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Abstract. — We investigate the regularity of functions t of one variable such that Pðt; tðtÞÞ ¼ 0,

where Pðt; xÞ is a given polynomial of degree m in x whose coe‰cients are functions of class
Cm2 ! of one real parameter. We show that if a root is chosen with a continuous dependence on the

parameter, this function is indeed absolutely continuous. From this and a theorem of Kato one
deduces that such polynomials have complete systems of roots that are absolutely continuous

functions.
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Introduction

The problem of finding a parametrization of the roots of a polynomial whose
coe‰cients depend on a (real) parameter t has a long story. In the case of sym-
metric operators it has been analyzed by Rellich [10, Par. I.5]; in the general case
of continuous dependence on the parameter the problem was solved by Kato
[5, Theorems II.5.1, II.5.2]:

Theorem 0.1 (Kato). If Pðt; xÞ is a polynomial of degree m in one indeterminate,
whose coe‰cients depend continuously on the (real or complex) parameter t, the
unordered m-ple of roots depends continuously on t (in the metric topology of
unordered m-ples, i.e. the minimum distance of all their possible orderings). If the
roots are always real, or the parameter varies on a real interval, it is also possible
to enumerate the roots for every value of t in a continuous way by means of m
continuous functions siðtÞ ði ¼ 1; . . . ;mÞ.

This theorem cannot be improved in the following sense: it is easy to see that a
continuous enumeration of the roots is not possible in the case of the parameter
varying in a complex domain (e.g., Pðx; tÞ ¼ x2 � t). It is also easy to define poly-
nomials that do not admit Lipschitz continuous enumerations of their roots,
even in the case of coe‰cients depending smoothly (i.e., of class Cl) on the
parameters. It is possible, though, to have Lipschitz continuity of the square



root of a non-negative function of class C2, as proved by Glaeser [4]; and to have
a
m
-Hölder continuity if the coe‰cients are a-Hölder continuous, as proved by

Malgrange [7, IV.2.2].
Better results are possible if all the roots are real, i.e. for hyperbolic polyno-

mials. With su‰cient regularity of the coe‰cients, Brohnstein showed in [2] that
Lipschitz continuous roots can be chosen; improved results, with additional reg-
ularity conditions, were given by Mandai in [8], Alekseevski, Kriegl, Losik and
Michor in [1] and [6] and the authors in [3].

Nevertheless, the question of what can be the best possible regularity for any
enumeration of the roots, or even of just one root, is still open. In this paper we
show that if su‰cient regularity is asked on the coe‰cients of the polynomial,
any continuous root (and therefore, for example, any function in a Kato enumer-
ation) is indeed absolutely continuous (for polynomials of degree 2 and 3 Spag-
nolo proved a slightly more precise result in [12]).

The proof is divided in two parts: in the first part, by far the longer one, after
some preliminary reductions, we prove that any such root has bounded variation
(Theorem 1.6); in the second part, by a simple argument, we deduce that it is
indeed absolutely continuous.

A very similar result has been proved using completely di¤erent techniques by
Parusiński and Rainer in [9]. An improved result has since been announced by the
same authors (but it is unpublished as yet).

In the last section we include two examples, one for polynomials of degree 3
and one for m-th roots. The proof in these cases is simpler, but in the same vein
of the general case: in this way the reader, if necessary, can follow the proof of
Section 2 considering these cases as a guide.

1. Statements and proofs

We prove the following

Theorem 1.1. Let Pðt; tÞ be a monic polynomial of degree m in t whose coe‰-
cients are functions of class Cm2! in t a ½0;T �. Then the continuous roots of Pðt; tÞ
are absolutely continuous.

It is maybe worth noting that by e.g. Theorem 0.1 such roots always exist.

Lemma 1.2. In the hypotheses of Theorem 1.1, there exists a monic polynomial
Qðt; tÞ of degree m2 in t, with real coe‰cients of class Cm2! in t, some roots of
which are the real parts Re tjðtÞ of the roots of Pðt; tÞ (resp. the imaginary parts
Im tjðtÞ of the roots of Pðt; tÞ).

Proof. It is su‰cient to note that the coe‰cients of the polynomial

Y
i; j

�
t� ti þ tj

2

�
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are separately symmetric functions of the ti’s and of the tj’s and are therefore
polynomials in the coe‰cients of P. r

We fix some terminology and notation that we will use consistently.

Definition 1.3. If n is a positive integer and A is a set, an unordered n-ple of
elements of A is an element of the symmetric n-product of A,

SPnðAÞ ¼ An=Sn;

that is, an equivalence class of the action of the symmetric group on standard
n-ples of elements of A. We will denote such an unordered n-ple by ½a1; . . . ; an�.

It is clear that the complex roots of a (real or complex) polynomial of degree n
are well represented by unordered n-ples of complex numbers.

Definition 1.4. If a ¼ ½a1; . . . ; an� is an unordered n-ple of elements of A and
b ¼ ðb1; . . . ; bkÞ is a k-ple of elements of A, we say that b is a partial enumeration,
or a subsystem, of a if there is an element ða1; . . . ; anÞ in the class of a such that
bi ¼ ai for every i ¼ 1; . . . ; k.

In a maybe more traditional way, if a is the unordered n-ple of complex roots

of a polynomial P of degree n and b is a partial enumeration of a, we will also say
that b are k roots of P, when counted with multiplicities.

If the polynomial P depends on a parameter the same terminology will be
used for unordered n-ples of roots depending on the parameter, if the condition
holds for every value of the parameter, possibly restricting its possible values.

Definition 1.5. Let r : ½a; b� ! R be a real piecewise linear function defined
on a real interval ½a; b�, let A a R and let S � R2. The number of times that r
‘‘crosses’’ the value A, that is, attains the value A at some point t0, being smaller
than A on one side of t0 and bigger than A on the other side of t0, but with the
point ðt0;AÞ B S, will be called the number of oscillations of r (across A) outside S
(horizontal segments are counted as single points). If r never attains a local max-
imum or minimum at A and is not identically A on any subinterval, this is in fact
jððr�1ðAÞ � fAgÞB ð½a; b� � RÞÞnSj.

If we make no mention of S it is to be understood that S ¼ j, and if we omit
to mention the value A it is to be understood that A ¼ 0.

We are now ready to prove that Re tjðtÞ and Im tjðtÞ are of bounded variation.

Proposition 1.6. Let

Pðt; tÞ ¼ tm þ a1ðtÞtm�1 þ a2ðtÞtm�2 þ � � � þ amðtÞ

be a polynomial of degree m whose coe‰cients are real functions ajðtÞ of class Cm!

in t. Let sðtÞ be a real and continuous root of P. Then sðtÞ is of bounded variation
on ½0;T �.
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Proof. We will roughly proceed as follows: given any subdivision of ½0;T �, we
will define a suitable set of ‘‘tubular domains’’ in R� C such that for all values
of t all the roots belong to the union of these domains, and that they behave in
a tame way inside them (i.e., the number of their oscillations inside them is
bounded).

To do this, we apply induction, and indeed most of the proof is devoted to
show how to make the inductive step.

More precisely, at step i we will assume that we already defined ‘‘tubular
domains of level i � 1’’ containing at least i � 1 roots for every value of t (when
counted with multiplicities). We then choose a suitable subsequence of ‘‘points
of level i’’, Ti, among those of level i � 1 and showing that, if we modify some
of the tubular domains defined at level i � 1, and add to them new tubular
domains (associated to each interval defined by the points in Ti), all these
domains together contain at least i roots for every value of t (when counted with
multiplicities).

Finally, as the radii of the domains (as functions of the lengths of the inter-
vals) will be sublinear, we will be able to find a bound independent from the
subdivision.

Let then

0 ¼ t0 a t1 a t2 a � � � a tn ¼ T

be a subdivision T0 of ½0;T �, and let rðtÞ be the (continuous) piecewise linear
function connecting by segments the points ðtj; sðtjÞÞ for j ¼ 0; . . . ; n.

Clearly, in order to prove that the total variation of rðtÞ is bounded by a
constant independent from the subdivision, we may suppose without loss of gen-
erality that T a 1 (if T > 1 it is su‰cient to divide ½0;T � into many subintervals
of length smaller than 1 and repeat the argument for each of them).

