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ABSTRACT. — We study the isoperimetric problem in R” x R* endowed with a mixed Euclidean—
Log-convex measure A = e¥™ dxdy. We prove the existence of an isoperimetric set and we show
some of its qualitative properties.
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INTRODUCTION

The classical isoperimetric problem consists in finding the sets with minimal
boundary measure under a volume constraint or, equivalently, the sets with max-
imal volume and given boundary measure, that are called isoperimetric sets. We
limit ourselves to recalling that the usual approach to this problem consists in
showing existence of minimizers in the class of sets with finite perimeter and in
describing the solutions via suitable symmetrization techniques. Symmetrization
techniques are classical, but the setting of finite perimeter sets and the proof of
the optimality of the ball in R” in this class came much later and were due to
E. De Giorgi, see [14]. We refer to [17, 19] and the references therein for a com-
plete information on the whole subject, in the classical case of Lebesgue measure
on R”. More generally, the same problem can be set in general contexts, such
as differentiable (sub)riemannian manifolds, currents, or Euclidean spaces with
densities, see e.g. [1, 3, 5, 15, 18, 20, 21]. In the latter case, suitable notions of
symmetrization have been devised and applied to the study of properties of other
analytical problems, see e.g. [4, 6, 7, 8, 10, 12, 16]. As a particular case, decom-
posing R” as a cartesian product, R” = R" x R¥, with &,k > 1, mixed densities
can be considered, i.e., measures A on R” arising as product measures on the
factors, A = u @ v, with x4, v measures on R”, R¥, respectively. The isoperimetric
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problem in such a mixed framework has been studied e.g. in [18] with v = #* the
Lebesgue measure on R and y the standard Gaussian measure on R”, relying
on a suitable notion of mixed rearrangement. In the present paper we consider
a mixed density, i.e., a measure 1 = 4 ® £*, where u is a Log-convex measure
on R”. Interest in such framework comes also from the recent proof of the Log-
convex density conjecture by G. R. Chambers, see [9].
Let us come to a description of the content of the present paper. We consider
the Euclidean space R” = R x R, with &,k > 1, whose points are denoted by
= (x, ), endowed with the measure 1 = e¥(") dxdy, where y : R — R is a
C*, convex, even function, and the isoperimetric problem

(1) inf{/ VD a1 (x, y) :/ VD dx dy = m} m > 0.
OF E

As the density of 4 with respect to the Lebesgue measure is regular, the class
2,(R") of sets with locally finite perimeter with respect to 4 is the same as the
classical nonweighted one, and we may cast the isoperimetric problem (1) in this
class as follows:

(2) il’lf{Pg(E) CA(E) = / eV D ax dy = m}, m > 0.
E
where
(3) P,(E) := sup{/ div, Fdi: F e CL(R",R"),|F||, < 1}
E
and
h
iv; JF
div, F Z@ny + ' |x|g)C

In case of regular (say, Lipschitz continuous) boundaries we have the equality

PAE) = [ M0 d s, ).

Our main results concern existence, geometric properties and uniqueness of the
isoperimetric sets. After introducing the suitable weighted Steiner symmetriza-
tion in our setting and discussing the main properties, we show that a symmetric
isoperimetric set exists (up to translations along the y directions). Indeed, every
isoperimetric set is Steiner symmetric with respect to both coordinate spaces.
Moreover, we can prove that the isoperimetric set is unique (up to translations
along the y directions) provided min{/, k} = 1 and that if k = 1 and the mass
m is small enough or if 2 = 1, the isoperimetric set is strictly convex. In order to



ON THE ISOPERIMETRIC PROFILE FOR A MIXED EUCLIDEAN—LOG-CONVEX MEASURE 637

prove the existence of an isoperimetric set, the (classical) idea is to replace each
term of a minimizing sequence by its symmetrized and to show that the new
sequence converges to a set which fulfils the volume constraint. Performing this
program, in our case, relies on the standard Steiner symmetrization with respect
to the subspace {y = 0} and on a weighted rearrangement with respect to the
subspace {x = 0}, which depends on the density iy. Symmetry properties of min-
imizers depend upon the stability of minimizers of the functional J in (1.5), which
allows us to express the weighted perimeter, with respect to weighted symmetriza-
tion, see Theorem 1.8. As a consequence of the first variation formula (2.4) and
the regularity of the density y we get the regularity of the whole boundary of
the isoperimetric sets, see Theorem 3.2. The aforementioned geometric properties
and the uniqueness of the isoperimetric profiles are proved through a careful
analysis of the Euler equation (2.4) as it can be formulated in view of the sym-
metry properties. This is done in Section 3.

1. PRELIMINARIES

In the following we denote by B,(z) the n-dimensional ball with center at z
and radius r. When the center z is the origin we simply write B, instead of B,(0).
If x € R" the h-dimensional ball with center at x and radius r is denoted by
B (x). As before, if x = 0 we simply write B 1f 0 < s < n we denote by A#°
the s-dimensional Hausdorff measure. For every set E C R" and every x € R" we
define

(1.1) E.:={yeR':(x,y) e E} and vg(x):= #*(E,),

where we recall that #* coincides with the outer Lebesque measure in R¥, and
we set

n(E)" = {x e R": vg(x) > 0}.

We assume that the reader is well acquainted with the theory of BV functions
and sets of finite perimeter. Here we just set a few notation. Given a set of locally
finite perimeter E in R” we denote by 0*E its reduced boundary and by vF its
generalized outer normal.

If u is a function in BV (R™), we say that u has approximate limit at z € R” if
there exists #(z) € R such that

lim lu(w) —u(z)| dw = 0.
r—0 Br(Z)

By the Lebesgue differentiation theorem, we know that u =u a.e. in R™. We
denote by

%, = {z € R™ : ui(z) exists}
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the (Borel) set of points of approximate continuity of u. If z € €, we say that u is
approximately differentiable at z if there exists a vector Vu(z) € R™ such that

(1.2) lim lu(w) —u(z) — Vu(z) - (w — z)|
=0 JB,(2) r

dw = 0.

The set of all points z € R” where Vu(z) exists is denoted by Z,. Finally we
recall that the approximate gradient defined in (1.2) coincides #"-a.e. with the
absolutely continuous part of the measure gradient Du. Therefore, the following
decomposition formula holds

Du =Vu¥" + D’u.

For all the other properties of sets of finite perimeter and BV functions needed in
the following we refer to the book [2]. Here, we just recall the following result,
essentially due to Vol'pert, see [4, Th. 2.4], stating that #"-a.e. slice of a set of
finite perimeter E in R” is a set of finite perimeter in R* and relating the reduced
boundary and the exterior normal of E to the ones of its slices. In the following, if
v is any vector in R” we set vy := (vi,...,vy) and v, := (g1, ..., V).

