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Abstract. — In [3] it is proved that, in some Dirichlet problems, the interplay between the coe‰-

cient of the lower order term and the right hand side yields a regularizing e¤ect on the solution: u
belongs to W

1; 2
0 ðWÞBLlðWÞ even with a right hand side f belonging only to L1ðWÞ. In this paper

we study the role of the interplay assumption under perturbation of the elliptic operator in the sense
of the G-convergence.
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Mathematics Subject Classification: 35J15, 35B27, 35B45

1. Introduction and statement of results

Let W be a bounded, open subset of RN , a, b in Rþ and M : W� R ! RN 2

, be a
bounded and measurable matrix-valued function such that

ajxj2 aMðxÞxx; jMðxÞja b; a:e: x a W; Ex a RN :ð1:1Þ

In this paper we study the behavior of the solutions u of the linear Dirichlet
problems

u a W 1;2
0 ðWÞBLlðWÞ :

Z
W

MðxÞ‘u‘jþ
Z
W

aðxÞuj ¼
Z
W

f ðxÞj;

Ej a W
1;2
0 ðWÞBLlðWÞ;

8><
>:ð1:2Þ

with respect to perturbations of the matrix MðxÞ (with respect to the G-
convergence) and with respect to perturbations of the nonnegative coe‰cient
aðxÞ and of the right hand side f ðxÞ (with respect to either weak L1ðWÞ con-
vergence or weak-� convergence as measures) if we assume that

there exists Q > 0 such that j f ðxÞjaQaðxÞ a L1ðWÞ:ð1:3Þ

The main result in [3] states that, under assumptions (1.1) and (1.3), there exists a
weak solution u of (1.2) such that

kukLlðWÞ aQ;ð1:4Þ



which also implies

a

Z
W

j‘uj2 aQ

Z
W

a:

Thus we have that the interplay between the coe‰cient of the lower order term
and the right hand side yields some regularizing e¤ects on the solution, since u
belongs to W

1;2
0 ðWÞBLlðWÞ even with a right hand side f belonging only to

L1ðWÞ; so that the lower order term is not so ‘‘lower’’ and the principal part is
not completely principal.

We recall the definition of G-convergence (used in (1.9)) for sequences of ellip-
tic and bounded matrices.

Definition 1.1. Let fMng be a sequence of matrices which satisfies

ajxj2 aMnðxÞxx; jMnðxÞja b; a:e: x a W; Ex a RN :ð1:5Þ

The sequence fMng is said to G-converge to a bounded, elliptic matrix M0ðxÞ if,
for every g in W�1;2ðWÞ, the sequence fwng of the unique solutions

wn a W
1;2
0 ðWÞ; �divðMnðxÞ‘wnÞ ¼ g in W;ð1:6Þ

satisfies

wn * w0 weakly in W
1;2
0 ðWÞ;

where w0 is the unique solution of

w0 a W
1;2
0 ðWÞ; �divðM0ðxÞ‘w0Þ ¼ g in W:ð1:7Þ

This notion of G-convergence was introduced in [17] by S. Spagnolo in the
symmetric case. He proved the following compactness theorem: any sequence
of symmetric matrices MnðxÞ which satisfies (1.5) admits a subsequence which
G-converges to a matrix M0ðxÞ of the same type. Then, in [12], E. De Giorgi
and S. Spagnolo proved that

lim
n!þl

Z
W

MnðxÞ‘wn‘wn ¼
Z
W

M0ðxÞ‘w0‘w0:

A relationship between G-convergence of di¤erential operators and G (weak-
W 1;2

0 ðWÞ)-convergence can be found in [6].
The study in the case of nonsymmetric matrices is due to Murat–Tartar [15]

involving the H-convergence, where the boundary condition on the Dirichlet
problem is removed. Recent contributions can be found in [1] where one finds
an alternative proof, using purely variational arguments, of the compactness
of H-convergence, originally proved by Murat and Tartar. In [2] the authors
pursue a variational characterization of the H-convergence in terms of the G-
convergence of some quadratic forms, including the case of matrices MnðxÞ that
are possibly nonsymmetric.

