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In memory of Ennio De Giorgi.

ABSTRACT. — The notion of H-measures, introduced by the author and applied to propagation
effects for wave equations is recalled, and extended to similar questions for linearized elasticity.
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A little less than twenty years ago, I wrote (for Annali della Scuola Normale
Superiore di Pisa) an article [Ta98] in memory of Ennio De Giorgi, entitled
Homogenization and Hyperbolicity, where 1 discussed about finite propagation
speeds in homogenization, for the wave equation, the Maxwell-Heaviside system
in electromagnetism, and the Cauchy-Lamé equation in linearized elasticity).
[For his unification of electricity and magnetism, Maxwell used ideas about @ther
which led him to an enormous system of 26 equations, and it was not an easy
task for Heaviside to deduce the system which one uses now, hence it is fair to
both of them to call it the Maxwell-Heaviside system. Cauchy wrote the elas-
ticity equation p@zul E djo; = f; for density p, displacement u, force f, and
his stress tensor o. Usmg a linearization for a 2-dimensional analogue of a 1-
dimensional computation by D. Bernoulli for a Vlbratmg string, he obtained
a constitutive law ¢ = 2ue + udiv(u)l, with 2¢; = 0;u; + 0ju;. Lamé noticed that
the general law for an isotropic material is o = 2ue + 1 d1V( )1, so that it is fair
to both of them to call the elasticity equation with two parameters the Cauchy—
Lamé equation.]

I have written many times how sad I find that so many study problems of
“fake mechanics” using I'-convergence, which is not a way to honour the mem-
ory of Ennio De Giorgi: those who consider themselves his followers should learn
that minimization of potential energy is not physics, since total energy is conserved.
If energy hides at mesoscopic levels, one should learn where it goes. For elasticity,
one should work with the hyperbolic system governing the evolution, and not
only with stationary solutions, of course.

One flaw of thermodynamics is that it gives no intuition of what internal
energy is, and how it moves around at various mesoscopic levels and in various
directions. As a way to analyse this situation, I want to check here what the
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transport theorem of H-measures says for linearized elasticity, although I have
pointed out its defects, but seismologists seem to use only linearized elasticity;
however, they also seem to use only isotropic materials, but I want to address
the question in a possibly anisotropic material.

I had introduced H-measures for the question of small amplitude homogeniza-
tion: they describe at quadratic order the oscillations and concentration effects
in a weakly converging sequence. I then found how to use them for studying
propagation for sequences of solutions to some hyperbolic systems (like those
mentioned above), but when I wrote the results in [Ta90], I showed the results
in opposite order, because I found the propagation result more important: it
gave at last a definition of what a curved beam of light is (the fake scalar light
for the wave equation or the real polarized light for the Maxwell-Heaviside
system).

My feeling is that nobody cared, maybe because one thought that it was
already known.

The classical computations of geometrical optics are for the scalar wave equa-
tion (with smooth coefficients), and not for more general hyperbolic systems, and
they concern solutions which look like distorted plane waves (and not like curved
beams of light out of which nothing may happen), and in this framework one
shows that there exists an asymptotic expansion for large frequency v for which
an amplitude satisfies a transport equation which needs the gradient of a phase,
itself a solution of an Hamilton—Jacobi equation valid only away from caustics.

I proved that for all sequences of solutions of a scalar wave equation (with
smooth coefficients) converging weakly (i.e. in the limit of infinite frequency) an
H-measure satisfies a first order partial differential equation, and this equation
tells where energy and momentum go, but they do not see a phase, since they use
no characteristic length; there is no difficulty having many curved beams going
through the same point (x, ¢) but with different directions. My method also has
the advantage to extend to a class of hyperbolic systems.

Lars Hormander studied propagation of microlocal regularity, which takes
place out of a wave front set, which is a no-man’s land, but a curved beam of light
should not be considered a no-man’s land, since one wants to know how much
energy or momentum it carries; computations of particular solutions showing
explicit forms of non-regularity (called singularities) are shown, and it may be
propaganda to speak of propagation of singularities: why look at such details
when one does not see the essential, energy?

1. BASICS OF H-MEASURES

I worked in an open set Q C RY, and I defined a kind of “pseudo-differential
calculus” on L?(Q), but modulo compact operators. [Patrick Gérard, who intro-
duced H-measures [Gé91] and variants in a slightly different way than me and
for different reasons, wrote that one cannot define H-measures (which he called
microlocal defect measures, a not so good name) on manifolds, but I have men-
tioned that one should use a manifold with a volume form.]
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For b € L*(Q), the multiplication operator M}, is defined by
(11) Mbu =bu foruce LZ(Q> : HMb”j(LZ(Q);LZ(Q)) = Hb”L"(Q)
For a € L*(R"), the operator P, is defined by

(1.2) FZPu=aFu forue *(RY): 1 Pall oz2®¥), 2wy = lall o @),
where Z is the Fourier transform, with inverse ., given (using the notation of
Laurent Schwartz) by

(1.3) Fu(&) = / e 25Oy (x) dx, foru e L'(RY),
RY

Fu(x) = / e T2 p(E) dE, for v e LY(RY),
[R]\

which extend into isometries on L2(R"). For defining H-measures I restricted my
attention to

(1.4) ae C(SV"), extended as a( é') on R¥\{0},

but variants are useful, for which I refer to my book [Tal0]. Technically, a is de-
fined on the space of half-lines, i.e. the quotient of R¥\{0} by the equivalence
relation that ¢ is equivalent to r¢ for all r > 0.

LeEMMA 1.1 (first commutation lemma). If a satisfies (1.4) and b € Co(RY), then
the commutator [P,, M) = P,My, — M, P, is a compact operator on L*>(R").

PROOF. One approaches uniformly 4 by a sequence b, € % (R") such that #b,
has compact support, in |£| < p,. Since a limit in norm of compact operators is
compact, and since [P,, M} is the limit in norm of [P,, M} ], it suffices to show
that each [P,, M}, ] (or #[P,, M},]) is a compact operator. One then has

(15)  FPa Mo = [ Fb(E =)@l — aln) Folr) d.
and one wants to decompose the kernel K(&,n) = #b,(¢ —n)(a(é) — a(y)) into
two pieces, one bounded by £|# b, (& — 17)| and one in L?(R"Y x R"); the first piece
gives an operator bounded by a convolution operator, of norm < ¢||Z b, || LI(RY
the second one is an Hilbert—Schmidt operator, hence compact; if one can do this
for all ¢ > 0, then # [P,, M}, ] is a limit in norm (as ¢ — 0) of compact operators,
and is then compact.
Using the uniform continuity of @ on the unit sphere SV~!, one has

—a e i—l e
(16) &) —atn)] < e if |5~} < ote)
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and since one only needs to consider pairs with |£ — 7| < p,, one finds that

< s
50 P g~ ] <00

on the other piece max{|¢],|n|} < 5 T P> and the restriction of K is in

L*(RY x RY). [Thanks to a result of Raphaél Coifman, Rochberg, and Weiss
[C-R-W76], the conclusion of Lemma 1.1 is true if 5 € L*(RY) n VMO(R").]
I then introduced the class of symbols of the form

(1.7) [€=nl<p, and min{[c],|7]} =

(1.8)  s(x,&) = Zam bi(x), with > " laml cgv—1) [l ¢y 0 = & < 400,

and I associated the standard operator S; defined by

(19) SS = ZPa’”Mb’” € g(Lz(Q), LZ(RN)), Wlth ||SS||$(L2(Q);L2(RN)) < K,

and S; does not depend upon the decomposition (1.8) since one has

(1.10) FSu(é) = /Qe_zm(x‘é)s(x,%)u(x) dx
ae. eRY forue L'(Q)nL*(Q).

