Rend. Lincei Mat. Appl. 28 (2017), 747-775
DOI 10.4171/RLM/784

Mathematical Analysis — On the regularity of the roots of a polynomial depend-
ing on one real parameter, by FERRUccIO COLOMBINI, NicoLA ORRU and
Lupovico PERNAZZA, communicated on June 15, 2017.

Alla memoria di Ennio De Giorgi.

ABSTRACT. — We investigate the regularity of functions 7 of one variable such that P(z,7(¢)) = 0,
where P(z,x) is a given polynomial of degree m in x whose coefficients are functions of class
C™"! of one real parameter. We show that if a root is chosen with a continuous dependence on the
parameter, this function is indeed absolutely continuous. From this and a theorem of Kato one
deduces that such polynomials have complete systems of roots that are absolutely continuous
functions.
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INTRODUCTION

The problem of finding a parametrization of the roots of a polynomial whose
coefficients depend on a (real) parameter ¢ has a long story. In the case of sym-
metric operators it has been analyzed by Rellich [10, Par. 1.5]; in the general case
of continuous dependence on the parameter the problem was solved by Kato
[5, Theorems I1.5.1, I1.5.2]:

THEOREM 0.1 (Kato). If P(t,x) is a polynomial of degree m in one indeterminate,
whose coefficients depend continuously on the (real or complex) parameter t, the
unordered m-ple of roots depends continuously on t (in the metric topology of
unordered m-ples, i.e. the minimum distance of all their possible orderings). If the
roots are always real, or the parameter varies on a real interval, it is also possible
to enumerate the roots for every value of t in a continuous way by means of m
continuous functions o;(t) (i=1,...,m).

This theorem cannot be improved in the following sense: it is easy to see that a
continuous enumeration of the roots is not possible in the case of the parameter
varying in a complex domain (e.g., P(x, t) = x> — £). It is also easy to define poly-
nomials that do not admit Lipschitz continuous enumerations of their roots,
even in the case of coefficients depending smoothly (i.e., of class C*) on the
parameters. It is possible, though, to have Lipschitz continuity of the square



748 F. COLOMBINI, N. ORRU AND L. PERNAZZA

root of a non-negative function of class C2, as proved by Glaeser [4]; and to have
Z-Holder continuity if the coefficients are a-Holder continuous, as proved by
Malgrange [7, IV.2.2].

Better results are possible if all the roots are real, i.e. for hyperbolic polyno-
mials. With sufficient regularity of the coefficients, Brohnstein showed in [2] that
Lipschitz continuous roots can be chosen; improved results, with additional reg-
ularity conditions, were given by Mandai in [8], Alekseevski, Kriegl, Losik and
Michor in [1] and [6] and the authors in [3].

Nevertheless, the question of what can be the best possible regularity for any
enumeration of the roots, or even of just one root, is still open. In this paper we
show that if sufficient regularity is asked on the coefficients of the polynomial,
any continuous root (and therefore, for example, any function in a Kato enumer-
ation) is indeed absolutely continuous (for polynomials of degree 2 and 3 Spag-
nolo proved a slightly more precise result in [12]).

The proof is divided in two parts: in the first part, by far the longer one, after
some preliminary reductions, we prove that any such root has bounded variation
(Theorem 1.6); in the second part, by a simple argument, we deduce that it is
indeed absolutely continuous.

A very similar result has been proved using completely different techniques by
Parusinski and Rainer in [9]. An improved result has since been announced by the
same authors (but it is unpublished as yet).

In the last section we include two examples, one for polynomials of degree 3
and one for m-th roots. The proof in these cases is simpler, but in the same vein
of the general case: in this way the reader, if necessary, can follow the proof of
Section 2 considering these cases as a guide.

1. STATEMENTS AND PROOFS
We prove the following
THEOREM 1.1. Let P(t,7) be a monic polynomial of degree m in T whose coeffi-
cients are functions of class C"™" in t € [0, T]. Then the continuous roots of P(t,7)
are absolutely continuous.

It is maybe worth noting that by e.g. Theorem 0.1 such roots always exist.
LEMMA 1.2. In the hypotheses of Theorem 1.1, there exists2 a monic polynomial
0(t,7) of degree m? in t, with real coefficients of class C"" in t, some roots of
which are the real parts Ret;(t) of the roots of P(t,t) (resp. the imaginary parts
Im 7(¢) of the roots of P(t,7)).

ProoOF. It is sufficient to note that the coefficients of the polynomial

I(-*37)
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are separately symmetric functions of the 7;’s and of the 7;’s and are therefore
polynomials in the coefficients of P. O

We fix some terminology and notation that we will use consistently.

DErFINITION 1.3. If nis a positive integer and A4 is a set, an unordered n-ple of
elements of A is an element of the symmetric n-product of A4,

SP"(A) = A"/S,,

that is, an equivalence class of the action of the symmetric group on standard
n-ples of elements of 4. We will denote such an unordered n-ple by [y, ..., a,].

It is clear that the complex roots of a (real or complex) polynomial of degree n
are well represented by unordered n-ples of complex numbers.

DErFINITION 1.4. If @ = [ay,...,a,] is an unordered n-ple of elements of 4 and
b = (by,...,bx) is a k-ple of elements of 4, we say that b is a partial enumeration,
or a subsystem, of a if there is an element («y, ..., a,) in the class of & such that
bi=a; foreveryi=1,... k.

In a maybe more traditional way, if a is the unordered n-ple of complex roots
of a polynomial P of degree n and b is a partial enumeration of @, we will also say
that b are k roots of P, when counted with multiplicities.

If the polynomial P depends on a parameter the same terminology will be
used for unordered n-ples of roots depending on the parameter, if the condition
holds for every value of the parameter, possibly restricting its possible values.

DEFINITION 1.5. Let p: [a,b] — R be a real piecewise linear function defined
on a real interval [a,b], let A € R and let S C R?. The number of times that p
“crosses’ the value A4, that is, attains the value A at some point #y, being smaller
than 4 on one side of ¢y and bigger than A on the other side of ¢y, but with the
point (z9, A) ¢ S, will be called the number of oscillations of p (across A) outside S
(horizontal segments are counted as single points). If p never attains a local max-
imum or minimum at 4 and is not identically 4 on any subinterval, this is in fact
(1 (4) x {4})  ([a, 5] x R)\S].

If we make no mention of S it is to be understood that S = 0, and if we omit
to mention the value 4 it is to be understood that 4 = 0.

We are now ready to prove that Re 7;(¢) and Im 7;(¢) are of bounded variation.
PROPOSITION 1.6. Let
P(t,7) ="+ a1 ()" + ay(1) 7" 2 4 - 4 an(1)

be a polynomial of degree m whose coefficients are real functions a;(t) of class C™
in t. Let a(t) be a real and continuous root of P. Then a(t) is of bounded variation
on [0,T].
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ProOOF. We will roughly proceed as follows: given any subdivision of [0, 7], we
will define a suitable set of “tubular domains” in R x C such that for all values
of ¢ all the roots belong to the union of these domains, and that they behave in
a tame way inside them (i.e., the number of their oscillations inside them is
bounded).

To do this, we apply induction, and indeed most of the proof is devoted to
show how to make the inductive step.

More precisely, at step i we will assume that we already defined “tubular
domains of level i — 17" containing at least i — 1 roots for every value of ¢ (when
counted with multiplicities). We then choose a suitable subsequence of “points
of level i, 7;, among those of level i — 1 and showing that, if we modify some
of the tubular domains defined at level i — 1, and add to them new tubular
domains (associated to each interval defined by the points in 77;), all these
domains together contain at least 7 roots for every value of ¢ (when counted with
multiplicities).

