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Abstract. — We consider multi-dimensional junction problems for first- and second-order pde

with Kircho¤-type Neumann boundary conditions and we show that their generalized viscosity solu-
tions are unique. It follows that any viscosity-type approximation of the junction problem converges

to a unique limit. The results here are the first of this kind and extend previous work by the authors
for one-dimensional junctions. The proofs are based on a careful analysis of the behavior of the vis-

cosity solutions near the junction, including a blow-up argument that reduces the general problem
to a one-dimensional one. As in our previous note, no convexity assumptions and control theoretic

interpretation of the solutions are needed.
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1. Notation and terminology

Given x a Rd we write x ¼ ðx 0; xdÞ with x 0 a Rd�1. For i ¼ 1; . . . ;K , Pi :¼
fðx 0; xd; iÞ a Rd : x 0 a Rd�1; xd; i a 0g are half-planes intersecting along the line
L :¼ fðx 0; 0Þ : x 0 a Rd�1g and set P :¼

SK
i¼1 Pi. For simplicity we write xi in-

stead of xd; i: Given u a CðP;RÞ, if ðx 0; xiÞ a Pi, we write uiðx 0; xiÞ :¼ uð0; . . . ;
x 0; xi; 0: . . .Þ; when possible, to simplify the notation, we drop the subscript on
ui and simply write uðx 0; xiÞ: In this setting uxið0; xiÞ is the exterior normal deriv-
ative of ui : P ! R on L. We consider K-junction one dimensional problems
in the domain I :¼

SK
i¼1 Ii with junction f0g, where, for i ¼ 1; . . . ;K , Ii :¼

ð�ai; 0Þ and ai a ½�l; 0Þ. We work with functions u a CðI ;RÞ and, for x ¼
ðx1; . . . ; xKÞ a I , we write uiðxiÞ ¼ uð0; . . . ; xi; . . . ; 0Þ; when possible, to simplify
the writing, we drop the subscript on ui and write uðxiÞ. We also use the nota-
tion uxi and uxixi for the first and second derivatives of ui in xi. For w a
CðI � ½0;T �Þ and t0 a ð0;T �, Jþwð0; t0Þ and J�wð0; t0Þ denote respectively the
super- and sup-jets or di¤erentials of w at ð0; t0Þ, which may be, of course, empty.
If ðp1; . . . ; pK ; aÞ a Jþwð0; t0Þ, then, for all ðx; tÞ a I � ½0;T �, wðxi; tÞawð0; t0Þ þ
pixi þ aðt� t0Þ þ oðjxj þ jt� t0jÞ: If w is independent of some variables; these
two definition are simplified accordingly. If ðp1; . . . ; pK ; aÞ a J�wð0; t0Þ; then
wðxi; tÞbwð0; t0Þ þ pixi þ aðt� t0Þ þ oðjxj þ jt� t0jÞ:

Throughout the paper we work with viscosity sub- and super-solutions. In
most cases, however, we will not be using the term viscosity. Also we will not
keep repeating that i a f1; . . . ;Kg but rather we will say for all i.



2. Introduction

We study the well-posedness of the generalized viscosity solutions to time depen-
dent multi-dimensional junction problems satisfying a Kircho¤-type Neumann
condition at the junction. We prove that the solutions satisfy a comparison prin-
ciple and, hence, are unique. It is then immediate that viscosity approximations
satisfying the same boundary condition converge to the unique solution. Our
results, which are the first of this kind, are simple, self-contained and depend on
elementary considerations about viscosity solutions and, we emphasize, do not
require any convexity assumptions and the control theoretical interpretation of
the solutions.

This work is a continuation of our previous paper (Lions and Souganidis [10])
where we introduced the notion of state constraint solution to one-dimensional
junction problems, proved its well-posedness, and considered, for the first time,
the limit of Kircho¤-type viscosity approximations.

We also show that the so-called flux limiter solutions introduced and studied
in the references below for convex problems reduce to Kircho¤-type generalized
viscosity solutions. Hence, uniqueness follows immediately by the simple argu-
ments in this note.