I defined an operator of symbol s to be any operator from L*(Q) to L*(RY)
which differs from S by a compact operator. In the case Q = R”, using the first
commutation lemma (Lemma 1.1), one example is

(1L11) L= 3 My, Pu, e LRV LARY)), with L] s my) <5
m

and L, does not depend upon the decomposition (1.8) since one has

(1.12)  Lau(x) = /RN e+2’“(x’i)s(x %) Fu(&)dé, forue LY'(RY) n L*(RY).

Then I deduced the existence of H-measures:

THEOREM 1.1 (existence of H-measures). If U" converges to 0 in Lj (Q;R?)
weak, then there exists a subsequence U™ and an H-measure p, which is an Hermi-
tian symmetric non-negative p X p matrix of Radon measures on € x SV such
that: for every j. ke {l,...,p}, for every ¢, 0, € C.(Q), for every operators
Ly, Ly, € L(L*(Q); L>(RY)) with symbols s1, s, one has

(113) [ Lo UM U d = a5,
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Sketch of proof. Tt suffices to show (1.13) for operators of the form P,M; and
since the b can be included in ¢; or ¢,, one just needs to extract (by a Cantor
diagonal argument) a subsequence such that for a countable dense set of
¥ € C(SY1) and for ¢,, ¢, in a countable set, union of countable dense sets
of Ck,(Q) (where K, is an increasing sequence of compact sets with union Q),

14 lim [ o Feupw(

n— oo R[\/

|é| ) dé L(gpl 9 ¢2a lp) eXiStSv

and using the first commutation lemma (Lemma 1.1) one deduces then that

(1.15) L(py, @5, ) only depends upon ¢,¢, and .

This limit then defines a linear continuous mapping from C.(Q) into the dual
of C(SV!), ie. the (Banach) space of Radon measures on SV~!, denoted
(SN, Using the kernel theorem of Laurent Schwartz, this operator has a
kernel belonging to 2'(Q x SV~!), and that the distribution kernel is actually a
Radon measure results from non-negativity, since for ¢, = ¢, and y > 0 the limit
is > 0. Since Jacques-Louis Lions had told me that he had taught with Lars
Garding an explicit construction of the kernel theorem (and I had looked at
their simplified proof [G-L59], which uses Fourier transform and Sobolev spaces),
I decided to avoid the kernel theorem in [Ta90] and my proof just uses Functional
Analysis, in particular Hilbert—Schmidt operators. When I wrote my book [Tal0],
I noticed that the referee from Math Reviews for [G-L59] attributed the idea to
Leon Ehrenpreis [Eh56] (which I did not read).

Besides noticing that 4 = 0 is equivalent to U™ converging stronly to 0 in
L2 (Q;R”), I observed that linear differential constraints on U" imply pointwise
algebraic constraints on [

LemMmA 1.2 (localization principle). If

A

p N
(1.16) Z@i- (ZA_/;{U,f) — 0 in H,!(Q) strong,
=1 9 =1

with all Ay € C(Q), then the H-measure u ( for any subsequence) satisfies

p N
(1.17) SN GAxX, =0 inQx SN for £ =1,

j=1 k=1

PRrROOF. Multiplying by ¢ € C!(Q) gives the same property for ¢pU" since a
sequence which converges Weakly to 0 in L?(Q) converges strongly to 0 in
H,1(Q). Applying (—A)~ 12 and noticing that all the terms have compact sup-
port (because of the truncatlon by ¢), (1.16) implies

(1.18) iR (ZA,kUk) — 0 in L*(R") strong,

J=1
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where the Riesz operator R; has symbol z‘ | One then applies the defining

property of H-measures (m Theorem 1.1) to the subsequence U” and one
deduces (1.17) multiplied by ¢, which one then lets vary.

EXAMPLE 1.1 (scalar case). Let u" — 0 in L} (Q) weak and correspond to a
scalar H-measure p (> 0);

a n
(L.19) if ij%H 0 in H,!(Q) strong, with by e C'(Q), j=1,...,N,
g J
then Pu = 0inQx SN! , with P(x,&) = Zb f,mQXRN

so that the support of u is included in the zero set of P, hence the name I chose
for the effect. If the zero set of P is empty, then u = 0.

EXAMPLE 1.2 (gradients). Let U" — 0 in L}

2 (Q;RY) weak and correspond to
an H-measure p;

aur  oup
0xk 0x;

then . = &&pm, jok=1,...,N inQx SN,

(1.20) Q) strong, jk=1,...,N,

for a scalar non-negative Radon measure 7 in Q x S¥~!.
Similarly, in the vector-valued case

(1.21)  ifu’ —0in H] (Q) weak,i=1,...,p,

ou’

andl/i}fl: I7i:17"'apaj:17"'ﬂN7
v axj

corresponds to an H-measure ,

. . . N—1
then p;., = &, 1,1 =1,...,p, jym=1,... N, in Q x §",
for a p x p non-negative Hermitian symmetric matrix

of Radon measures 7 in Q x SV

vy ¢
Indeed, from ch - BOZ‘" = 0, one deduces that i, = itk j» and multiplying

by &, and summlng in'k gives f;py = &Vioim (With v = D7) &ty ,); Hermitian
symmetry then gives vim = Wy, ; = SV and multlplymg by éj and summing

in j gives vi, = Epmy (With my = 3, Eviy).

EXAMPLE 1.3 (wave equation). Let u" — 0 in H] .((0, T) x Q) weak and (using
xo = 1) grad, ,u" correspond to an H-measure u, satisfying (by Example 1.2)
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Wy = Eigrm for jok=0,...,N in (0,T) x Q x SN, If u" satisfies a “wave-like”
equation

(1.22) ( ) Z ( e ) — 0in H,'((0, T) x Q) strong,

J= OXJe
with p, Cy € C((0,T) x Q), j,k=1,...,N,
then 7 satisfies Qn = 0 in (0, T) x Q x SV,

N
with Q = p(t,x)& — Y Ci(t,x)&& in (0,T) x Q@ x RV,
k=1

[It is a wave equation if p > 0 and C is symmetric positive definite, but it is ellip-
tic if p > 0 and C is negative definite, in which case the zero set of Q is empty,
hence 7 = 0.]

Indeed, the localization principle (Lemma 1.2) gives £,Qn = 0 for every /, and
multiplying by &, and summing in / gives (1.22).