Finally, as the radii of the domains (as functions of the lengths of the inter-
vals) will be sublinear, we will be able to find a bound independent from the
subdivision.

Let then

O=n<tu<t<---<t,=T

be a subdivision 7 of [0, 7], and let p(¢) be the (continuous) piecewise linear
function connecting by segments the points (¢;,a(¢;)) for j =0,...,n.

Clearly, in order to prove that the total variation of p(z) is bounded by a
constant independent from the subdivision, we may suppose without loss of gen-
erality that 77 < 1 (if 7 > 1 it is sufficient to divide [0, 7] into many subintervals
of length smaller than 1 and repeat the argument for each of them).

Let @; (for i = 1,...,m) be the following statement:

“for every h = 1...,i there exist positive integers n; and ¢;, a subset
Th=A{tho =0 tig 15+ -, lk/z.nh} -

of the points of the subdivision (defining intervals L]h = [tk 1> tk,;) for
j=1,...,m), values 4;;; € R where / =1,...,h, j=1,...,n, and a positive
real constant Cj, such that setting 7, , =0 and 1, , ., = fx,, and defining for
h=1,...,i—1
oy ={(t,p) € [0,T] x C|forsome /€ {1,...,h} and j € {1,...,n,}, we have
lo ;o S TS Tk, 40, and |/7 - Ah-,l.,j| < Ch(lkh,m - lk/z,/fz)(m_h)!}v

we have

(1) 7, C Tj- forall h,
(2) for every 4 € R, p has less than 2gj, oscillations across 4 in [ty, ,, t, ] (resp.
less than g, oscillations in [tk , . t, ,, 1) outside o/j U -+ U Zj_y;



REGULARITY OF ROOTS 751

(3) for every ¢ and j there exist / roots of P(z,-) (when counted with multiplicity)
71(1), ..., 7:(t), where the enumeration may depend on j, with

0(t) = Aipj) < Cilt, — i, )™
if e [Zkf./—l J tk,-./]a
[2(1) — Ai1 | < Cilt,; — 1) (m—=i)!
if 1 <1, and
|Ti(t) — Ai ] < Gi(t — lkf,j,,)(mfi)!

ift>n,,l=1,...,i"
REMARK 1.7. The constants C, are bounded by a quantity depending only on /,
on the degree of the polynomial, on the C"-norm of the coefficients and on T.

The integers ¢, depend only on m and /.

We prove that we can carry on our induction until i = m. The final part of the
proof after the base and inductive steps can be found on page 18.

REMARK 1.8. If for some % the graph of p is contained in the union
o) U -+ - U o, in fact we could do without the rest of the sets .« with i > /& (how-
ever, we can also continue the proof as in the general case, since no contradiction
arises).

LEMMA 1.9. @ is true.

PROOF OF LEMMA. Let ¢; = m!; there exist 71 = {#, ,} C {t;} and 4,1, € R
such that

(1) p(2) has at least ¢; oscillations across A411; in [tx, |, t, ]

(2) in the same interval p(¢) has at most ¢; oscillations across 4 for all 4 € R,
while

(3) in the last interval [, , . 1,], p(¢) has at most g; oscillations across 4, for all
AeR:

it is sufficient to consider larger and larger intervals with endpoints on the points
of the subdivision and stop the first time that there is a value in the image of
p across which p oscillates more than g; times; we then choose A4 ; as one
of such values. Indeed, by our definition it is clear that adding a subinterval
[ti—1,] can increase the number of oscillations at most by 1.

But then, by continuity, () also attains the value A ; at least ¢; times
in the same interval. We consider an interval 7, <t <1, and call o, for
u=1,...,q1, q1 points in this interval where a(o,) = A1 1,;.
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For0 <t < T,lett(?),...,t,(?) be the (maybe dicontinuous) roots of P(¢,1),
ordered in such a way that

A1 —n@)] <A — @] < <411 — w(D)]-

We see that

(A — () Ay —72(0) . (A1 — () = P(t, 41,1 )

is a function of class C™ defined in [0,7] and vanishing ¢; = m! times in
[tk 1>tk ;|- By Lagrange’s theorem it follows that for a suitable positive constant
C depending only on the derivatives of the a;’s

|P(t, Avy )| < Cltk,, =ty )™
ifty,,  <t<ty,
|P(t, A11,)| < Clt,, — 1)
if0<r<t,,,, and
|P(r, A1) < Clt =1, )"

if e, <t < T.
As a consequence, we have that the requested inequalities hold:

11 (1) = Ay 1 < VC(t, — tiy )"
ifte [tkl.H , tk]‘,],
o1 (8) — Ayl < VC(ty, — )V
if 1 <, ,,and
11 (0) — Ay 1y < VC(t =1, )™

itz >t .
We now set C; = 2+/C and the proof of @, is finished. O

Let us now show that if ®;_; holds and i < m, also ®; holds.

The sufficiently large value of the positive integer ¢; will be determined later
(see page 757); in particular, we ask that ¢; > 6¢;

We first prove that there exist points 7; = {t,,j=0,...,m} C T | =
{tc, . ,,7=0,...,n,1} and numbers 4;,; € R (these will deﬁne the “tubular
domains” added at level ) such that
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a) p(t) has at least g; oscillations across 4;; ; in [t ,,#, ] outside /1 U --- U
o1

b) for all 4 € R, p(t) has at most 2¢; oscillations across A in [t , &, | outside
oAU U

c) forall 4 e R, in [t , t ,, ] (the last interval of level i) there are at most ¢;
oscillations of p(t) across 4 outside .o} U - - - U of;_.

This is proved in a similar way as for the case i = 1, but taking care that now we
have to choose only among the points in .7;_;. This means that each new interval
can add at most 2¢;_| < ¢; more oscillations: adding one interval at a time and
stopping every time the number of oscillations becomes larger than ¢; defines a
7 that fulfils a), b) and ¢) and, as a consequence, conditions (1) and (2) of @;.

By continuity and since the .«;’s are unions of cylinders it follows that o(7)
attains at least ¢; times the value 4; ; ; in the interval [Zk[_,-fl , tk[‘j}, outside the set
szl U U LSZ/,;] .

We take ¢ in one of the intervals [t . ,,#,,] and points aj,. ..o, (numbered
in increasing order) in which o(7) = 4, ; ;.

For any integer r; if ¢; is large enough we can find 2ir; subintervals Jy;, D
Jair—1 D - +- D J1 and points ﬁj, € Jj, chosen among the «;’s, such that

(1) d(By,Jjr1) = L1(Jy), for j' =2,...,2ir;, where d is the Euclidean distance
and /(J;:) denotes the length of the interval Jj:;

(2) B;: is an endpoint of J;;

(3) in J; there are more than 4¢;_; points oy;

(4) in the interval between f3; and J;/—; there are more than 4¢; points o.

This is done inductively (we will suppose that ¢; is a multiple of 227i4q; |; see also
Fig. 1). First, we define J»;, = [a1, 0,]. We then consider the two subintervals of
a1, oc%} and [oc% 41, %] (note that their union is not the whole of Jy;,); now, f;.
will be the endpoint of J,;, belonging to the longest of the two subintervals, while
the shortest of the two will be Jy;,—1. By our hypothesis on ¢; we can iterate the
construction 2ir; times, fulfilling in this way conditions (1)—(4).