THEOREM 1.1. Let E be a set of finite perimeter in R". Then for #"-a.e.

erRh,

(i) E, is a set of finite perimeter in R¥;
(i) #* 1 (0"E.A(0°E),) = 0;
(iii) for #* '-a.e. y such that y € 0"E, n (0"E), we have
(@) vE(x, ) #0,

gy )
) 0 = ey

In particular, there exists a Borel set Gg C n(E)" such that #"(r(E)*\Gg) =0
and (1)—(iii) are satisfied for every x € Gg.

In view of the above theorem, if E is a set of finite perimeter we may define for
H'-ae. xeR"

(1.3) pe(x) = AV E,).
It is readily checked that pg is a Borel function.
1.1. Steiner symmetrization

Let us now recall the definitions and properties of the Steiner symmetrization with
respect to the subspace {y = 0}. For every E C R" we denote by r(x) the radius
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of a k-dimensional ball in R¥ with measure vg(x), see (1.1). Then the Steiner sym-
metral of E with respect to the subspace {y = 0} is defined as

ES={(x,y) e R":xen(E)",|y| <rx)}.

By construction vg = vgs and A(E) = A(ES). If E = ES we say that E is Steiner
symmetric with respect to the subspace {y = 0}.

By replacing E, with E¥ = {x € R" : (x, y) € E} the Steiner symmetral Es of
E with respect to the subspace {x = 0} is defined similarly.

Next result, see [4, Lemma 3.1 and Prop. 3.5] deals with the properties of the
function vg defined in (1.1).

ProOPOSITION 1.2, Let E C R" be a set of finite measure and perimeter. Then
ve € BV(R") and |Dvg|(R") < P(E). Moreover

vg € WHYRMY if and only if A" '({z € 07ES : vyES(z) =0})=0.

Roughly speaking, the above proposition states that the function measuring
the vertical slices of E is W ! if and only if the boundary of E has no vertical
parts.

It is well known that Steiner symmetrization decreases the perimeter. The
same happens also for the mixed perimeter P, defined in (3). Indeed, this follows
from a more general inequality proved in [4, Prop. 3.4]. In the statement below
pe is the function defined in (1.3).

PROPOSITION 1.3. Let E C R" be a set of finite measure and perimeter and let
g : R" — [0, 0] be a Borel function. Then

(1.4) / g(x)déf’llz/ \/pE )%+ [Vog( )|2dx—|—/ g(x)d|D’vg|
0'E R"

with the equality holding when E = ES. In particular, for any Borel set B C R"

P;(E; B x RY) / (D \/pEs )? + |Vog(x )|2dx+/e‘/’(“")d|stE|
B
= P;(ES; B x R).

Observe that if £ = ES, then vg(x) = wpr(x )k, where w; denotes the mea-
sure of the k d1mens1ona1 umt ball. Therefore in this case we have pg(x) =
ka) * (x) “D/* and P,(E) = J(vg), where the functional J is defined for any
functlon u € BV(R") by setting

(1.5) J(u) = / e‘mx‘)\/l’czcu,%u(x)MA_T2 + [Vu(x))? dx + /h e d| Dol
{u>0} R
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The characterization of the equality cases in the inequality P(E) > P(E*S), where
P(-) denotes the standard perimeter, was initiated in [10] and carried on in [4, 7],
see also [8] for the case of the Gaussian perimeter.

The following result is an immediate consequence of the analogous result for
the Euclidean perimeter established in [4, Th. 1.2].

THEOREM 1.4. Let U C R" be a connected open set and let E be a set of finite
perimeter in U x R* such that P;(E;U x R¥) = P,(ES; U x RX). Assume that
the following two conditions hold:

(i) #" ' ({z € OES : vE(2) = 0} 0 (U x R¥)) =0,
(i) Bg(x) > 0 for #" '-ae xe U.

Then E n (U x RY) is equivalent to a translate along R* of ES n (U x RF).

PrROOF. Let B C U be any Borel set. Since P;(E;B x R¥) > P;(ES; B x RY),
from the assumption P;(E;U x R¥)=P;(ES; U xR*) we have that
P,(E; B x R¥) = P,(ES; B x R¥). By assumption (i) Proposition 1.2 gives that
vE € W,})’CI(U). Thus from Proposition 1.3 it follows that for every Borel set
BCcU

(1.6) / DI g g1 / M\ fpps(x)2 + [Vor () d.
0" En(BxRK) B
We now set for any Borel set B C U
u(B) := P(E; B x R¥), v(B):= P(ES;B x R").

Observe that by Propositions 1.2 and 1.3 we have

W(B) = /B Vs (0 + [Vop(x) dx.

Therefore, equation (1.6) can be rewritten as

/ewxn dyt = /ew<x|> .
B B

Since x4 > v (again by Proposition 1.3) and y > ¢ > 0 from the above equality we
have u = v, hence

P(E; U x R*) = P(ES; U x R").

From this inequality and the assumptions (i), (ii), the result follows by [4, Th.
1.2]. O
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1.2. Weighted symmetric rearrangements

In the sequel, given 0 < s < h, we denote by A; the measure defined by setting for
any Borel set B C R”

/s(B) :/Be‘/’(x)djfs(x).

With this definition in hand we may now proceed to defining the weighted
spherically symmetric decreasing rearrangement of a nonnegative function
u: R" — [0, o] with the property that the level set {x € R” : u(x) > ¢} has finite
Jn measure for every ¢ > 0. To this aim we introduce the function g, : [0, 00) —
[0, o0], defined for 7 > 0 as

w(0) = a({x € RY u(x) > 1)),

which is called the distribution function of u. Then the weighted decreasing rear-
rangement u” of u is the function from [0, o0) to [0, oo] given by

u?(s) = sup{t > 0: (1) > s}

for 0 <s < A4y({u > 0}), u”(s) =0 otherwise. Observe that the function u” is
decreasing and right-continuous, u#(0) = esssup u, and

(1.7) {s>0:u”(s) >t} =[0,p,(1)) forevery0 <t < esssupu.

The weighted symmetric rearrangement of u is the function from R”" into [0, co]
defined as

u*(x) = u#(ih(Bl(i"))) for x € R".

See [6] for a similar definition. Note that (1.7) implies that z,(¢) = u,,(¢) for every
t > 0 and thus for every a > 0

(1.8) /Rh u(x)*di, = /Rhu*(x)“dih.