ExAaMPLE 1.4 (linearized elasticity). For N > 2 let u! — 0 in H} ((0,T) x Q)

weak fori=1,...,N, and (using xo = 1) V] = M (for] =0,...,N) correspond to
an H-measure L, satlsfylng (by Example 1 2) ,u,/ m = Ciémm il in (0 T)x Qx SV
for i,l=1,... N, and jjm=0,... N. Let u" satisfy a “Cauchy—Lameé-like”
system
o our  Ldaf R .
(1.23) pr ( 3 ) ;axj ((0,T) x Q) strong, i =1,..., N,
N n
. , 1 /0u" Oul
with oj; = kzljl Ciji ity € = (6x + p /i ), i,j=1,...,N,

andpv ikl — C‘ji;kl = Cij;lk € C((Ov T) X Q)u iajakal = 17~'-7N
[Tt is a Cauchy-Lamé system if p > 0 and if C satisfies some symmetry and

positivity requirement.]
Then 7 satisfies

N
(1.24) &pmiy =Y An(e)my =0 in (0,T) x Qx SY, ir=1,...,N,
k=1

with e = (&1,...,¢y), where A(e) is the acoustic tensor:

N
(125)  Aw(e)=>_ Cymerer, ik=1,...,Nin(0,T) x Qx R".
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Indeed, the localization principle (Lemma 1.2) gives for each i an equation
valid for all pairs of indices (r,s), and it appears to be the ith equation in (1.24)
multiplied by &: since & € SV, not all & may vanish, and one obtains (1.24). If at
a point (9, xo) € (0, T) x Q and (&, e) € SV the matrix 4(e) — &2pl is invertible,
then it is true in an open neighbourhood (since the coefficients are continuous),
and on this set (1.24) implies that 7 = 0, and one deduces that

(1.26) the support of 7 is included in the set where det(A(e) — EZpI) = 0.

The acoustic tensor was introduced for the study of plane-waves for the
constant coefficient case: taking n € SV7!, one looks for a plane-wave solution
of the form w;(x,1) = fi((x,n) —vt), i = 1,. , i.e. having (phase) velocity v;
one finds that f” is an eigenvector of A( ) for the eigenvalue pu2 (because
f"=0 corresponds to constant ((A so that nothing changes, and it is not called
a wave). [It is a phase velocity, and not a group velocity, but I have shown in
[Ta98] that, under an hypothesis of very strong ellipticity, and for coefficients
only depending upon x, that the maximum phase velocity in a direction serves
also as maximum group velocity in that direction.]

The computations shown for Example 1.4 are about having sequences of
solutions which converge weakly but not strongly, without imposing them any
particular form, like plane-waves (again a difference between there exists and
Sor all).

In hyperbolic cases, one may be able to obtain some partial differential equa-
tions on H-measures, which express in some way how the oscillations and concen-
tration effects (which the H-measures take into account) propagate, but the proof
uses smoothness hypotheses.

Lemma 1.3 (second commutation lemma). For Q= R", if ae Lip(S¥)
(extended as a( K ) in RM\{0}),

(127) ifbe X'(RN) = {b e ZL'(RY)

e ZLY(RY), j = 1,...,N}, then

Xj
the commutator [Py, My) maps L*(RY) into H'(R");
if also a e C'(S¥™1), then

6 da 0b

[Pa, My has symbol ¢ Z&f o

, for j ..,N.

[In [Ta90], I used a result of Alberto Calderon for improving the regularity
hypotheses, but I shall only use here my initial approach.]

PROOF. One must bound the norm in L?(RY) of

(128)  |¢1F [Pa MJo(E) = |¢] / Fb(E — n)(a(&) — aln)Foln) dn,
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in terms of the norm in L*(R") of Zv. Let x be the Lipschitz constant of @ on
SV-! so that

B K-S/ PR | B YT

(129)  la(&) —a(n)| < Il = min{[&], [}

then one bounds || |a(&) — a(n)| in two different ways:

(1.30) if |&] < [5], then [£][a(E) — a(n)| < x|€ 7],
if [£] = [n], then |¢[|a(&) — a(n)| < |€ —nlla(C) — a(n)| + |nl|a(&) — a(n)]
< [¢ = nl2llall = @r) + xIE = nl,

from which the first part of (1.27) follows.

For proving the second part of (1.27), one approaches (in X !'(R") norm) b
by a sequence b, € ¥(R") such that #b, has compact support, in |&| < p,.
Since

(1.31) f(;x/ [Py, Mbn])v(f) = /R T bu(C = n)2in;(a() — a(n))Fo(n) dn,

and one only considers |¢ — 5| < p,,, one improves (1.29) by considering a Taylor
expansion at order 1,

(1.32) a<|§|>—a<|z|>:Va<é|>-(|§|—|Z|>+error,

; ; ; < _n &= Pu
assuming that min{|&|, ||} > r, with r large, hence || g W|| < smfE S 7

small; the error in (1.32) is bounded usmg the modulus of uniform continuity

of Va on SV so that it is < ¢| 5 — L | < < el with e(2) tending to 0 as
1 Tl _min{|¢], |n[} r

r tends to oo; in bounding the corresponding term in (1.31), there is a multi-
plying factor 27|&;|, taken care of by using || < min{|&[,[#|} + p,, and this term
then corresponds to an operator of norm < Cel|by||y 1~ llal| @), With C
tending to 27 as r tends to co. In order to make the standard operator of symbol

sn(x,8) =& Zk 1552 f’; appear, one introduces a second small term by replacing

in the right side of (1. 32) o by 75> and the difference is < H% "‘ZH < “Z IZ\‘ < Kr\éllﬂ’

and this correction corresponds to an operator of norm < 2 ||b,|| v @M lall Lipwy)-
Of course, one puts together all the corresponding integrals over the set
min{|&|, ||} < r, which is included in the set max{|&|,|n|} <r+ p,, and such
terms correspond to Hilbert—Schmidt operators, which are compact; this shows
that the difference between /( -[P,, Mp,]) and ZS,, is a compact operator,

since it is a limit in norm (as r tends to o0) of compact operators.

1S
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Then, as n tends to co, one notices that # (% [P4, Mp,]) converges in norm to
. B .
( [Pa, M), that 7 Sy, converges in norm to # Sy, so that the difference of
these two limits is the 11m1t in norm of compact operators, hence is compact.

COROLLARY 1.1. For Q=R" ifae C' (SN (extended as a(m) in R¥\{0}),
and b € X'(RY)

ou O(Pyu)
1. Pyt
(1.33) b@x_/ b 5%

with L having symbol &i{a,b}, j=1,...,N,

+ Lu, for u e L*(R"),

where the Poisson bracket is defined for two functions on RN x RY by

Ko b9 of og
(1.34) {fvg}—Z;(a_éja_n_a_%a_fj)

[For an Hamiltonian system ‘ZIZ’ = ;[17’ , % = —7 (the first example of which was

written by Lagrange for a question of perturbatlon of an elliptic orbit in celes-
tial mechanics), the sign chosen for the Poisson bracket is such that dFa‘,’t p) —
{H,F} =Y 2 _ L for g]] smooth functions F.|

J=10p; 0q;  0q; op;

PROOF Indeed, P, b u_ p Pibv') P, ;i’ u, and the first term is 3y 2 P.bu=
[Pa, Mylu + & bP u, ie. Lu+ bP u by the second commutation lemma
(Lemma 1.3), 2 Pu+ Ku for a compact operator K

by the first commutation lemma (Lemma 1 1) and -~ bP,u — L P =bL Pu.
/X/ oxj C.Xj

For generalizing the second commutation lemma (Lemma 1.3) to a larger
class of operators, it is the standard operators which should be used, with a
natural change of definition for the class of symbols:

(1.35)  s(x,¢) = Zam bm(x) with Z llamll (s v-1)l1bmllx1 myy < +o0.