Since for each f; all the f’s chosen after it (that is, those with index smaller
than ;') are on the same side, that is, they are all bigger or all smaller then
B itself (they are indeed all in Jy_), discarding less than half of the f’s
and renumbering them, we can also assume that either f; < f, <--- < f, or

Joir,—1

(651 (o]

4 Qdiyq ag, (= Bair,)

JZiri

Figure 1. The choice of J;,, Jair,—1 and ;. : for every j’, J;» contains more than 2. 4q;
of the points a,.
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By > Py > --- > ;. (to do this we might have to substitute f3;, the last point, with
the other endpoint of J;).

The proof is now specular in the two cases; we will assume that f, <
Br < < By

Note that between two of the f8;’s there are always at least 4¢;; of the a,’s, by
construction; but in no interval of level i — 1 there can be more then 2¢;_; points
oy, (remember that also by construction, no matter what 4 in R we choose, in any
interval of level i — 1 there will never be more than 2¢; | points where p has value
A outside 4 U - -- U 4;_»; this now applies to our constant A4, ; ;): if we take the

left endpoints #;, | » of the intervals of level / — 1 containing the points f, ,, we
have that
(L.1) tki—l,hl—l < tki—l.h] <p < tkH.th
= tkH,/,rl < lki—].hz <p < lki—l,h2+1
<= lki—Lh,‘,.l—l =< [ki—l.hirt_ < ﬁir; < [kffl,h,»,,iﬂ
and also
[tki—].lrl—] vﬁl] cJi.
We recall that all these intervals [t ,, %, ,, .| of level i — 1 containing the
. . . J .
points f3; are subintervals of the same interval of level i.
We compare now the values Ai—l,l,hj/ for [=1,...,i— 1, already defined

on these ir; intervals of level i — 1, with our new value 4;;; of level i; if we
group the intervals according to the number of indices / such that the constants
Aj-1,1,, are below 4, ; ; (or above it, since the I’s are always i — 1 in total) there
will be i groups, therefore at least one group will gather a fraction of at least . 1
of the total number of intervals. Discarding the other intervals and points and
renumbering them again, we can then assume that in all the r; intervals the
number of indices / such that the constants 4;_; B, are below 4; ; ; is the same;
we call this number u. ’

To avoid some very clumsy notation in the following lemma, we reorder the
values A,»_L;?hj, (j/=1,...,r) with respect to / = 1,...,i — 1 so that

s Ll

Ay, < Aicony, <0 < Aictun, < i
and

Aifl,qul,hj/ = Aifl,u+2,hj/ =

> Aicv,ictn, > Aii -

As a consequence of the use of Lemma 1.10 below, repeated i — 1 times (with
K =2C;_;), we can now prove that there are indices

<A< <A <py <o < < iy

between 1 and r; and a constant C depending on C;_;, m and i (that we could
take as 2C;_yri~!) such that
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efor/=1,...,u
Aivin, = A, — C(B;, — fk,-,l,hzfl)wfiﬂﬂ,
when p=1/[/4+1,...,i—1, and
Aiovin, = Aimvin, — C(ﬂﬂq - lk,-,l_,,,;.[,l)(m_m)!,

wheng=1,...,(m—i+ 1)+ 1;
eforl=u+1,...;i—1

Ai-vim, < A, + C(B;, — fk,»fl,/,,:,,l)“"_””’
when p=1,/+1,...,i—1,and

Ai-v1h, < Aicvn, + CN'(,BH
wheng=1,....(m—i+1)!+1.

(m—i+1)!
tki—]./z;'l—l )

q

Lemma 1.10. Suppose given integers r, s with r = 4™s, points f; < --- < f3, such
that

[ki—l,hl—l < Ik <P <t

i—1,h i—1,hy+1

=< tki—l,hz—l =< tki—].lyz <p < tki—l,hzﬂ

S S g Sy, S ﬁr = U gy

and constants A;j € R for j e {1,...,r}; suppose also that there exists a positive
constant K and a root t(t) of P(t,7) such that

K m—i+1)!
|T(Z) - Ajl < 5 (tki—ljlj - tki71,1771)< e

ift € [tki—l,hf—ﬂ tki—l,hf]?

K m—i+1)!
[2(0) = 4 <5 (e, — )"V

ift< Uiy 10 and
K m—i+1)!
|T<Z> - A/" < E(r - tki—l.hj—l)( )

lfl > tki—l.hj'
Then there exist indices A < u; < --- < u, between 1 and r such that for any
ve{l,...,s}

> m—i+1)!
Ay = A, — K(ﬂﬂ‘, - lkfthrl)( o

v

(where K depends only on K, r, m).
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ProOOF. Consider A4i,...,4, and divide them in halves: A;,...4,, and
Ayja41,- -+, Ar. We have that either

m—i+1)!
A > A — rK(ﬁj - tki—l‘hl—l)( .
for j=r/2+1,...,r, or there is §; > r/2 such that
Ay < Ay — VK(ﬂq] . lkifl,hl—l)(n17i+l)!-

In the first case we define A =1, u, =r/2+ v for v=1,...,s and the proof
is complete. In the second case we set p; = 1, reorder A4y,...,4,,,A4z in an
increasing sequence and choose jj, /; (that have to exist in this case) such that
Aj,, A, are consecutive and

—it1)!
Ajl — A, > K(ﬂql - [ki—ljx]—l)(m e :

Now, at least one half of A4y,...,4,,,A; are above A4; or below A;: let us
choose the larger of these two sets, and repeat the procedure.

If we stop before having repeated it m times we define 4 and the y,’s analo-
gously as above, and the proof is completed; otherwise, we have 4m indices

jl; ll,ﬁlvqlv s 7jmvlmvﬁm?qm
such that

(1) (21,411 2 [P2:@2] D+ 2 [Py G

and, foru=1,...,m,

(2) j/l’lﬂ € [ﬁwqﬂL and
(3) the constants 4; and 4,, satisfy

(12) A/;t - Al/t > K(ﬂqﬂ - lki—l,/pﬁll—l)(’n_i+1)!‘

If ¢ is fixed and u > 4/, then the numbers 4;,, 4, are either all > 4;, or all
< Alﬂ/ .

We show that in this case we could find, for a certain ¢, m + 1 distinct roots of
P(t,7), and this is absurd. We argue by induction: if v =1 we have for 1 = §;
two distinct roots, one near 4; and the other near A; (we say that 7; is near A4,
in ¢, and write 7; ~ A4;,, to mean that

K —i+1)!
71 (2) — A11| < E(ﬁél B [ki—l,hﬁ 71)(m o )-

1

Suppose that for v =k we have k + 1 distinct roots 7(7), ..., 7x+1(¢) for t = f;
and that foru=1,...,k

. K m—i+1)!
min(|2,(8y,) = A1, 12u(Bp,) = AD) <5 (Bg, = 1, )"

—1./1131“—1
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and for u =k +1

. K m—i+1)!
min [z (B5,) = Aj | 17w (By,) = Ail) <5 (B = iy, )"

For v=4k+1 and for r=p; we have k+1 distinct roots 7s,..., Txs2.
We find 7; ~ 4, in ¢ if 4;,4; > A; (for u=2,...,k+2), or 1y ~ A4 in ¢ if
A;,, Aj, < Ay, (again, for u=2,...,k +2). Let us consider the first case.