Let Fi (for i ¼ 1; . . . ;m) be the following statement:

‘‘for every h ¼ 1 . . . ; i there exist positive integers nh and qh, a subset

Th ¼ ftkh; 0 ¼ 0; tkh; 1 ; . . . ; tkh; nhg � T0

of the points of the subdivision (defining intervals Lh
j ¼ ½tkh; j�1

; tkh; j � for
j ¼ 1; . . . ; nh), values Ah; l; j a R where l ¼ 1; . . . ; h, j ¼ 1; . . . ; nh and a positive
real constant Ch such that setting tkh;�1

¼ 0 and tkh; nhþ1
¼ tkh; nh and defining for

h ¼ 1; . . . ; i � 1

Ah ¼ fðt; rÞ a ½0;T � � C j for some l a f1; . . . ; hg and j a f1; . . . ; nhg; we have
tkh; j�2

a ta tkh; jþ1
and jr� Ah; l; j j < Chðtkh; jþ1

� tkh; j�2
Þðm�hÞ!g;

we have

(1) Th � Th�1 for all h,
(2) for every A a R, r has less than 2qh oscillations across A in ½tkh; j�1

; tkh; j � (resp.
less than qh oscillations in ½tkh; nh ; tkh�1; nh�1

�) outside A1 A � � �AAh�1;
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(3) for every t and j there exist i roots of Pðt; �Þ (when counted with multiplicity)
t1ðtÞ; . . . ; tiðtÞ, where the enumeration may depend on j, with

jtlðtÞ � Ai; l; jj < Ciðtki; j � tki; j�1
Þðm�iÞ!;

if t a ½tki; j�1
; tki; j �,

jtlðtÞ � Ai; l; jj < Ciðtki; j � tÞðm�iÞ!

if t < tki; j�1
, and

jtlðtÞ � Ai; l; jj < Ciðt� tki; j�1
Þðm�iÞ!

if t > tki; j , l ¼ 1; . . . ; i 00.

Remark 1.7. The constants Ch are bounded by a quantity depending only on h,
on the degree of the polynomial, on the Cm!-norm of the coe‰cients and on T .
The integers qh depend only on m and h.

We prove that we can carry on our induction until i ¼ m. The final part of the
proof after the base and inductive steps can be found on page 18.

Remark 1.8. If for some h the graph of r is contained in the union
A1 A � � �AAh, in fact we could do without the rest of the sets Ai with i > h (how-
ever, we can also continue the proof as in the general case, since no contradiction
arises).

Lemma 1.9. F1 is true.

Proof of Lemma. Let q1 ¼ m!; there exist T1 ¼ ftk1; jg � ftjg and A1;1; j a R
such that

(1) rðtÞ has at least q1 oscillations across A1;1; j in ½tk1; j�1
; tk1; j �

(2) in the same interval rðtÞ has at most q1 oscillations across A for all A a R,
while

(3) in the last interval ½tk1; n1 ; tn�, rðtÞ has at most q1 oscillations across A, for all
A a R:

it is su‰cient to consider larger and larger intervals with endpoints on the points
of the subdivision and stop the first time that there is a value in the image of
r across which r oscillates more than q1 times; we then choose A1;1; j as one
of such values. Indeed, by our definition it is clear that adding a subinterval
½tj�1; tj � can increase the number of oscillations at most by 1.

But then, by continuity, sðtÞ also attains the value A1;1; j at least q1 times
in the same interval. We consider an interval tk1; j�1

a ta tk1; j and call am, for
m ¼ 1; . . . ; q1, q1 points in this interval where sðamÞ ¼ A1;1; j.
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For 0a taT , let t1ðtÞ; . . . ; tmðtÞ be the (maybe dicontinuous) roots of Pðt; tÞ,
ordered in such a way that

jA1;1; j � t1ðtÞja jA1;1; j � t2ðtÞja � � �a jA1;1; j � tmðtÞj:

We see that

ðA1;1; j � t1ðtÞÞðA1;1; j � t2ðtÞÞ . . . ðA1;1; j � tmðtÞÞ ¼ Pðt;A1;1; jÞ

is a function of class Cm! defined in ½0;T � and vanishing q1 ¼ m! times in
½tk1; j�1

; tk1; j �. By Lagrange’s theorem it follows that for a suitable positive constant
C depending only on the derivatives of the aj’s

jPðt;A1;1; jÞjaCðtk1; j � tk1; j�1
Þm!

if tk1; j�1
a ta tk1; j ,

jPðt;A1;1; jÞjaCðtk1; j � tÞm!

if 0a t < tk1; j�1
, and

jPðt;A1;1; jÞjaCðt� tk1; j�1
Þm!

if tk1; j < taT .
As a consequence, we have that the requested inequalities hold:

jt1ðtÞ � A1;1; jja
ffiffiffiffi
C

m
p

ðtk1; j � tk1; j�1
Þðm�1Þ!

if t a ½tk1; j�1
; tk1; j �,

jt1ðtÞ � A1;1; jja
ffiffiffiffi
C

m
p

ðtk1; j � tÞðm�1Þ!

if t < tk1; j�1
, and

jt1ðtÞ � A1;1; jja
ffiffiffiffi
C

m
p

ðt� tk1; j�1
Þðm�1Þ!

if t > tk1; j .
We now set C1 ¼ 2

ffiffiffiffi
C

m
p

and the proof of F1 is finished. r

Let us now show that if Fi�1 holds and iam, also Fi holds.
The su‰ciently large value of the positive integer qi will be determined later

(see page 757); in particular, we ask that qi b 6qi�1.
We first prove that there exist points Ti ¼ ftki; j ; j ¼ 0; . . . ; nig � Ti�1 ¼

ftki�1; j
; j ¼ 0; . . . ; ni�1g and numbers Ai; i; j a R (these will define the ‘‘tubular

domains’’ added at level i) such that
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a) rðtÞ has at least qi oscillations across Ai; i; j in ½tki; j�1
; tki; j � outside A1 A � � �A

Ai�1

b) for all A a R, rðtÞ has at most 2qi oscillations across A in ½tki; j�1
; tki; j � outside

A1 A � � �AAi�1

c) for all A a R, in ½tki; ni ; tki�1; ni�1
� (the last interval of level i) there are at most qi

oscillations of rðtÞ across A outside A1 A � � �AAi�1.

This is proved in a similar way as for the case i ¼ 1, but taking care that now we
have to choose only among the points in Ti�1. This means that each new interval
can add at most 2qi�1 < qi more oscillations: adding one interval at a time and
stopping every time the number of oscillations becomes larger than qi defines a
Ti that fulfils a), b) and c) and, as a consequence, conditions (1) and (2) of Fi.

By continuity and since the Ah’s are unions of cylinders it follows that sðtÞ
attains at least qi times the value Ai; i; j in the interval ½tki; j�1

; tki; j �, outside the set
A1 A � � �AAi�1.

We take t in one of the intervals ½tki; j�1
; tki; j � and points a1; . . . aqi (numbered

in increasing order) in which sðtÞ ¼ Ai; i; j.
For any integer ri if qi is large enough we can find 2iri subintervals J2iri �

J2iri�1 � � � � � J1 and points bj 0 a Jj 0 , chosen among the ah’s, such that

(1) dðbj 0 ; Jj 0�1Þb 1
2 lðJj 0 Þ, for j 0 ¼ 2; . . . ; 2iri, where d is the Euclidean distance

and lðJj 0 Þ denotes the length of the interval Jj 0 ;
(2) bj 0 is an endpoint of Jj 0 ;
(3) in J1 there are more than 4qi�1 points ah;
(4) in the interval between bj 0 and Jj 0�1 there are more than 4qi�1 points ah.

This is done inductively (we will suppose that qi is a multiple of 22iri4qi�1; see also
Fig. 1). First, we define J2iri ¼ ½a1; aqi �. We then consider the two subintervals of
½a1; aqi

2
� and ½aqi

2þ1; aqi � (note that their union is not the whole of J2iri ); now, b2iri
will be the endpoint of J2iri belonging to the longest of the two subintervals, while
the shortest of the two will be J2iri�1. By our hypothesis on qi we can iterate the
construction 2iri times, fulfilling in this way conditions (1)–(4).

Since for each bj 0 all the b’s chosen after it (that is, those with index smaller
than j 0) are on the same side, that is, they are all bigger or all smaller then
bj 0 itself (they are indeed all in Jj 0�1), discarding less than half of the bj 0 ’s
and renumbering them, we can also assume that either b1 < b2 < � � � < biri or

Figure 1. The choice of J2iri , J2iri�1 and b2iri : for every j 0, Jj 0 contains more than 2j
0 � 4qi�1

of the points ah.
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b1 > b2 > � � � > biri (to do this we might have to substitute b1, the last point, with
the other endpoint of J1).

The proof is now specular in the two cases; we will assume that b1 <
b2 < � � � < biri .

Note that between two of the bj’s there are always at least 4qi�1 of the ah’s, by
construction; but in no interval of level i � 1 there can be more then 2qi�1 points
ah (remember that also by construction, no matter what A in R we choose, in any
interval of level i � 1 there will never be more than 2qi�1 points where r has value
A outside A1 A � � �AAi�2; this now applies to our constant Ai; i; j): if we take the
left endpoints tki�1; h

j 0
of the intervals of level i � 1 containing the points bhj 0 , we

have that

tki�1; h1�1
a tki�1; h1

a b1 a tki�1; h1þ1
ð1:1Þ

a tki�1; h2�1
a tki�1; h2

a b2 a tki�1; h2þ1

a � � �a tki�1; hiri
�1
a tki�1; hiri

a biri a tki�1; hiri
þ1

and also

½tki�1; h1�1
; b1� � J1:

We recall that all these intervals ½tki�1; h
j 0
; tki�1; h

j 0 þ1
� of level i � 1 containing the

points bj 0 are subintervals of the same interval of level i.
We compare now the values Ai�1; l;hj 0 for l ¼ 1; . . . ; i � 1, already defined

on these iri intervals of level i � 1, with our new value Ai; i; j of level i; if we
group the intervals according to the number of indices l such that the constants
Ai�1; l;hj are below Ai; i; j (or above it, since the l’s are always i � 1 in total) there
will be i groups, therefore at least one group will gather a fraction of at least 1

i
of the total number of intervals. Discarding the other intervals and points and
renumbering them again, we can then assume that in all the ri intervals the
number of indices l such that the constants Ai�1; l;hj 0 are below Ai; i; j is the same;
we call this number u.