In this paper we study the behavior of the sequence fung of solutions of the
linear Dirichlet problems
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un a W
1;2
0 ðWÞBLlðWÞ :

Z
W

MnðxÞ‘un‘jþ
Z
W

anðxÞunj ¼
Z
W

fnðxÞj;

Ej a W
1;2
0 ðWÞBLlðWÞ;

8><
>:ð1:8Þ

under the assumptions

fMng G-converges to M0;ð1:9Þ
there exists Q > 0 such that j fnðxÞjaQanðxÞ; where anðxÞ a L1ðWÞ; En;ð1:10Þ

and the sequences

f fng and fang converge weakly in L1ðWÞ to f0 and a0; respectively:ð1:11Þ

We emphasize that the constants a and b in (1.1) and Q in (1.3) are independent
of n.

We prove the following result.

Theorem 1.2. Let fMng be a sequence of matrices satisfying (1.5), which G-
converges to a matrix M0. Let fang and f fng be sequences of functions satisfying
both (1.10) and (1.11), and let fung be the sequence of solutions of (1.8). Then fung
converges weakly in W 1;2

0 ðWÞ and weakly-� in LlðWÞ to the solution u0 of

u0 a W 1;2
0 ðWÞBLlðWÞ :

Z
W

M0ðxÞ‘u0‘jþ
Z
W

aðxÞu0j ¼
Z
W

f ðxÞj;

Ej a W
1;2
0 ðWÞBLlðWÞ:

8><
>:

Furthermore, we have

lim
n!þl

Z
W

MnðxÞ‘un‘un ¼
Z
W

M0ðxÞ‘u0‘u0:ð1:12Þ

Since problems (1.8) are stable with respect to both the G-convergence of
matrices and the weak L1 convergence of the data, one wonders whether this
stability is maintained under some weaker convergence of both sequences fang
and f fng. One could assume for example that both sequences are convergent
in the weak-� topology of measures. If this is the case, the main problem one is
faced with consists in passing to the limit in integrals of the form

Z
W

anðxÞunj;

where j is now a continuous function. An LlðWÞ estimate on un is no longer
enough in presence of weak-� convergence of fang in the sense of measures: one
needs, for example, uniform convergence. A possible approach to prove the
uniform convergence of fung would be based on some uniform Hölder continuity
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estimate on un, which would then allow to prove uniform convergence thanks to
the Ascoli–Arzelà theorem. Since for elliptic equations LlðWÞ results and Hölder
continuity results are proved under the same assumptions on the operator and on
the data (see [18] and [9]), one may wonder whether also in this case, with data in
L1ðWÞ, but solutions in LlðWÞ, some Hölder continuity would hold for solutions
of (1.2).

This is not the case: in Section 3 we will give an example in which the
functions a and f belong to LN=2ðWÞ, and problem (1.2) has a solution which
is continuous, and not Hölder continuous. Such a summability is in fact critical:
if a and f belong to LpðWÞ, with p > N

2 , then any solution v of

�Dvþ aðxÞv ¼ f ðxÞ;

with ab 0, is simultaneously bounded by Stampacchia’s results (see [18]) and
Hölder continuous by De Giorgi’s results (see [9]).

The example in Section 3 leaves little hope to prove a stability result in
the spirit of Theorem 1.2 using the uniform convergence of the sequence fung.
Actually, the latter property does not hold in general. Nevertheless, we prove
in Section 4 that if fang and f fng converge to two bounded Radon measures m
and n such that jnjaQm, then the sequence fung of solutions of (1.8) converges
to the solution u0 of

u0 a W
1;2
0 ðWÞBLlðWÞ :

Z
W

M0ðxÞ‘u0‘jþ
Z
W

u0j dmd ¼
Z
W

j dnd ;

Ej a W
1;2
0 ðWÞBLlðWÞ;

8><
>:

where md and nd are the absolutely continuous parts of m and n with respect to the
W 1;2 capacity. This theorem thus yields a result of nonexistence by approxima-
tion for (1.2) if m and n are singular with respect to capacity, as well as a thorough
stability result for solutions of (1.8).

2. Proof of Theorem 1.2

Before proving Theorem 1.2, we need some technical results; the first one is the
Dunford-Pettis theorem.