Among the long list of references on this topic with convex Hamiltonians
we refer to Achdou and Tchou [1], Barles, Briani and Chasseigne [2, 3], Barles,
Briani, Chasseigne and Imbert [4], Barles and Chasseigne [5], Bressan and Hong
[6], Imbert and Monneu [7] and Imbert and Nguen [8].

We are interested in the well-posedeness of continuous solutions u : P ! R to
the Kircho¤-type initial boundary value problem

ui; t þHiðDui; ui; x; tÞ ¼ 0 in Pi � ð0;T �;
minðSiui;xi � B;miniðui; t þHiðDui; ui; x; tÞÞÞa 0 on L� ð0;T �;
maxðSiui;xi � B;maxiðui; t þHiðDui; ui; x; tÞÞÞb 0 on L� ð0;T �;

8<
:ð1Þ

with

B a R and uð�; 0Þ ¼ u0 on P;ð2Þ

where

u0 a BUCðPÞ:ð3Þ

For each i, we assume that

Hi is coercive in p uniformly on x; t and bounded u; Lipshitz continuous

in u and t; and uniformly continuous in p; u; x; t for bounded p and u:

�
ð4Þ

As always for time-independent problems the Lipshitz continuity of Hi in u is
replaced by

Hi is strictly increasing in u:ð5Þ
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We remark that, as it will be clear from the proofs, the particular choice of the
Neumann condition in (1) is by no means essential. The arguments actually apply
to more general boundary conditions of the form Gðux1 ; . . . ; uxK ; uÞ; with the
map ðp1; . . . ; pk; uÞ ! Gðux1 ; . . . ; uxK ; uÞ strictly increasing with respect to all its
arguments.

The main result is:

Theorem 2.1. Assume (4). If u; v a BUCðP� ½0;T �Þ are respectively a sub- and
super-solution to (1) with uið�; 0Þa við�; 0Þ on Pi, then ua v on P� ½0;T �: More-
over, the initial boundary value problem (1) has a unique solution u a BUCðP�
½0;T �Þ:

As it will become apparent from the proof, it is possible to generalize the result to
problem like

ui; t þHiðxiD2ui;Dui; ui; x; tÞ ¼ 0 in Pi � ð0;T �;
minðSiui;xi � B;miniðui; t þHið0;Dui; ui; x; tÞÞÞa 0 on L� ð0;T �;
maxðSiui;xi � B;maxiðui; t þHið0;Dui; ui; x; tÞÞÞb 0 on L� ð0;T �;
uð�; 0Þ ¼ u0 on P;

8>>><
>>>:

ð6Þ

when, in addition to (4), each Hi is degenerate elliptic with respect to the Hessian.
Since the arguments are almost identical to the ones for the proof of Theorem
2.1, we do not present any details.

Next we state the result about the convergence of viscosity approximations
to (1). The claim is immediate from the fact that any limit is solution to (1) and,
hence, we do not write the proof. We remark that we can easily use ‘‘more com-
plicated’’ second-order approximations than the one below.

For e > 0 consider the initial boundary value problem

ui; e; t � eDui; e þHiðDui; e; ui; e; x; tÞ ¼ 0 in Pi � ð0;T �;
Siui; e;xi ¼ B; on L� ð0;T �;
ui; eð�; 0Þ ¼ u0; i on Pi;

8<
:ð7Þ

which, in view of the (4), has a unique solution u a BUCðP� ½0;T �Þ:

Theorem 2.2. Assume (3) and (4). Then u ¼ lime!0 ue exists and u is the unique
solution to (1).

Since the proof is an immediate consequence of well known estimates and the
uniqueness result, we will not discuss it any further.

We also show that, in the context of the one-dimensional time dependent
junction problems, the flux-limiter solutions put forward in [7] are actually gener-
alized viscosity solution to (8) with appropriate choice of B in the Kircho¤ con-
dition, and, hence, are unique. This provides a simple and straightforward proof
of the uniqueness without the need to consider cumbersome test functions and
invoke any convexity.
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Following the last remark, we emphasize that Kircho¤-type conditions appear
to be the ‘‘correct’’ ones, that is, they are compatible with the maximum prin-
ciple. This can be easily seen, for example, at the level of second-order equations
by considering a‰ne solutions in each branch.

