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ABSTRACT. — In [3] it is proved that, in some Dirichlet problems, the interplay between the coeffi-
cient of the lower order term and the right hand side yields a regularizing effect on the solution: u
belongs to WOI'Z(Q) N L*(Q) even with a right hand side f belonging only to L'(Q). In this paper
we study the role of the interplay assumption under perturbation of the elliptic operator in the sense
of the G-convergence.

KEy worDs: Linear elliptic equations, G-convergence, Holder continuity, bounded solutions

MATHEMATICS SUBJECT CLASSIFICATION: 35J15, 35B27, 35B45

1. INTRODUCTION AND STATEMENT OF RESULTS

Let Q be a bounded, open subset of RY, o, fin R and M : Q x R — [RRNz, be a
bounded and measurable matrix-valued function such that

(1.1) aé)? < M(x)EE, |M(x)| <, ae xeQ,VeeRY.

In this paper we study the behavior of the solutions u of the linear Dirichlet
problems

ue Wy (Q) A L™ (Q) : / M (x)VuVe + / a(xX)up = / f(x)e,
(1.2) o} Q Q

Yo e Wy (Q) n L™ (Q),
with respect to perturbations of the matrix M(x) (with respect to the G-
convergence) and with respect to perturbations of the nonnegative coefficient

a(x) and of the right hand side f(x) (with respect to either weak L'(Q) con-
vergence or weak-+ convergence as measures) if we assume that

(1.3) there exists Q > 0 such that | /(x)| < Qa(x) € L'(Q).

The main result in [3] states that, under assumptions (1.1) and (1.3), there exists a
weak solution u of (1.2) such that

(1.4) [ull L2 o) < O
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oc/Q|Vu|2£Q/Qa.

Thus we have that the interplay between the coefficient of the lower order term
and the right hand side yields some regularizing effects on the solution, since u
belongs to Wol"z(Q) N L*(Q) even with a right hand side f belonging only to
L'(Q); so that the lower order term is not so “lower” and the principal part is
not completely principal.

We recall the definition of G-convergence (used in (1.9)) for sequences of ellip-
tic and bounded matrices.

which also implies

DErFINITION 1.1. Let {M,} be a sequence of matrices which satisfies
(1.5) AP < My(x)EE,  |M,(x)] < B, ae.xeQ, VéeRY.

The sequence {M,} is said to G-converge to a bounded, elliptic matrix M(x) if,
for every g in W~12(Q), the sequence {w,} of the unique solutions

(1.6) W € Wy P(Q), —div(M,(x)Vw,) =g inQ,
satisfies

w, — wo weakly in Wol’z(Q),
where wy is the unique solution of
(1.7) wo € Wy A(Q), —div(My(x)Vwp) =g inQ.

This notion of G-convergence was introduced in [17] by S. Spagnolo in the
symmetric case. He proved the following compactness theorem: any sequence
of symmetric matrices M, (x) which satisfies (1.5) admits a subsequence which
G-converges to a matrix My(x) of the same type. Then, in [12], E. De Giorgi
and S. Spagnolo proved that

lim M,,(x)anVw,,—/Mo(x)Vonwo.
Q

n—+0 Jo
A relationship between G-convergence of differential operators and I' (weak-
W01’2(Q))-convergence can be found in [6].

The study in the case of nonsymmetric matrices is due to Murat-Tartar [15]
involving the H-convergence, where the boundary condition on the Dirichlet
problem is removed. Recent contributions can be found in [1] where one finds
an alternative proof, using purely variational arguments, of the compactness
of H-convergence, originally proved by Murat and Tartar. In [2] the authors
pursue a variational characterization of the H-convergence in terms of the I'-
convergence of some quadratic forms, including the case of matrices M, (x) that
are possibly nonsymmetric.

In this paper we study the behavior of the sequence {u,} of solutions of the
linear Dirichlet problems
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u, € Wol’z(Q)mLOC(Q):/QMn(x)VunV(va/Qan(x)ungo:/Qf,,(x)go,

Vo € Wol’z(Q) N L7(Q),

(1.8)

under the assumptions

(1.9) {M,} G-converges to My,
(1.10)  there exists Q > 0 such that | f;(x)| < Qa,(x), where a,(x) € L'(Q), Vn;

and the sequences
(1.11)  {f,} and {a,} converge weakly in L'(Q) to f and ao, respectively.