Theorem 2.1 (Dunford–Pettis). Suppose that the sequence fyng is bounded in
L1ðWÞ. Then the sequence is relatively compact in L1ðWÞ with respect to the weak
topology if and only if it is equi-integrable; that is if for every s > 0, there exists
ds > 0 such that, for any measurable subset A � W with measðAÞa ds, we have

sup
n AN

Z
A

jynja s:

We will use the following lemma.
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Lemma 2.2. Assume that the sequence fgng converges weakly in L1ðWÞ to g0 and
that the sequence fcng is uniformly bounded and converges almost everywhere to
c0. Then

lim
n!þl

Z
W

gncn ¼
Z
W

g0c0:ð2:1Þ

Proof. Fix s > 0, and let ds > 0 be such that, for any measurable subset A � W
with measðAÞa ds, the inequalitiesZ

A

jg0ja s; sup
n AN

Z
A

jgnja sð2:2Þ

hold; use the Dunford-Pettis theorem above and the absolute continuity of the
Lebesgue integral to find such a ds. We apply Egoro¤ ’s theorem in W (which
has finite measure, since it is bounded): with ds > 0, there exists a measurable
subset ~FF such that

measðWn ~FF Þa ds; and cn converges uniformly to c0 in ~FF :

Taking M > 0 such that kcnkLlðWÞ aM, we have

Z
W

gncn �
Z
W

g0c0

����
����a

Z
~FF

gncn �
Z

~FF

g0c0

����
����þM

�Z
Wn ~FF

jgnj þ
Z
Wn ~FF

jg0j
�
:

By uniform convergence of the sequence fgncng on ~FF we have

lim
n!þl

Z
~FF

gncn ¼
Z

~FF

g0c0:

From (2.2) with A ¼ Wn ~FF , we deduce that

lim sup
n!þl

Z
W

gncn �
Z
W

g0c0

����
����a 2Ms;

which implies (2.1) since s is arbitrary. r

The last tool we need is a consequence of G-convergence.

Lemma 2.3. Let fMng be a sequence of matrices which satisfies (1.5), and that G-

converges to some matrix M0. Then for every function f0 in W
1;2
0 ðWÞBLlðWÞ,

there exists a sequence ffng in W
1;2
0 ðWÞBLlðWÞ such that

f�divðM �
n ðxÞ‘fnÞg converges strongly to

�divðM �
0 ðxÞ‘f0Þ in W�1;2ðWÞ;

jfnja kf0kLlðWÞ;

ffng converges to f0 weakly in W
1;2
0 ðWÞ and almost everywhere:

8>>>><
>>>>:

ð2:3Þ
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Proof. Let zn be the solution of the Dirichlet problem

zn a W
1;2
0 ðWÞ : �divðM �

n ðxÞ‘znÞ ¼ �divðM �
0 ðxÞ‘f0Þ:

By Proposition 2 in [15], the sequence fM �
n g of adjoint matrices G-converges

to M �
0 . By definition of G-convergence, the sequence fzng converges weakly in

W
1;2
0 ðWÞ to f0. Define, for k > 0, the functions Tk : R ! R and Gk : R ! R by

TkðsÞ ¼
�k if sa�k;

s if �k < s < k;

k if sb k;

8<
: GkðsÞ ¼ s� TkðsÞ:

Let M ¼ kf0kLlðWÞ, and choose GMðznÞ as test function in the equation for zn.

We have, using (1.5), that

a

Z
W

j‘GMðznÞj2 a
Z
W

M �
0 ðxÞ‘f0‘GMðznÞ:

Therefore, since fGMðznÞg converges weakly in W
1;2
0 ðWÞ to GMðf0Þ ¼ 0, we have

lim sup
n!þl

a

Z
W

j‘GMðznÞj2 a lim
n!þl

Z
W

M �
0 ðxÞ‘f0‘GMðznÞ ¼ 0;

so that GMðznÞ strongly converges in W 1;2
0 ðWÞ to 0. Since TMðznÞ ¼ zn � GMðznÞ,

the function fn ¼ TMðznÞ satisfies (2.3). r

We can now prove Theorem 1.2.

Proof of Theorem 1.2. In [3] it is proved that, under the assumption (1.10),
there exists a weak solution un of (1.8) such that

kunkLlðWÞ aQ;ð2:4Þ

and

a

Z
W

j‘unj2 aQ

Z
W

an:ð2:5Þ

The sequence fung is bounded in W
1;2
0 ðWÞ; hence, there exists a subsequence (not

relabelled) of fung that converges weakly in W
1;2
0 ðWÞ and almost everywhere to

some function u� a W
1;2
0 ðWÞ. A consequence of (2.4) is that ku�kLlðWÞ aQ.