To avoid some very clumsy notation in the following lemma, we reorder the
values Ai�1; l;hj 0 ( j

0 ¼ 1; . . . ; ri) with respect to l ¼ 1; . . . ; i � 1 so that

Ai�1;1;hj 0 aAi�1;2;hj 0 a � � �aAi�1;u;hj 0 < Ai; i; j

and

Ai�1;uþ1;hj 0 bAi�1;uþ2;hj 0 b � � �bAi�1; i�1;hj 0 > Ai; i; j:

As a consequence of the use of Lemma 1.10 below, repeated i � 1 times (with
K ¼ 2Ci�1), we can now prove that there are indices

l1 a l2 a � � �a li�1 < m1 < m2 < � � � < mðm�iþ1Þ!þ1

between 1 and ri and a constant ~CC depending on Ci�1, m and i (that we could
take as 2Ci�1r

i�1
i ) such that
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• for l ¼ 1; . . . ; u

Ai�1; l;hlp bAi�1; l;hll
� ~CCðblp � tki�1; hll

�1
Þðm�iþ1Þ!;

when p ¼ l; l þ 1; . . . ; i � 1; and

Ai�1; l;hmq
bAi�1; l;hll

� ~CCðbmq � tki�1; hll
�1
Þðm�iþ1Þ!;

when q ¼ 1; . . . ; ðm� i þ 1Þ!þ 1;

• for l ¼ uþ 1; . . . ; i � 1

Ai�1; l;hlp aAi�1; l;hll
þ ~CCðblp � tki�1; hll

�1
Þðm�iþ1Þ!

when p ¼ l; l þ 1; . . . ; i � 1; and

Ai�1; l;hmq
aAi�1; l;hll

þ ~CCðbmq � tki�1; hll
�1
Þðm�iþ1Þ!

when q ¼ 1; . . . ; ðm� i þ 1Þ!þ 1:

ðrÞ

Lemma 1.10. Suppose given integers r, s with r ¼ 4ms, points b1 < � � � < br such
that

tki�1; h1�1
a tki�1; h1

a b1 a tki�1; h1þ1

a tki�1; h2�1
a tki�1; h2

a b2 a tki�1; h2þ1

a � � �a tki�1; hr�1
a tki�1; hr

a br a tki�1; hrþ1

and constants Aj a R for j a f1; . . . ; rg; suppose also that there exists a positive
constant K and a root tðtÞ of Pðt; tÞ such that

jtðtÞ � Ajj <
K

2
ðtki�1; hj

� tki�1; hj�1
Þðm�iþ1Þ!

if t a ½tki�1; hj�1
; tki�1; hj

�,

jtðtÞ � Ajj <
K

2
ðtki�1; hj

� tÞðm�iþ1Þ!

if t < tki�1; hj�1
, and

jtðtÞ � Ajj <
K

2
ðt� tki�1; hj�1

Þðm�iþ1Þ!

if t > tki�1; hj
.

Then there exist indices l < m1 < � � � < ms between 1 and r such that for any
n a f1; . . . ; sg

Amn bAl � ~KKðbmn � tki�1; hl�1
Þðm�iþ1Þ!

(where ~KK depends only on K, r, m).
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Proof. Consider A1; . . . ;Ar and divide them in halves: A1; . . .Ar=2 and
Ar=2þ1; . . . ;Ar. We have that either

Aj > A1 � rKðbj � tki�1; h1�1
Þðm�iþ1Þ!

for j ¼ r=2þ 1; . . . ; r, or there is ~qq1 > r=2 such that

A~qq1 aA1 � rKðb~qq1
� tki�1; h1�1

Þðm�iþ1Þ!:

In the first case we define l ¼ 1, mn ¼ r=2þ n for n ¼ 1; . . . ; s and the proof
is complete. In the second case we set ~pp1 ¼ 1, reorder A1; . . . ;Ar=2;A~qq1 in an
increasing sequence and choose j1, l1 (that have to exist in this case) such that
Aj1 , Al1 are consecutive and

Aj1 � Al1 > Kðb~qq1
� tki�1; h1�1

Þðm�iþ1Þ!:

Now, at least one half of A1; . . . ;Ar=2;A~qq1 are above Aj1 or below Al1 : let us
choose the larger of these two sets, and repeat the procedure.

If we stop before having repeated it m times we define l and the mn’s analo-
gously as above, and the proof is completed; otherwise, we have 4m indices

j1; l1; ~pp1; ~qq1; . . . ; jm; lm; ~ppm; ~qqm

such that

(1) ½ ~pp1; ~qq1� � ½ ~pp2; ~qq2� � � � � � ½ ~ppm; ~qqm�,

and, for m ¼ 1; . . . ;m,

(2) jm; lm a ½~ppm; ~qqm�, and
(3) the constants Ajm and Alm satisfy

Ajm � Alm > Kðb~qqm
� tki�1; h ~ppm

�1
Þðm�iþ1Þ!:ð1:2Þ

If m 0 is fixed and m > m 0, then the numbers Ajm , Alm are either all bAjm 0 or all
aAlm 0 .

We show that in this case we could find, for a certain t, mþ 1 distinct roots of
Pðt; tÞ, and this is absurd. We argue by induction: if v ¼ 1 we have for t ¼ b~pp1
two distinct roots, one near Aj1 and the other near Al1 (we say that t1 is near Al1

in t, and write t1 PAl1 , to mean that

jt1ðtÞ � Al1 j <
K

2
ðb~qq1

� tki�1; h~pp1
�1
Þðm�iþ1Þ!Þ:

Suppose that for v ¼ k we have k þ 1 distinct roots t1ðtÞ; . . . ; tkþ1ðtÞ for t ¼ b~ppk
and that for m ¼ 1; . . . ; k

minðjtmðb~ppk
Þ � Ajm j; jtmðb~ppk

Þ � Alm jÞ <
K

2
ðb~qqm

� tki�1; h ~ppm
�1
Þðm�iþ1Þ!
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and for m ¼ k þ 1

minðjtkþ1ðb~ppk
Þ � Ajk j; jtkþ1ðb~ppk

Þ � Alk jÞ <
K

2
ðb~qqk

� tki�1; h ~ppk
�1
Þðm�iþ1Þ!:

For v ¼ k þ 1 and for t ¼ b ~ppkþ1
we have k þ 1 distinct roots t2; . . . ; tkþ2.

We find t1 PAl1 in t if Ajm ;Alm bAj1 (for m ¼ 2; . . . ; k þ 2), or t1 PAj1 in t if
Ajm ;Alm aAl1 (again, for m ¼ 2; . . . ; k þ 2). Let us consider the first case.

We note that t1 is di¤erent from t2; . . . ; tkþ2; otherwise we would have

jt1ðtÞ � Al1 j <
K

2
ðb~qq1

� tki�1; h~pp1
�1
Þðm�iþ1Þ!

and for jt1ðtÞ � Ajm j (or for jt1ðtÞ � Alm j) we would have

jt1ðtÞ � Ajm j <
K

2
ðb~qqm

� tki�1; h ~ppm
�1
Þðm�iþ1Þ!

a
K

2
ðb~qq1

� tki�1; h~pp1
�1
Þðm�iþ1Þ!;

so that

jAj1 � Al1 jaminðjAlm � Al1 j; jAjm � Al1 jÞ < Kðb~qq1
� tki�1; h ~pp1

�1
Þðm�iþ1Þ!;

which is against inequality (1.2).
A similar argument applies to the case when t1 PAj1 in t and Ajm ;Alm aAl1

(m > 1).
The roots t1; t2; . . . ; tkþ2 are then pairwise distinct. When v ¼ m we have a

contradiction. r

We now fix the value of qi choosing

qi ¼ 22i4
mði�1Þðm�iþ1Þ! � 4 � 6qi�1;ð1:3Þ

which is enough to do all the constructions up to now.