In a forthcoming paper [11], we discuss problems with more general depen-
dence on the Hessian both in the equations and along the junctions. We also con-
sider ‘‘stratification’’-type problems, that is junctions with branches of di¤erent
dimension, and, we present results about the convergence of semi-discrete in
time approximations with error estimates. Finally, we consider solutions which
are not necessarily Lipschitz.

In this note, to simplify the notation and explain the ideas better, we present
all the arguments in the special case d ¼ 1, in which case (1) reduces to

ui; t þHiðui;xi ; x; tÞ ¼ 0 in I � ð0;T �;
minðSiui;xi � B;miniðui; t þHiðui;xi ; 0; tÞÞÞa 0 on f0g � ð0;T �;
maxðSiui;xi � B;maxiðui; t þHiðui;xi ; 0; tÞÞÞb 0 on f0g � ð0;T �;
uð�; 0Þ ¼ u0 on I :

8>>><
>>>:

ð8Þ

Organization of the paper.
In the next section we state and prove an elementary lemma which is the basic
tool for the proof of the comparison principle which is presented in Section 4.
Section 5 is about the relation with the the flux limiters.

3. A general lemma

We introduce and prove a general lemma which is the basic tool for the proof of
Theorem 2.1. It applies to problems of one-dimensional junctions with Kircho¤
condition and expands the class of ‘‘gradients’’ that can be used in the inequalities
at the junction.

Lemma 3.1. Assume that H1; . . .HK a CðRÞ, p1; . . . ; pK ; q1; . . . ; qK a R and
a; b a R are such that, for all i a f1; . . . ;Kg,

ðiÞ pi b qi and aþHiðpiÞa 0a bþHiðqiÞ;
ðiiÞ minðSi p

0
i ;miniðaþHiðp 0

i ÞÞÞa 0 for all p 0
i a pi;

ðiiiÞ maxðSiq
0
i ;maxiðbþHiðq 0

i ÞÞÞb 0 for all q 0
i b qi:

8><
>:ð9Þ

Then aa b.

Proof. We argue by contradiction and assume that a > b.
Modifying p1; . . . ; pK ; q1; . . . ; qK ; a and b by small amounts and using the con-

tinuity of H1; . . . ;HK , we may assume that

pi > qi and aþmax
i

HiðpiÞ < 0 < bþmin
i

HiðqiÞ:
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If Siqi b 0, then letting p 0
i ¼ qi in (9)(ii) yields miniðaþHiðqiÞÞ < 0; which is not

possible given that it assumed that a > b. A similar argument yields a contradic-
tion if Si pi a 0.

Next we assume that Si pi > 0 > Siqi; and let c a ðb; aÞ and ri a ðqi; piÞ be such
that HiðriÞ þ c ¼ 0: If Siri b 0 (resp. Siri a 0), we choose p 0

i ¼ ri (resp. q
0
i ¼ ri)

and argue as before. r

4. One-dimensional time-dependent junctions

Here we prove Theorem 2.1 for the initial value problem (8). The argument in the
multi-dimensional setting is almost identical and we leave it up to the reader to
fill in the details. The existence of solutions is immediate from Perron’s method or
Theorem 2.2.

To simplify the presentation here we take

B ¼ 0:

Although the proof is not long, to clarify the strategy and highlight the new ideas,
we present first a heuristic description of the argument assuming that ui; vi a
C1ðI i � ½0;T �Þ with possible discontinuities in the spatial derivative as i changes;
note that, since it also assumed that u; v a CðI � ½0;T �Þ; this assumption gives
that utð0; tÞ, vtð0; tÞ exist for all t a ð0;T �:

Following the proof of the classical maximum principle, we assume that, for
d > 0, the maxx A I�½0;T �½ðu� vÞðx; tÞ � dt� is achieved at ðx0; t0Þ a I � ½0;T � with
t0 > 0: If x0A 0, we argue as in the classical uniqueness proof. Hence, we con-
tinue assuming that x0 ¼ 0: Let a ¼ utð0; t0Þ and b ¼ vtð0; t0Þ. It follows that
ab bþ d > b:

The functions UðxiÞ ¼ uðxi; t0Þ and VðxiÞ ¼ vðxi; t0Þ are smooth sub- and
super-(viscosity) solutions of

aþHiðUxi ; xi; t0Þa 0 in I i and

minðSiUxið0�Þ; aþmini HiðUxið0�Þ; 0; t0ÞÞa 0;

bþHiðVxi ; xi; t0Þb 0 in I i and

maxðSiVxið0�Þ; bþmaxi HiðVxið0�Þ; 0; t0ÞÞb 0;

8>>><
>>>:

ð10Þ

whileUðxiÞ�VðxiÞaUð0Þ�Vð0Þ, which in turn implies thatUxið0�ÞbVxið0�Þ.
We get a contradiction using Lemma 3.1 provided we verify that (9) holds for

the obvious choices of H1; . . . ;HK ; p1; . . . ; pK ; q1; . . . ; qK : And this is immediate
since (9)(i) is part of (10), while (9)(ii),(iii) follow from the observation that
JþUið0Þ ¼ ð�l;Uxið0�Þ� and J�Við0Þ ¼ ½Vxið0�Þ;lÞ and the fact that inequal-
ities must hold in the viscosity sense.

We continue now with the actual proof which consists of making the above
rigorous for u; v a CðI � ½0;T �Þ:

Proof. Without loss of generality, we assume that u; v a C0;1ðI � ½0;T �Þ are
respectively a sub- and super-solution to (8) and uð�; 0Þa vð�; 0Þ:
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Using the classical sup- and inf-convolutions we may assume that u and v are
respectively semiconvex and semiconcave with respect to t. Of course, this means
that we need to consider (8) in a smaller time interval and evaluate H at a di¤er-
ent time. It is, however, standard that this does not alter the outcome, and, hence,
we omit the details.

Suppose that, for some d > 0, the maxx A I�½0;T �½ðu� vÞðx; tÞ � dt� is achieved at
ðx0; t0Þ a I � ½0;T � with t0 > 0: If x0A 0, we argue as in the classical uniqueness
proof. Hence, we continue assuming that x0 ¼ 0:

In view of the assumed semiconvexity and semiconcavity of the u and v respec-
tively, both of them are di¤erentiable with respect to t at ð0; t0Þ. Let a ¼ utð0; t0Þ
and b ¼ vtð0; t0Þ. It follows that

ab bþ d > b:

The next step is an observation, which, heuristically speaking, establishes a C1-
type property for the sub- and super-jets of semiconvex and semiconcave func-
tions near points of di¤erentiability. Since the claim may be useful in other con-
texts, we state it as a separate lemma.

Lemma 4.1. Let z be a Lipshitz continuous semiconvex in time solution of
zt þHðux; u; x; tÞa 0 in ðc; 0Þ � ½0;T �, and assume that a ¼ ztð0; t0Þ exists. If
Jþ
t zðx; tÞ is the subdi¤erential of z with respect to t at ðx; tÞ, then

lim
ðx; tÞ!0

sup
p A Jþ

t zðx; tÞ
jp� aj ¼ 0:ð11Þ

A similar statement is true for the subdi¤erential in t, if z is a Lipshitz
continuous semiconcave in time supersolution which such that ztð0; t0Þ exists for
some t0 > 0.

The claim follows from the classical facts that the semiconvexity implies that z is
actually di¤erentiable at every ðx; tÞ such that Jþ

t zðx; tÞA j, and, for semiconvex
functions, derivatives converge to derivatives. The x-dependence is dealt using the
Lipshitz continuity.

Continuing the ongoing proof we observe that Lemma 4.1 yields
hei : I i � ½0;T � ! R such that limðxi ; tÞ!ð0; t0Þ h

e
i ðxi; tÞ ¼ 0 and, in the viscosity

sense and in a neighborhood of ð0; t0Þ,

aþHiðuxi ; 0; t0Þa hþi ðxi; tÞ and bþHiðvxi ; 0; t0Þb h�i ðxi; tÞ:ð12Þ

Indeed, if ðpi; piÞ a Jþuðx; tÞ, then pi a Jþ
t uðx; tÞ, and the claim follows from the

previous observations and the continuity properties of Hi.
Next we use a blow up argument at ð0; t0Þ on all branches to reduce the prob-

lem to a time independent setting to which we can apply Lemma 3.1.
For e > 0 let
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ue
i ðxi; tÞ ¼

uðexi; t0 þ eðt� t0ÞÞ � uð0; t0Þ
e

and

vei ðxi; tÞ ¼
vðexi; t0 þ eðt� t0ÞÞ � vð0; t0Þ

e
:

In view of the choice of ð0; t0Þ, the properties of u and v and the observations
above, for every i a f1; . . . ;Kg and e > 0, we have

ue
i a vei þ dðt� t0Þ;ð13Þ

and, as e ! 0, along subsequences and locally uniformly in ðx; tÞ,

ue
i; tðxi; tÞ ¼ utðexi; t0 þ eðt� t0ÞÞ ! a;

vei; tðxi; tÞ ¼ vtðexi; t0 þ eðt� t0ÞÞ ! b;

�
ð14Þ

and

ue
i ðxi; tÞ � ue

i ðxi; t0Þ ! at and vei ðxi; tÞ � vei ðxi; t0Þ ! bt:ð15Þ

Fix a subsequence en ! 0 such that uen
i ðxi; tÞ ! UiðxiÞ þ aðt� t0Þ and veni ðxi; tÞ !

ViðxiÞ þ bðt� t0Þ and notice that, in view of (15), both Ui and Vi are independent
of t.

It follows that

Ui aVi in ð�l; 0Þ and Uið0Þ ¼ Við0Þ ¼ 0;

aþHðUi;xiÞa 0 and bþHðVi;xiÞb 0;

minðSiUi;xi ;miniðaþHiðUi;xiÞÞÞa 0;

maxðSiVi;xi ;maxiðbþHiðVi;xiÞÞÞb 0;

8>>><
>>>:

ð16Þ

where, for notational simplicity, we write HiðpÞ in place of Hiðp; 0; t0Þ; and,
finally, recall that

a > b:

Next we get a contradiction using Lemma 3.1. While the choice of the Hi’s is
obvious, some work is necessary to identify p1; . . . ; pK ; q1; . . . ; pK such that (9)
holds.

Set

pi :¼ lim inf
xi!0

UiðxiÞ
xi

; pi :¼ lim sup
xi!0

UiðxiÞ
xi

;

qi :¼ lim inf
xi!0

ViðxiÞ
xi

and qi :¼ lim sup
xi!0

ViðxiÞ
xi

;

and recall that JþUið0Þ ¼ ð�l; pi� and J�Við0Þ ¼ ½qi;lÞ.
Observe that Ui aVi does not necessarily yield pi b qi, the latter being

enough to conclude using Lemma 3.1 with pi ¼ pi and qi ¼ qi. Notice, however,
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that Ui aVi implies

pi b qi:ð17Þ

Although pi B JþUið0Þ and qi B J�Við0Þ, unless Ui and Vi are respectively di¤er-

entiable at 0, we claim that (9) holds for pi ¼ pi and qi ¼ qi:
A classical blow-up argument (see, for example, Jensen and Souganidis [9])

shows that

aþHiðpÞa 0 for all p a ½pi; pi� andð18Þ
bþHiðqÞb 0 for all q a ½qi; qi�:

Moreover, if p 0
i a pi for all i, then p 0

i a JþUið0Þ and, hence,
minðSi p

0
i ;miniðaþHiðp 0

i ÞÞÞa 0:
If, for some fixed ii0 , p

0
i0
a ½pi0 ; pi0 �; then, in view of (18), aþHi0ðp 0

i0
; 0; t0Þa 0,

and again minðSi p
0
i ;miniðaþHiðp 0

i ÞÞÞa 0: It follows that (9)(ii) holds.
A similar argument yields (9)(iii), while (9)(i) is obviously true, in view of (17)

and (18).

5. Flux-limiter solutions are generalized Kirchoff solutions

We show here that the flux-limiter solutions to time-depending one dimension
junction problems, which were introduced in [7], are actually generalized viscosity
solutions to (8) for an appropriate choice of B in the Kircho¤-condition.