Most of the properties of the standard decreasing rearrangement are true also
for the weighted rearrangement, by just repeating verbatim the proofs of the
standard case. We present here some useful properties of the distribution function
1, and of the weighted symmetric rearrangement of a BV function u. The first
result, which can be proved exactly as in standard case, see [11, Lemmas 3.1
and 3.2], provides a formula for the derivative of x,. To this aim, given a function
u € BV(R") we set

g ={xeR":Vu(x) #0}, 2°:={xeR":Vu(x) =0},
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PROPOSITION 1.5. Let ue BV(R") be a nonnegative function such that
In({u > t}) < oo for every t > 0. Then for t >0

=({u>t}n ™) / d‘[/ dﬂb,
() = 2n({ }n2,}) {M'w y

and for a.e. t >0

V7
1.9 wi(1) < — / dlp-1
( ) ( ) 0" {u>t} |Vu| :

Moreover,

_Ai{ut =13)

1.10 (1) = forae. teu(2,.).
(110 R (@)
and
(1.11) w(t)=0 forae.te(0,0)\u*(Z).

In the aforementioned paper [11] several fine properties of the symmetric rear-
rangement of a BV functions are established. In the next result we recall a few
ones that are needed below, see Lemma 2.6 (v) and Part I of Theorem 1.2 of [11].

PROPOSITION 1.6. Let u be a nonnegative function in BV (R"). Then, for almost
every t € u*(2.)

(1.12) Ao ur > A {u =1}) =0
Moreover, for almost every t € (0, 00)\u*(2,.)
(1.13)  #"'o{u >ty 02 ) =0 and #" (0 {u>t}n2[)=0

Finally, we make use of a recent, deep result proved by Chambers in [9],
known as the Log-convex density conjecture.

THEOREM 1.7. Let E be a set of finite perimeter in R" with J,(E) = )»;,(B,(h)).
Then

(1.14) In1(07E) = A1 (0BM).
Assume also that

(1.15) W(r) > y(0) for every r # 0.
Then, if the equality holds in (1.14), E is equivalent to B,

Next result is a Polya—Szegd principle for the functional J defined in (1.5) and
tells us that this functional decreases under weighted symmetric rearrangement.
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Its proof follows the argument used in the proof of [11, Th. 1.4] with some extra
complications due to the fact that the integrand in the definition of J depends
also on u.

THEOREM 1.8. Let J be the functional defined in (1.5). Then
(1.16) J(u*) < J(u)

for any nonnegative function u e BV (R"). Moreover, if W satisfies (1.15) and
equality holds in (1.16), then u agrees a.e. with u*.

PrOOF. Step 1. We start by rewriting the functional J as follows:
~ 1 _
J(u) = J(u) + ko / e‘/’(‘x‘)u(x)% dx,
{u>0}

where we have set

J(u) :—/ e‘”(‘x‘>(\/k2w,%u(x)¥ + |Vu(x)|2 _ kw,%u(x)%l) dx
@ll

+ / eV M| Dsul.
R/’\@u

Since from (1.8)

(1.17) / e‘/’(lx‘)u*(x)kk;'l dx = / e'/’“xl)u(x)% dx < oo,
{u>0} {u>0}
in order to prove (1.16) it is enough to show that

(1.18) J(u*) < J(u)

To this aim we define a function B: (0,00) x [0, c0] — [0, 1] setting for 7> 0,
0<s<

0 if s=0,
B(t,s) = 4 R0l + 52 — ko7
o k g k if 0 <s< o0,
1 if s = o0.

It is easily checked that for every ¢ > 0 the function B(z,-) : [0, 00] — [0,1] is
strictly increasing. Moreover the function C(z,-) : [0, 1] — [0, oo], defined by set-
ting for r € [0, 1]
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is strictly decreasing and strictly convex. To prove the latter claim let us calculate
fort>0and 0 <r<1

oC 1 1

o B 0 B B )

Since [B(r,-)]”" is strictly increasing, the claim follows by observing that the

function
1 Vi

S — = s

2
§204B(t, ) o /y]% 2 Vl%
1

where we have set y, = kot
tion v € BV (R"),

kLo . .
*, 1s strictly decreasing. Let us now set, for a func-

[Vo(x)| if xe 2],
gv(x) = .
+ 00 otherwise.

Then, using the coarea formula for BV functions, J(u) can be rewritten as

J(u) = / e B(ia(x), g (x))d| Dul| + / "D Dy

R”\@,,

Du
o0
= dz/ e'/’“"l)B(it(x), gu(x)) da"!
0 o{u>t}n2,

A
0 O{u>1}1\2,

Thus, since for a.e. t € (0, o)
AN 0 Hu> 3 A {a=1})nE,) =0,

recalling the definition of g, and B we have

(1.19) Ju) = /OOO dt/a*{ B0 dia

Step 2. From Jensen’s inequality we have that for a.e. t > 0
(e f  Braydna)< [ cBg) di,
0" {u>t} 0" {u>t}

hence, recalling that C(z,-) is strictly decreasing, we have

(1.20) ]{*{ Bt a2 (s ][ C(t, Bt u(x))) din 1 ).

o {u>1}
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Recalling the definition of g, and B and (1.9), we have that for a.e. 7 > 0

e f B )

B C71 (Z, ]g*{u>r} ﬁdih_l)

S f i) a0
o fu=1y [Vl X9y 45
fc? “{u>1} |V | h—

1 (0" t A1 (0 H{u* > ¢
> p(p, @A)y p( a0 > 1))
_qu(t> _qu(t)
where the last inequality follows from the isoperimetric inequality (1.14). Thus,

using the representation formula (1.10), (1.12) and the fact that |Vu*| is constant
A#"1.ae. on {u* = t}, we conclude that for a.e. t € u*(Z;)

(1.21) c—l(z, ]{*{M C(t, B, g,,(x)))dih,1> > B(1,[Vi"| o)

= B(t,9u )0 (ur -

If instead ¢ € (0, )\u (2,.), from the second equality in (1.13) we have that
gu(x) = oo for %’h -a.e. x € 0*{u > t}, therefore C(t, B(t,g,(x))) = 0 for #"~!
a.e. x € 0"{u > t}. Thus, recalling that C~'(#,0) = 1 and using the first equality
n (1.13), we have

(122) Cil ([, f C(t,B(t,gu(x)))dih_]) =1 :B(t7gu*)‘ﬁ*{u*>l‘}'
{u>t}

Thus, from (1.21) and (1.22), using (1.20) and the isoperimetric inequality (1.14)
again, we get that for a.e. 1 > 0

/ B(t, gu(x)) disy = / B(t, gu- (x)) din1.
0" {u>t} 0" {ur>t}

From this inequality, recalling (1.19), inequality (1.18) immediately follows.

Finally, let us assume that condition (1.15) holds and that J(u) = J(u*). By
(1.17) this equality implies that J(u) = J(u*). At this point, from the argument
we just used to deduce inequality (1.18), it is clear that for a.e. £ > 0

It (0 {u > 1Y) = o (07 {u" > 1}).