Now, fix f0 in W
1;2
0 ðWÞBLlðWÞ, and let ffng be the sequence given by

Lemma 2.3 that is contained in W
1;2
0 ðWÞBLlðWÞ. Using fn as test function in

(1.8), we get

Z
W

M �
n ðxÞ‘fn‘un þ

Z
W

anðxÞunfn ¼
Z
W

fnðxÞfn:

734 l. boccardo, l. orsina and a. c. ponce



Using the strong convergence in W �1;2ðWÞ of the sequence f�divðM �
n‘fnÞg and

the weak convergence of fung in W
1;2
0 ðWÞ, one has

lim
n!þl

Z
W

M �
n ðxÞ‘fn‘un ¼

Z
W

M �
0 ðxÞ‘f0‘u�:

On the other hand, Lemma 2.2 applied with gn ¼ an and cn ¼ unfn, and with
gn ¼ fn and cn ¼ fn, gives

lim
n!þl

Z
W

anðxÞunfn ¼
Z
W

a0ðxÞu�f0; lim
n!þl

Z
W

fnðxÞfn ¼
Z
W

f0ðxÞf0:ð2:6Þ

For later use in the proof we also apply Lemma 2.2, with gn ¼ an and cn ¼ u2n ,
and with gn ¼ fn and cn ¼ un, to get

lim
n!þl

Z
W

anðxÞu2n ¼
Z
W

a0ðxÞu2� ; lim
n!þl

Z
W

fnðxÞun ¼
Z
W

f0ðxÞu�:ð2:7Þ

It follows from (2.6) that

Z
W

M0ðxÞ‘u�‘f0 þ
Z
W

a0ðxÞu�f0 ¼
Z
W

f0ðxÞf0;

for every f0 in W
1;2
0 ðWÞBLlðWÞ. Thanks to the uniqueness of solutions for

(1.2), proved in [3], we thus have that u0 ¼ u�. Hence, the whole sequence fung
converges to u0, as desired.

The uniqueness of the limits in (2.7) also imply that those limits are also true
for the entire original sequence fung. Since we have

Z
W

MnðxÞ‘un‘un ¼
Z
W

fnðxÞun �
Z
W

anðxÞu2n ;

we then deduce that

lim
n!þl

Z
W

MnðxÞ‘un‘un ¼ lim
n!þl

Z
W

fnðxÞun � lim
n!þl

Z
W

anðxÞu2n

¼
Z
W

f0ðxÞu0 �
Z
W

a0ðxÞu20 ¼
Z
W

M0ðxÞ‘u0‘u0;

where in the last passage we have used that u0 can be chosen as test function
in (1.2) since it belongs to W 1;2

0 ðWÞBLlðWÞ. This concludes the proof of the
theorem. r

Remark 2.4. The convergence result of Theorem 1.2 is related to the G (weak-
W

1;2
0 ðWÞ)-convergence of the functionals
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JnðvÞ ¼
1

2

Z
W

MnðxÞ‘v‘vþ
Z
W

1

2
anðxÞv� fnðxÞ

� �
v

¼ 1

2

Z
W

MnðxÞ‘v‘vþ
Z
jvj>2Q

1

2
anðxÞv� fnðxÞ

� �
v

þ
Z
jvja2Q

1

2
anðxÞv� fnðxÞ

� �
v:

Note that the second integral is positive and it can be þl. Observe that if Mn is
symmetric, then the solution un of (1.8) is the minimum of Jn. The G-convergence
(see [10], [11]) is an important tool to prove the convergence of minima of integral
functionals. In Theorem 1.2 we proved directly such a convergence.

Remark 2.5. In the statement of Theorem 1.2, if instead of (1.9) we make the
stronger assumption that

the sequence fMnðxÞg converges in measure to M0ðxÞ;

it is possible to adapt the proof to establish that the sequence fung of solutions of
(1.8) converges strongly in W

1;2
0 ðWÞ to the solution u0 of the Dirichlet problem

(1.2); such a result is related with the Mosco-convergence (see [14]).

3. A counterexample to Hölder continuity

As stated in the Introduction, we now show that, even though solutions of (1.2)
are in LlðWÞ, they need not be Hölder continuous in W if a and f are not in
LpðWÞ, with p > N

2 .