We emphasize that the constants o and f in (1.1) and Q in (1.3) are independent
of n.
We prove the following result.

THEOREM 1.2. Let {M,} be a sequence of matrices satisfying (1.5), which G-
converges to a matrix M. Let {a,} and {f,} be sequences of functions satisfying
both (1.10) and (1.11), and let {u,} be the sequence of solutions of (1.8). Then {u,}
converges weakly in WO1 2(Q) and weakly- in L*(Q) to the solution uy of

Uy € W&’Z(Q)mL”(Q):/QMo(x)VuOVgoJr/Qa(x)uo(p:/Qf(x)go,
Vo € Wy (Q) N L7(Q).

Furthermore, we have

(1.12) lim M,,(x)VunVun:/Mo(x)Vrouo.
Q

n—+90 Jo

Since problems (1.8) are stable with respect to both the G-convergence of
matrices and the weak L' convergence of the data, one wonders whether this
stability is maintained under some weaker convergence of both sequences {a,}
and {f,}. One could assume for example that both sequences are convergent
in the weak-x topology of measures. If this is the case, the main problem one is
faced with consists in passing to the limit in integrals of the form

/Q  (X)ttnp,

where ¢ is now a continuous function. An L*(Q) estimate on u, is no longer
enough in presence of weak-+ convergence of {a,} in the sense of measures: one
needs, for example, uniform convergence. A possible approach to prove the
uniform convergence of {u,} would be based on some uniform Holder continuity
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estimate on u,, which would then allow to prove uniform convergence thanks to
the Ascoli—Arzela theorem. Since for elliptic equations L™ (Q) results and Holder
continuity results are proved under the same assumptions on the operator and on
the data (see [18] and [9]), one may wonder whether also in this case, with data in
L'(Q), but solutions in L*(Q), some Holder continuity would hold for solutions
of (1.2).

This is not the case: in Section 3 we will give an example in which the
functions @ and f belong to L"/?(Q), and problem (1.2) has a solution which
is continuous, and not Holder continuous. Such a summability is in fact critical:
if @ and f belong to L?(Q), with p > %, then any solution v of

—Av +a(x)v = f(x),

with a > 0, is simultaneously bounded by Stampacchia’s results (see [18]) and
Holder continuous by De Giorgi’s results (see [9]).

The example in Section 3 leaves little hope to prove a stability result in
the spirit of Theorem 1.2 using the uniform convergence of the sequence {u,}.
Actually, the latter property does not hold in general. Nevertheless, we prove
in Section 4 that if {a,} and {f,} converge to two bounded Radon measures u
and v such that |v| < Qu, then the sequence {u,} of solutions of (1.8) converges
to the solution u of

Uy € W(}’Z(Q)me(Q):/Mo(x)Vro(p+/uoqod/utd:/(pdvd,
Q Q Q
Vo e Wy Q) A L7(Q),

where 1, and v, are the absolutely continuous parts of ¢ and v with respect to the
W2 capacity. This theorem thus yields a result of nonexistence by approxima-
tion for (1.2) if x and v are singular with respect to capacity, as well as a thorough
stability result for solutions of (1.8).

2. PROOF OF THEOREM 1.2

Before proving Theorem 1.2, we need some technical results; the first one is the
Dunford-Pettis theorem.

THEOREM 2.1 (Dunford—Pettis). Suppose that the sequence {y,} is bounded in
LY (Q). Then the sequence is relatively compact in L' (Q) with respect to the weak

topology if and only if it is equi-integrable; that is if for every o > 0, there exists
0y > 0 such that, for any measurable subset A C Q with meas(A) < J,, we have

sup/|yn| <o
neN JA

We will use the following lemma.
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LEMMA 2.2. Assume that the sequence {g,} converges weakly in L'(Q) to go and
that the sequence {\,} is uniformly bounded and converges almost everywhere to
Vo Then

2.1) lim Q%%zlywm

n—-+0o0

Proor. Fix o > 0, and let 6, > 0 be such that, for any measurable subset 4 C Q
with meas(A4) < J,, the inequalities

(2.2) / 90| < @, sup/ lgn| <@
A

hold; use the Dunford-Pettis theorem above and the absolute continuity of the
Lebesgue integral to find such a d,. We apply Egoroff’s theorem in Q (which
has finite measure, since it is bounded): with d, > 0, there exists a measurable
subset F such that

meas(Q\F) <J,, and 1, converges uniformly to i, in F.