Lemma 1.11. Let t a ½0;T � and consider the real numbers Ai�1; l;hll
( for l ¼

1; . . . ; i � 1). We can associate to them complex numbers t1ðtÞ; . . . ; ti�1ðtÞ which
are i � 1 roots of Pðt; tÞ (when counted with multiplicities), such that setting
~CCi�1 ¼ 4ði � 1Þ ~CC for l ¼ 1; . . . ; i � 1 we have

jtlðtÞ � Ai�1; l;hll
j < ~CCi�1ðtki�1; hli�1

þ1
� tki�1; hl1

�1
Þðm�iþ1Þ!;ð1:4Þ

if tki�1; hl1
�1
a ta tki�1; hli�1

þ1
,

jtlðtÞ � Ai�1; l;hll
j < ~CCi�1ðtki�1; hli�1

þ1
� tÞðm�iþ1Þ!;ð1:5Þ

if 0a ta tki�1; hl1
�1
, and

jtlðtÞ � Ai�1; l;hll
j < ~CCi�1ðt� tki�1; hl1

�1
Þðm�iþ1Þ!;ð1:6Þ

if tki�1; hli�1
þ1
a taT.
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Proof. Let us put

Aj;k ¼ Ai�1; j;hlk
; j; k ¼ 1; . . . ; i � 1

and

R ¼ Cðtki�1; hli�1
þ1
� tki�1; hl1

�1
Þðm�iþ1Þ!

if tki�1; hl1
�1
a ta tki�1; hli�1

þ1
,

R ¼ Cðtki�1; hli�1
þ1
� tÞðm�iþ1Þ!

if 0a ta tki�1; hl1
�1
,

R ¼ Cðt� tki�1; hl1
�1
Þðm�iþ1Þ!

if tki�1; hli�1
þ1
a taT .

We can suppose Ai; i; j ¼ 0 and

A1;k aA2;k a � � �aAu;k < 0;

Auþ1;k bAuþ2;k b � � �bAi�1;k > 0:

On the other hand, by relations (r),

Aj;k bAj; j � R; and so also

Ak;k bAj; j � R; for k ¼ j þ 1; . . . ; i � 1 and j ¼ 1; . . . ; u;

Aj;k aAj; j þ R; and so also

Ak;k aAj; j þ R; for k ¼ j þ 1; . . . ; i � 1 and j ¼ uþ 1; . . . ; i � 1:

ð1:7Þ

Let us define ~YYj ¼ fr a C : jr� Aj; jj < 2Rg, j ¼ 1; . . . ; i � 1. We group the
~YYj into connected components: it is not di‰cult to use inequalities 1.7 to show
that, if ~YYj1 and ~YYj2 belong to the same component C and j1 < j2 a u, then every
~YYj, with j1 < j < j2, belongs to C too, and so these connected components will
have the form

~YY1 A � � �A ~YYa1
~YYa1þ1 A � � �A ~YYa2 . . . ~YYap�1þ1 A � � �A ~YYap

(ap ¼ u); and similarly, for j1 b j2 b uþ 1,

~YYuþ1 A � � �A ~YYb1
~YYb1þ1 A � � �A ~YYb2 . . . ~YYbq�1þ1 A � � �A ~YYbq

(bq ¼ i � 1). The two last groups of the rows, ~YYap�1þ1 A � � �A ~YYap and
~YYbq�1þ1 A � � �A ~YYbq , may intersect (and in this case they are put together). Now, by
part (3) of the induction hypothesis Fi�1, for all t a ½0;T � the set

Sa1
j¼1 DðAj;a1 ;RÞ

contains a subsystem of a1 roots of the polynomial at that same point t; we
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deduce (see also Fig. 2) that DðA1;1; 4a1RÞ also contains that subsystem, and the
same is true for DðAj; j; 4a1RÞ, j ¼ 1; . . . ; a1. Therefore we can renumber the tl ’s
so that tj a DðAj; j; 4a1RÞ for j ¼ 1; . . . ; a1. The same construction allows us to
find a subsystem of a2 roots in

DðAa1þ1;a1þ1; 4ða2 � a1ÞRÞ;
� � �

DðAa2;a2 ; 4ða2 � a1ÞRÞ;

and so on. If there is a component containing discs with center both in the left
and right half-plane we have that

DðAaq�1þ1;aq�1þ1; 4ðap � ap�1 þ bq � bq�1ÞRÞ

Figure 2. The disk DðA1;1; 4a1RÞ contains the subsystem of the a1 ¼ 3 roots (at point t) of
its connected component. Inequalities 1.7 relate the constants Aj;k defined in di¤erent
intervals (note that in this picture the real axis is vertical).
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contains both the discs

DðAap�1þ1; i�1;RÞ; . . . ;DðAu; i�1;RÞ

and the discs

DðAbq�1þ1; i�1;RÞ; . . . ;DðAi�1; i�1;RÞ

and so ap � ap�1 þ bq � bq�1 roots tlðtÞ (when counted with multiplicities). So we
can choose a point in each disk

DðAj; j; 8ðap � ap�1 þ bq � bq�1ÞRÞ

for j ¼ ap�1 þ 1; . . . ; u and j ¼ bq�1 þ 1; . . . ; i � 1.
All these sets of roots are disjoint, as we now show. Indeed,

~YY1BR; . . . ; ~YYa1 BR � ða1; b1Þ;
~YYa1þ1BR; . . . ; ~YYa2 BR � ða2; b2Þ;

and b1 a a2; moreover,

Aj;a1 bA1;1 � R and so Aj;a1 � RbA1;1 � 2Rb a1

and

Aj;a1 aAa1;a1 and so Aj;a1 þ RaAa1;a1 þ Ra b1

for j ¼ 1; . . . ; a1. So DðAj;a1 ;RÞBR � ða1; b1Þ, and

[a1
j¼1

ðDðAj;a1 ;RÞBRÞ � ða1; b1Þ;

[a2
j¼a1þ1

ðDðAj;a2 ;RÞBRÞ � ða2; b2Þ:

Hence the two subsystems of roots are disjoint. The other cases are similar.
We can then put together these roots and obtain a subsystem ðt1ðtÞ; . . . ; ti�1ðtÞÞ

of i � 1 roots of Pðt; tÞ. r

As a consequence of the two geometric-combinatorial lemmas 1.12 and 1.13
below, we may suppose also that the following property ðzÞ holds:

ð1Þ if l a f1; . . . ; ug; and therefore Ai�1; l;hll
< Ai; i; j; then

Re tlðtÞ < Ai; i; j for t ¼ bmh ðh ¼ 1; . . . ; ðm� i þ 1Þ!þ 1Þ;
ð2Þ if l a fuþ 1; . . . ; i � 1g; and therefore Ai�1; l;hll

> Ai; i; j;

then Re tlðtÞ > Ai; i; j for t ¼ bmh ðh ¼ 1; . . . ; ðm� i þ 1Þ!þ 1Þ:

ðzÞ
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Lemma 1.12. Let ½t1; . . . ; tm� be an unordered m-ple of real numbers, let i be
a numberam and S�, Sþ a partition of f1; . . . ; ig. Suppose given intervals
Xk ¼ ½ak; bk� and values xk a Xk, where k ¼ 1; . . . ; i, which form a subsystem of
½t1; . . . ; tm�; and other intervals Dk ¼ ½ck; dk� such that

(1) if k a S� then ak a ck < dk < 0,
(2) if k a Sþ then 0 < ck < dk a bk,

and other points yk a Dk, where k ¼ 1; . . . ; i, also forming a subsystem of
½t1; . . . ; tm�.

Then there exists a subsystem ðz1; . . . ; ziÞ of ½t1; . . . ; tm� such that zk a Xk for
all indices k ¼ 1; . . . ; i and zk < 0 if k a S�, zk > 0 if k a Sþ.

Proof. Consider first the indices k a S�. If xk < 0 for all such indices we define
zk ¼ xk and pass to the indices in Sþ; otherwise, we will have to find how to
‘‘substitute’’ the xk b 0 with some well-chosen yk to define the zk’s. To do that,
say xi1 b 0 and consider yi1 : if there is no xk coinciding with yi1 , we define
zi1 ¼ yi1 ; otherwise, we will find a chain of values yi1 ¼ xi2 , yi2 ¼ xi3 ; . . . , until
we find yim1 Axj, Ej a S�nfi1; . . . ; im1g. Define now

n1 ¼ maxf j a f1; . . . ; m1g j yij ¼ maxfyi1 ; . . . ; yim1gg

and set zi2 ¼ xi2 ; . . . ; zin1 ¼ xin1 , zi1 ¼ yin1 . All the zij are trivially in Xij and are
negative, if jA i1; on the other hand, note that we have

ai1 a ci1 a yi1 a yin1 a din1 < 0a xi1 a bi1 ;

so that zi1 ¼ yin1 also satisfies the required conditions. Then, if n1 < m1, define

n2 ¼ maxf j a fn1 þ 1; . . . ; m1g j yij ¼ maxfyin1þ1
; . . . ; yim1gg

and, analogously as above, set zin1þ2
¼ xin1þ2

; . . . ; zin2 ¼ xin2 , zin1þ1
¼ yin2 . Again,

note that we have

ain1þ1
a yin1þ1

a yin2 ¼ zin1þ1
a yin1 ¼ xin1þ1

a bin1þ1
;

that is zin1þ1
a Xin1þ1

, and zin1þ1
¼ yin2 < 0. We repeat these steps until we reach

yim1 .
We then check if there are other xk b 0 with k a S�nfi1; . . . ; im1g. If there are,

let xim1þ1
b 0 be one of them; again, we can define new chains of points yim1þ1

¼
xim1þ2

, yim1þ2
¼ xim1þ3

; . . . ; yim2 where yim2 Axj, Ej a S�nfi1; . . . ; im2g, and repeat the
previous argument.