LEMMA 1.4. If S|, S, are the standard operators with symbols sy, sy satisfying
(1.35), then

0

(1.36) o

[S1, 82] has symbol &;{sy, 52}

Proor. It follows from the case S; = P WMy, Sy = P.My: let A =[Mp, P, and
B =[My, P,], then, using the fact that ﬁ . P,, and P, commute, and that M,
and M,; commute, one has
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0
(137) o (PMyPMy — PcMyPiMp)
]

0 0
= P“a—x, (A + P.My)My) — P“a_xj ((B+ PaMy) M)

0 0 0 0
—P,— AMy + P,P.— MyM, — P.—— BM M) — P.P,— MyM,

an an an an
0 0 .
=P,—AM,; — P.— BM ;M;,, which has symbol
6Xj 6xj

a(fb,c})d — c(E{d,a})b = &(a{b, cyd + bla,d}c) = E{ab, cd}.

2. TRANSPORT EFFECTS

In order to work with partial differential equations in an open set Q C R", I need
a local version of the space X'(R") used in (1.27), and since X' (R") c C}(R"),
because Z L' (RY) ¢ Co(R"), I choose

(2.1) XL(Q)={be CYQ)|pb e X (RY) forall p e C*(Q)}.

[For 1 < p <2, one has W*?(R") c #L'(R") for s > &, hence W*?(R") C
XY(RN) for s > 1+ %, and one may replace C*(Q) in (2.1) by the Holder space
Cm(Q)ifm+o>1+4]

In [Ta90], I studied the transport property when u, satisfies a first order scalar
equation (like in Example 1.1), and T used a right side f, not necessarily linked to
u,: it was useful as a first step toward creating a theory for semi-linear equations
(which is not yet done), but in such a case one needs to consider the H-measure
for a subsequence (u,,, fn), and the transport equation for u;, (i.e. the H-measure
for u,,) has a source term involving u,,; using the localization principle (Lemma
1.2) and the non-negative Hermitian symmetry of H-measures (Theorem 1.1),
both the supports of x;; and g, are included in the zero set of P (defined in
1.19), although the support of x,, may not be included in it.

Here, I just want to consider the case where f,, = S;u,, for the standard opera-
tor Sy with symbol s.

THEOREM 2.1. If u, converges weakly to 0 in L*(Q) and corresponds to an
H-measure p and if

N
(2.2) Z bj% + S, — 0 in L} (Q) strong,
i
P

with by, ..., by real and belonging to Xl(ln,(Q), then u satisfies
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N
(23)  Px,Hu=0inQx SN with P(x,&) = " hi(x)& in Q x RY,
J=1

Cu, {®, P} + (2Rs — div(h)) @) = 0 for all ® € CH(Q x V7).

PROOF. The first part of (2.3) was seen in (1.19). For ¢ e C!(Q), and
Y € CF(Q) real and equal to 1 on support(p) (so that yp = ¢), gu, satisfies

N )
(2.4) Z Wb; 0((;’0;[ (Z b; 6(0 )un + Sypu, — 0 in L?(RY) strong,
Jj=1 j

since the commutator [Ss,¢] is compact on L?(R") by the first commutation
lemma (Lemma 1.1). Since yb; € X'(R") by the definition (2.1), one may apply
P, to (2.4) with @ e C'(SV™"), and use Corollary 1.1 of the second commutation
lemma (Lemma 1.3), and obtain

N
(2.5) Z b, XL aln) ¢”” + Lou, — (Z )u,, + P,Spuiy — 0

N
in L*>(R") strong, with L having symbol Z Ei{a, b}
=1

The next step is to multiply (2.5) by pu, and add the complex conjugate of (2.4)
multiplied by P,pu,, and it is here that the hypothesis that the b; and  are real
is used:

(2.6) the quantity

leb M + (Loun — P, (ﬁ )u + PuSypun )t

]

+ Pawln( sPUn — (Z bim: ) )

then tends to 0 in L'(R") strong. One then integrates (2.6) against a test function
w e CF(Q) and one takes the limit as » tends to co, which makes the H-measure

[l appear:

(2.7) <,U, —a(ﬂ(/’z l/jb v) (Zf]{a Ybite — <Zb/6 )—i—aS(p)
+a(pw(sg/) Zb 6¢)>
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Since each term has a ¢ or @, one may replace y by 1. One then observes that

N d(bjw) N
the terms —app y_.", ol (Zj 1 b5 2o )q)w, and —apw " b; "” - add up to
N 0(bjpgw) _
A gy and the remaining terms also use ppw, but one may simply
say that one may choose w and then take ¢ equal to 1 on the support of w, so

that (2.7) becomes

(2.8) < —az Obw) + (zN:f {a,bj})w + asw + a5w> =0

J=1

forallw e C*(Q), ae C'(SV ).

Then one observes that

(2.9) for ® = aw, {®, P} = Z—w(i@%)—ia@bk
J= = Ok

0xy

(Zf]{a b}) ZNjaﬁ(;bj,

j=1

so that in (2.8) u is applied to {®, P} + (2Rs — div(h))®, proving (2.3) in the
particular case ® = aw. One deduces (2.3) by an argument of density of linear
combinations of tensor products.

Equation (2.3) is a first order partial differential equation in (x,&) for g,
written in weak form so that the partial derivatives appear on the test function
@; the characteristic curves for this equation are given by

dy_oP dg_ op

21 A
(2.10) dt 05 di ox T T

N

)

which imply that P is constant, and one only uses those curves corresponding to
P = 0 since the support of u is included there. However, it is useful to forget the
constraint ¢ € SY!, and observe that one uses the quotient space of R¥\{0} by
the equivalence relation that & is equivalent to & for all r > 0: using SV ™! is just
a way of picking an element in each equivalence class (which is a half-ray).

If one chooses two initial data for (2.10), (x(z¢),¢(70)) and (x'(zo), & (z0))
with x'(79) = x(79) but &'(79) = A&(70), then the solution has x'(r) = x(r) and
&'(t) = A&(7) for all 7, i.e. (2.10) induces an evolution equation for half-rays,
explaining why (2.10) is called an equation for bicharacteristic rays.

n (2.10), the equation for x is independent of £, and once x is known the
equation for ¢ is linear, so that existence and uniqueness of solutions of (2.10)
holds if the coeficients b; are locally Lipschitz continuous.

A localization procedure is needed on open sets €, since I stated the second
commutation lemma (Lemma 1.3) and its Corollary 1.1 on R", but any improve-
ment of the regularity hypothesis for b there will permit to improve the regularity
hypothesis in Theorem 2.1 and in other applications.
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A key point is that the equation (or system) considered must have a sesqui-
linear conservation law for complex solutions, even though one may be only
interested in real solutions, since the localization in & results from using “pseudo-
differential” operators, which may map real functions into complex functions.

LEMMA 2.1. Let p, C, j,k=1,...,N € C*((0,T) x Q) be real with C symmet-
ric, and satisfy p = o, C > ol for some o > 0. Assume that v e C°(0, T; H'(Q)) N
CY(0, T; L*(Q)) satisfies

N

0 ov 0 ov
2.11 —(p=)= Y —(Cp—)= L*((0,T) x Q
@11) 703 j;laxj@"axk) /e L°(0.7) x Q).
then
o6 -0v 0/ 0vob v 0b
212) f5+f5_5<p55+j;1q’<@_xja_m>
N A _ _
0 v 0 ov Ov
Yoy (O at S a)

dp v v i oCy v 0p
ot 0x; Oxi

in the sense of distributions in (0, T) x Q.