We note that 7; is different from 7, ..., 74,2; otherwise we would have

K m—i+1)!
[21(0) = An <5 (B, =ty )"
and for [71(¢) — 4| (or for [z1(f) — 4;,|) we would have

K m-iv1) _ K (m—it1)!
|Tl(l) - Ai,‘| < E(ﬂqﬂ - tki—l,hﬁ#—l) < B (ﬂql - [ki—l,hl;l—l) )
so that
. m—i+1)!
|4, — Ay < min(| 4, — Ay, |4;, = An]) < K(Bg, =t )",

which is against inequality (1.2).
A similar argument applies to the case when 7y ~ 4, in z and 4,4, < A4,
(> 1).

The roots t1,73,...,Tr2 are then pairwise distinct. When v = m we have a
contradiction. 0
We now fix the value of ¢; choosing
(13) g =22 4 6g,

which is enough to do all the constructions up to now.

LemMmA 1.11. Let t € [0,T] and consider the real numbers Ai—l,l,h/;, (for 1=
l,...,i—1). We can associate to them complex numbers t,(t),...,t;_1(t) which
are i —1 roots of P(t,t) (when counted with multiplicities), such that setting

Ci1=4(i—1)Cforl=1,...;i—1 we have
(1'4) |Tl(l) - Ai—l,l,17;.1| < éi—l(tki—l.h/«__ilﬂ - Zki-1.112171)<’n7i+1)!7

zf‘lki—l./x/«vl—l sI= tki—l.h;uiilJrl’

(1.5) (1) = Aicv,m, | < Cffl(fk,;l,/,mﬂ — )l
fo<t<ty,, _,and

i,
(1.6) 7i(t) = Aicvam, | < G (1 — fk,;l./,,._lfl)(nHH)!a

if‘tki—l.h;_iilﬂ <t<T.
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PrOOF. Let us put
Aj = Ai—ltj,h;_k, Jok=1,...,i—1
and

) (m—i+1)!

R= C(Z‘ki—l,hZFIJrl - [ki—l‘h/-vl—]

if 7.

zl/l
if 0 <1< tki,lh. —1
N

R = C([ _ tkiil‘hllil)(m—iﬂ)!

if ;. <t<T.
We can suppose 4;;; =0 and

i~1,h; +

Arp < Ao < < Ay <05
Ay = Ayo e = - = A1 > 0.

On the other hand, by relations (O),

Ajx > A4;; — R, and so also

A > A;;— R, fork=j+1,...;i—1landj=1,...,u,

Ajx < Aj; +R, andso also

A <A;j+R, fork=j+1,...;i—1land j=u+1,...,i—1.

(1.7)

_ Let us define f’ ={peC:|p—4;;j| <2R}, j=1,...,i—1. We group the
Y; into connected components it is not difficult to use 1nequa11t1es 1.7 to show
that if Y]1 and Y, belong to the same component % and j; < j>» < u, then every
Y with j; < j < ]2, belongs to % too, and so these connected components will
have the form

o---vY, Yypu--vY, ... Y, qu---0Y,

1 P

(a, = u); and similarly, for j; > j» > u+1,
YqulU"'UY/)’l Y’[glJr]U'“UY/){2 ?ﬁqil+lu"'UYﬂq

(By=1i- 1) The two last groups of the rows, f@ 41U U f’% and
Yg 4100 Yﬁ may intersect (and in this case they are put together) Now, by
part (3) of the induction hypothesis ®;_i, for all 7 € [0, T] the set U1 D(4).,, R)
contains a subsystem of «; roots of the polynomial at that same pomt t;, we
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i—1hy,

Figure 2. The disk D(A4; 1,401 R) contains the subsystem of the o; = 3 roots (at point #) of
its connected component. Inequalities 1.7 relate the constants 4;; defined in different
intervals (note that in this picture the real axis is vertical).

deduce (see also Fig. 2) that D(A4; 1,4« R) also contains that subsystem, and the
same is true for D(4; ;,4R), j=1,..., 0. Therefore we can renumber the 7,’s
so that 7; € D(A4; ;,4uR) for j=1,... ;. The same construction allows us to
find a subsystem of o, roots in

D(Aoq+l,ac1+l y 4(“2 - al)R)a

D(Aaz’az, 4(0(2 — O(])R),

and so on. If there is a component containing discs with center both in the left
and right half-plane we have that

D(Aocqfl+1.o<q71+la4(ap — 0p-1 +ﬁq - .Bq—l)R)
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contains both the discs
D(Ay, 41,01, R), ..., D(Ay,i-1,R)
and the discs
D(Ap, \+1,i-1,R), ..., D(Ai-1,i-1, R)

and so o, — 0,1 + B, — B, roots 7;(¢) (when counted with multiplicities). So we
can choose a point in each disk

D(4;,;,8(0p — 0p—1 + By — By-1)R)
forj=o 1+ 1,...;uandj=8,,+1,...,i—1
All these sets of roots are disjoint, as we now show. Indeed,
f]l NR,..., ~o<1 NRC (al,bl),
f’x1+1 NR,..., f,ozg NRC (az,bz),

and by < a»; moreover,
Ajy >A11—R andso 4, —R>A411—-2R>a
and
Ajogy < Ay oy andso Ajy + R< Ay o +R< D
forj=1,...,04.80 D(4;,R) "R C (a1,b;), and

o1

U(D(ALOCHR) NR) C (a1,b1),
J=1

£5)

U (D(A)0, R) A R) C (a2, b2).
Jj=oy+1

Hence the two subsystems of roots are disjoint. The other cases are similar.
We can then put together these roots and obtain a subsystem (7 (), ..., ;-1 (%))
of i — 1 roots of P(t,1). O

As a consequence of the two geometric-combinatorial lemmas 1.12 and 1.13
below, we may suppose also that the following property (<) holds:

(1) if /€ {1,...,u}, and therefore A;_y 1,5, < A, then
Rer(t) < A;jjfort=p, (h=1,...,(m—i+1)+1),

(2) if /e {u+1,...,i—1}, and therefore A;_1,1s, > 4i,
then RCT[(Z) > Ai,i,j for ¢ :ﬂﬂh (h = 1, ey (m —i+ 1)' + 1)

(©)
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LemMA 1.12. Let [t1,...,Tm| be an unordered m-ple of real numbers, let i be
a number <m and S~, ST a partition of {1,...,i}. Suppose given intervals
Xic = [ak, bk] and values xi € Xy, where k = 1,... i, which form a subsystem of
[T1,. .., Tm], and other intervals Dy = [ck, di] such that

(1) ifk e S~ then a, < ¢, < dj <0,
(2) ifke ST then 0 < ¢ < di < by,

and other points yy € Dy, where k=1,...,i, also forming a subsystem of
[‘L’], e ,Tm}.
Then there exists a subsystem (zy,...,z;) of [t1,...,Tm| such that zy € Xy for

all indicesk =1,...,iandz; <0ifkeS™,zx >0ifk e ST

ProOF. Consider first the indices k € S™. If x; < 0 for all such indices we define
zr = X and pass to the indices in S™; otherwise, we will have to find how to
“substitute” the x; > 0 with some well-chosen y; to define the z;’s. To do that,
say x;, >0 and consider y;: if there is no x; coinciding with y;, we define

z;, = yi; otherwise, we will find a chain of values y; = x;,, y;, = X, ..., until
we find y;, # x;, Vj € S™\{i1,..., i, }. Define now

Vi = max{j € {15 nul} | Vi :max{yil7"'7yiﬂl}}
and set z;, = Xj,...,Z;, = Xi, s Ziy = Vi, - All the zj are trivially in X;, and are

negative, if j # ij; on the other hand, note that we have

a;

VS Sy <y, <di, <0< x; < by,

so that z; = y;, also satisfies the required conditions. Then, if v; < 4, define

V2 :max{j € {Vl + 177ﬂl}|ylj :max{yirlﬂﬂ"'ayiﬂl}}

and, analogously as above, set Ziyia = Xiy 2+ 0 Ziyy = Xipys Ziyyy = Vi, - Again,
note that we have

iy S Vigo S Vi = Zigr < Vi = Xiy oy S biy s

thatis z;, , € X;, .,
Vi«

We then check if there are other x; > 0 with k € S™\{i, ..., i, }. If there are,
let x;, ., > 0 be one of them; again, we can define new chains of points y;, ., =
Xipszs Visz = Xigazr -+ Vi where y;, # x;, Vj € S~\{i1,...,i,}, and repeat the
previous argument.