Proposition 3.1. Let Nb 2 and W ¼ B1ð0Þ. There exist nonnegative functions
aðxÞ and f ðxÞ in L

N
2 ðWÞ satisfying (1.3) and such that problem (1.2) with MðxÞ ¼ I

has a continuous solution which is not Hölder continuous.

Proof. Let ug : B1ð0Þ ! R be defined by ugðxÞ ¼ 1� jxjg with 0 < ga 1. Since
Nb 2, we have ug a W

1;2
0 ðB1ð0ÞÞ and

k‘ugkL2ðB1ð0ÞÞ aC1;

for some constant C1 > 0 independent of g. Then, one has

�DugðxÞ ¼ gðg� 1Þjxjg�2 þ gðN � 1Þjxjg�2 ¼ gðN þ g� 2Þjxjg�2:

For any l > 1, the function

aðxÞ ¼ 1

jxj2ðlogð2=jxjÞÞl
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belongs to LN=2ðWÞ, but not to LpðWÞ for every p > N
2 . Then

�DugðxÞ þ aðxÞugðxÞ
aðxÞ ¼ gðN þ g� 2Þjxjgðlogð2=jxjÞl þ 1� jxjg ¼: ggðxÞ:

Observe that

0a ggðxÞa
C2

gl�1
;

so that g belongs to LlðWÞ, and kgkLlðWÞ aC2=g
l�1. Thus, if we define

fgðxÞ ¼ aðxÞggðxÞ;

then fg b 0 belongs to LN=2ðWÞ, and not better, since ggð0Þ ¼ 1, and g is contin-
uous. Furthermore,

0a fgðxÞ ¼ aðxÞggðxÞa
C2

gl�1
aðxÞ:ð3:1Þ

Hence, ug satisfies the equation

�Dug þ aðxÞug ¼ fgðxÞ;

where aðxÞ and fgðxÞ verify property (1.3).
We now choose g ¼ gk ¼ 1

k
, and define

uðxÞ ¼
Xþl

k¼1

1

2k
ugkðxÞ:

This series converges both uniformly and in W 1;2ðB1ð0ÞÞ. Therefore, u is a con-
tinuous function that solves

�Duþ aðxÞu ¼ f ;

where

f ðxÞ ¼
Xþl

k¼1

1

2k
fgkðxÞ:

We now remark that, by estimate (3.1), we have 0a f ðxÞaQaðxÞ, where

Q ¼ C2

Xþl

k¼1

kl�1

2k
:
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On the other hand, the estimate f b fg1=2 implies that f is not in LpðWÞ for every
p > N

2 . Finally, u is not Hölder continuous; indeed, if g > 0 is given and h is a
positive integer such that 1

h
¼ gh < g, then we have

juðxÞ � uð0Þj
jxjg ¼ 1� uðxÞ

jxjg ¼ 1

jxjg
Xþl

k¼1

1

2k
ð1� ugkðxÞÞ ¼

1

jxjg
Xþl

k¼1

jxjgk
2k

b
jxjgh�g

2h
;

and the latter quantity diverges as x tends to zero. r

4. Stability of solutions with measure data

The example in the previous section suggests that one should not expect to have
uniform convergence of sequences of solutions, which is a useful property to pass
to the limit in approximating problems when dealing with measure data. The lack
of uniform convergence indeed happens for a precise reason: if one approximates
two measures m and n, with 0a naQm for some Q > 0, in order to find a solu-
tion of

�divðMðxÞ‘uÞ þ mu ¼ n;

then the approximating solutions converge to the solution of another problem,
and some parts of the measures (the orthogonal parts with respect to W 1;2 ca-
pacity) are lost.

Before stating the precise result, we need some technical tools.

Lemma 4.1. Let hb 0 be a measure in MðWÞ; then there exist two unique posi-
tive measures hd and hs such that

i) h ¼ hd þ hs;
ii) hd is absolutely continuous with respect to the W 1;2 capacity;
iii) hs is orthogonal with respect to the W 1;2 capacity.