Sketch of proof. Formally, (2.11) implies (2.12) by developing the derivatives of
products and regrouping the terms, but second order derivatives of v appear in
the computation, hence it is not a proof.

A proof relies on the well-posedness of the wave equation with appropriate
boundary conditions.

Since (2.12) is local, one just needs to show it for pv with ¢ € C((0, T) x Q),
equal to 1 on an open set, where (2.12) is then proved. If the support of ¢ is
included in (0, 7') x @ for an open set w, then gv solves the wave equation with
Dirichlet conditions on the boundary of @ (and 0 initial data), and (2.12) is just
the non-integrated form of the identity of energy (one may separate the real part
and the imaginary part of (2.11) since the coefficients are real), applied to test
functions w(x)g(¢) for example. However, although one derivative in ¢ on the
coefficients serves for constructing (weak) solutions with u € L*(0, T; H} (w))
and ‘;—‘t‘ e L*(0,T; L*(w)), the proof which I taught in 1974/75 at University of
Wisconsin (in a graduate course whose lecture notes, written by graduate students
of John Nohel, were gathered in [Ta78]) was for p constant and C independent
of ¢, and here (and later for the linearized elasticity system) I use a more general
framework (already used by Jacques-Louis Lions in his first book [Li61]), and
the analogous proof seems to require two derivatives in ¢ (see Appendix): first
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one proves regularity in ¢, then one shows uniqueness of weak solutions, which
implies that u e C°([0, T]; H} (w)) n C'([0, T]; L*(®)), and finally one shows
that u satisfies an identity of energy.

THEOREM 2.2. Let u" € C°(0,T; H'(Q))n C'(0,T; L*(Q)) be a sequence of
solutions of a wave equation

e L) L (wl)

N
0
+ Z S/ ;;j — 0 in L} ((0,T) x Q) strong,

with p, Cy € X}2.((0,T) x Q) n C*((0,T) x Q), j,k=1,...,N, p being real > 0
and the matrix C being real symmetric positive definite (but since the coefficients
are smooth, one may replace C by its symmetric part, and absorb the lower order
terms that this creates into the operators S', ..., SN), and S°, ..., SV being the stan-
dard operators with symbols s°,... sN. Assume that u™ — 0 in H. ((0,T) x Q)
weak and (using xo = t) that grad, , u" corresponds to an H-measure p, satisfying
(by Example 1.2) wy. = E;&m for j k= 0,...,N; then & satisfies

(2.14) Qrn=0in(0,T) x Q x SV with Q = p(t,x)&} — ZC}kaé,ék

j k=1
in (0,T) x Qx RN and

N
<7‘c, {W,0}+> (&' + éjﬁ)\}f> =0, forall ¥ € C'((0,T) x Q x SM).
J=0

PrOOF. The first part of (2.14) was seen in (1.22). For ¢ € C2((0,T) x Q), and
Y e CF((0,T) x Q) real and equal to 1 on support(p), pu” satisfies

(2.15) %(wpa(‘g?n))—i (‘//] )+ZS’ Dpar o

J k=1

in L*(RV*1) strong,

since the commutator of S/ and M, is compact and applied to a weakly converg-
ing sequence gives a strongly converging sequence, and the terms which are linear
in u" (with no derivatives) converge to 0 in L>(R¥*!) strong (by the compact
embedding of H'! into L} ); finally, the term A” is linear in the derlvatlves

k=0,...,N, with coefficients containing one of the derlvatlves = ,N ,

and these terms will disappear later, by taking ¢ equal to 1 on the support of a
test function w € C2((0,T) x Q).
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Since by the definition (2.1) yp,yCy € X'(RY), j,k=1,...,N, one may
apply P, to (2.15) with a € C'(S"!), and use Corollary 1.1 of the second com-
mutation lemma (Lemma 1.3), and obtain

0 (. O(Papu") 0 0(Papu”) S pu”)
(2.16) Y (lﬁp Py ) —j;I 7% (lPCjk e ) + P, 120 S/ o
d(pu")

+PA"+ZLk
k=0

p I 0 in L*(RY"!) strong,

N
L, L* having symbol & {a,¥p} and D &fa,yCu}, k=1,...,N.
j=1

One then wants to apply Lemma 2.1 to v = P,pu”", and apply a test function
we C2((0,T) x Q). Choosing ¢ (hence ) equal to 1 on the support of w, the
term involving A" disappears and a few limits get simpler.

The term similar to £ (p%’ %+ Zj 1 (a; L‘z’/ ) applied to w gives at the
limit

ow ( A(Papu’) O(Paypu™)

(2.17) lim 2 3

n RxRY ot

+ Z C]k a(ou (Pa(pu”) ) dtdx

0x; Oxy

= _<66_11/ (Pﬂoo + ]Zk Cﬂﬁ“jk) ; aﬁ>
< (rgd+ > Cui) Wa >

The term similar to — Z/Nk (f (Ci ;\”l %4 C,k(%”k &) applied to w gives at
the limit

ow
2.18 li G
( ) 1£n RxRN Zaxj ( k

O(Papu™) O(Pypu™)
Oxy, ot

O(Papu™) O(Papu”)
e ot )dl dx

N N
= Z <6;V ]kQ,IukO,aa> = <7‘[, 2& Z (kzl Cjkfk) 2—;2616_1>.

k= 7 j=1

+ Cic



H-MEASURES AND PROPAGATION EFFECTS 717

o oC;
The term similar to % % % — Z/Nk | 0(—;‘ % fTL applied to w gives at the limit

: op O(Papu") O(Papu”)
(2.19) hgn RxRY (az ot ot

3 ZaCjk O(Pupu) O(Papu") ) dtd
ot 0x; 0xy,

Jrk

0 0C;
= <w<a—€ﬂoo - - 6tjkﬂ]k) _>
Js
= <7z, (%fé — Z 0Cik éjfk)waa>

Jik

The term similar to % applied to w gives at the limit

N (Pou™
(2.20) lim V—W(PZ ax, +ZLk - ) i af“)dzdx

n RXRJ’\/

— _<W<ZN()sjyjo),aa> < (fo{a Plitoo + Z ¢ita, Cf"}'u"o) >

J k=1

=4

_ _<n’ & ( Z s-’éj) wada + & (éé{a, P+ iv: &iéia, Cjk}) wd>.

J=0 Ji k=1

The term similar to /% applied to w gives at the limit

(2.21) <7r éo(Zsféj)waa—i— fo(fo{a P+ Z &iéida, C]k})wa>

k=1

One must then write that the sum of (2.17), (2.18), and (2.19) is equal to the
sum of (2.20) and (2.21), but a good way to gather the terms is to use the
function ® = waa, and to make the Poisson bracket {&,®, Q} appear (with
0= Pfé — ke C/kfjfk)

n (2.17), one notices that péo Z] e lqkéjfk = 2,060 since Q =0 on the

20 0D

support of 7, hence (2.17) is 7 applied to —&p 5= TR

(2.18) is w applied to —&y >, f? fg)

] J
(2.19) is & applied to Q(D which is only a part of the expected term == pQ P({%O ),
The sum of (2.20) and (2 21) has = applied to —&® > (s/&; + s/f]) and

then 7 applied to —&(&5{a, p}+Z]k 1 ¢iéida, Ci})wa and n applied to
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—éo(fo{a P+ Z/ =1 ¢¢ia, Ci})wa, and by developing the Poisson brackets
in these last two terms, one finds exactly the missing part of the Poisson bracket
{&y®, Q}, and the equation obtained is (2.14) with ¥ = &,®.