Taking M > 0 such that ||, [|;«q) < M, we have

‘/ant//n—/ggo% < -‘FM(/Q\Flgn"f’/Q\ﬁlg()l).

By uniform convergence of the sequence {g,/,} on F we have

~glllp;'z_/~g0'7b()
F F

n—-+o0

Hmﬂw%Z/m%
F F

From (2.2) with 4 = Q\F, we deduce that

/anlﬁ,,—/ggolﬁo

which implies (2.1) since o is arbitrary. O

lim sup <2Mao,

n—+oo

The last tool we need is a consequence of G-convergence.

LEMMA 2.3. Let {M,} be a sequence of matrices which satisfies ( .5), and that G-
converges to some matrix Moy. Then for every function ¢y in W 12(Q) N L*(Q),
there exists a sequence {¢,} in W1 2(Q) N L*(Q) such that

{—div(M, (x)V¢,)} converges strongly to
—div(M; (0)Vdy) in W2(Q),
Bl < lldoll L= 0

{¢,} converges to ¢, weakly in WO1 2(Q) and almost everywhere.

(2.3)
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PROOE. Let z, be the solution of the Dirichlet problem
z, € Wy Q) : —div(M(x)Vz,) = —div(M (x)Vey).

By Proposition 2 in [15], the sequence {M, } of adjoint matrices G-converges
to M. By definition of G-convergence, the sequence {z,} converges weakly in
Wol’z(Q) to ¢,. Define, for k > 0, the functions 7 : R — R and Gx : R — R by

—k if s < —k,
Tr(s)=¢s if —k<s<k, Gi(s)=s—Ti(s).
k if s>k,

Let M = ||§y|| 1.+ (q), and choose Gy(z,) as test function in the equation for z,.
We have, using (1.5), that

o /Q IVGa(z)|* < /Q Mg (x)VoVGrr(z).

Therefore, since { Gy (z,)} converges weakly in Wol’z(Q) to Gy (¢y) = 0, we have

lim sup oc/ VG (z))* < lim /MJ(x)VgSOVGM(zn) =0,
Q o)

n—+o0 n—+0

so that Gy(z,) strongly converges in W()I’Z(Q) to 0. Since Ty (z,) = z, — Gu(za),
the function ¢, = Ty, (z,) satisfies (2.3). O

We can now prove Theorem 1.2.

PROOF OF THEOREM 1.2. In [3] it is proved that, under the assumption (1.10),
there exists a weak solution u, of (1.8) such that

(2.4) [tnll L= () < O

and

(2.5) oc/QVu,,|2 < Q/Qa,,.

The sequence {u,} is bounded in W, *(Q); hence, there exists a subsequence (not
relabelled) of {u,} that converges weakly in Wol’z(Q) and almost everywhere to
some function u, € WOI’Z(Q). A consequence of (2.4) is that [[u.[|;-q) < O.

Now, fix ¢, in W, *(Q) nL*(Q), and let {¢,} be the sequence given by
Lemma 2.3 that is contained in W, *(Q) n L (Q). Using ¢, as test function in
(1.8), we get

/Q M (x)Ve,Vu, + /Q an(X)ung, = /Q n(X) .
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Using the strong convergence in W L 2(Q) of the sequence {—div(M,'V¢,)} and
the weak convergence of {u,} in W 2(Q), one has

n—+oo

lim / M (x)V$,Vu, = / M; (x)VpyVu,.
Q

On the other hand, Lemma 2.2 applied with g, = @, and V,, = u,¢,, and with

n—-+oo n—+00

26 Jtim [ s, = [ @@udo tm [ 06, = [ £

2
no

For later use in the proof we also apply Lemma 2.2, with g, = a, and {, = u
and with g, = f, and ¥, = u,, to get

(2.7) lim an(x)u,%:/ao s, lim /fn X)u, = /fo
n—+90 Jo Q n—-+oo

It follows from (2.6) that

/gzMo(x)Vu*V¢0+/an(x)u*¢0=/Qf()(x)(bm

for every ¢, in WOI’2 (Q) N L*(Q). Thanks to the uniqueness of solutions for
(1.2), proved in [3], we thus have that uy = u.. Hence, the whole sequence {u,}
converges to ug, as desired.