Thus, from Theorem 1.7 we get that for a.e. ¢ > 0 the level set {u > ¢} is a ball
centered at the origin. At this point it is not too hard to show that u coincides
A" ae. with u*, see the proof of [11, Lemma 4.1] for the details. O
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2. EXISTENCE AND THE FIRST VARIATION FORMULA

In this section we prove the existence of an isoperimetric set with respect to the
weighted volume A(E) and the weighted perimeter P;(E).

THEOREM 2.1. For every m > 0 the infimum in (2) is attained.

Proor. Fix m >0 and let E; be a minimizing sequence for the problem (2).
First, we perform a Steiner symmetrlzatlon of codimension k of the sets E; and
denote by EJS the corresponding Steiner symmetrizations. By Proposmon 1.3,
we have that for every j

(2.1) ME) = MES) =m and P,(ES) < P,(E).

Moreover, by Proposition 1.2, setting v; = vg,, the sequence v; is bounded in
BV(R") and by (1.8) and (1. 16) we have also that

/Rh v dly, = //1 vidiy,  J(v)) < J(y),

where v (x) is the weighted symmetric rearrangement of v;. From these relations,
recalling (2.1) and setting for every j

Fr={(x,5) € R" x R* : | /" < v} ()},

we conclude that Fj is a mlnlmlzmg sequence for the problem (2). Since the se-
quence v/ is bounded n BV(IRQ ) we may assume without loss of generality that
the functions vf converge in L} (R") to a nonnegative function v € BV (R").
Therefore, by well known lower semicontinuity results, see for instance [13, Th.

1.1], we may conclude that

J(v) < liminf J(v).

/4»%

In turn, setting F := {(x, y) € R" x R¥ : w;|y|* < v(x)}, the above inequality
can be rewritten as

P;(F) < liminf P,;(F)).

J—= 0

Therefore to conclude that F is a minimizer of (2) we need only to show that F
satisfies the mass constraint 4(F) = m. Since the functions v/ converge to v in
L} (R") this equality follows if we show that there is no loss of mass at infinity

along the minimizing sequence Fj, i.e., for every ¢ > 0 there exist R, > 0 and a
positive integer j, such that

/R/I\Bun ew(lxDuj*(x) dx <¢ forevery j > j,.
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To prove this we argue by contradiction assuming that there exists ¢y > 0 such
that for every R > 0

(2.2) / " e‘”(l"bvj* (x)dx > ¢ for infinitely many ;.
R\ By

Observe that given R, since v/ (x) = v/ (4 (B‘(f‘))) and v/ is decreasing, we have
for every j ' ' '

m= [ e‘/’“x‘)v;‘(x) dx > e‘“o)thhvf(/lh(B%))).
- . .

Thus, from this inequality, for every j for which (2.2) holds we get

1 -
Py(Fy) =J(v]) = kw,‘(/ e‘/’“x‘)v;‘ (x)% dx
{v;>0}

i X * * —1
> kawy, / " e‘p(l"va (x)(v; (x)) *dx
{v>0}\B}

1
kwkey 1 eV, R\
> — k(h) - ka;ﬁf?o( h )A.
vi (An(Bg))k

Since the perimeters P;(F;) are bounded, this inequality is clearly impossible if R
is sufficiently large. This contradiction concludes the proof. O

REMARK 2.2. Note that in the proof of Theorem 2.1 we have shown that for
every m > 0 there exists an isoperimetric set S which is Steiner symmetric with
respect to the subspace {y = 0} and such that

(2.3) S={(x,y) e R" x R¥: | y|* < vs(x)}.
Observe that S is also Steiner symmetric with respect to the subspace {x = 0}.

If the boundary of the isoperimetric set £ minimizing (2) is a manifold of class
C?, then a standard argument, see for instance [19, Sec. 17.5], shows that there
exists A € R such that

(2.4) Hop + Vi - vi = A,

where Hyg denotes the mean curvature of E, i.e., the sum of the principal cur-
vatures of JE. Note that, as iy depends only upon x, the inner product is in the
horizontal space R”.

On the other hand, the regularity of the isoperimetric sets for the mixed perim-
eter can be deduced from De Giorgi’s theory of minimal sets of finite perimeter.



648 N. FUSCO AND D. PALLARA

The precise result is given in the theorem below. Note that in the following, when
dealing with a set of finite perimeter £, we always tacitly assume that £ is a Borel
set such that its topological boundary ¢ E coincides with the support of the perim-
eter measure, 1.e.,

(2.5) 0E={zeR":0< L"(EnB(z)) < w,r" for every r > 0}.

The fact that a set of finite perimeter has always a Borel representative satisfying
(2.5) is a well known fact, see for instance [19, Prop. 12.19]. In the following,
given any Borel set B C R” we denote by dim 4 (B) its Haudorff dimension.

THEOREM 2.3. Let E be a minimizer of the isoperimetric problem (2). Then its
reduced boundary 0*E is a manifold of class C*. Moreover dimy,(0E\0'E) <
n—38.

PrROOF. Let G be a set of finite perimeter and fix R >0 such that
A" 1(6"G n Bg) > 0. Observe that there exist two constants gy and Cy depend-
ing only on R and y/(R) such that for every o € (—ay,a9) we can find a set of
finite perimeter F such that GAF CC By and

MF)=MG)+a, |P;(G;Bg)— P,(F;Br)| < Cylal.

Indeed, this fact can be proved arguing exactly as in the case of standard volume
and perimeter, with the obvious modifications, see for instance the proof of
[19, Lemma 17.21].

Then, arguing again as for the standard perimeter, see [19, Example 21.3], it
is not too difficult to show that if E is a minimizer of the constrained problem
(2) and Bg is a ball as above, there exists a constant M depending only on R
and Y(R) such that if B,(z) C Bg and F is a set of finite perimeter such that
EAF CC B,(z) one has

(2.6) Pi(E; Bi(2)) < Piy(F; Bi(2)) + M|A(E) — A(F)|.

In turn, given a ball B,(z) C Bg, taking F = E\B,(z), with 0 < p < r and letting
0 — r, from (2.6) one easily gets that for any B,.(z) C Bg

(2.7) P,(E;B.(z)) < Cyr"!

for some constant C; depending, as before, only on R and (R).

