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Abstract. — In this note we announce some results, due to appear in [2], [3], on the structure of

integral and normal currents, and their relation to Frobenius theorem. In particular we show that an
integral current cannot be tangent to a distribution of planes which is nowhere involutive (Theorem

3.6), and that a normal current which is tangent to an involutive distribution of planes can be locally
foliated in terms of integral currents (Theorem 4.3). This statement gives a partial answer to a ques-

tion raised by Frank Morgan in [1].
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1. Introduction

Consider a distribution of k-dimensional planes in Rn, namely a map that asso-
ciates to each point x a Rn a k-dimensional subspace VðxÞ of Rn, and assume
that V is spanned by vectorfields v1; . . . ; vk of class C1. We say that V is involu-
tive at a point x a Rn if the commutators of the vectorfields v1; . . . ; vk, evaluated
at x, belong to VðxÞ (see §2.1). Moreover, given a k-dimensional surface S in Rn,
we say that S is tangent to V if the tangent space TanðS; xÞ agrees with VðxÞ for
every x a S.

In this context, the first part of Frobenius theorem states that, if S is tan-
gent to V , then V must be involutive at every point of S. Or, in a slightly weaker
form, that if V is nowhere involutive then there exist no tangent surfaces (cf. [8],
Theorem 14.5).

The classical version of this theorem requires that the surface S is at least
of class C1, and it is then natural to ask if similar statements hold for weaker
notions of surface. To this regard, we mention that a positive answer for
Sobolev surfaces, that is, Sobolev images of open subsets of R2h, has been
given in [9], Theorem 1.2, when V is the distribution of 2h-planes in Rn¼2hþ1

corresponding to the horizontal distribution in the sub-Riemannian Heisenberg
group Hh.
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In section 3 we give a positive answer for integral currents,1 and more pre-
cisely we show that given an integral k-dimensional current T which is tangent
to V , then V must be involutive on the support of T (Theorem 3.6). Note that
the assumption that T is integral is crucial, and indeed the analogous statement
for rectifiable sets does not hold, cf. Remark 3.7(a).

It turns out that Theorem 3.6 is an immediate consequence of the following
geometric property of the boundary of integral currents, which is actually the
heart of the matter: if T is an integral k-dimensional current tangent to a con-
tinuous distribution of k-planes V , then qT is tangent to V as well (see §2.5 for
the definition of tangency, and Theorems 3.1 and 3.2).

In Section 4 we turn to the other part of Frobenius theorem, which states that
if V is everywhere involutive, then Rn can be locally foliated with k-dimensional
surfaces which are tangent to V . In Theorem 4.3 we prove the following gener-
alization: if V is everywhere involutive and T is a k-dimensional normal current
tangent to V , then T can be locally foliated by a family k-dimensional integral
currents tangent to V (the definition of foliation, or mass decomposition, of a
current is given in §4.1). Conversely, if T can be foliated then V must be involu-
tive at every point in the support of T .

The first part of Theorem 4.3 gives a partial positive answer to a question
raised by Frank Morgan in [1], namely if every normal current admits a foliation
in terms of integral currents (other positive results were given in [6], [10], [12], see
Remark 4.4). On the other hand, the second part shows that a normal current
which is tangent to a nowhere involutive distribution of planes admits no folia-
tion of a certain type: this result was first stated in [13], but in a form which is
not correct (see Remark 4.4(c) for more details).

2. Notation

In this section we briefly recall some notation and basic definitions. For recti-
fiable sets and currents we essentially follow [7]. As usual, Hk stands for the
k-dimensional Hausdor¤ measure and Ln for the Lebesgue measure on Rn.

In the following we fix an open set W in Rn.