The uniqueness of the limits in (2.7) also imply that those limits are also true
for the entire original sequence {u,}. Since we have

/M )WV, Vi, = /f,nc)un—/ an(X)ty,

we then deduce that

lim M, (x)Vu,Vu, = lim / Su(X)u, — lim an (x)u?

n—+9 Jo n—+9 Jo n—+90 Jo

:/Qfo(x)uo—/gao(x)ug:/QMo(X)VHOVHO;

where in the last passage we have used that #y can be chosen as test function
in (1.2) since it belongs to W 2(Q) N L*(Q). This concludes the proof of the
theorem. O

REMARK 2.4. The convergence result of Theorem 1.2 is related to the I' (weak-
WO] 2(Q))-convergence of the functionals
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Ju(v) :%/QMn(x)VvVv—i—/QBan(x)v—fn(x)}v
:%/QM,,(x)VvVUJr/DZQ Ean(x)v—fn(x)}v

+/U|52Q Ea,,(x)v —f,,(x)} v.

Note that the second integral is positive and it can be +o0. Observe that if M, is
symmetric, then the solution u, of (1.8) is the minimum of J,,. The I'-convergence
(see [10], [11]) is an important tool to prove the convergence of minima of integral
functionals. In Theorem 1.2 we proved directly such a convergence.

REMARK 2.5. In the statement of Theorem 1.2, if instead of (1.9) we make the
stronger assumption that

the sequence { M, (x)} converges in measure to My(x),

it is possible to adapt the proof to establish that the sequence {u, } of solutions of
(1.8) converges strongly in W *(Q) to the solution uy of the Dirichlet problem
(1.2); such a result is related w1th the Mosco-convergence (see [14]).

3. A COUNTEREXAMPLE TO HOLDER CONTINUITY

As stated in the Introduction, we now show that, even though solutions of (1.2)
are in L™ (Q), they need not be Holder continuous in Q if ¢ and f are not in
L?(Q), with p > .

PROPOSITION 3.1. Let N > 2 and Q = B;(0). There exist nonnegative functions
a(x) and f(x) in LT(Q) satisfying (1.3) and such that problem (1.2) with M (x) = I
has a continuous solution which is not Holder continuous.

PROOF. Let u, : Bi(0) - R be defined by u,(x) =1 — |x|” with 0 < y < 1. Since
N =2, we have u, € W, *(B(0)) and

IVityll 28, 0)) < Cis
for some constant C; > 0 independent of y. Then, one has
—Auy(x) = (p = D"+ (N = DJx"™ = (N + = 2)|x".
For any 4 > 1, the function

1
|x*(log(2/|x]))*
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belongs to LY/2(Q), but not to L?(Q) for every p > 4. Then

_Auﬂthgtwuﬂx)—>«N-%y—szvaog2AxDi+l—wa-fgﬂxl

Observe that

so that g belongs to L*(Q), and ||g[[;»(q) < C>/y*~'. Thus, if we define

1 (x) = a(x)g,(x),

then f, > 0 belongs to LN/2(Q), and not better, since g,(0) =1, and ¢ is contin-
uous. Furthermore,

(3.1) 0 < f,(x) = a(x)g,(x) < %a(x).

Hence, u, satisfies the equation
—Au, + a(x)u, = f,(x),

where a(x) and f,(x) verify property (1.3).
We now choose y = y; = 1, and define

+o0 1
u(x) = 5 ().
k=1

This series converges both uniformly and in W'2(B;(0)). Therefore, u is a con-
tinuous function that solves

—Au+a(x)u=f,

where

F0) = g fulx).
k=1

We now remark that, by estimate (3.1), we have 0 < f(x) < Qa(x), where

+00 k/lfl

0=C) S
k=1
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On the other hand, the estimate /' > f, /2 implies that f"is not in L?(Q) for every
p > 4. Finally, u is not Holder continuous; indeed, if y > 0 is given and 4 is a
positive integer such that % =, <y, then we have

