination of w1; . . . ;wn giving

dun
dt
,

since

d

dt

��
M

dun

dt
;
dun

dt

�
þ 3Aun; un4V ;V 0

�
ðA6Þ

¼ 2
�
f ;
dun

dt

�
�
� dM

dt

dun

dt
;
dun

dt

�
þ dA

dt
un; un

� 	
V ;V 0

;

from which uniform bounds are found (using Gronwall’s inequality). Although
un is bounded in C0ð½0;T �;VÞ, the weak � limit ul of a subsequence is found

in Llð0;T ;VÞ; although dun
dt

is bounded in C0ð½0;T �;HÞ, taking another weak ?

limit gives dul
dt

in Llð0;T ;HÞ; also, it does not permit to pass to the limit in the
quadratic (or sesqui-linear) terms in (A6). One then looks for a regularity result
in t: assuming bounds on

df

dt
(and natural improvements on a and b), one looks

for a bound of d 2un
dt2

in H and dun
dt

in V , but
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d

dt

�
M

du2n
dt2

;
d 2un

dt2

�
þ A

dun

dt
;
dun

dt

� 	
V ;V 0

 !
ðA7Þ

¼ 2
�
f ;
d 2un

dt2

�
� 3
� dM

dt

d 2un

dt2
;
d 2un

dt2

�

� 2
� d 2M

dt2
dun

dt
;
d 2un

dt2

�
� dA

dt

dun

dt
;
dun

dt

� 	
V ;V 0

� 2
dA

dt
un;

d 2un

dt2

� 	
V ;V 0

;

and the last term is not under control since one has no bound for
d 2un
dt2

in V , so that
one writes

�2
dA

dt
un;

d 2un

dt2

� 	
V ;V 0

¼ �2
d

dt

dA

dt
un;

dun

dt

� 	
V ;V 0

 !
ðA8Þ

þ 2
dA

dt

dun

dt
;
dun

dt

� 	
V ;V 0

 !

þ 2
d 2A

dt2
un;

dun

dt

� 	
V ;V 0

 !
;

and everything gets under control, at the expense of assuming that d 2A

dt2
a

L1ð0;T ;LðV ;V 0ÞÞ, besides assuming that a a DðAð0ÞÞ and b a V , but the

hypothesis d 2M

dt2
a L1ð0;T ;LðH;HÞÞ is also used.

This permits to find solutions more regular than C0ð½0;T �;VÞBC1ð½0;T �;HÞ.
For proving uniqueness of weak solutions, i.e. show that f ¼ 0, a ¼ 0, b ¼ 0
imply u ¼ 0, one notices that (A4) in this case impliesZ T

0

�
�
�
M

du

dt
;
dc

dt

�
þ 3Au;c4V 0;V

�
dt ¼ 0ðA9Þ

if c a C0ð½0;T �;VÞBC1ð½0;T �;HÞ with cðTÞ ¼ 0;

and taking for c a solution of

d

dt

�
M � dc

dt

�
þ A�c ¼ 0 in ð0;TÞ; with final data cðTÞ ¼ 0;ðA10Þ

dc

dt
ðTÞ ¼ c a V ;

one deduces that

ðuðTÞ;M �ðTÞcÞ ¼ 0 for all c a V ; hence uðTÞ ¼ 0;ðA11Þ

applying then a similar argument on ½0;S� with S a ð0;TÞ gives u ¼ 0.
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If one approaches f a L1ð0;T ;HÞ strongly by a sequence fn a L1ð0;T ;HÞ
with

dfn
dt

a L1ð0;T ;HÞ, a a V strongly by a sequence an a DðAð0ÞÞ, and b a H

strongly by a sequence bn a V , the sequence of solutions un is a Cauchy sequence
in C0ð½0;T �;VÞBC1ð½0;T �;HÞ, and since (A6) holds for this (new) definition
of un, it is valid for the limit u, the unique weak solution corresponding to data
f , a, b.
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