If, after zk’s have been defined for all the xk b 0, there still are indices in S�

for which xk < 0 and zk is not defined, we put zk ¼ xk for such k’s. In this way we
exhaust the k a S� (and we argue symmetrically for the k a Sþ).

We claim that the points zk, k a S�, are a subsystem of ½t1; . . . ; tm�. Indeed, all
the values zk are among the tj’s; and apart from the zj ¼ yima ’s, they coincide with
a part of the subsystem xk. On the other hand, the values yima have (among the
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zk’s) multiplicities bounded by those of the subsystem yk. In this way we show
that the zk’s with k a S� are a subsystem; the same is true for the zk, k a Sþ.
But the former are <0 and the latter are >0, so that their union is also necessarily
a subsystem, and the proof is completed. r

Lemma 1.13. Let ½t1; . . . ; tm� be an unordered m-ple of complex numbers, i be a
numberam and S�, Sþ be a partition of f1; . . . ; ig. Let also

Xk ¼ fr : jr� Akj < Rkg;

where Ak < 0 if k a S�, whereas Ak > 0 if k a Sþ, for some positive constants Rk,
and let xk a Xk form a subsystem of ½t1; . . . ; tm�. Similarly, let

Dk ¼ fr : jr� ~AkAkj < ~RRg;

with ~AkAk < 0 if k a S�, whereas ~AkAk > 0 if k a Sþ and 0 < ~RRaRk Ek. Let yk a Dk

be a subsystem of ½t1; . . . ; tm�. We suppose that

(1) Dk BR � ðAk � Rk; 0Þ if k a S�,
(2) Dk BR � ð0;Ak þ RkÞ if k a Sþ.

Then there exists a subsystem ðz1; . . . ; ziÞ of ½t1; . . . ; tm�, such that

zk a ~XkXk ¼ fr : jr� Akj < 2Rkg;

Re zk < 0 if k a S� and Re zk > 0 if k a Sþ.

Proof. Let’s consider first the k’s in S�. If Re xk < 0 for all these indices, we
just set zk ¼ xk, k a S�. Otherwise, let’s choose an xi1 with Re xi1 b 0 (see also
Fig. 3). We build a chain of values

yi1 ¼ xi2 ; yi2 ¼ xi3 ; . . . ; yim1�1
¼ xim1 ; yim1

such that i1; i2; . . . ; im1 a S� and yim1 Axj Ej a S�nfi1; . . . ; im1g.

Figure 3. The definition of the zk’s in a simple case. Here ðx1; . . . ; x6Þ ¼ ðc; b; a; b; b; bÞ
and ðy1; . . . ; y6Þ ¼ ðb; b; b; c; c; cÞ; Re x3 > 0, so the first chain of indices could be
3; 2; 4; 1; 6 ð¼ m1Þ, and y4 has maximal real part among them, i.e. n1 ¼ 4, n2 ¼ 6. We
would then set z2 ¼ b, z4 ¼ b, z3 ¼ c, then z6 ¼ b, z1 ¼ c, and finally z5 ¼ x5 ¼ b.
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As in the previous lemma, let n1 be the last index such that

Re yin1 ¼ maxfRe yi1 ; . . . ;Re yim1g;

and let us pose zi2 ¼ xi2 , zi3 ¼ xi3 ; . . . ; zin1 ¼ xin1 , zi1 ¼ yin1 :
We have

Ai1 � Ri1 a
~Ai1Ai1 � ~RRaRe yi1 aRe yin1 < 0aRe xi1 aAi1 þ Ri1 ;

and thus zi1 a ~XXi1 .
Then we choose n2 such that

Re yin2 ¼ maxfRe yin1þ1
; . . . ;Re yim1g;

and define the zij ’s for j ¼ n1 þ 1; . . . ; n2, analogously as above. Again, we will
have that zin1þ1

¼ yin2 , zin1þ1
a ~XXin1þ1

and Re zin1þ1
¼ Re yin2 < 0. We repeat this

construction until we reach yim1 , check if there are xk’s left with Re xk b 0, and

if this is the case, build more chains; otherwise we set zk ¼ xk for the remaining
indices in S� (and we similarly treat the indices in Sþ).

The proof that the zk’s form a subsystem of ½t1; . . . ; tm� is now completely
analogous to the real case in Lemma 1.12. r

Let us now consider a fixed point t ¼ bmp in the interval ½tki�1; hmp
; tki�1; hmpþ1

�;
we suppose, which can be done up to a translation, that Ai; i; j ¼ 0. Let
½t1ðtÞ; . . . ; tmðtÞ� be the unordered m-ple of roots of Pðt; tÞ: define for l ¼
1; . . . ; i � 1

Xl ¼ fr a C : jr� Ai�1; l;hll
j < 2 ~CCi�1ðbmp � tki�1; hl1

�1
Þðm�iþ1Þ! ¼ Rl ¼ Rg

and, as a partition of the set f1; . . . ; i � 1g, let us choose as before

S� ¼ f1; . . . ; ug ¼ fl : Ai�1; l;hll
< 0g;

Sþ ¼ fuþ 1; . . . ; i � 1g ¼ fl : Ai�1; l;hll
> 0g:

We now see that by Lemma 1.11 there is a subsystem ðx1; . . . ; xi�1Þ ¼
ðt1; . . . ; ti�1Þ of ½t1ðtÞ; . . . ; tmðtÞ� such that xl a Xl for l ¼ 1; . . . ; i � 1.

We define also

Dl ¼ fr a C : jr� Ai�1; l;hmp
j < Ci�1ðbmp � tki�1; hmp�1

Þðm�iþ1Þ! ¼ ~RRg

(where Ci�1 < ~CCi�1; ~RR < R): we have Ai�1; l;hmp
< 0 if l ¼ 1; . . . ; u, Ai�1; l;hmp

> 0 if
l ¼ uþ 1; . . . ; i � 1.

By condition (3) of the induction hypothesis Fi�1, there is another subsystem
ðy1; . . . ; yi�1Þ of ½t1ðtÞ; . . . ; tmðtÞ� with yl a Dl .
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Notice that

Dl BR ¼ ðAi�1; l;hmp
� ~RR;Ai�1; l;hmp

þ ~RRÞ � ðAi�1; l;hll
� Rl ; 0Þ;

if l a S� (and a similar relation holds if l a Sþ), as a consequence of inequal-
ities (r) on page 755 and of the definition of Ai; i; j, which implies that the point
ðbmp ;Ai; i; jÞ B Ai�1.

This means that the two subsystems xl , yl and the discs Xl , Dl are in the
hypotheses of Lemma 1.13; therefore, there are roots ðz1; . . . ; zi�1Þ (a subsystem
of ½t1ðtÞ; . . . ; tmðtÞ�) such that

zl a ~XlXl ¼ fr : jr� Ai�1; l;hll
ja 2Rg;

and Re zl < 0 if l a S�, Re zl > 0 if l a Sþ (that is, property ðzÞ at page 760 holds).
We define Ai; l; j ¼ Ai�1; l;hll

when l < i, and prove that for a suitable constant
Ci these values, together with Ai; i; j, satisfy condition (3) of Fi.

Let tiðtÞ; tiþ1ðtÞ; . . . ; tmðtÞ be the other roots of Pðt; tÞ on Li
j (that is, we recall,

tki; j�1
a ta tki; j ), ordered in such a way that

jAi; i; j � tiðtÞja jAi; i; j � tiþ1ðtÞja � � �a jAi; i; j � tmðtÞj:

Lemma 1.14. There exist functions fi; jðtÞ of class Cm!, whose Cm!-norm is
bounded by a constant depending only on the Cm!-norm of the coe‰cients of
Pðt; tÞ, and bounded functions gi; l; jðtÞ, whose (common) bound M depends only
on the C0-norm of the coe‰cients of Pðt; tÞ, such that

ðtiðtÞ � Ai; i; jÞðtiþ1ðtÞ � Ai; i; jÞ . . . ðtmðtÞ � Ai; i; jÞð1:8Þ
¼ fi; jðtÞ þ ðt1ðtÞ � Ai;1; jÞgi;1; jðtÞ þ � � � þ ðti�1ðtÞ � Ai; i�1; jÞgi; i�1; jðtÞ:

Proof. For the sake of simplicity, let’s put in this lemma A� ¼ Ai; i; j. Let

Shðt1; . . . ; tiÞ

be the sum of the products of i numbers taken in groups of h, that is the h-th
elementary symmetric function on i arguments (where we take S0 ¼ 1 if h ¼ 0
and Sh ¼ 0 if h > i).