Let us now consider a set F' of finite perimeter such that EAF CC B.(z).
Denote by m(r,z) and M (r,z) the minimum and the maximum, respectively, of
the function e¥(*) on B,(z). From (2.6) we have

m(r,z)P(E; B(2)) < M(r,2) P(F; B,(2)) + Car”,

for some positive constant C, depending only on R and y/(R). Therefore, recall-
ing (2.7), we have
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M(r,z) — m(r,z)
M(r,z)
< P(F; B,(z)) + CrP(E; B,(z)) + Cor" < P(F; B,(2)) + yr",

P(E;B/(z)) < P(F;B:(z)) + P(E; B,(2)) + Cor”

where also y depends only on R, y(R) and y/'(R). In conclusion, we have proved
that E is a y-almost miminimizer for the perimeter in Bpg, that is, for any ball
B,(z) C Br and for any set of finite perimeter F with EAF CC B,(z) the in-
equality

P(E; B:(2)) < P(F; By(z)) + yr"

holds. From this minimality property we may conclude, see [22, Th. 1.9] or also
[19, Th. 21.8 and 28.1], that 0*E is a C"* manifold for every 0 < o < 1/2 and
that dimy (0E\0"E) <n — 8. Moreover 0"E satisfies (2.4) in a distributional
sense, 1.e.,

divvF +Vy - vE=A ond'E

for some Lagrange multiplier A € R. Thus, standard elliptic regularity results
imply that indeed 6*E is a C>* manifold. Then, another standard bootstrap
argument yields that 0" E is of class C*. O

If the minimizer is Steiner symmetric with respect to both subspaces {x = 0}
and {y = 0} the above regularity result can be improved as follows.

COROLLARY 2.4. Let E be a minimizer of the isoperimetric problem (2). Assume
that E is Steiner symmetric with respect to both subspaces {x = 0} and {y = 0}.
Then

(2.8) (OE\O"E)n{(x,y) : x #0and y #0} = 0.
Moreover, if h,k < 6, then OE is a C* manifold.

PROOF. We argue by contradiction assuming that there exists (xg, yo) € dE\0"E
with both xy and y; not zero. Since E is Steiner symmetric with respect to the
subspace {y =0} all points (xg, y) with |y| =|yo| belong to the singular set
OE\0"E. In turn, since E is also Steiner symmetric with respect to {x = 0}, the
set {(x, ) : |x| = |xol,|y| = |»o|} is contained in JE\0"E. By Theorem 2.3 this
is impossible since the Hausdorff dimension of this set is (h— 1)+ (k—1) =
n — 2. This contradiction proves (2.8).

Assume now that /1, k < 6 and that the singular set is not empty. Then n > §
and from (2.8) it follows that dE\ 0" E contains only points of the type (0, yo) with
¥o # 0 or (x0,0) with xo # 0. So let us assume that (0, o) is a singular point for
some yo # 0. Then the set {(0, y) : |y| = |»o|} is also contained in the singular
set. But this set has dimension & — 1 and since 27 < 6, k — 1 > n — 8, which is im-
possible by Theorem 2.3. The same argument shows that also the points of the
type (xo,0) cannot be singular. O
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3. PROPERTIES OF THE ISOPERIMETRIC SET

In this section we assume that the function  satisfies the assumption (1.15). With
this assumption in mind we investigate the properties and the uniqueness of the
isoperimetric sets, that are the sets minimizing (2). To this end we start with the
two-dimensional case, that is 7 = k = 1, where the arguments are similar, but
simpler than in the general case n > 3.

THEOREM 3.1. Let h=k=1 and m > 0. Up to a vertical translation, every
isoperimetric set E with A(E) =m is a C*, bounded, strictly convex set, Steiner
symmetric with respect to both coordinate axes. Moreover E is unique.

PRrOOF. Given m > 0, let S be an isoperimetric set with A(S) = m Steiner sym-
metric with respect to both coordinate axes as in (2.3). By Theorem 2.3 the
boundary of S is a C* manifold. Since S is Steiner symmetric with respect to
both axes, it is a connected set and since its Euclidean perimeter is finite, S is
also bounded.

Therefore, there exist two even BV functions, f :(—a,a) — (0,00) and
g:(=b,b) — [0,00), such that for every x € (—a,a) and y € (—b,b)

Se=(=f(x),f(x), §"=(=9(),9(1))-

Note that the functions f and g are both decreasing when restricted to the inter-
vals (0,a) and (0,b), respectively. Moreover, from the first variation formula
(2.4) we deduce that these functions satisfy the equations

(3.1) "= )L )+ (2P = A+ f(x)P)
and
(3.2) —g" + ¥ (g1 +9g' (M) = Al +g' (M),

respectively, on any interval where they are smooth. Observe also that if the nor-
mal at a point (xg, yo) of the boundary of S is not horizontal, then f(xy) = yo
and f is C* in a neighborhood of xy. Similarly, if the normal at (xy, yo) is not
vertical, then g(yy) = xo and g is C* in a neighborhood of yy.

Since S is smooth the exterior normal at the point (g(0),0) is (1,0). Therefore,
¢g is smooth in a neighborhood of 0 and since 0 is a maximum point for g we have
g'(0) =0, g”(0) < 0. Thus, from (3.2) we have

¥'(9(0)) — A =g"(0) <0.

Hence, thanks to assumption (1.15) we have that A > y/'(g(0)) > 0.

Let us now assume that at a point (xo, yo) € 0S5, with xo € (0, a), the exterior
normal is vertical. Then f(xy) = yo, f is smooth in a neighborhood of x(, and
f'(x0) = 0. Therefore, from (3.1) we obtain f"(xy) = —A < 0. Thus X is a local
strict maximum and this is impossible since f is decreasing. This shows that,
except for the points (0, +5), the normal to the boundary of S is never vertical.
In turn, as observed before this yields that g € C*(—b, b).
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Moreover g’ # 0 in (0, b). In fact if there were yo € (0, b) such that g’(yo) = 0,
then also ¢g”(yg) = 0, otherwise yy would be a strict local minimum or maximum
and this is impossible since ¢ is decreasing. Then from (3.2) we would get that

¥'(g(r0)) =A

and thus by the uniqueness of solutions to the equation (3.2) we would conclude
that ¢ is constant, hence S is a rectangle. But this is impossible since JS is
smooth. So g’ never vanishes in (0,5), hence f is C* in (—a, a).

Finally, observe that using again (3.2) and recalling that A > 0, we get that for
every y # 0

(3.3) 9" =¥ (g1 +g' (M) - Al +g' (1D
< (¥'(9(0)) — A)(1 +¢'(»)*) <0.

Thus g is strictly concave, hence S is strictly convex.