Since &, does not vanish on the support of 7 (due to the sign condition
on p), and since linear combinations (with complex coefficients) of terms of the
form waa can approach any smooth function in (x, &), one deduces that (2.14)
holds.

Equation (2.14) is a first order partial differential equation in (x,¢&) for =,
written in weak form so that the partial derivatives appear on the test function
W; the characteristic curves for this equation are given by

dy 00 dg 0
2.2 . —1,...
(2.22) a0 dr oy bt

which imply that Q is constant, and one only uses those curves corresponding
to Q = 0 since the support of z is included there. As for (2.10), it is useful to
forget the constraint ¢ € S” and use the quotient space of RY*!\{0} by the
equivalence relation that & is equivalent to #¢ for all » > 0: if one chooses two dif-
ferent initial data for (2.22), (x(z0), &(70)) and (x'(z0), &' (o)) with x’(z) = x(70)
but &'(z9) = A&(7p), then the solution has x’(7) = x(4r) and &' () = A&(Ar) for all
7, 1.. (2.22) induces an evolution equation for half-rays, and (2.22) is an equation
for bicharacteristic rays.

Since TQ is quadratic in &, the solution without the constraint ¢ € S¥ could
blow up, and it then seems better to impose the constraint and consider instead

dy 00 45 _ 00 _
N A U (Zé"axk) j=0,....N.

Since (2.23) for j =0 contains % = 2p&y, which does not vanish (because on
Q = 0 one has &; # 0), one may use ¢ for parametrizing the bicharacteristic rays:
for j=1,...,N one has % = —2(C<);, so that

(2.24) dx__Co
dt P%o

which may be interpreted as a local group velocity, that at which the energy
propagates for high frequencies corresponding to the Fourier direction (&, &).
The phase velocity is only defined for plane waves: if for a unit spatial vector
n € SV one considers functions of the form f((x,#) — vt), then the phase veloc-
ity (in the direction #) is v; if one considers highly oscillatory f then their Fourier
transform use points going to infinity in the direction of (—v,7,) in R¥*!, so that
(if the sequences converges weakly to 0 in L2 (RY +1) the H-measure will be

Dirac masses in the two directions +(&,, &) with v = ‘ g and 57 = él .
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Without the not so natural constraint (&, &) € SV, & has dimension T jl and
& has dimension L™, while % has dimension L27T 2, so that both % and % have
dimension LT e

As pointed out by Patrick Gérard (after [Ta90], where I only considered the
case of coefficients depending upon x), the usual hypothesis for ensuring unique-
ness of solutions of (2.22) or (2.23) is local Lipschitz continuity, which uses
second order derivatives of the coefficients (p and Cy, i,j =1,...,N), which I
assume bounded here, but the abstract framework shown in the Appendix only
requires second derivatives in .

If ve L>(RY) (or L>(RM*!) here), then Zv(—¢) = Zv(&), so that the H-
measure corresponding to a sequence of real functions charges as much a direction
—& than the direction &, and one cannot send a “beam of light” in a direction
without sending also a “beam of light” in the opposite direction: for headlights
of a car, the source of light is near the focus of a (piece of a) parabolic mirror,
and (in the approximation of geometrical optics) all the reflected rays are parallel
to the direction of its axis.

In order to show the analogue of Lemma 2.1 for linearized elasticity (N > 2),
one adds hypotheses (to those stated in (1.23) for Example 1.4), of symmetry,
positivity, and regularity. For symmetry, one adds

(225) Ci/?kl = C/(/;{/‘, i7j7k7l = 1, R 7]\7 in (O, T) X Q,

so that the acoustic tensor 4(e) defined in (1.25) is symmetric. For positivity, one
adds

N
(2.26) there exists o > 0, Z CijuMiiMy > o M|*
i,j,k,1=1

for all symmetric M, a.e. in (0,7) x Q,

which is the very strong ellipticity condition, more constraining than the strong
ellipticity condition

(2.27) there exists o > 0, A(e) > ale|*] for all e € RV, a.e. in (0,7) x Q,

(or strong Legendre—Hadamard condition) which is the condition (2.26) only
for matrices M =a® ¢ + e ® a. [I wrote that I do not know physical reasons
for imposing (2.26), but (2.27) expresses the positivity of speeds for plane waves.
Georges Verchery pointed out a derivation of (2.26) based on argument of
thermodynamics, but my point is that thermodynamics is a faulty theory,
which pretends to describe macroscopic properties without paying attention to
meso-structures, and I advocate developing a better physical theory, incorporat-
ing information about transport at mesoscopic levels, describing heat as a sum
of various modes propagating energy in various directions, using variants of
H-measures, as I am trying here.]
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LEMMA 2.2. Let p,Cipi,jk,l=1,...,N e C*((0,T) x Q) be real, with
p=a>0,and C satisfying the symmetries in (1.23), (2.25), and the very strong
ellipticity condition (2.26). Let vy,...,vox € C°(0, T; H'(Q))n C'(0, T; L*(Q))
satisfy

A ' N
(2.28) %(paa—“t) Z%(c,,k,g”k) fel((0,T)xQ), i=1,... N,
Ji k=1

then, in the sense of distributions in (0, T) x Q
0 /N v, 0T al v 0T
2.29 — —_— G
(2.29) a:(izlpaz a2 Gy 0x,>
B XN: i(cu o 3T @%)
L oy NPy o T M oy

op 0v; 0T A~ 0Cy4 Ovy 0T ot
*;EEE+ 2 u a—x,a—f;(f i)

ij k=1

Sketch of proof. Formally, (2.28) implies (2.29) by developing the derivatives
of products and regrouping the terms, but second order derivatives of vy, ...vy
appear in the computation, hence it is not a proof, and a proof relies on the
well-posedness of the linearized elasticity system with appropriate boundary
conditions.

Since the coefficients (p, Cy.u, i,/,k,l =1,...,N) are real, one may separate
the real part and the imaginary part of (2. 28) and at the end add the results
for the real part and for the imaginary part. Since (2.29) is local, one just
needs to show it for guvi,...puy with ¢ € CF((0,T) x Q), equal to 1 on an
open set, where (2.29) is then proved. If the support of ¢ is included in
(0, T) x e for an open set @, these functions solve the linearized elasticity system
with Dirichlet conditions on the boundary of @ (and 0 initial data), and (2.29)
is just the non-integrated form of the identity of energy. Like for the proof of
Lemma 2.1, one uses an abstract result shown in Appendix: first one proves
regularity in ¢, then one shows uniqueness of weak solutions, which implies that
vi e C[0,T); H) () n CY([0, T]; L*(w)), i =1,...,N, and finally one shows
that they satisfy an identity of energy.

In order to avoid technicalities, I now want to check what the method gives
concerning transport of H-measures for the homogeneous linearized elasticity
system with constant coefficients.