—u(0 1 — 1 &1 1 X2 x| Y
) — O _1=u) | LR LSRN
|x] |x] X" =2 X" &= 2 2
and the latter quantity diverges as x tends to zero. O

4. STABILITY OF SOLUTIONS WITH MEASURE DATA

The example in the previous section suggests that one should not expect to have
uniform convergence of sequences of solutions, which is a useful property to pass
to the limit in approximating problems when dealing with measure data. The lack
of uniform convergence indeed happens for a precise reason: if one approximates
two measures x and v, with 0 < v < Qu for some Q > 0, in order to find a solu-
tion of

—div(M (x)Vu) + i = v,

then the approximating solutions converge to the solution of another problem,
and some parts of the measures (the orthogonal parts with respect to W!? ca-
pacity) are lost.

Before stating the precise result, we need some technical tools.

LemMa 4.1, Let = 0 be a measure in #(Q); then there exist two unique posi-
tive measures 1, and 1, such that

i) n=ng+ny
ii) n, is absolutely continuous with respect to the W2 capacity;
iii) #, is orthogonal with respect to the W2 capacity.

Furthermore, there exist a function f in L'(Q) and an element T in W=2(Q) such
that p; = f + T, in the sense that

/(/)dnd=/f¢+<T,co>, Vp e Wy ?(Q) N L™ (Q).
Q Q

ProOOF. We briefly outline the proof of the first part (see e.g. Proposition 14.12
in [16] for the complete argument). The measures #, and 7, are obtained by con-
traction using a Borel set Z, of zero capacity that achieves the supremum

4= sup{n(E),cap(E) = 0}.

More precisely, one takes

na="Mlaz and 7,=1lg.
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The measure 7, is orthogonal with respect to capacity because cap(Z,) = 0, and
114 1s absolutely continuous by maximality of Z,. The uniqueness of the decornpo—
sition follows from the observation that if # = ﬁd + 7], 1s another decomposition,
then the measure #,; — 77, = 7, — 1, is simultaneously absolutely continuous and
orthogonal with respect to capacity. Hence, it must be identically zero.

The proof of the second part of the result can be found in [5]. O

LEMMA 4.2, Let 0 <v < Qu be two measures in M (Q). If v=vs+v, and
W=y + u, are the decompositions of v and u given by Lemma 4.1, then

0<vy<Qu; and 0<v,<Qu,.

ProoF. Let Z, C Q be a Borel set of zero capacity such that p; = ﬂLQ\z and
= | z,- By definition, the measure v| Z is orthogonal with respect to capacity.
Since we have

0 <vlgz, < Qulaz= Qui

it follows that the measure vLQ\Z is absolutely continuous with respect to ca-
pacity. By the identity v = vLQ Z +vLZ and the uniqueness of such a decompo-
sition in terms of absolutely contlnuous and orthogonal parts, we deduce that
va = V|q\z, and vy =v[, , and the conclusion follows. O

We can now state and prove the main result of this section.
THEOREM 4.3. Let u > 0 and v > 0 be two measures in 4 () such that
there exists Q > 0 such that 0 < v < Qu.

Let {p,} be a sequence of positive d-approximating convolution kernels, let { M, }
be a sequence of matrzces which satisfies (1.5) and which G-converges to a matrix
My, and let u, in W, *(Q) A L™ (Q) be the solution of

(4.1) —div(M,(x)Vun) + (p, * witn = (p, * V).

Then {u,} converges weakly in WOI’Z(Q) and weakly-x in L* (Q) to the solution u
in Wy (Q) A L™ (Q) of

(4.2) —div(My(x)Vuy) + pyuo = v,

where p; and vy are the absolutely continuous parts of the measures p and v with
respect to capacity.

We next explain some tools that are used in the proof of the theorem. The fol-
lowing result is a straightforward consequence of approximation by convolution.

LEMMA 4.4. Let n > 0 be a measure in 4 (Q), decomposed as

n=ng+n,=f+T+n,
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following the notation of Lemma 4.1. If {p,} is a sequence of positive J-
approximating convolution kernels, then

a) p, *f — f strongly in L'(Q);
b) p,* T — T strongly W=12(Q);
c) p, *n, — n, in the narrow topology of measures.