If, after z;’s have been defined for all the x; > 0, there still are indices in S~
for which x; < 0 and z is not defined, we put z; = x; for such k’s. In this way we
exhaust the k € S~ (and we argue symmetrically for the k € S™).

We claim that the points z;, k € S~, are a subsystem of [y, ..., 7,,]. Indeed, all
the values z; are among the 7;’s; and apart from the z; = y;, ’s, they coincide with
a part of the subsystem x;. On the other hand, the values y; have (among the

and z;, , = y;, <0. We repeat these steps until we reach
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z;’s) multiplicities bounded by those of the subsystem yj. In this way we show
that the z;’s with k € S~ are a subsystem; the same is true for the z;, k € S*.
But the former are <0 and the latter are >0, so that their union is also necessarily

a subsystem, and the proof is completed. O
LemMma 1.13. Let [11,...,1,] be an unordered m-ple of complex numbers, i be a
number < m and S~, ST be a partition of {1,...,i}. Let also

Xe=A{p:lp— 4| < R},

where Ay, < 0 ifk € S™, whereas A, > 0 if k € ST, for some positive constants Ry,
and let x;, € Xy form a subsystem of [ty, ..., Ty Similarly, let

Di={p:|p—Arl <R},

with A < 0 if k € S—, whereas A >0 ifke ST and0 < R < Ry Vk. Let Vi € Dy
be a subsystem of [t1,...,Tm|. We suppose that

(1) DR C (Ak—Rk,O) ifkeS™,
(2) DR C (0, 4x + Ri) if k € S™.

Then there exists a subsystem (zy,...,z;) of [t1,...,Tm|, such that
Zk € A;k = {p : ‘p —Ak| < 2Rk},
Rezy <0ifke S™ and Rez, >0 ifk e ST.

PrROOF. Let’s consider first the £’s in S~. If Rex; < 0 for all these indices, we
just set zx = xx, k € S~. Otherwise, let’s choose an x;, with Rex; > 0 (see also
Fig. 3). We build a chain of values

Yip = Xiyy Vi, = xi37~~~;J’iﬂl,1 = xi/,lvyim

such that i1, i, ..., i, € S™ and y;, #x; Vj € S™\{i1, ... 0y}

Figure 3. The definition of the z;’s in a simple case. Here (xi,...,x¢) = (¢,b,a,b,b,b)
and (y1,...,6) = (b,b,b,c,c,c); Rex; >0, so the first chain of indices could be
3,2,4,1,6 (= u;), and y4 has maximal real part among them, i.e. vi =4, v; = 6. We
would then set z; = b, z4 = b, z3 = ¢, then zg = b, z; = ¢, and finally zs = x5 = b.
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As in the previous lemma, let v; be the last index such that
Re y;, = max{Rey;,...,Rey;, },

and let us pose zj, = X;y, Zjy = Xiy, ... 5 Ziy = Xiy s Ziyp = Vi, -
We have

A;, — Ry < A4; —R<Rey; <Rey;, <0<Rex; <4; +Ry,

and thus z;, € X;,.
Then we choose v, such that

RC yivz = max{Re yi\rl+l 1t Re yi/zl }?

and define the z;’s for j =v; +1,...,v,, analogously as above. Again, we will
have that z;, ., =y, z,, € X, , and Rez;, ,, =Rey; <0. We repeat this
construction until we reach Viys check if there are x;’s left with Re x; > 0, and
if this is the case, build more chains; otherwise we set z; = xj for the remaining
indices in S~ (and we similarly treat the indices in S).

The proof that the z;’s form a subsystem of [ty,...,7,] is now completely
analogous to the real case in Lemma 1.12. O

Let us now consider a fixed point 7= f, in the interval [t , 1k \,, .|
p p T

we suppose, which can be done up to a translation, that 4;;; =0. Let
[t1(?),...,7m(t)] be the unordered m-ple of roots of P(t,7): define for /=

L...,i—1
X = {p eC: ‘p — Ai,17/,h2[| < 26[71(ﬂﬂ,7 — Zk’;lvh/tlil)(m—i-ﬁ-l)! =R, = R}
and, as a partition of the set {1,...,i — 1}, let us choose as before

ST = {1,.. . ,u} = {l : Ai—l,lJz/;[ < 0},
S+:{u—l-l,...,i—I}Z{IZAFLL/% >0}.

We now see that by Lemma 1.11 there is a subsystem (xj,...,x; 1) =
(t1y..,7i-1) of [71(2), ..., 7u(2)] such that x; € X; for I =1,...,i— L.
We define also

D, = {p eC: |p — A,-,171’h#p| < CFl(ﬁﬂp — )(mfi+l)! _ R}

i1,y 1
(where C;_ < Cii;:R< R): we have Ai,l,/’hﬂp <0if/I=1,...,u, A,-,L,;,hﬂp > 01if
l=u+1,...,i—1.

By condition (3) of the induction hypothesis @, ;, there is another subsystem
(V15- - i) of [t1(2), ..., Tw(2)] with y; € Dy.
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Notice that
DR = (Ai-1,1n, — R,AH?/,% +R) C (411, — R1,0),

if /€ S~ (and a similar relation holds if / € S), as a consequence of inequal-
ities (00) on page 755 and of the definition of 4; ; ;, which implies that the point
(ﬁ,up)Ai,i,j) ¢ infl-

This means that the two subsystems x;, y; and the discs X;, D; are in the

hypotheses of Lemma 1.13; therefore, there are roots (zy,...,z;1) (a subsystem
of [t1(7), ..., 7,(2)]) such that

zeXi={p:|p—Ai11| <2R},

andRez; < 0if/ € S7,Rez; > 0if/ € ST (that s, property () at page 760 holds).
We define A;,; = Ai-1,1,5, when [ <, and prove that for a suitable constant
C; these values, together with 4; ; ;, satisfy condition (3) of ®@;.
Let 7;(2), 1;41(2), - . ., Tu(2) be the other roots of P(¢,7) on L} (that is, we recall,
tk,,, < t<t,), ordered in such a way that

|Aiij— ()] < |Aiij— i (O] < < |diij — ()]

LEMMA 1.14. There exist functions f;;(t) of class C™, whose C™-norm is
bounded by a constant depending only on the C™-norm of the coefficients of
P(t,7), and bounded functions g; ;(t), whose (common) bound M depends only
on the C%-norm of the coefficients of P(t,t), such that
(1.8)  (zilr) = Aiij)(Tis1 (1) — Aiij) - - - (Tm(1) — Aiij)

= fij() + (71(t) — Airj)gin j(0) + -+ (ri1(8) — Aii1.1)gii1,5(0)-

ProOF. For the sake of simplicity, let’s put in this lemma 4* = 4;; ;. Let
Sn(tiy ..., Ti)

be the sum of the products of i numbers taken in groups of /4, that is the A-th
elementary symmetric function on 7 arguments (where we take Sy =1 if 2 =0
and S, = 0if h > i).