Let us now show that S is the only isoperimetric set Steiner symmetric with
respect to the x axis satisfying (2.3). We argue by contradiction assuming that
there exist two solutions f> and f; of (3.1) defined in two intervals (—az,a»),
(—ay,ay), respectively, and corresponding to two isoperimetric sets with the
same mass. From the regularity of the isoperimetric sets we have that f)(0) =
/{(0) = 0 and thus from the uniqueness of solutions of (3.1) we deduce also that
/> (x) = f{(x) for every x such that |x| < min{a;,a,}. Therefore, since fi(a;) =
folaz) =0 and

ay az
v, /1 ()2 W(x) v
e 1+ fl(x dx—/ e 1+ £ (x)” dx,
/0 {(x) A \V 5 (x)

we conclude immediately that the two functions f; and f; coincide.

Let us conclude the proof by showing that S is the unique isoperimetric set up
to vertical translations. Indeed, if E is another isoperimetric set with the same
mass as S, arguing as in the proof of Theorem 2.1 we first consider the Steiner
symmetrization E° of E with respect to the x axis. Then,

ES ={(x,):2|y| <ve(x)},

where vg is defined as in (1.1). Replacing vg by its weighted symmetric rearrange-
ment vy, we set

(3.4) Fi={(xy) : 2[y[ < vp(x)}.
Since A(E) = A(ES) = A(F) and, by Proposition 1.3 and (1.16),
P;(E) = P;(E®) = P(F),

we conclude that indeed all the previous inequalities are in fact equalities.
Moreover, since F is Steiner symmetric by construction, F coincides with S.
Note that from the equality P;(ES) = P;(F) we have by Theorem 1.8 that
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ES =F =S. Finally, P,(ES)= P;(E) and both assumptions (i) and (ii) of
Theorem 1.4 are satisfied, since vf5 =0 only at (+a,0) and vg(x) =2f(x) >0
for each x € (—a,a). Thus, E is a vertical translation of ES, hence a vertical
translation of S. O

We now consider the general case n > 3. In this case our result reads as
follows.

THEOREM 3.2. Letn >3 and m > 0. Up to a translation in the y direction, every
isoperimetric set E with J(E) =m is C*, bounded and Steiner symmetric with
respect to both coordinate axes. If h =1 or k =1, E is also unique. Moreover, if
k=1 and m < my, for some my > 0 depending only on n and \, or if h =1, E is
strictly convex.

PROOF. Step 1. Given m > 0 let S be an isoperimetric set with 4(.S) = m, Steiner
symmetric with respect to the subspace { y = 0} and satisfying (2.3). By Corollary
24

(3.5) A = 0S\((R" x {0}) U ({0} x R¥)) is a C* manifold.

Let us now consider the function vg = vg. The support of vy is either a closed ball
of radius a or the whole R and from Proposition 1.2 we have vg € BV(R").
Moreover, since vg = v§ the function vg depends only on |x|. Therefore, there ex-
ists a function r : (0,a) — (0, o), with @ = oo if the support of vg is R”, such that
vs(x) = wyr(]x])* for every x € R", 0 < |x| < a. Note that r € BV,.((0,a)) and
that r is decreasing, since vs = vg. Moreover, since the manifold .# in (3.5) is
smooth the extended graph of r over the interval (0,a) is a C* curve. Let us
denote it by T,.

If (x0,y0) €3S, 0< |xo| <a, and v3(xg, yo) #0, then |yo| =r(|xo|) and
ris C* in a neighborhood of |xyg|. Moreover, the coordinates of the points
(x, y) € . verify the equation |y|* — r2(|x|) = 0 in a neighborhood U of (xo, yo).
Therefore the exterior normal vector field to S N U is given by

(= (XD (1x1), )
(r(1x)) > (1) + |

vy, y) =

Since the mean curvature Hpg is equal to div vS, taking the divergence of the right
hand side of the above equality and using the fact than |y|* = r%(|x|) on S N U,
the first variation equation (2.4) becomes

Mo (h=1'(o)
3o 1+ o(1+r(0))'"
(k—1) V(e _

)

Q@D (1)

where we have set o = |x|.
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Let us now assume that at a point (gy,00) € I', the normal to I, is vertical.
Then r(gy) = ao, r is smooth in a neighborhood of gy and r'(gy) = 0, (o) < 0.
However, it cannot be r”(99) < 0 because in this case r would have a strict local
maximum and this is impossible because r is decreasing. Hence, r”(g9) = 0 and
from (3.6) we have

(3.7)

Therefore, if k> 1, from the local uniqueness of solutions of equation (3.6)
we conclude that r is constant in the interval (0,«). Similarly, if k& =1, from
(3.7) we have that A =0 and thus, again from the local uniqueness of solu-
tions of the equations of (3.6), it follows that r is constant in the interval
(0,a) and thus ¢ must be finite. But if r is constant the points (x,y) with
|x| = a, |y| =r(a) are singular points of S and this is impossible since these
points form a set of Hausdorff dimension n — 2. This proves that the normal
vector to I', is never vertical. Thus I', coincides with the graph of a smooth
decreasing function ¢ : (0,5) — (0,a), with b possibly equal to +oo, such that
g(r(e)) = o for each p € (0,a). Moreover, arguing as in the proof of (3.6) we get
that ¢ satisfies the equation

4" (h—1)
59 (1+¢'@» g@)1+g' (@)
(k=1)g'e) , W) _

Co(149@)" (1 g@)

Observe that if gy € (0,b) then g'(g9) < 0. To prove this we argue as before
observing that if ¢g’(gy) = 0 then necessarily also g”(gy) = 0 and thus from (3.8)
we obtain

(h—1)

g(a0) A

+'(9(00))

Therefore, by the local uniqueness of solutions of equation (3.8) it follows that g
is constant in the interval (0, ») and thus » must be finite. But if g is constant the
points (x, y) with |x| = ¢g(b), |y| = b are singular points of S and again this is
impossible since these points form a set of Hausdorff dimension n — 2. This shows
that g’ < 0 in (0,b) and thus the normal to I, is never horizontal. In turn, this
implies that r is C* in the interval (0, a).

Finally, let E be any isoperimetric set with the A(E) = m. Arguing as in the
final part of the proof of Theorem 3.1 we first construct the Steiner symmetri-
zation ES of E with respect to {x =0} and then the set F defined as in (3.4).
Again, since P;(F) = P;(ES) = P;(E), from the first equality we get that ES = F.
Then, we consider the function r such that vp(x) = wer(|x|)* for every x e R”.
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Since by the previous analysis r is C* in (0,a) we have

A"V {(x,y) € 0°F : x| < a,vF(x,y) =0}) = 0.

) _y
Thus, by Theorem 1.4 we conclude that E is a vertical translation of F.

Step 2. Let us now prove that S is bounded. This follows if we show that both
intervals (0, a) and (0, b) are bounded.