Furthermore, there exist a function f in L1ðWÞ and an element T in W�1;2ðWÞ such
that md ¼ f þ T, in the sense that

Z
W

j dhd ¼
Z
W

f jþ 3T ; j4; Ej a W
1;2
0 ðWÞBLlðWÞ:

Proof. We briefly outline the proof of the first part (see e.g. Proposition 14.12
in [16] for the complete argument). The measures hd and hs are obtained by con-
traction using a Borel set Zh of zero capacity that achieves the supremum

l ¼ supfhðEÞ; capðEÞ ¼ 0g:

More precisely, one takes

hd ¼ hbWnZh
and hs ¼ hbZh

:
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The measure hs is orthogonal with respect to capacity because capðZhÞ ¼ 0, and
hd is absolutely continuous by maximality of Zh. The uniqueness of the decompo-
sition follows from the observation that if h ¼ ~hhd þ ~hhs is another decomposition,
then the measure hd � ~hhd ¼ ~hhs � hs is simultaneously absolutely continuous and
orthogonal with respect to capacity. Hence, it must be identically zero.

The proof of the second part of the result can be found in [5]. r

Lemma 4.2. Let 0a naQm be two measures in MðWÞ. If n ¼ nd þ ns and
m ¼ md þ ms are the decompositions of n and m given by Lemma 4.1, then

0a nd aQmd and 0a nsaQms:

Proof. Let Zm � W be a Borel set of zero capacity such that md ¼ mbWnZm
and

ms ¼ mbZm
. By definition, the measure nbZm

is orthogonal with respect to capacity.
Since we have

0a nbWnZm
aQmbWnZm

¼ Qmd ;

it follows that the measure nbWnZm
is absolutely continuous with respect to ca-

pacity. By the identity n ¼ nbWnZm
þnbZm

and the uniqueness of such a decompo-
sition in terms of absolutely continuous and orthogonal parts, we deduce that
nd ¼ nbWnZm

and ns ¼ nbZm
, and the conclusion follows. r

We can now state and prove the main result of this section.

Theorem 4.3. Let mb 0 and nb 0 be two measures in MðWÞ such that

there exists Q > 0 such that 0a naQm:

Let frng be a sequence of positive d-approximating convolution kernels, let fMng
be a sequence of matrices which satisfies (1.5) and which G-converges to a matrix
M0, and let un in W

1;2
0 ðWÞBLlðWÞ be the solution of

�divðMnðxÞ‘unÞ þ ðrn � mÞun ¼ ðrn � nÞ:ð4:1Þ

Then fung converges weakly in W
1;2
0 ðWÞ and weakly-� in LlðWÞ to the solution u0

in W
1;2
0 ðWÞBLlðWÞ of

�divðM0ðxÞ‘u0Þ þ mdu0 ¼ nd ;ð4:2Þ

where md and nd are the absolutely continuous parts of the measures m and n with
respect to capacity.

We next explain some tools that are used in the proof of the theorem. The fol-
lowing result is a straightforward consequence of approximation by convolution.

Lemma 4.4. Let hb 0 be a measure in MðWÞ, decomposed as

h ¼ hd þ hs ¼ f þ T þ hs;
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following the notation of Lemma 4.1. If frng is a sequence of positive d-
approximating convolution kernels, then

a) rn � f ! f strongly in L1ðWÞ;
b) rn � T ! T strongly W �1;2ðWÞ;
c) rn � hs ! hs in the narrow topology of measures.

The approximation by convolution can be nicely paired with suitable con-
vergences (see also Lemma 2.2, where weaker assumptions are made on the
sequences involved).

Lemma 4.5. Let h be a positive measure in MðWÞ, decomposed as

h ¼ hd þ hs ¼ f þ T þ hs:

Let frng be a sequence of positive d-approximating convolution kernels, and let
fxng be a sequence of functions such that

a 0) xn * x weakly-� in LlðWÞ;
b 0) xn * x weakly in W

1;2
0 ðWÞ.

Then

lim
n!þl

Z
W

ðrn � hdÞxn ¼
Z
W

x dhd :

Proof. We have

Z
W

ðrn � hdÞxn ¼
Z
W

ðrn � f Þxn þ
Z
W

ðrn � TÞxn:

The result then follows from items a) and b) of Lemma 4.4, and assumptions a 0)
and b 0) on xn. r

The next result allows to build a family of cut-o¤ functions, starting from sets
of zero capacity.