We prove by induction that Sy, (z1(¢),...,7;(f)) can be written in the form

(1.9) SO+ (r1(t) = 4i1 )91 (2) + -+ + (w1 (1) — Ai i1, )gi-1(2),

where f has m! derivatives and the g;’s are bounded functions.
First, we have

Si(zi(t) — A%, ... T(t) — AY)
= S](‘L'](Z) — A*, .. .,‘L'm(l) — A*) — S](T](t) — A*,. .. ,T,;l(l‘) — A*)
= f(0) = (ri(t) = 4irj) — -+ = (11 (0) — Ajimn, ),
where f (1) = —a;(t) — mA* + Z,’;ll (A* — A; ;) is of class C™.
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Suppose now that
Si(zi(t) — A%, ... tp(t) — A")
So(zi(t) — A%, ... tp(t) — AY)

Sho1(ti(t) — A%, ... (1) — A7)
1

can all be expressed in the form (1.9).
It is obvious that S,(7;(¢) —A4*,...,7i_1(f) — A*) can also be written in the
form (1.9); then we have

(1.10) Sp(ti(t) — A", .. Tm(t) — AY)
=Su(ti(t) — A, ...,tm(t) — A7)
= Su(ti(t) =A%, ... 11 () — A7)
—Sici(ni(t) =A%, ... T () — A7)
“S1(zi(t) — A", T(f) — A7)
— Spa(ti(t) — A%, .. 1o (f) — A7)
“So(Ti(t) — AT T(f) —AT) — -
= Si(ti(t) =A%, ... 11 (t) — A7)
“Sho1 (i) — A", T(f) — A7)
and since the product and the sum of functions of the form (1.9) are of the same

form, we can write also (1.10) in the form (1.9). This completes the induction.
The case h = m — i+ 1 is our thesis. O

We also note that the functions f; ; of Lemma 1.14 are real, since they can be
expressed as real polynomials in the coefficients of P(#,7) and in the constants
Ai,l,j-

Now 11(¢), 72(2), .. ., 7i—1 (), 7:(¢) are i roots (when counted with multiplicities)
for 0 <t < T. Note that r,-(ﬁﬂp) =A;;;as a(ﬂﬂp) = A;;; and 7; is the only root
that can assume the value 4, ; ;, since Re r/(ﬂﬂp) # A, forl=1,...,i—1 (by

property ().
Let

Qp(0)=(t=B,)...(t=P,)...(t— B i)
(polynomial of degree (m — i+ 1)!), and

(m—i+1)!41
o(r) = Z fil8, Q%;))

(Lagrange interpolation polynomial); we do this for each f;; given by Lemma
1.14.
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We can write
Ji(0) = [/i;(1) = Q)] + Q(1).

Now, f; ;(t) — O(t) is small since it vanishes in (m — i+ 1)! + 1 points and its
derivative of order (m — i + 1)! 4+ 1 is bounded by a uniform constant depending
only on the C™=+D'+1 norm of the coefficients of P(z, ) (and on the values 4, ;,
that are in turn bounded by the coefficients). Thus

(111) () = (0 < €t =1, )"

for T S U< T e
As far as Q(¢) is concerned, by (1.8) and (1.4), since A4;;; = Air,m, and
ﬂ‘up ¢ [tki—l,h/;l 1 tki*l‘hi.[,]“]’ we have

fis(By)
(€1(B,) — A1 )i s (By) + -+ (1 (By) = Auir Ngri1/(B,,)]

CC”(Z - 1)(ﬁup - kifm)hlfl)(m a :

Hence
- _ 4 (m—i+1)!
f!,_l(ﬁﬂp) < CC”(i _ 1) |ﬁ,up tk, Lhy 71| < C”l
O(By,) By = Bu) - By =B By = B )]

where C"” = CC"(i — 1)2(m=+1! In fact

1
|ﬂyp 7ﬁup/| = El(‘]/‘p)

if p # p’ and
wﬂp - tki—lAh/il—l| < I(Jﬂ,,)

since 8, and 4, [ are both in J, (this is easy to see, since 4 < u, =
B, € JA, CJy, while' Uorpyr € C Iy and te o <ty o <B;)

Moreover

10, (0] < (11, — )"

forze L]

Therefore
(1’12) |Q([)| < C”((m —i+ 1)! + 1)(%’,/ - tkf.,j—l)(m_Hl)!
and similar formulae hold in [0, 7, , ] and in [z, , T].
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Considering (1.8), (1.4), (1.11) and (1.12) we have (for ¢ € L]’)
(1) = Aii | 21 (0) = Api gl on(8) = Aii gl < Gtk = 1, ) "

with eg. Cf =C'+ ((m+i—1)4+1)C"+(i—1)MC;_;; as a consequence,
since 7;(¢) is the nearest root to 4, ; ;,

|T,‘([) — Ai7i,j| < 2(171—i+1 /C' ,'*)<tk,yj o Zk,-_j,l)(m*i)'.

Similar formulae hold before and after L} , namely

|‘L','([) — Ai,i,_j| < 2(",7[4\1/61;)(1/(,;]» . l) (m—i)!

ifte[0,4,,,] and

|T[(t) - A,‘7i’j| < 2(’”74]\/6[;)([ _ lki,/;l)(m_i)!-

ift et ,, T

The same inequalities for the roots 7;(¢) with / < i follow from Lemma 1.11;
thus, choosing a constant C; = max{'”’ﬁVCT*, C;_1} we have property ®; and the
induction is complete.

We finally define

Ay ={(t,p) € [0,T] x C|forsome/ e {l,...,m}and j € {1,...,n,} we have
tkm.j—Z S t S ka.,j+1 and |p - Am,l,j| < Cm(tkrlt./+l - ka.j—Z)}'

In o/; — (%1 U= &/;,1), te [Zk,;,;za Tk
most 6¢; oscillations.

Gathering the estimates and observing that .o/, contains all the roots of
P(t,7), we can now show that the total variation of p(¢) is bounded by a constant
independent from the subdivision.

Indeed, let us more generally consider a continuous function f :[0,7] — R
with bounded variation and let I" be its graph, u the Lebesgue-Stieljes measure
associated to f and || its total variation measure; it is well-known that || is a
Borel measure (see e.g. [11]).

Then, if S C [0, 7] x R is a Borel set and g : [0, 7] — [0, T] x R is defined as
g(t) = (¢, f (1)), we define the total variation of f in S as

TVsf =|ul(g™"(S)).

As a first remark, it is clear by the properties of |x| that if I C S then

,0<j—2<j+1<mn,p(t) has at

i.j+1]

TVsf = TVY.
Moreover, if S is a finite (or countable) union of disjoint Borel subsets, say

S = Ufil S; C [0, T] x R, then

N
TVsf = Z Vs f.