THEOREM 2.3. Let u € C°(0,T; HY(Q)) n C(0,T; L*(Q)), i=1,...,N be a
sequence of solutions of a linearized elasticity system

o [ oul N9 ouy , ,
(2.30) E(p az) /leﬁ_x]( ikl ’;):0 in(0,T)xQ,i=1,...,N,
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with constant p > 0, Cy.i1, 1, j, k,l = 1;..., N satisfying the symmetry conditions
(1.23) and (2.25), and the very strong ellipticity condition (2.26). Assume that

u — 0 in HL.((0,T) x Q) weak for i=1,...,N, and (using xo = t) Vi :iix
(for j=0,...,N) correspond to an H-measure u, satisfying (by Example 12)
Wij.im = SiCmma for i, =1,...,N, and j,m=0,...,N. By (1.26) the support of n

is included in the set where det(A(e) — Epl) =0, wilh & = (&, e) and the acoustic
tensor A(e) defined in (1.25), and & satisfies

(2.31) % ((pég > n,-,-) + (ij Aik(e)ﬂki))

_Zax (foaAég nki—;nik)zo inQ xSV,
j Y

PROOF. For¢pe C?((0,T) x Q), pu!,i=1,...,N solves

0 ¢ d(pul") Nop o(pu)
2.32 L (p Q2T < (c,
(232) ot (p ot ) z‘: 0x; <Cj’k1 ox; )
Joke =1 """
=g'+h" nRxRY i=1,...,N,

where

50 a N ul
(233) g = ¢ Ui Z 2@ ,,k, inRxRY,i=1,...,N,

jdi= 9N Xi

h? tends strongly to 0 in L?(R x RY).

By taking ¢ = 1 on the support of a test function w, the contributions of the g,
i=1,..., N to the equation for the H-measure disappear, since they contain the
derivatives of ¢, which are 0 on the support of w.

For a € C'(S"™!) one may apply P, to (2.32) and obtain

0 O(Pupul") N9 O(Papuy})
234) O (, 0\ apui)y p P
(234 5 (” ot ) ,-Zk Haxj<clf”" ox; ) agi + Lalt;

inRxRY, i=1,...,N,

avoiding Corollary 1.1 of the second commutation lemma (Lemma 1.3), since the
coefficients are constant.

One then applies Lemma 2.2 to v; = P,pu!’, i=1,...,N, and one uses a test
function w e C2((0,T) x Q), but choosing ¢ equal to 1 on the support of w, so
that the limits are
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. /0 O(Ppul") 0P pul N O(Pypuy) 0P pu!
2. lim({ — " .
(2.35) 1£n<az(zp o T2 G )

i=1 i,j k=1

N

N
ow
= _Z<:ui0;i07paa > Z <:uk1 ij» l] kiad 5Z>
j i,j, 1

k,l=

N N
= — Z nii,péoaa > Z <7Zkz; < Z Cy. klﬁ/f/) >

and

. 0 O(Papuy!) OP,pul OP.pu)! O(Pypul
(2.36) hm—<za(qj;k1 (ﬁco ) P | OEa (Pagp )>7W>

0x; ot

_ow

= E M0 + Hiosxas Cij ki@ ——

| 0x;
i), k,1=1 ]

N
= Z <7Z' + nlk?fO( Z Cl/ klflaa aW)>

i,k=1 J =1 Xj

and the other terms tend to 0. If one denotes ® = aaw, then one has proved

N N
(2.37) —<pé§(2nﬁ) + Z Ai(e nk,,a;)>

i=1 i,k=1

N
Tk + Tk aA,'k(e) a(D>
+ < ) 0 A /) = 07
, ;1 0c; Ox;
recalling that e is the spatial part of & (of components &;, ..., Ey). Using linear

combinations of these special ® permits to use any smooth function, hence the
partial differential equation (2.31).

One notices that (2.31) has no derivatives in & of the H-measure 7, since they
come from the variations in (¢, x) of the coefficients, which here are assumed
constant.

For the transport of the H-measure 7, one completes (2.31) with (1.24), i
fopn, p = Zk | Aie(€)mi, for i,r = 1,..., N, which implies that on the support of
7 an eigenvalue of A4(e) is éép, ie. (1.26).

The situation for linearized elasticity is then not exactly like that for a scalar
first order equation or a wave equation: after using the quadratic conservation
law behind the balance of (total) energy, one must still use the consequences of
the localization principle, and (1.24) contains more information than (1.26).
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Let us check what these equations say in the isotropic case, where u is the
shear modulus and A the Lamé parameter, and the very strong ellipticity condi-
tion corresponds to u > 0, 2u+ N4 > 0:

(238) gjj = 2,u8,'j + idiv(u)éij, i,j=1,...,N, so that
A(e) = ple]* T + (u+ A)e @ e, e € RV, with eigenvalues and eigenvectors
ip(e) = 2u+ )
Js(e) = u|e|2 , with eigenvector any f orthogonal to e, (multiplicity N-1),

e\z , with eigenvector proportional to e (multiplicity 1),

the index P recalling (longitudinal) P-waves or pressure waves (div(u) satisfies a
wave equation), and the index S recalling (transverse) S-waves or shear waves
(curl(u) satisfies a wave equation).

Since by (1.26) the support of 7 is included in the set where det(A(e) — &lpl)
= 0, it selects two disjoint closed sets of “S"”’ (because the coefficients do not
depend upon (¢, x)):

(2.39) SY, defined by &2p = (2u + 2)e|?,

S¢, defined by &jp = le|?,
and (1.24), which expresses the localization principle (Lemma 1.2), means that 7
decomposes into two parts living in disjoint open sets, 7’ in a neighbourhood of

(0,7) x Q x S5 with support in (0,7) x Q x S5, and #° in a neighbourhood
of (0,T) x Q x S¥ with support in (0, 7) x Q x S¥, having the form

(2.40) nji = ejekvP, j.k=1,...,N,v" a non-negative Radon measure
with support in (0, 7) x Q x S5,
n]i = ]\ljkvs, j.k=1,...,N,vS a non-negative Radon measure
with support in (0, 7) x Q x S¥,
and M Hermitian symmetric > 0, v5-integrable,

with (Me, e) = 0, vS-almost everywhere.

[Without & e SV, (2.39) is consistent with £ and ﬁ having dimension L>7 2, but

. . N . 2 2uta N 2 u N
imposing £ € S™ gives & = iy OO Sp and &) = iy On Sy, where one

adds quantities with different dimensions.|
By taking r = i in (1.24) and summing in i one obtains

N N
(2.41) " dp(e)m = p& > my i (0,7) x @ x SY,
i,k=1 i=1
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so that the 7 derivative term in (2.31) is 24, 0 (pfo E, | i), and by (2.40)

N 2 p N
(2.42) S = le| v onS(O, T) x Qx S} N
pa trace(M)v> on (0,7) x Q x Sg

The x; derlvatlve term in (2.31) is — 32/ (& "AP’Z( ) ”"’“") and since by (2.38)

Ag(e) = ple|*0n + (u+ A)eiex, and remembering ‘that e is a notation for the
spatial part of &, one has

aA,'k(e)
&

i,j,k=1,...,Nin (0,T) x Q x R¥*1,

(2.43)

= 2u&0i + (1 + A)(Erdyj + Eidk),

The sum to consider has a different form on S5 or S¥

N
R e
i,k=1 J

)

) 20u+ NéE el P on (0,T) x Q@ x SV,
—2uéoé; trace(M)vS  on (0,T) x Q x ST

since by (2.40) Me is 0 vS-almost everywhere on (0, T) x Q x S¥.
On (0,7) x Q x S5 one then has Zﬁl mi = |e|*vF satisfying a first order
- (2/t+))foe ie —(2u+4)
e T pd
pared to (2.24) is what one expects for tﬁ)e wave equation satisfied by div(u").
Similarly, on (0,7) x Q x SY one has Zl | i = trace(M)vS satisfying a first

order transport equation, in the direction 2/)““

transport equation, in the direction e, which when com-

e, 1.e. Ee which when compared

to (2.24) is what one expects for the wave equatlon satisfied by curl(u").