The approximation by convolution can be nicely paired with suitable con-
vergences (see also Lemma 2.2, where weaker assumptions are made on the
sequences involved).

LEMMA 4.5. Let n be a positive measure in M (Q), decomposed as

n=mn,+n,=f+T+n,

Let {p,} be a sequence of positive d-approximating convolution kernels, and let
{&,} be a sequence of functions such that

a') &, — & weakly-x in L™ (Q);
b') &, — & weakly in W, (Q).

Then

lim [ (p, *n,4)¢0 = / Edny.
Q Q

n—+00

PrROOF. We have

/Q(pn #1)Ep = /Q(pn  f)En + / (P T)Sp-

Q

The result then follows from items a) and b) of Lemma 4.4, and assumptions a’)
and b’) on ¢&,. O

The next result allows to build a family of cut-off functions, starting from sets
of zero capacity.

LEmMMA 4.6. If 5 = 0 is a measure in M4 (Q), decomposed as 1 = n, + 1, then for
every o > 0 there exists a function , in C;°(Q) such that

)0<y,<1;

i) Y, — 0 weakly-x L*(Q) as o tends to zero,

)
)
i)
)

—

W, — 0 strongly in Wol‘z(Q) as o tends to zero;
it holds

il
v

0< /(1-@,)%30.
Q

For the proof of this lemma, we refer the reader to Lemma 5.1 in [8].
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PrROOF OF THEOREM 4.3. Since 0 < Pu¥ V< Op,, * 1, the solutlon uy 1s bounded
in L*(Q) by Q, which implies that it is bounded in W 2(Q). Therefore, up to
subsequences, one has

u, — ug weakly-+ in L*(Q), u, — up weakly in Wol’z(Q), U, — up a.e.
Let ¢, be a functlon in Wy2(Q)nL*(Q), and let {¢,} be the sequence of
functions in W 2(Q) AL~ (Q) given by Lemma 2.3. Let i/, be the function given

by Lemma 4.6 for 1, and ¢ > 0. Choosing ¢, (1 — ) as test function in (4.1), we
have

@3 [ M)+ [ (1= b)
- /(pll * vd)¢n(1 - l//(T)
Q
- - / (pn * ﬂs)un¢n<1 - wc;") + / (pn * vS)¢n(1 - '700)'
Q Q

We now have, by Lemma 2.3, and by Lemma 4.5 applied once with # = u and
&, = upp, (1 — ), and once with 7 = vand &, = ¢,(1 — ), that

/ (X V¢ V ui’l( - WU)] + /Q(pn *:ud)un¢n(1 - l//zr) _/(pn * vd)¢n<1 - lpa)

Q
= / M (x)VoViuo(1 — )] + / wodo(1 — ) dg — / Bo(1 — v,) dva,

as n— +oo. On the other hand, since M;V¢, belongs to (L2(Q))", and
up(1 — ) converges strongly in W 12(Q) to up, we have

iy | 345 (V8 Vi1~ )] = [ MG VYo = [ Mol VsV,

a—0 Q

Recall that y, converges to 0 both weakly-+ in L*(Q) and strongly in
W12(Q). Thus the same holds for uodyy, and ¢,. Since by Lemma 4.1 the
measures u; and v; can be written as a sum of elements in Ll(Q) and in
Ww=12(Q), we have

lim/uogéol,bad,udzo and lim [ ¢y, dvy =0.
a—0 Jo a—0 Jo

Therefore,
[ M50V Vit = )]+ [ (1 = g~ [ o1 = ) dv

—>/MO(X)VMOV¢0+/MO¢odﬂd—/¢odvd,
Q Q Q

as o — 0.
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Observe now that by Lemma 4.2 we have 0 < v, < Qu,, so that p, * v, <
Opy, * ;- Hence,

L oasvanta =vo)

< allec /Q (Pux )1 — )

< Olldoll- o /Q (P 1) (1= ,).