2.1. The vectorfield v and the distribution of planes V. In the following we con-
sider v1; . . . ; vk continuous vectorfields on W with 0 < k < n, and the simple
k-vectorfield

v :¼ v1b� � �bvk:

Moreover we assume that v is unitary, that is, jvðxÞj ¼ 1 for every x a W, and we
denote by V the distribution of k-planes spanned by v, that is,

VðxÞ :¼ spanðvðxÞÞ :¼ spanfv1ðxÞ; . . . ; vkðxÞg for every x a W:

1The basic definitions and terminology concerning currents are recalled in Section 2.
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With a slight abuse of language, we say that V (or v) is of class C1 to mean that
v1; . . . ; vk are of class C1, and if this is the case we say that V is involutive at a
point x a W if

½vi; vj�ðxÞ a VðxÞ for every 1a i; ja k;

where ½vi; vj� is the Lie bracket, or commutator, of vi and vj.2

2.2. Rectifiable sets, orientation. A set S in W is rectifiable of dimension k,
or k-rectifiable, if it has finite Hk measure and can be covered, except for an
Hk-null subset, by countably many surfaces of dimension k and class C1.3

Then at Hk-a.e. x a S there exists an approximate tangent space TanðS; xÞ,
which is characterized (for Hk-a.e. x a S) by the following property: for every
k-surface S of class C1 there holds

TanðS; xÞ ¼ TanðS; xÞ for Hk-a:e: x a SBS:

An orientation of S is a simple k-vectorfield t defined on S such that tðxÞ spans
TanðS; xÞ and has norm 1 for Hk-a.e. x a S.

2.3. Currents, boundary, mass, normal currents. A k-dimensional current, or
k-current, in W is a (continuous) linear functional on the space of smooth k-forms
with compact support on W. The boundary of a k-current T is the ðk � 1Þ-current
qT defined by 3qT ;o4 :¼ 3T ; do4, where do is the exterior di¤erential of the
form o.

The mass of T , denoted by MðTÞ, is the supremum of 3T ;o4 over all forms o
such that joðxÞja 1 for every x. A current T with finite mass can be represented
as a vector measure, that is, there exist a positive finite measure m on W and a
map t from W to the set of k-vectors with norm 1, called orientation, such that

3T ;o4 :¼
Z
W

3tðxÞ;oðxÞ4 dmðxÞ;

where 3 ; 4 is the usual pairing of k-vectors and k-covectors. In this case we
simply write T ¼ tm. Note that the mass of T is MðTÞ ¼ mðWÞ ¼ kmk.

A current T is called normal if both T and qT have finite mass.

2.4. Rectifiable and integral currents. A k-current T is called rectifiable (with
integral multiplicity) if there exist a k-rectifiable set S, an orientation t of S, and

2That is, the vectorfield defined by

½vi; vj �ðxÞ :¼ 3‘vjðxÞ; viðxÞ4� 3‘viðxÞ; vjðxÞ4 ¼ qvj

qvi
ðxÞ � qvi

qvj
ðxÞ;

where 3 ; 4 denotes the usual pairing of matrices and vectors.
3Through this paper sets, maps and vectorfields are always (at least) Borel measurable.
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a positive, integer-valued multiplicity y a L1ðS;HkÞ such that

3T ;o4 :¼
Z
S

3tðxÞ;oðxÞ4yðxÞ dHkðxÞ:

In this case we write T ¼ 7S; t; y8. Note that the mass of T agrees with the
k-dimensional measure of S counted with multiplicity, that is, MðTÞ ¼

R
S y dH

k;
in particular MðTÞ is finite.

A current T is called integral if both T and qT are rectifiable; in particular
every integral current is normal.

2.5. Notions of tangency. Take v and V as in §2.1 We say that an h-rectifiable set
S with ha k is tangent to V if the tangent space TanðS; xÞ is contained in VðxÞ
for Hh-a.e. x a S.