1=i
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Other useful properties of 7V f include the fact that if S is a segment parallel
to a coordinate axis, TVsf = 0;e.g.,if #;,4; € [0, T] and ¢,d € R, TV, 1« (e.a)f =0
and TV, y)x(e;f = 0. Therefore if Si,..., Sy is a partition of [0, 7] x R, where
each Sy is a finite union of rectangles [#;_i, #;] x [«, f] (Where the segments can be
open, half-open or closed and the second segment can be a half-line), denoting
with int(Sy) the interior of Sy we get

TV =Y TVsf =Y TVius)/,

and conversely, if f is continous and ) T'V;ys,)f < +oo then TVf < 4c0.
We now apply these considerations to our piecewise-linear function p with
S = |, . Since the graph of p is contained in S as shown above, we have that

TVp=TVsf =TViyp+TVeprp+-+ TV _(ch &'ty )P

m

< 36(C1q1T +2Cq T +3C3q5T + -+ - + mCyq,, T
+D(q1 +2¢2+ - +mqy)),

where D = max{|7;(¢)| |t € [0,T],/ =1,...,m} (and T < 1); but this is what we
wanted to prove, and we conclude. |

PrROOF OF THEOREM 1.1. If m = 1, there is nothing to prove.

We then proceed by induction on m. Suppose the theorem true for polyno-
mials of degree smaller than m; let P be a polynomial of degree m and let 7(¢)
be a continuous root of P. We can suppose that the sum of the roots of P is 0
on [0, T7; let then

F={te[0,T]|71(¢) =0,...,7,(t) =0}

and let A = [0, T]\F. 4 is an open set in [0, 7] and therefore it can be written as a
union of a countable family of intervals {7,},_y, say I, = (r,,s,). By Proposition
1.6, we know that 7(#) has bounded variation: then, given a positive real number
e, for N large enough we have that

(1.13) 3 TVa(1) <§.

n>N

Let us take the total variation measure of 7(#) and call it again |u|. Since 7 is
a continuous function, there will be a positive real number ¢’ small enough to
have

€ &
(1.14) el ([, +0"]) < oy and ul([s; — 9", 57]) < N
for j=0,...,N.

We now consider the set Iy ul; U--- U ly: on it the function 7(¢) is abso-
lutely continuous by the induction hypothesis, since it can be seen as a root of
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a polynomial whose degree is smaller than m with coefficients of the same class
C(m)! Then 1(7) is also absolutely continuous on the set

N

Ulr +6", 50— 07,
n=0

so we can find a positive real number ¢ such that if a finite union of pairwise dis-
joint intervals (u;,v;) is a subset of

N

U[rn +0', 5, — 0]
n=0

of measure smaller than 6 we have that
e
1.15 D — t(y; i
(1.15) Ei |z (v:) T(u)|<3

We take now a finite family of pairwise disjoint subintervals of [0, 7] (say
(xn, y1), for h € H a finite set) such that the (Lebesgue) measure of | J, (x4, yi) is
smaller than 6. We consider three different categories of subintervals:

(1) Subintervals of type 4 are such that t(x;) = t(y;) = 0 (and clearly give no
contribution to the variation);

(2) subintervals of type B are contained in some I, with n > N;

(3) subintervals of type C are contained in some I, with n < N.

We note that the other subintervals intersect /' and not both their endpoints
belong to it. We take their first point in F and call it a;, and their last point in F
and call it b;: now, (x;,a,) and (by, y;) are subsets of some I,, while (if non-
empty) (an, by) is of type A: therefore these subintervals can be subdivided into
two or three parts, each of type 4, B or C.

We now consider the intervals of type C. They can be subdivided into
three parts (some of which could be empty) intersecting them with (r,, 7, +6'),
(rp+6",s, —0') and (s, — ', s,), respectively: the first and third part will be
called intervals of type Cj, and the second part an interval of type C;.

Recalling the estimates we have proved (respectively (1.13) for intervals of
type B, (1.14) for those of type C; and (1.15) for those of type C;) we now
conclude. O

2. TWO EXAMPLES
2.1. Polynomials of degree 3 with real coefficients
We begin with a polynomial

P(t,t) = ° + a1 (1) + ax ()T + a3(1)
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where a;(t), a>(¢) and as(t) are real functions of class C°®. As usual, to simplify
a bit the calculations we make a translation to eliminate the second-order term,
and so we can assume that «;(z) =0 (without changing the regularity of the
coefficients).

We are given a continuous function 7(¢) that for any ¢ € [0, 7] is a root of P
and a subdivision of [0, 7] by points ,...,?y: we now show how to bound
the total variation of 7 on this subdivision. We introduce the auxiliary piecewise-
linear function p(z) coinciding with 7 at points #y, ..., ¢y (Whose total variation
will therefore be the same as that of 7 on this subdivision).

The proof is done by induction also in this case, but we will need only one step
of it. The base case is in fact identical to what is done in the general case in
Lemma 1.9: at the end of this step we have chosen points 7| < --- <t ,, divid-
ing the interval in n; 4 1 subintervals, as many constants A 1.1,..., 411,441 as
there are subintervals and one constant C; such that in the interval [¢; j_, ;]
there always is a root 7;(#) of P in the cylinder

71 (e) = A11 ] < Cil(tr) — 1)

and that in this interval p(#) oscillates 6 times across A4, ; (but no other constant
in the place of 4; 1 ; would make it oscillate more times).

To do the first (and last, in this case) step of the induction, we now set
¢2 = 222643 .24 and choose new points | < --+ < t,, among the f,;’s and
new real constants 4y 5 1,..., 422 41 SO that the functlon p(2) oscillates ¢, times
across A, > ; in the interval [t2 i1, t2,j] (but no other constant would make it os-
cillate more than 2¢, times) outside the cylinders of level 1. This is done exactly in
the same way as before: we add one interval of level 1 at a time, until there is
some constant across which p(¢) oscillates more than ¢, times (or until we reach
the end of the interval): note that every time we add one interval we add at most
¢1 = 6 oscillations by the definition of constants at level 1.

Our goal, now, is to choose one of the constants A4; 1 ; corresponding to
intervals [t j_1, 11 ;7] contained in [t ;_1,%,;] and use its value as 4, ;, and
show that 4, ; and A, , ; satisfy the condition of the thesis (with a suitable
new constant C,) of level 2.

We focus on one interval [t j_1, 1 j]: we take ¢, points oy, ..., s 4 Where
o(0;) = Az ;. We consider the shortest of the two intervals [o,%ym.04] and
[062767.24.41, da768.04) and call it J7g3; We also set f45 equal to oy or oyes.04, ChoOs-
ing the one of the two points not belonging to J76s. We then choose J7¢7 as the
shortest of the two intervals containing 276 - 24 points in J7gs and define .4, as
the endpoint of J7¢3 not belonging to J767, and so on, 768 times until we get to J;
containing 24 point (but not ;). Now, since all the points f;, with ;' < k belong
to J, it is easy to see that there will be at least 384 of the points § that are an
increasing sequence, or at least 384 that are a decreasing sequence. We will as-
sume the first, but the proof is the same in the other case.