Similarly, since ||u|;q) < O, we have

\ [ ows w1 = )| < Qolloiay [ (e )1 =),
Q Q

Thus,

/ (P * 1) tinby(1 — )
Q

+'/Q(pn*vs)¢n(1 ~¥,)

< 20| ¢oll L ()0

which implies that

lim lim =0.
o—0 n—owo

/ (P 1)ty (1 — )
Q

N ‘/Q(pn £ 1)d,(1 =)

Thus letting first » — +oc0 and then ¢ — 0 in (4.3), we deduce that uy in
W, 2(Q) n L™ (Q) satisfies

/ Mo(x) ViV + / uodo Aty — / dodva =0,
Q Q Q

for every ¢, in Wol’z(Q) N L*(Q); i.e., up is the solution of (4.2). By uniqueness
of the solution, the whole sequence {u,} converges to uy. O

REMARK 4.7. The previous result states that if x = g, is orthogonal to capacity
(so that v = vy is orthogonal to capacity as well), then the sequence {u,} of solu-
tions of (4.1) tends to zero; i.e., there is no solution obtained by approximation
for the limit problem

—div(My(x)Vu) + pu = v.

This is mainly due to the assumption 0 < v < Qu, which yields bounded solutions
in WOI"2 (Q). Indeed, if such an assumption is missing (so that v is not related to
1), then a solution of

—div(Mo(x)Vu) + pu = v,

always exists, provided u is absolutely continuous with respect to capacity, and v
is any bounded measure; see [13] and [7]. In general, the solution in this case does
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not belong to WOI’Z(Q), and can be found by duality techniques in the larger
space W, 4(Q), for every ¢ < ;.

REMARK 4.8. As a consequence of Theorem 4.3, it is possible to give a negative
answer to a question raised by Piero Marcati to the first author in a personal
communication: if {/,} is a sequence of positive functions converging to dy, the
Dirac mass concentrated at the origin, and if {u,} is the sequence of solutions of

Uy, € Wy (Q) A L*(Q) : —div(M (x)Vu,) + hytt, = hy,

then {u,} converges weakly in Wol’z(Q) to zero. Indeed, in this case = v =4y

are orthogonal with respect to capacity in dimension N > 2. Thus, the sequence

{u,} converges to the unique solution uy of —div(M (x)Vuy) = 0, which is zero.
This fact is not surprising; indeed, if u is a (continuous) solution of

—div(M (x)Vu) + u(0)dy = o,

then 0 < u < 1. If u(0) < 1, then the function u is a solution of —div(M (x)Vu) =
(1 —u(0))dy. Solutions of this equation are unbounded at the origin in dimension
N > 2, which yields a contradiction with the estimate 0 < u < 1. On the other
hand, if u(0) = 1, then —div(M(x)Vu) = 0, hence u = 0, and we again reach a
contradiction.

If, instead, x and v are functions in Lebesgue spaces, the situation is rather
different. Indeed, if a(x) = ﬁ, with 2 < ¢ < N, then u(x) = 1 — |x|”, with y > 0,
is a solution of )

1 1
—Au+a(x)u:W—W+V(N+y—2)

—— = f(x).
=W

Both f and a do not belong to LV/2(Q), and that | f(x)| < C,a(x) for some con-
stant C,, so that assumption (1.3) is satisfied. In this case, u(0) = 1 does not yield
any contradiction. Observe that in this case the function

109 —alou = 1N +7 =2

belongs to L?(Q) for some p > 4.

REMARK 4.9. Since the equation in (4.2) is linear, the conclusion of Theorem
4.3 also holds if v is a signed measure such that |v| < Qu for some Q > 0.

REMARK 4.10. Theorem 4.3 also has a counterpart for sequences of functions
{a,} and {f,} which are such that | f,| < Qa,, and satisfy the following assump-
tions: if u = g + T + p, is decomposed as in Lemma 4.1, then a, = a, 1 + a, > +
dy 3, with a, | converging to g weakly in L'(Q), a,, converging to T strongly
in W=12(Q), and a, 3 >0 converging to y, in the narrow topology of mea-
sures. Furthermore, if v = f 4+ S + v, is decomposed as in Lemma 4.1, then f, =
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Ju1 + fu2 + fus, with £, 1 converging to f weakly in L'(Q), f, » converging to S
strongly in W~12(Q), and f, 3 > 0 converging to v, in the narrow topology of
measures.
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