To prove that « is finite, let us first consider the case k = 1. In this case, if
a = +o0, then from Proposition 1.3 we get

Pi(S) = z/w VD14 p(|x]) 2 dx = oo,

which is impossible. So, let us assume that £ > 1. If @ = +o0, then r(p) — 0 as
0 — +oo, since otherwise, again by Proposition 1.3, we would get P;(S) = .
Now, from (3.6) we have

() (k—1)
3.9 - A
> @) o+ (@)

From this inequality it follows that there exists gy > 0 such that
(3.10) o>p0 and r(o)>-1 = r"(0) > 1.

In fact this implication follows from (3.9) by observing that if ¢ > g and
0> r'(0) > —1 then

r"(o) (k—1)

Tre)” Vi

if we choose gy sufficiently large. Observe now that if there were g; > gy such that
r'(01) > —1, then from (3.10) we would get that r”(¢;) > 1 and thus, using again
(3.10) in a right neighborhood of p;, that r'(g;) = 0 for some 0, € (01,01 + 1).
And this is impossible. Therefore we must conclude that r'(p) < —1 for every
0 > po and this inequality immediately yields that « is finite.

Let us now show that also b is finite. If 2 =1 this is trivially true. In fact, if
b = +o0 then the projection of .# over R"~! would be R"~'\ {0} and thus would
have infinite #”~! measure. But then also .# would have infinite #"~! measure,
hence P,(.S) would be infinite, which is impossible.

Assume now that 4 > 2 and that b = +co0. Then g(g) — 0 as ¢ — +o0, other-
wise A(S) = co. If also ¢’(6) — 0 as ¢ — 400, passing to the limit in (3.8) we get
g" (o) — +o0, which is clearly impossible. On the other hand, if there exists ¢ > 0
such that ¢'(0) < —e for o large, then we have that g(¢) — —oo which is also
impossible. Therefore, since no one of the two previous instances may occur, we
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conclude that there exist a sequence o;, with g; — 400 such that each g; is a local
maximum for ¢’ and g'(g;) — 0. Then, from equation (3.8) we get

(h—1) _ (k=1)g'(a) V' (9(0y))
g@)1+g' @) a1 +g@))'* 1+g))'* ™

But this is impossible since the left hand side of this equation tends to +oo as
i — oo. This final contradiction shows that also b < oo.

Step 3. To prove that S is smooth by Corollary 2.4 it is enough to show that all
the points in dS N ({x = 0} U {y = 0}) are regular points for JS.

We first show that 65 n {y = 0} has no singular point. If k£ = 1 this follows
immediately by observing that if (x,0) € S is a singular point then all the
points in the sphere {|x| = |xo|} are singular. By Theorem 2.3 this is impossible
since this sphere has dimension n — 2. So, let us assume that k > 2. Observe
that to show that all the points in dS N {y = 0} are regular it is enough to prove
that

(3.11) lim ¢'(c) = 0.

o—0+

Indeed if this is true then g’(0) = 0 and the normal vector field is continuous at all
the points of 05 N {y = 0}. In turn, the continuity of the normal, by the almost
minimality of S established in the proof of Theorem 2.3, implies that the normal
vector field is C* in a neighborhood of S N {y = 0} for some « > 0, see [19,
Th. 26.3]. Hence, arguing again as in the proof of Theorem 2.3, we conclude
that dS is C* in a neighborhood of dS n {y = 0}.

To show (3.11) we multiply both sides of (3.8) by !, thus getting

i( —O'kilg/(a) ):Ao.k—l_ (h_l)akfl B kall///(g 0_)) '
do \(1 +g'(a)")'? g(@)(1+ ¢ (1+g(c)*)""

Since k > 2, 65" 1¢'(6)/(1 + ¢'(6)*)"/* converges to zero as o — 0F, therefore,
integrating the previous equality from 0 to o, we get

—g'(o)
A TETEE
L T (h—1) V@) Nk, Ao
akl/o (A g(r)(l-i-g'(f)z)l/z (1+g’(1)2)1/2) dr < k7

thus showing (3.11).
To prove that dS n{x =0} has no singular points, arguing as before it is
enough to assume that # > 2 and to show that

lim (o) = 0.

0—0%
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1

To this aim, we multiply equation (3.6) by o”"~! so to get
i( —0"'r' (o) ) — Ao — (k—1)o"" 0"y (g9(0)
do(1+r()")'? (1 +r(H)" (1 +¢'(0))"

Now, the conclusion follows as in the previous case.

Step 4. Let us show that if 7 = 1 or k = 1 then S is unique. To this aim, let us first
assume that 7 = 1. Assume that there exist two different solutions g, and g; of
(3.8) such that the corresponding profiles have both the same mass m, with
g2 > 01in (—bz,bz) and g; > 0 in (—bl,bl) for some by > bs.

CLAIM 1. There exist oy, 0, with 0 < a¢ < gg + 0 < by, such that either

(3.12) g1(00) = g5(00),  95(0) < gi(a) <0, ga2(0) > g1(0)
for every g € (g¢,00 + )

or the same inequalities as in (3.12) hold with g, exchanged with g,.

In order to prove the claim observe that max{g; (o) — g2(¢) : 0 € [0,b2)} > 0. In
fact, otherwise g; < ¢ and since the isoperimetric profiles corresponding to ¢
and g, have the same mass we easily conclude that g; = g». Therefore, we may
assume that there exists & € [0, b,] such that

g1(0) — g2(0) < g1(6) — g2(3) for every o € [0, by].

Now, two cases may occur.

First, let us assume that g (o) > g»(o) for every o € [G,b;) or that G = b,. In
this case there must be some point in (0,5) where g; is strictly smaller than g,
since otherwise the mass of the isoperimetric profile corresponding to g; would
be strictly bigger than the one of the profile corresponding to g,. Thus, let us
denote by ¢’ the greatest o € (0,5) such that g;(¢’) = ¢g2(¢’). By minimality, we
have that g}(¢’) < g{(¢’). In fact the stronger inequality g5(c’) < g{(¢’) holds,
because if g{(c’) = g5(¢’) then by the local uniqueness of solutions of the
equation (3.8) we would conclude that g; = g,. Observe that in a left neighbor-
hood of ¢’ we have that g; < ¢ and g} < g{. Then, we denote by g the largest
point in [0,¢’] such that gj(g9) = g5(09). Note that since g5(0) = g{(0) such a
point always exists. Finally, observe that by construction g)(¢) < g{(c) and
g2(0) > g1 (o) for every o € (9, 0’), thus proving Claim 1 in this case.