We prove by induction that Shðt1ðtÞ; . . . ; tiðtÞÞ can be written in the form

f ðtÞ þ ðt1ðtÞ � Ai;1; jÞg1ðtÞ þ � � � þ ðti�1ðtÞ � Ai; i�1; jÞgi�1ðtÞ;ð1:9Þ

where f has m! derivatives and the gl ’s are bounded functions.
First, we have

S1ðtiðtÞ � A�; . . . ; tmðtÞ � A�Þ
¼ S1ðt1ðtÞ � A�; . . . ; tmðtÞ � A�Þ � S1ðt1ðtÞ � A�; . . . ; ti�1ðtÞ � A�Þ
¼ f ðtÞ � ðt1ðtÞ � Ai;1; jÞ � � � � � ðti�1ðtÞ � Ai; i�1; jÞ;

where f ðtÞ ¼ �a1ðtÞ �mA� þ
P i�1

l¼1ðA� � Ai; l; jÞ is of class Cm!.
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Suppose now that

S1ðtiðtÞ � A�; . . . ; tmðtÞ � A�Þ
S2ðtiðtÞ � A�; . . . ; tmðtÞ � A�Þ

� � �
Sh�1ðtiðtÞ � A�; . . . ; tmðtÞ � A�Þ

can all be expressed in the form (1.9).
It is obvious that Snðt1ðtÞ � A�; . . . ; ti�1ðtÞ � A�Þ can also be written in the

form (1.9); then we have

ShðtiðtÞ � A�; . . . ; tmðtÞ � A�Þð1:10Þ
¼ Shðt1ðtÞ � A�; . . . ; tmðtÞ � A�Þ
� Shðt1ðtÞ � A�; . . . ; ti�1ðtÞ � A�Þ
� Sh�1ðt1ðtÞ � A�; . . . ; ti�1ðtÞ � A�Þ
� S1ðtiðtÞ � A�; . . . ; tmðtÞ � A�Þ
� Sh�2ðt1ðtÞ � A�; . . . ; ti�1ðtÞ � A�Þ
� S2ðtiðtÞ � A�; . . . ; tmðtÞ � A�Þ � � � �
� S1ðt1ðtÞ � A�; . . . ; ti�1ðtÞ � A�Þ
� Sh�1ðtiðtÞ � A�; . . . ; tmðtÞ � A�Þ

and since the product and the sum of functions of the form (1.9) are of the same
form, we can write also (1.10) in the form (1.9). This completes the induction.
The case h ¼ m� i þ 1 is our thesis. r

We also note that the functions fi; j of Lemma 1.14 are real, since they can be
expressed as real polynomials in the coe‰cients of Pðt; tÞ and in the constants
Ai; l; j.

Now t1ðtÞ; t2ðtÞ; . . . ; ti�1ðtÞ; tiðtÞ are i roots (when counted with multiplicities)
for 0a taT . Note that tiðbmpÞ ¼ Ai; i; j as sðbmpÞ ¼ Ai; i; j and ti is the only root

that can assume the value Ai; i; j, since Re tlðbmpÞAAi; i; j, for l ¼ 1; . . . ; i � 1 (by
property ðzÞ).

Let

QpðtÞ ¼ ðt� bm1Þ . . .
dðt� bmpÞðt� bmpÞ . . . ðt� bmðm�iþ1Þ!þ1

Þ

(polynomial of degree ðm� i þ 1Þ!), and

QðtÞ ¼
Xðm�iþ1Þ!þ1

p¼1

fi; jðbmpÞ
QpðtÞ

QpðbmpÞ

(Lagrange interpolation polynomial); we do this for each fi; j given by Lemma
1.14.
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We can write

fi; jðtÞ ¼ ½ fi; jðtÞ �QðtÞ� þQðtÞ:

Now, fi; jðtÞ �QðtÞ is small since it vanishes in ðm� i þ 1Þ!þ 1 points and its
derivative of order ðm� i þ 1Þ!þ 1 is bounded by a uniform constant depending
only on the C ðm�iþ1Þ!þ1 norm of the coe‰cients of Pðt; tÞ (and on the values Ai; l; j,
that are in turn bounded by the coe‰cients). Thus

j fi; jðtÞ �QðtÞjaC 0ðtki; j � tki; j�1
Þðm�iþ1Þ!ð1:11Þ

for tki; j�1
a ta tki; j .

As far as QðtÞ is concerned, by (1.8) and (1.4), since Ai; l; j ¼ Ai�1; l;hll
and

bmp B ½tki�1; hl1
�1
; tki�1; hli�1

þ1
�, we have

j fi; jðbmpÞj
¼ jðt1ðbmpÞ � Ai;1; jÞgi;1; jðbmpÞ þ � � � þ ðti�1ðbmpÞ � Ai; i�1; jÞgi; i�1; jðbmpÞj

a ~CCC 00ði � 1Þðbmp � tki�1; hl1
�1
Þðm�iþ1Þ!:

Hence

fi; jðbmpÞ
QpðbmpÞ

�����
�����a ~CCC 00ði � 1Þ

jbmp � tki�1; hl1
�1
jðm�iþ1Þ!

jðbmp � bm1Þ . . .
dðbmp � bmpÞðbmp � bmpÞ . . . ðbmp � bmðm�iþ1Þ!þ1

Þj
aC 000

where C 000 ¼ ~CCC 00ði � 1Þ2ðm�iþ1Þ!. In fact

jbmp � bmp 0 jb
1

2
lðJmpÞ

if pA p 0 and

jbmp � tki�1; hl1
�1
ja lðJmpÞ

since bmp and tki�1; hl1
�1

are both in Jmp (this is easy to see, since l1 a mp )
bl1 a Jl1 � Jmp while tki�1; h1�1

a J1 � Jmp and tki�1; h1�1
a tki�1; hl1

�1
a bl1 ).

Moreover

jQpðtÞja ðtki; j � tki; j�1
Þðm�iþ1Þ!

for t a Li
j .

Therefore

jQðtÞjaC 00ððm� i þ 1Þ!þ 1Þðtki; j � tki; j�1
Þðm�iþ1Þ!ð1:12Þ

and similar formulae hold in ½0; tki; j�1
� and in ½tki; j ;T �.
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Considering (1.8), (1.4), (1.11) and (1.12) we have (for t a Li
j )

jtiðtÞ � Ai; i; jj jtiþ1ðtÞ � Ai; i; jj . . . jtmðtÞ � Ai; i; jjaC �
i ðtki; j � tki; j�1

Þðm�iþ1Þ!

with e.g. C �
i ¼ C 0 þ ððmþ i � 1Þ!þ 1ÞC 00 þ ði � 1ÞM ~CCi�1; as a consequence,

since tiðtÞ is the nearest root to Ai; i; j,

jtiðtÞ � Ai; i; jj < 2ð
ffiffiffiffiffiffi
C �

i
m�iþ1
p

Þðtki; j � tki; j�1
Þðm�iÞ!:

Similar formulae hold before and after Li
j , namely

jtiðtÞ � Ai; i; j j < 2ð
ffiffiffiffiffiffi
C �

i
m�iþ1
p

Þðtki; j � tÞðm�iÞ!

if t a ½0; tki; j�1
� and

jtiðtÞ � Ai; i; jj < 2ð
ffiffiffiffiffiffi
C �

i
m�iþ1
p

Þðt� tki; j�1
Þðm�iÞ!:

if t a ½tki; j ;T �.
The same inequalities for the roots tlðtÞ with l < i follow from Lemma 1.11;

thus, choosing a constant Ci ¼ maxf
ffiffiffiffiffiffi
C �

i
m�iþ1
p

; ~CCi�1g we have property Fi and the
induction is complete.

We finally define

Am ¼ fðt; rÞ a ½0;T � � C j for some l a f1; . . . ;mg and j a f1; . . . ; nmg we have

tkm; j�2
a ta tkm; jþ1

and jr� Am; l; jj < Cmðtkm; jþ1
� tkm; j�2

Þg:

In Ai � ðA1 A � � �AAi�1Þ, t a ½tki; j�2
; tki; jþ1

�, 0a j � 2a j þ 1a ni, rðtÞ has at
most 6qi oscillations.

Gathering the estimates and observing that Am contains all the roots of
Pðt; tÞ, we can now show that the total variation of rðtÞ is bounded by a constant
independent from the subdivision.

Indeed, let us more generally consider a continuous function f : ½0;T � ! R
with bounded variation and let G be its graph, m the Lebesgue-Stieljes measure
associated to f and jmj its total variation measure; it is well-known that jmj is a
Borel measure (see e.g. [11]).