We begin recalling the notion of flux-limiter solution. Following [7], we
assume that, for all i ¼ 1; . . . ;K ,

~HHi a CðRÞ is convex with a unique minimum at p0i ;ð19Þ

and define ~HHe
i : R ! R by

~HH�
i ðpÞ ¼

~HHiðpÞ if pa p0i ;
~HHiðp0i Þ if pb p0i ;

�
and ~HHþ

i ðpÞ ¼
~HHiðp0i Þ if pa p0i ;
~HHiðpÞ if pb p0i ;

�
ð20Þ

note that [7] considers quasiconvex ~HHi’s but to keep things simple here we assume
convexity. Finally, to simplify the presentation we assume that we deal with con-
tinuous solutions.

Fix AbA0 ¼ maxi minR ~HH and let ~IIi ¼ ð0;lÞ and ~II ¼
SK

i¼1
~IIi. Then ~uu a

BUCð~II � ½0;T �Þ is an A-limiter solution of the junction problem if

~uui; t þ ~HHið~uui;xiÞ ¼ 0 in ~IIi � ð0;T �;
~uut þmaxðA;maxi ~HH

�
i ð~uui;xiÞÞ ¼ 0 on f0g � ð0;T �:

�
ð21Þ

For each i, let pA
i be the unique solution to ~HHiðpÞ ¼ A, satisfying pA

i f p0i , which
exists in view of (20).

Proposition 5.1. If ~uu is an A-limiter solution, that is, it satisfies (21), then
u : I ! R defined by uðxÞ ¼ ~uuð�xÞ is a generalized solution to (8) for B ¼
�SK

i¼1p
A
i and HiðpÞ ¼ ~HHið�pÞ:
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Proof. The conclusion follows once we show that ~uu is a solution to

~uui; t þ ~HHið~uui;xiÞ ¼ 0 in ~IIi � ð0;T �;
minð�SK

i¼1~uui;xi � B;minið~uui; t þ ~HHið~uui;xiÞÞa 0 on f0g � ð0;T �;
maxð�SK

i¼1~uui;xi � B;maxið~uui; t þ ~HHið~uui;xiÞÞb 0 on f0g � ð0;T �:

8><
>:ð22Þ

Clearly we only need check the inequalities on f0g � ð0;T �: We begin with the
sub-solution property and assume that, for some t0 a ð0;T � and for each i,
ðpi; aÞ a Jþuið0; t0Þ:

Since ~uu is an A-limiter solution, for all i, we have

aþ A ¼ aþ ~HHðpA
i Þa 0 and aþ ~HH�

i ðpiÞa 0:ð23Þ

Arguing by contradiction we assume that

�SK
i¼1pi þ SK

i¼1p
A
i > 0:ð24Þ

It then follows that there exists i0 such pi0 < pA
i0
. Then, if p0i0 a pi0 , since we are

in the increasing part of ~HHi0 , we have ~HHi0ðpi0Þa ~HHi0ðpA
i0
Þ ¼ A, and, hence

aþ ~HHi0ðpi0Þa 0:ð25Þ

If p0i0 b pi0 ; then ~HHi0ðpi0Þ ¼ ~HH�
i0
ðpi0Þ; and again we have (25), and, hence, the sub-

solution property.
For the super-solution property we assume that, for some t0 a ð0;T � and for

each i, ðqi; aÞ a J�uið0; t0Þ: It then follows from the definition of the A-limiter
solution that

aþmax
�
A;max

i

~HH�
i ðqiÞ

�
b 0:ð26Þ

If maxi ~HH
�
i ðqiÞbA, then, since ~HHiðqiÞb ~HH�

i ðqiÞ,

max
�
�SK

i¼1qi � B;max
i

ð~aaþ ~HHiðqiÞÞ
�
b 0:ð27Þ

If A > maxi ~HH
�
i ðqiÞ, then, for all i,

aþ ~HHþ
i0
ðpA

i Þ ¼ aþ Ab 0:ð28Þ

Assume that �SK
i¼1qi þ SK

i¼1p
A
i a 0, for otherwise (27) is satisfied.

Then there must exist some i0 such that qi0 b pA
i0
, which implies that ~HHi0ðqi0Þb

~HHþ
i0
ðpA

i Þ ¼ A, and (27) holds again.
The claim then follows using that uðxÞ ¼ ~uuð�xÞ: r
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