Let us now prove the claim when there exists a point ¢ € [7,b;) such that
gi1(o) = g2(o). Denoting by ¢’ the first one of such points and arguing as before
we have that g{(¢’) < g4(c¢’). Then, denoting by gy the largest point in [7, ¢’] such
that g{(g9) = g5(g9) we conclude as above that g (o) < g5(co) and gi(o) > g2(0)
for every o € (g9, a’), thus proving (3.12) with g; exchanged with g5.
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Let us show that Claim 1 yields the uniqueness of the isoperimetric profile
when i = 1. To this aim, for any ¢ in the interval (g9, g9 + J¢) where (3.12) holds,
from (3.8) we have, using the fact that ' is increasing,

%wa—%wo=5§1wx®u+@xwﬁ—guwu+@ﬁwﬁ>

+ 9 (91(0)) (1 + g1 (0)%) — ¥/ (g2

+A((1+ g3(0)*) = (1 + ¢} (0)
< ¥'(g2(0))(1 + g1 (0)*) — ¥ (92(0)

+A((1+ 30 = (1 +g{(0)1) ")
< A((1+g5(0)")? = (1 + g1 (0)) ).

Setting M = {|¢3|[ 1.« (5,5, +5) @0 integrating this inequality from gy to o we then
get

wwwwwﬂsmu+M5/IMﬂ—%wwr

a0

for some positive absolute constant ¢ independent of ¢g; and g,. In turn, this in-
equality implies that for every o € (g9, g9 +0)

max(g; — g5) < cA(1 + M?)(o — a9) ma)]((g —g5).

[@0, 7] [00,0]

But, this inequality is clearly impossible if we choose ¢ such that
¢A(1 + M?)(c — ) < 1. This contradiction concludes the proof of uniqueness
in this case.

We now assume k& = 1. In this case we are going to study equation (3.6).
Again, we argue by contradiction, supposing that there exist two solutions r;
and r; of (3.6) whose corresponding isoperimetric sets have the same mass.
By the regularity of the boundary of the isoperimetric profile we have that
r5(0) = r;(0). However, we cannot conclude that r) coincides with r| since equa-
tion (3.6) degenerates at 0. In any case, passing to the limit as o — 0" we have
A = —hr})(0) = —hr{(0) > 0. On the other hand if r}(0) =r{(0) <0 for some
o > 0, then by uniqueness it follows that r coincides with | and this immediately
implies that r; and r, also coincide since the corresponding profiles have the
same mass. Therefore, without loss of generality, we may assume that there exists
an interval (0, gg) such that 0 > r{(0) > r}(0) for every p € (0, go]. Let us then
set M = [[r3][ 1= (0, 4)- Then, from (3.6) we have for every o € (0, oo

10— (0 = (F2 490 @1+ 14(0) ~ (@)1 +1i(0))
+A[(1+ 70D = (1 +7(0)H
< A[(1+75(0)%)2 = (1+7{(2))2).
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Integrating this equation we then get that for every o € (0, o]
4
0 < r(0) —r3(0) < eA(1+ MZ)/ (r(z) = r5(7)) dr,
0

for some positive absolute constant ¢ independent of r; and r,. In turn, from this
inequality we get that for every o € (0, g

max(r] — r5) < cA(1 + M?)o max(r] — r5).
[0, 0.4

But, this inequality is clearly impossible if we choose ¢ such that
c¢A(1+ M?)o < 1. This contradiction concludes the proof of uniqueness also in
this case.

Step 5. Let us now show that S is strictly convex when /4 = 1. To this aim we
prove the following

CramM 2.1. There exists no interval (ay,01), with 0 < gy < a1 < b, such that
g" (o) < 0 for every o € (09,01) and g"(a,) = 0.

In order to prove this claim we argue by contradiction assuming that an interval
as above exists and setting d(c) = ¢'(a)/(1 + ¢'(c)*)"/? for every o € (g9, 01).
Then, we rewrite (3.8) as

ey D) W)
e e

Differentiating this equation in the interval (g9, a) we get

(k= 1d'(0) , (k—1)d(o)

a2

—d"(o) - +1"(9(0))d(0) = ¥'(9(0))g'(0)d'(c) = 0.

Observe that in the interval (o9, 01) we have d’(g) < 0, while d’(a,) = 0. There-

fore d”(o1) > 0. Recalling that k > 1 and that g’(g1) < 0, hence d(g;) < 0, from
the above equation we obtain

L gle) <o

1

0<d"(o)) = d(m)(

This contradiction proves Claim 2.1.

Let us now set A = {o € (0,b) : g"(g) < 0}. Observe that 4 is not empty since
otherwise g” () > 0 for every a € (0,b). Then, since g'(0) = 0 and ¢'(o) # 0 for
g € (0,b), we would have g'(g) > 0 for every ¢ € (0,b) and this would imply that
g is strictly increasing, which is impossible.

Observe that the claim above implies that 4 has only one connected compo-
nent (g, b) for some 0 < gy < b. Moreover gy = 0, otherwise g”(g) > 0 in (0, g9)
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and the same argument as above would imply that ¢ is strictly increasing in
(0, 09). In conclusion, we have proved that g” (o) < 0 for every o € (0,5), hence
S is strictly convex.

Assume now that k& = 1. In this case we start first by observing that if m — 0
then also a — 0. To see this it is enough to check that if B, is the ball such that
A(By(m)) = m, then P;(B,,)) — 0 as m — 0 and to estimate

P;(Bym) = Pi(S) = / eV M\ /4 4 |Vog|? dx > 2" O w,_ja" "
Ba

Then, we have the following

CLAIM 2.2, There exists mo > 0 such that if 0 < m < myg there exists no interval
(00, 01) with 0 < gy < 01 < a such that r" (o) < 0 in (00, 01) and r"(01) = 0.

In order to prove the claim we argue by contradiction assuming that an interval
as above exists. Similarly to the previous case, we set d(o) = r'(0)/(1 + r'(0)*)/?
and we rewrite (3.6) as

(h=1d(o)

—d'(0) - .

—¥'(0)d(0) = A.

Differentiating this equation in the interval (gg, 0;) we get that

(h=1)d'(9)  (h—1)d(e)

—d"(0) - ) P ¥ (0)d(0) — ¥/ (0)d'(0) = 0.

Observe that in the interval (oo, 01) we have d(p) < 0, d’(0) < 0, while d’(01) = 0.
Therefore d”(p;) > 0. But from the above equation we obtain

h—1
(3.13) 0<d"(a1) :d(Ql)( > —W(@l))-
01
Note that
h—1 h—1
e Vo) = —5 - max y¥"(0) >0

provided that 0 < a < ay for a sufficiently small ay depending only on /4 and ,
hence m < my for some my depending only on / and . Thus, we get a contradic-
tion since the right hand side of (3.13) is strictly negative and this contradiction
proves Claim 2.

From Claim 2, arguing as in the case & =1 we conclude that (o) < 0 for
each p € (0, a), thus proving that S is strictly convex. O
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