Then, if S � ½0;T � � R is a Borel set and g : ½0;T � ! ½0;T � � R is defined as
gðtÞ ¼ ðt; f ðtÞÞ, we define the total variation of f in S as

TVS f ¼ jmjðg�1ðSÞÞ:

As a first remark, it is clear by the properties of jmj that if G � S then

TVS f ¼ TVf :

Moreover, if S is a finite (or countable) union of disjoint Borel subsets, say
S ¼

SN
i¼1 Si � ½0;T � � R, then

TVS f ¼
XN
1¼i

TVSi
f :
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Other useful properties of TVS f include the fact that if S is a segment parallel
to a coordinate axis, TVS f ¼ 0; e.g., if ti; tj a ½0;T � and c; d a R, TVftig�½c;d� f ¼ 0
and TV½ti ; tj ��fcg f ¼ 0. Therefore if S1; . . . ;SN is a partition of ½0;T � � R, where
each Sk is a finite union of rectangles ½tj�1; tj � � ½a; b� (where the segments can be
open, half-open or closed and the second segment can be a half-line), denoting
with intðSkÞ the interior of Sk we get

TVf ¼
X

TVSk
f ¼

X
TVintðSkÞ f ;

and conversely, if f is continous and
P

TVintðSkÞ f < þl then TVf < þl.
We now apply these considerations to our piecewise-linear function r with

S ¼
S

i Ai. Since the graph of r is contained in S as shown above, we have that

TVr ¼ TVS f ¼ TVA1
rþ TVA2�A1

rþ � � � þ TVAm�ðA1 A ���AAm�1Þr

a 36ðC1q1T þ 2C2q2T þ 3C3q3T þ � � � þmCmqmT

þDðq1 þ 2q2 þ � � � þmqmÞÞ;

where D ¼ maxfjtlðtÞj j t a ½0;T �; l ¼ 1; . . . ;mg (and T a 1); but this is what we
wanted to prove, and we conclude. r

Proof of Theorem 1.1. If m ¼ 1, there is nothing to prove.
We then proceed by induction on m. Suppose the theorem true for polyno-

mials of degree smaller than m; let P be a polynomial of degree m and let tðtÞ
be a continuous root of P. We can suppose that the sum of the roots of P is 0
on ½0;T �; let then

F ¼ ft a ½0;T � j t1ðtÞ ¼ 0; . . . ; tmðtÞ ¼ 0g

and let A ¼ ½0;T �nF . A is an open set in ½0;T � and therefore it can be written as a
union of a countable family of intervals fIngn AN, say In ¼ ðrn; snÞ. By Proposition
1.6, we know that tðtÞ has bounded variation: then, given a positive real number
e, for N large enough we have that

X
n>N

TVIntðtÞ <
e

3
:ð1:13Þ

Let us take the total variation measure of tðtÞ and call it again jmj. Since t is
a continuous function, there will be a positive real number d 0 small enough to
have

jmjð½rj; rj þ d 0�Þ < e

6N
and jmjð½sj � d 0; sj�Þ <

e

6N
ð1:14Þ

for j ¼ 0; . . . ;N.
We now consider the set I0 A I1 A � � �A IN : on it the function tðtÞ is abso-

lutely continuous by the induction hypothesis, since it can be seen as a root of
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a polynomial whose degree is smaller than m with coe‰cients of the same class
C ðm2Þ!. Then tðtÞ is also absolutely continuous on the set

[N
n¼0

½rn þ d 0; sn � d 0�;

so we can find a positive real number d such that if a finite union of pairwise dis-
joint intervals ðui; viÞ is a subset of

[N
n¼0

½rn þ d 0; sn � d 0�

of measure smaller than d we have that

X
i

jtðviÞ � tðuiÞj <
e

3
:ð1:15Þ

We take now a finite family of pairwise disjoint subintervals of ½0;T � (say
ðxh; yhÞ, for h a H a finite set) such that the (Lebesgue) measure of

S
hðxh; yhÞ is

smaller than d. We consider three di¤erent categories of subintervals:

(1) Subintervals of type A are such that tðxhÞ ¼ tðyhÞ ¼ 0 (and clearly give no
contribution to the variation);

(2) subintervals of type B are contained in some In with n > N;
(3) subintervals of type C are contained in some In with naN.

We note that the other subintervals intersect F and not both their endpoints
belong to it. We take their first point in F and call it ah and their last point in F
and call it bh: now, ðxh; ahÞ and ðbh; yhÞ are subsets of some In, while (if non-
empty) ðah; bhÞ is of type A: therefore these subintervals can be subdivided into
two or three parts, each of type A, B or C.

We now consider the intervals of type C. They can be subdivided into
three parts (some of which could be empty) intersecting them with ðrn; rn þ d 0Þ,
ðrn þ d 0; sn � d 0Þ and ðsn � d 0; snÞ, respectively: the first and third part will be
called intervals of type C1, and the second part an interval of type C2.

Recalling the estimates we have proved (respectively (1.13) for intervals of
type B, (1.14) for those of type C1 and (1.15) for those of type C2) we now
conclude. r

2. Two examples

2.1. Polynomials of degree 3 with real coe‰cients

We begin with a polynomial

Pðt; tÞ ¼ t3 þ a1ðtÞt2 þ a2ðtÞtþ a3ðtÞ
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where a1ðtÞ, a2ðtÞ and a3ðtÞ are real functions of class C6. As usual, to simplify
a bit the calculations we make a translation to eliminate the second-order term,
and so we can assume that a1ðtÞC 0 (without changing the regularity of the
coe‰cients).

We are given a continuous function tðtÞ that for any t a ½0;T � is a root of P
and a subdivision of ½0;T � by points t0; . . . ; tN : we now show how to bound
the total variation of t on this subdivision. We introduce the auxiliary piecewise-
linear function rðtÞ coinciding with t at points t0; . . . ; tN (whose total variation
will therefore be the same as that of t on this subdivision).

The proof is done by induction also in this case, but we will need only one step
of it. The base case is in fact identical to what is done in the general case in
Lemma 1.9: at the end of this step we have chosen points t1;1 < � � � < t1;n1 divid-
ing the interval in n1 þ 1 subintervals, as many constants A1;1;1; . . . ;A1;1;n1þ1 as
there are subintervals and one constant C1 such that in the interval ½t1; j�1; t1; j�
there always is a root t1ðtÞ of P in the cylinder

jt1ðtÞ � A1;1; jjaC1ðt1; j � t1; j�1Þ2

and that in this interval rðtÞ oscillates 6 times across A1;1; j (but no other constant
in the place of A1;1; j would make it oscillate more times).

To do the first (and last, in this case) step of the induction, we now set
q2 ¼ 22�2�64�3 � 24 and choose new points t2;1 < � � � < t2;n2 among the t1; j’s and
new real constants A2;2;1; . . . ;A2;2;n2þ1 so that the function rðtÞ oscillates q2 times
across A2;2; j in the interval ½t2; j�1; t2; j� (but no other constant would make it os-
cillate more than 2q2 times) outside the cylinders of level 1. This is done exactly in
the same way as before: we add one interval of level 1 at a time, until there is
some constant across which rðtÞ oscillates more than q2 times (or until we reach
the end of the interval): note that every time we add one interval we add at most
q1 ¼ 6 oscillations by the definition of constants at level 1.

Our goal, now, is to choose one of the constants A1;1; j 0 corresponding to
intervals ½t1; j 0�1; t1; j 0 � contained in ½t2; j�1; t2; j� and use its value as A2;1; j, and
show that A2;1; j and A2;2; j satisfy the condition of the thesis (with a suitable
new constant C2) of level 2.

We focus on one interval ½t2; j�1; t2; j�: we take q2 points a1; . . . ; a2768�24 where
sðaiÞ ¼ A2;2; j . We consider the shortest of the two intervals ½a1; a2767�24� and
½a2767�24þ1; a2768�24� and call it J768; we also set b768 equal to a1 or a2768�24, choos-
ing the one of the two points not belonging to J768. We then choose J767 as the
shortest of the two intervals containing 2766 � 24 points in J768 and define b767 as
the endpoint of J768 not belonging to J767, and so on, 768 times until we get to J1
containing 24 point (but not b1). Now, since all the points bj 0 with j 0 < k belong
to Jk, it is easy to see that there will be at least 384 of the points b that are an
increasing sequence, or at least 384 that are a decreasing sequence. We will as-
sume the first, but the proof is the same in the other case.

We call hj 0 the index of the interval of level 1 containing the point bj 0 : the
intervals ½t1;h1�1; t1;h1 �; . . . ; ½t1;h384�1; t1;h384 � are separated by at least one interval
of level 1, since there were at least 24 points between two successive b’s. We com-
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pare the values of A1;1; j 0 for these intervals with A2;2; j: at least half of them will
be above it, or at least half below it; let us suppose that there are at least 192
of them below A2;2; j, and let us renumber their indices again h1; . . . ; h192. Using
Lemma 1.10 we see that we find one index l and three indices m1, m2 and m3 such
that the constants A1;1;hl and A1;1;hmn

satisfy

A1;1;hmn
bA1;1;hl1

� ~CCðbmn � t1;hl1�1Þðm�iþ1Þ!;

where n ¼ 1; 2; 3. Thanks to this inequalities, we can set A2;1; j ¼ A1;1;hl . Lemma
1.11 for our case is simply another way to express the induction hypotheses: if
we fix an interval of index j and consider its constant A1;1; j, for every t there is
a root nearer (in the euclidean distance in C) to the constant A1;1; j than a certain
distance, depending only on the (square of the) length of the interval or (for
points outside the interval) on the (squared) distance from the point to the farther
endpoint of the interval.