Lemma 4.6. If hb 0 is a measure in MðWÞ, decomposed as h ¼ hd þ hs, then for
every s > 0 there exists a function cs in Cl

0 ðWÞ such that

i) 0acs a 1;
ii) cs * 0 weakly-� LlðWÞ as s tends to zero;

iii) cs ! 0 strongly in W
1;2
0 ðWÞ as s tends to zero;

iv) it holds

0a

Z
W

ð1� csÞ dhs a s:

For the proof of this lemma, we refer the reader to Lemma 5.1 in [8].
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Proof of Theorem 4.3. Since 0a rn � naQrn � m, the solution un is bounded
in LlðWÞ by Q, which implies that it is bounded in W

1;2
0 ðWÞ. Therefore, up to

subsequences, one has

un * u0 weakly-� in LlðWÞ; un * u0 weakly in W
1;2
0 ðWÞ; un ! u0 a:e:

Let f0 be a function in W
1;2
0 ðWÞBLlðWÞ, and let ffng be the sequence of

functions in W
1;2
0 ðWÞBLlðWÞ given by Lemma 2.3. Let cs be the function given

by Lemma 4.6 for ms and s > 0. Choosing fnð1� csÞ as test function in (4.1), we
have Z

W

M �
n ðxÞ‘fn‘½unð1� csÞ� þ

Z
W

ðrn � mdÞunfnð1� csÞð4:3Þ

�
Z
W

ðrn � ndÞfnð1� csÞ

¼ �
Z
W

ðrn � msÞunfnð1� csÞ þ
Z
W

ðrn � nsÞfnð1� csÞ:

We now have, by Lemma 2.3, and by Lemma 4.5 applied once with h ¼ m and
xn ¼ unfnð1� csÞ, and once with h ¼ n and xn ¼ fnð1� csÞ, thatZ

W

M �
n ðxÞ‘fn‘½unð1� csÞ� þ

Z
W

ðrn � mdÞunfnð1� csÞ �
Z
W

ðrn � ndÞfnð1� csÞ

!
Z
W

M �
0 ðxÞ‘f0‘½u0ð1� csÞ� þ

Z
W

u0f0ð1� csÞ dmd �
Z
W

f0ð1� csÞ dnd ;

as n ! þl. On the other hand, since M �
0‘f0 belongs to ðL2ðWÞÞN , and

u0ð1� csÞ converges strongly in W
1;2
0 ðWÞ to u0, we have

lim
s!0

Z
W

M �
0 ðxÞ‘f0‘½u0ð1� csÞ� ¼

Z
W

M �
0 ðxÞ‘f0‘u0 ¼

Z
W

M0ðxÞ‘u0‘f0:

Recall that cs converges to 0 both weakly-� in LlðWÞ and strongly in
W 1;2ðWÞ. Thus the same holds for u0f0cs and f0cs. Since by Lemma 4.1 the
measures md and nd can be written as a sum of elements in L1ðWÞ and in
W�1;2ðWÞ, we have

lim
s!0

Z
W

u0f0cs dmd ¼ 0 and lim
s!0

Z
W

f0cs dnd ¼ 0:

Therefore,Z
W

M �
0 ðxÞ‘f0‘½u0ð1� csÞ� þ

Z
W

u0f0ð1� csÞ dmd �
Z
W

f0ð1� csÞ dnd

!
Z
W

M0ðxÞ‘u0‘f0 þ
Z
W

u0f0 dmd �
Z
W

f0 dnd ;

as s ! 0.
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Observe now that by Lemma 4.2 we have 0a ns aQms, so that rn � ns a
Qrn � ms. Hence,

Z
W

ðrn � nsÞfnð1� csÞ
����

����a kfnkLlðWÞ

Z
W

ðrn � nsÞð1� csÞ

aQkf0kLlðWÞ

Z
W

ðrn � msÞð1� csÞ:

Similarly, since kunkLlðWÞ aQ, we have

Z
W

ðrn � nsÞunfnð1� csÞ
����

����aQkf0kLlðWÞ

Z
W

ðrn � msÞð1� csÞ:

Thus,

Z
W

ðrn � msÞunfnð1� csÞ
����

����þ
Z
W

ðrn � nsÞfnð1� csÞ
����

����a 2Qkf0kLlðWÞs;

which implies that

lim
s!0

lim
n!l

Z
W

ðrn � msÞunfnð1� csÞ
����

����þ
Z
W

ðrn � nsÞfnð1� csÞ
����

���� ¼ 0:

Thus letting first n ! þl and then s ! 0 in (4.3), we deduce that u0 in
W

1;2
0 ðWÞBLlðWÞ satisfies

Z
W

M0ðxÞ‘u0‘f0 þ
Z
W

u0f0 dmd �
Z
W

f0 dnd ¼ 0;

for every f0 in W 1;2
0 ðWÞBLlðWÞ; i.e., u0 is the solution of (4.2). By uniqueness

of the solution, the whole sequence fung converges to u0. r

Remark 4.7. The previous result states that if m ¼ ms is orthogonal to capacity
(so that n ¼ ns is orthogonal to capacity as well), then the sequence fung of solu-
tions of (4.1) tends to zero; i.e., there is no solution obtained by approximation
for the limit problem

�divðM0ðxÞ‘uÞ þ mu ¼ n:

This is mainly due to the assumption 0a naQm, which yields bounded solutions
in W 1;2

0 ðWÞ. Indeed, if such an assumption is missing (so that n is not related to
m), then a solution of

�divðM0ðxÞ‘uÞ þ mu ¼ n;

always exists, provided m is absolutely continuous with respect to capacity, and n
is any bounded measure; see [13] and [7]. In general, the solution in this case does
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not belong to W
1;2
0 ðWÞ, and can be found by duality techniques in the larger

space W 1;q
0 ðWÞ, for every q < N

N�1 .

Remark 4.8. As a consequence of Theorem 4.3, it is possible to give a negative
answer to a question raised by Piero Marcati to the first author in a personal
communication: if fhng is a sequence of positive functions converging to d0, the
Dirac mass concentrated at the origin, and if fung is the sequence of solutions of

un a W
1;2
0 ðWÞBLlðWÞ : �divðMðxÞ‘unÞ þ hnun ¼ hn;

then fung converges weakly in W
1;2
0 ðWÞ to zero. Indeed, in this case m ¼ n ¼ d0

are orthogonal with respect to capacity in dimension Nb 2. Thus, the sequence
fung converges to the unique solution u0 of �divðMðxÞ‘u0Þ ¼ 0, which is zero.

This fact is not surprising; indeed, if u is a (continuous) solution of

�divðMðxÞ‘uÞ þ uð0Þd0 ¼ d0;

then 0a ua 1. If uð0Þ < 1, then the function u is a solution of �divðMðxÞ‘uÞ ¼
ð1� uð0ÞÞd0. Solutions of this equation are unbounded at the origin in dimension
Nb 2, which yields a contradiction with the estimate 0a ua 1. On the other
hand, if uð0Þ ¼ 1, then �divðMðxÞ‘uÞ ¼ 0, hence uC 0, and we again reach a
contradiction.

If, instead, m and n are functions in Lebesgue spaces, the situation is rather
di¤erent. Indeed, if aðxÞ ¼ 1

jxj q , with 2a q < N, then uðxÞ ¼ 1� jxjg, with g > 0,
is a solution of

�Duþ aðxÞu ¼ 1

jxjq �
1

jxjq�g þ gðN þ g� 2Þ 1

jxj2�g
¼ f ðxÞ:

Both f and a do not belong to LN=2ðWÞ, and that j f ðxÞjaCgaðxÞ for some con-
stant Cg, so that assumption (1.3) is satisfied. In this case, uð0Þ ¼ 1 does not yield
any contradiction. Observe that in this case the function

f ðxÞ � aðxÞu ¼ gðN þ g� 2Þ 1

jxj2�g
;

belongs to LpðWÞ for some p > N
2 .

Remark 4.9. Since the equation in (4.2) is linear, the conclusion of Theorem
4.3 also holds if n is a signed measure such that jnjaQm for some Q > 0.

Remark 4.10. Theorem 4.3 also has a counterpart for sequences of functions
fang and f fng which are such that j fnjaQan, and satisfy the following assump-
tions: if m ¼ gþ T þ ms is decomposed as in Lemma 4.1, then an ¼ an;1 þ an;2 þ
an;3, with an;1 converging to g weakly in L1ðWÞ, an;2 converging to T strongly
in W �1;2ðWÞ, and an;3 b 0 converging to ms in the narrow topology of mea-
sures. Furthermore, if n ¼ f þ S þ ns is decomposed as in Lemma 4.1, then fn ¼
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fn;1 þ fn;2 þ fn;3, with fn;1 converging to f weakly in L1ðWÞ, fn;2 converging to S
strongly in W�1;2ðWÞ, and fn;3 b 0 converging to ns in the narrow topology of
measures.
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