However, if on (0,7) x Q x S} the trace Z | mii permits to recover what
7 is there, one does not recover what 7 is on (0,7) x Q x SY using only
trace(M )v s,

There is then more work to do for the question of transport of H-measures in
linearized elasticity.

Another type of question which I hope to address in the future is to clarify
the question of initial data, or more generally of boundary effects, like reflection
effects for beams of light, but there are also effects at internal interfaces (between
different materials), like refraction effects for beams of light.

Using my multiscales H-measures, which I introduced in [Tal5], or new and
more efficient microlocal tools, I also hope to address in the future the question
of explaining the formal computations of Joe Keller’s Geometrical Theory of
Diffraction (GTD), and in particular an experimental observation which I learned
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from Michel Gondran, and an interesting 1818 episode which he mentions in his
book with his son [G-G14]: for a prize of Académie des Sciences in Paris, on the
subject of diffraction, Fresnel had imagined an hypothetic medium called @ther
(which was thought to exist until the 1887 experiment of Michelson and Morley),
but a member of the jury (Poisson) who disliked the wave nature of light (and
preferred Newton’s idea of a particle nature of light) found that Fresnel’s ideas
imply that there would be a bright spot in the middle of the shadow of a solid
opaque sphere illuminated by a point source, which he thought nonsense; how-
ever, the president of the jury (Arago) was a partisan of the wave nature of light,
and he ordered it to be checked in a careful experiment, and the spot is there,
which one now calls either the Poisson spot or the Arago spot.

Since Joe Keller had mentioned to me that his computations of light creeping
into the shadow remind of the tunneling effect in quantum mechanics, except that
light does not go through the obstacle, but around the obstacle, there is much
more than questions about light behind studying his formal computations.

3. APPENDIX

One considers a second order equation (not necessarily hyperbolic, since the x
variable is not explicit in this abstract framework) in the classical framework
with three separable Hilbert spaces (sometimes attributed to Gel’fand) which I
learned from Jacques-Louis Lions: V' (with norm || - ||) dense in H (with norm
| - |), identified to its dual H’, so that H is dense in V' (with dual norm || - ||,);
the equation is

d du . e du
(A1) 7 (ME) +Au= f in (0, T), with initial data u(0) = a, E(O) =b,

with

(A2) M e CY0,T); %(H,H)), dditl e L'(0,T; ¢(H,H)),

M*(t) = M(t) foralltel0,T],
and there exists y > 0 such that (Mh, k) > y|h|* for all h € H,
and

dA
e L0, T 2V, V),

(A3) A C0, T2V, V"),
A*(t) = A(t) forall e [0, T],
and there exists o > 0 such that {Av, vy, |, > oc|]v||2 forallve V.

Under the hypotheses (A2)—(A3) one first proves an existence result for weak
solutions:
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(A4) if fe LY (0,T;H), up € V, uy € H, there exists u € L*(0,T; V),

du
dt

weak solution of (Al) in the sense that

/OT (~(M% )% sy )

T
_ /O (f,e)pdt + (M(0)b, ¢)p(0),

foralle e V, p e C'([0, T]), with ¢(T) = 0,

€ L™(0,T; H), u(0) = a, which makes sense since u € Lip([0, T']; H),

so that M jb; is absolutely continuous in V', with initial data M (0)b.
This is proved using a method attributed to Galerkin, but also to Faedo (and to
Ritz), where for a “Galerkin basis” (linearly independent elements of 7~ which
span a dense subspace in ¥, hence of H) wy,... one looks for an approximate
solution u, € V,, = span{wy, ..., w,} satisfying

d d .
(AS) (— (M un) w,) + {Aug, wipy = (f,w;) in (0,T), j=1,...,n, with

dt dt
u,(0) = a, € V,, (converging to a in V),
dun

(O) = b, € V, (converging to b in H),

which is an ordinary differential equation whose global existence is proved by
finding bounds independent of ¢ and convergence (of a subsequence) in corre-
sponding weak or weak * topologies is proved by having bounds independent

of n: they follow from taking in (A5) the combination of wy,...,w, giving %,
since

d du, du,
(A6> E ((M dr ' dt ) <Aunaun>V V’)

o) - (e )+ (),

from which uniform bounds are found (using Gronwall’s inequality). Although
u, is bounded in C°([0, T]; V), the weak * limit u,, of a subsequence is found
in L*(0, T; V); although < d”" is bounded in C°([0, 7]; H), taking another weak *
limit gives d“‘ in L°°(O T, H ); also, it does not permit to pass to the limit in the

quadratic (or sesqui- hnear) terms in (A6). One then looks for a regularity result

In ¢: assuming bounds on g (and natural improvements on a and b), one looks

for a bound of £ ”” in H and ‘1”" in V, but
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2 2
(A7) %<(M%’dd;n) +<A%’d;fn>u V'>
(f’ dzun> B 3<dM d’u, @)

dr? dt dr? di?
2 2
_2(d M du, d un> _<dA du, dun>
v,V

d? dt’ dr? dr dtdr

5 <dA d 2un>
e " de [, )
and the last term is not under control since one has no bound for
one writes

dA  d*u, d dA  du,
(A%) 2< " >V, T (<wmw>% V,>
o (44 dun diin
dt dt’dt/y
) dzAu du,
e ™" dt [y
d’4

and everything gets under control, at the expense of assuming that <7 €
L0, T; ,S,P(V V")), besides assuming that a € D(A(0)) and b e V, but the

d2 e L'(0,T; #(H,H)) is also used.

This permits to find solutions more regular than C°([0, T]; V) n C'([0, T]; H).
For proving uniqueness of weak solutions, i.e. show that f =0, a=0, b=0
imply u = 0, one notices that (A4) in this case implies

I R

if y € C°([0,T); V)~ C'([0, T); H) with (T) = 0,

d ”” in V, so that

and taking for y a solution of

(A10) (M* d‘”) + A" = 0in (0, T), with final data y(T) = 0,

dt dt

dy
dr

one deduces that

(T)=ceV,

(A11) (u(T),M*(T)c) =0 forallce V,hence u(T)=0;

applying then a similar argument on [0, S] with S € (0, T) gives u = 0.
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If one approaches f e L'(0,T; H) strongly by a sequence f, € L'(0,T; H)
with % e L'(0,T;H), a e V strongly by a sequence a, € D(A(0)), and b € H
strongly by a sequence b, € V, the sequence of solutions u, is a Cauchy sequence
in C°([0,T); V)~ C'(]0, T); H), and since (A6) holds for this (new) definition
of u,, it is valid for the limit u, the unique weak solution corresponding to data
f,a,b.
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