We call /;: the index of the interval of level 1 containing the point f;: the
intervals [ll M1yt ]y o5 [ haga—15 11 hyge) @re separated by at least one interval
of level 1, since there were at least 24 points between two successive f’s. We com-
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pare the values of 4 1 ; for these intervals with 4>, ;: at least half of them will
be above it, or at least half below it; let us suppose that there are at least 192
of them below 4>, ;, and let us renumber their indices again Ay, ..., hj9>. Using
Lemma 1.10 we see that we find one index 4 and three indices y, &, and u; such
that the constants Ay 5, and A |, hy, satisfy

~ m—i+1)!
Avn, = Ay, — C(B,, — l‘1,h,-,171)( "

where v = 1,2,3. Thanks to this inequalities, we can set 4> 1 ; = A1 1,5,- Lemma
1.11 for our case is simply another way to express the induction hypotheses: if
we fix an interval of index j and consider its constant 41 1 ;, for every ¢ there is
a root nearer (in the euclidean distance in C) to the constant 4; ; ; than a certain
distance, depending only on the (square of the) length of the interval or (for
points outside the interval) on the (squared) distance from the point to the farther
endpoint of the interval.

It is also evident that at the points 8, the real part of this root will be smaller
than 4,5 ;, since the root belongs to a disc fixed by te induction hypothesis
(this for the general case is a consequence of Lemmas 1.12 and 1.13, but here
there is no combinatorics to take into account when i — 1 = 1!).

We can also write explicitely the formula of Lemma 1.14: since a(z) =

—n1(t) = wa(1) = 73(7) and ax (1) = 71 ()a(1) + 22(1)73(2) + w3() 71 (1),

(22(1) — A2,2,;)(13(2) — A2,2,5)

= (ax(t) — 11 (1) (22(0) + 13(0))) = Aa2,j(z2(1) + 73(0)) + 43,

= (ax(1) — Az1,; — (11(2) — A2,1,)) (a1 (1) — Az.1,; — (11(2) — A2,1,5))
— Ap j(—ar(t) = Ay1 = (11(6) = A2 7)) + A3 5

= (a2(t) — Ao,1,;)(—ar(1) — A1) + (T1(1) — A2,1,5)
X (—ax(1) + Az1,; + ar(t) + 71 (1))
+ Ar g j(@n (1) + Aaj) + Az (11 (1) = Aa ) + 43 5

= [(ax(t) — Ao1 ) (—ar (1) — Az1 ) + A2 j(@1 (1) + A2 ;) + 43 5 )]
+ (71(1) = A2,1,)(—a2(t) + A2,1, + a1 (1) + 11 (2) + A2.2,5)

Now, as in the general case, the conclusion of step 2 of the induction follows.

We remind that 7,(¢) + 72(¢) + 73(¢) = 0. We can estimate V7, p(¢) and
VT .op,— oy p(2): it remains to estimate V7o 7)xr— (. v.)P(1)-

The function p(7) — 4 (A € R) has at most ¢, oscillations in [tx, |, %, ;] X R—
(fhueh) (J=1,...,m), since (t,p(1)) € ([0, T] x R) — o/, (see statement D).

Consider an interval [t;_1, 7] C [tx, , |, &, ;] in which p(t) is linear. The graph of
p(1) outside .o/ is made by (at most) seven segments.

If (4-1, p(21-1)), (27, p(2;)) are among the endpoints of them, then they coincide
with (-1, 0(t;-1)), (#,0(#;)) respectively and being outside o4, a(#-1) = t3(#-1),
a(t)) = w3(t). If (7,p(7)) (11-1 < 1 < t;) is an endpoint which belongs to d.¢%, it
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exists (by the theorem of zeroes) (¢, a(t')), with a(¢')) = p(). (t',a(")) ¢ ofs, so
a(t') = 13(¢'). Then

sup{|p(t) + A2,1,j + A225| s 1 € [ty 11], (1, p(1)) & o}
< sup|t3(f) + Az1,; + Ao 2 j| = sup|—71(t) — 12(f) + A1, + A2, ]
< sup|ri(7) — Az,1,5] + sup|t2(r) — Az2,j]
< 2G|ty — try |-

Hence

VT, 11 r—(hoamP() < Y202 - 4Gty — iy, | < 8g2CoT.
J

This achieves the result of Proposition 1.6 in this case; the rest of the proof
follows the model of Theorem 1.1.

2.2. m-th roots

Let us suppose that our polynomial has the simple form
™ —a(t)=0

where a : R — R is a function of class C™ (nonnegative if m is even). Let us set
7(t) = \/a(?); as an application of our method, we show that the variation of 7
on the interval I = [0, 1] is bounded. We will need a bound on the m-th derivative
of a: let us suppose then that for every ¢ € I we have |« (¢)| < C.

Let 0=t <t) <---<ity_1 <ty=1 be a subdivision of I. Consider the
piecewise linear function ¢ : I — R such that o(¢;) = 7(¢#;) for j=0,...,N and
a(t) =a(t)) + %(O’(lj.“) —a(t)) if t € (¢;,¢;11). We choose an increasing sub-
sequence 0 = 5o <51 < --- < sg = | of the #;’s and real constants 4; such that

(1) for every j and every / the constant A4, is different from 7(#;);

(2) for every 0 < j < K the function o(¢) — A; has exactly m zeros in the interval
(57, 8j+1);

(3) the function o(#) — Ax_; has less than m zeros in the interval (sx_1,5k);

(4) for every interval (s;,s;+1) there is no constant 4 such that the function
a(t) — A has more zeros on the interval than the function o(¢) — 4;.

This choice is made progressively, starting from ¢, and adding one interval
(t,ti+1) at a time until there exist one real constant A4, such that the function
o(t) — Ao has m zeros, or until we reach ¢y = 1. The points s; are uniquely deter-
mined (the constants 4; are not).

We now study what happens on each one of the intervals (s;,s;.1); let us call
it J. Let us suppose, without loss of generality, that 4; > 0.
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Clearly, also the (continuous) function 7(f) — 4; has at least m zeros on J;

therefore a(7) — A" = 0 at least m times in J. But then as [a™(1)] < C,

la"™=D (1) < C(sj11 — ;)
a2 (1)] < C(sj1 — 5))°

la(t) — A" < C(sj1 —s;)™.

We consider two cases, according to the sign of 7(¢) (for any point € J).

7(1) >0

Let { be a primitive m-th root of unity in C. The m-th roots of 4" a

Aj, (A Cz LMY ;, and clearly for any / = 1,. -1
[7(t) — 4| < [2(2) = {4y,
therefore

[1(6) = 4" < [e(0) = Ay - [e(r) = LAp] - [e(r) = ¢4
e

()" = A" < Clsje1 — )™,

I/\ I/\

from which we get that
[2(0) = A < Co(sj1 — ).
(The same is obviously true for a(¢)).
(1) <0

First, we show that it is impossible that

m A]””
C(Sj.H — Sj) < B
Indeed, if this were true, we would have
m m m A]m
[7()" = 4" < Clsjr1 —5)" < =~

m

from which we get 7(z) > Aé' and so 7(¢) > 0, against our hypothesis.

But then from

m

Clsjr —5)" > =~
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and
[7(0)" = 4" < Clsp — 5)"
we deduce that
lz(1)] < An + Clsj1 —57)" < 3C(s501 — 5))"
which implies
[(0)] < 35Ci(s5;1 — )
and
7(t) = Aj] < Aj + 35 C(s41 — 57) < (20 + 30) Cri(s;11 — ).

(As above, the same is true for the function a)

Since then in any case |o(f) — 4;| < SCm(s]H s;7), and by our choice of 4;,
we deduce that the total variation of oonJ is bounded by IOmCm|s]+1 — 5.

Finally, we sum the contributions of all the intervals and find that the total
variation of g on /, that coincides with the total variation of 7 on our subdivision,
is bounded by 10mCw, a constant independent from the subdivision: then the
total variation of 7 on I is also bounded (by the same constant). From here, as
above, absolute continuity follows.
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