It is also evident that at the points bmn the real part of this root will be smaller
than A2;2; j, since the root belongs to a disc fixed by te induction hypothesis
(this for the general case is a consequence of Lemmas 1.12 and 1.13, but here
there is no combinatorics to take into account when i � 1 ¼ 1!).

We can also write explicitely the formula of Lemma 1.14: since a1ðtÞ ¼
�t1ðtÞ � t2ðtÞ � t3ðtÞ and a2ðtÞ ¼ t1ðtÞt2ðtÞ þ t2ðtÞt3ðtÞ þ t3ðtÞt1ðtÞ,

ðt2ðtÞ � A2;2; jÞðt3ðtÞ � A2;2; jÞ
¼ ða2ðtÞ � t1ðtÞðt2ðtÞ þ t3ðtÞÞÞ � A2;2; jðt2ðtÞ þ t3ðtÞÞ þ A2

2;2; j

¼ ða2ðtÞ � A2;1; j � ðt1ðtÞ � A2;1; jÞÞð�a1ðtÞ � A2;1; j � ðt1ðtÞ � A2;1; jÞÞ
� A2;2; jð�a1ðtÞ � A2;1; j � ðt1ðtÞ � A2;1; jÞÞ þ A2

2;2; j

¼ ða2ðtÞ � A2;1; jÞð�a1ðtÞ � A2;1; jÞ þ ðt1ðtÞ � A2;1; jÞ
� ð�a2ðtÞ þ A2;1; j þ a1ðtÞ þ t1ðtÞÞ
þ A2;2; jða1ðtÞ þ A2;1; jÞ þ A2;2; jðt1ðtÞ � A2;1; jÞ þ A2

2;2; j

¼ ½ða2ðtÞ � A2;1; jÞð�a1ðtÞ � A2;1; jÞ þ A2;2; jða1ðtÞ þ A2;1; jÞ þ A2
2;2; j�

þ ðt1ðtÞ � A2;1; jÞð�a2ðtÞ þ A2;1; j þ a1ðtÞ þ t1ðtÞ þ A2;2; jÞ

Now, as in the general case, the conclusion of step 2 of the induction follows.
We remind that t1ðtÞ þ t2ðtÞ þ t3ðtÞ ¼ 0. We can estimate VTA1

rðtÞ and
VTA2�A1

rðtÞ: it remains to estimate VT½0;T ��R�ðA1AA2ÞrðtÞ.
The function rðtÞ � A (A a R) has at most q2 oscillations in ½tk2; j�1

; tk2; j � � R�
ðA1 AA2Þ ( j ¼ 1; . . . ; n2), since ðt; rðtÞÞ a ð½0;T � � RÞ �A1 (see statement F2).

Consider an interval ½tl�1; tl � � ½tk2; j�1
; tk2; j � in which rðtÞ is linear. The graph of

rðtÞ outside A2 is made by (at most) seven segments.
If ðtl�1; rðtl�1ÞÞ, ðtl ; rðtlÞÞ are among the endpoints of them, then they coincide

with ðtl�1; sðtl�1ÞÞ, ðtl ; sðtlÞÞ respectively and being outside A2, sðtl�1Þ ¼ t3ðtl�1Þ,
sðtlÞ ¼ t3ðtlÞ. If ð~tt; rð~tt ÞÞ (tl�1 < ~tt < tl) is an endpoint which belongs to qA2, it
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exists (by the theorem of zeroes) ðt 0; sðt 0ÞÞ, with sðt 0ÞÞ ¼ rð~tt Þ. ðt 0; sðt 0ÞÞ B A2, so
sðt 0Þ ¼ t3ðt 0Þ. Then

supfjrðtÞ þ A2;1; j þ A2;2; jj : t a ½tl�1; tl �; ðt; rðtÞÞ B A2g
a supjt3ðtÞ þ A2;1; j þ A2;2; jj ¼ supj�t1ðtÞ � t2ðtÞ þ A2;1; j þ A2;2; jj
a supjt1ðtÞ � A2;1; jj þ supjt2ðtÞ � A2;2; jj
a 2C2jtk2; j � tk2; j�1

j:

Hence

VT½0;T ��R�ðA1AA2ÞrðtÞa
X
j

2q2 � 4C2jtk2; j � tk2; j�1
ja 8q2C2T :

This achieves the result of Proposition 1.6 in this case; the rest of the proof
follows the model of Theorem 1.1.

2.2. m-th roots

Let us suppose that our polynomial has the simple form

tm � aðtÞ ¼ 0

where a : R ! R is a function of class Cm (nonnegative if m is even). Let us set
tðtÞ ¼

ffiffiffiffiffiffiffiffi
aðtÞm

p
; as an application of our method, we show that the variation of t

on the interval I ¼ ½0; 1� is bounded. We will need a bound on the m-th derivative
of a: let us suppose then that for every t a I we have jaðmÞðtÞjaC.

Let 0 ¼ t0 < t1 < � � � < tN�1 < tN ¼ 1 be a subdivision of I . Consider the
piecewise linear function s : I ! R such that sðtjÞ ¼ tðtjÞ for j ¼ 0; . . . ;N and
sðtÞ ¼ sðtjÞ þ

t�tj
tjþ1�tj

ðsðtjþ1Þ � sðtjÞÞ if t a ðtj; tjþ1Þ. We choose an increasing sub-
sequence 0 ¼ s0 < s1 < � � � < sK ¼ 1 of the tj’s and real constants Aj such that

(1) for every j and every l the constant Aj is di¤erent from tðtlÞ;
(2) for every 0a j < K the function sðtÞ � Aj has exactly m zeros in the interval

ðsj; sjþ1Þ;
(3) the function sðtÞ � AK�1 has less than m zeros in the interval ðsK�1; sKÞ;
(4) for every interval ðsj; sjþ1Þ there is no constant A such that the function

sðtÞ � A has more zeros on the interval than the function sðtÞ � Aj.

This choice is made progressively, starting from t1 and adding one interval
ðtj; tjþ1Þ at a time until there exist one real constant A0 such that the function
sðtÞ � A0 has m zeros, or until we reach tN ¼ 1. The points sj are uniquely deter-
mined (the constants Aj are not).

We now study what happens on each one of the intervals ðsj; sjþ1Þ; let us call
it J. Let us suppose, without loss of generality, that Aj > 0.
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Clearly, also the (continuous) function tðtÞ � Aj has at least m zeros on J;
therefore aðtÞ � Am

j ¼ 0 at least m times in J. But then, as jaðmÞðtÞjaC,

jaðm�1ÞðtÞjaCðsjþ1 � sjÞ
jaðm�2ÞðtÞjaCðsjþ1 � sjÞ2

� � �
jaðtÞ � Am

j jaCðsjþ1 � sjÞm:

We consider two cases, according to the sign of tðtÞ (for any point t a J).

• tðtÞb 0

Let z be a primitive m-th root of unity in C. The m-th roots of Am
j are

Aj; zAj; z
2Aj; . . . ; z

m�1Aj, and clearly for any l ¼ 1; . . . ;m� 1

jtðtÞ � Ajja jtðtÞ � z lAjj;

therefore

jtðtÞ � Ajjm a jtðtÞ � Ajj � jtðtÞ � zAjj . . . jtðtÞ � zm�1Ajj
a jtðtÞm � Am

j jaCðsjþ1 � sjÞm;

from which we get that

jtðtÞ � AjjaC
1
mðsjþ1 � sjÞ:

(The same is obviously true for sðtÞ).

• tðtÞ < 0

First, we show that it is impossible that

Cðsjþ1 � sjÞm a
Am

j

2
:

Indeed, if this were true, we would have

jtðtÞm � Am
j jaCðsjþ1 � sjÞm a

Am
j

2

from which we get tðtÞ > Am
j

2 and so tðtÞ > 0, against our hypothesis.
But then from

Cðsjþ1 � sjÞm >
Am

j

2
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and

jtðtÞm � Am
j jaCðsjþ1 � sjÞm

we deduce that

jtðtÞjaAm
j þ Cðsjþ1 � sjÞm a 3Cðsjþ1 � sjÞm

which implies

jtðtÞja 3
1
mC

1
mðsjþ1 � sjÞ

and

jtðtÞ � AjjaAj þ 3
1
mC

1
mðsjþ1 � sjÞa ð2 1

m þ 3
1
mÞC 1

mðsjþ1 � sjÞ:

(As above, the same is true for the function s).
Since then in any case jsðtÞ � Ajja 5C

1
mðsjþ1 � sjÞ, and by our choice of Aj,

we deduce that the total variation of s on J is bounded by 10mC
1
mjsjþ1 � sjj.

Finally, we sum the contributions of all the intervals and find that the total
variation of s on I , that coincides with the total variation of t on our subdivision,
is bounded by 10mC

1
m, a constant independent from the subdivision: then the

total variation of t on I is also bounded (by the same constant). From here, as
above, absolute continuity follows.
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