Accordingly, a rectifiable h-current T ¼ 7S; t; y8 is tangent to V if the sup-
porting rectifiable set S is so. More generally, an h-current with finite mass
T ¼ tm is tangent to V if the span of the h-vector tðxÞ is contained in VðxÞ for
m-a.e. x.4

Moreover we say that a rectifiable k-current T ¼ 7S; t; y8 is oriented by v if
tðxÞ ¼ vðxÞ for Hk-a.e. x a S, and more generally, a k-current with finite mass
T ¼ tm is oriented by v if tðxÞ ¼ vðxÞ for m-a.e. x.

Remark 2.6. If T ¼ tm is a k-current with finite mass, then T is tangent to V
if and only if tðxÞ ¼evðxÞ for m-a.e. x (recall that v is unitary). In particular if T
is oriented by v then it is also tangent to V , but clearly the converse does not
hold.

3. Geometric structure of the boundary

Through this section, v and V are taken as in §2.1.
The next two statements are the main results in this section, and establish a

natural (and apparently obvious) relation between the tangent space of a cur-
rent T and the tangent space of the boundary qT , namely that, under suitable
assumptions, the former contains the latter.

Theorem 3.1 (See [2]). If T is an integral k-current oriented by v, then the bound-
ary qT is tangent to V.

Theorem 3.2 (See [3]). If V is of class C1 and T is an integral k-current tangent
to V, then qT is tangent to V.

4The span of a h-vector w in Rn is defined as the smallest subspace W of Rn such that w is also a
h-vector in W . If w is a simple vector we recover the usual definition.
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Remark 3.3. (a) Theorem 3.2 can be viewed as the ‘‘non-oriented version’’
of Theorem 3.1, and under the assumption that V is of class C1 it is actually a
stronger statement (cf. Remark 2.6).

(b) Theorem 3.1 can be proved in a slightly stronger form, and under slightly
weaker assumptions on the current T (see [2] for more details); the key step of the
proof consists in taking the blow-up of T at ‘‘almost every point of the bound-
ary’’, and here the assumption that T is integral (or slightly less) plays an essen-
tial role.

(c) Theorem 3.2 can be proved under much weaker assumptions on the cur-
rent T , including the case where T is normal and qT is singular with respect to
T .5 The proof is completely di¤erent from that of Theorem 3.1, and relies heavily
on the fact that V is of class C1 (see [3]). Note that this regularity assumption on
V can perhaps be weakened, but cannot be entirely dropped: indeed in [2] we
construct a continuous distribution V of 2-planes in R3 and an integral 2-current
T such that T is tangent to V but qT is not.6

(d) In [3] we also show that if V is everywhere involutive then Theorem 3.2
holds for every normal k-current T . This is no longer true if V is not everywhere
involutive, the counterexample being any current on W of the form T :¼ vm where
m :¼ rLn and r is a function of class C1 whose support is compact and contained
in the (open) set of all points where v is not involutive.

The relation between the geometric property of the boundary of T proved in
Theorem 3.2 and Frobenius theorem is made clear in the following statement.

Proposition 3.4. Assume that V is of class C1, and let T be a normal k-current
tangent to V such that qT is also tangent to V. Then V is involutive at every point
of the support of T.7

This result is an immediate consequence of the following lemma:

Lemma 3.5 (See [2]). If V is of class C1 and is not involutive at a point x0 a W,
then there exists a ðk � 1Þ-form a of class C1 on W such that
(i) for every x a Rn the restriction of aðxÞ to VðxÞ is zero;8
(ii) 3vðx0Þ; daðx0Þ4A 0.

Proof of Proposition 3.4. We write T ¼ tm, and we assume by contradic-
tion that there exists a point x0 in the support of m where v is not involutive.

We take a as in Lemma 3.5. Then for every smooth function j with compact
support on W there holds

5Here both T and qT are viewed as (vector-valued) measures.

6This current is actually (supported on) the graph of a continuous Sobolev function.
7By support of a current with finite mass T ¼ tm we mean the support of the measure m, that is,

the smallest closed set F such that mðRnnF Þ ¼ 0. If T is rectifiable, that is T ¼ 7S; t; y8, then the
support of T turns out to be the closure of the set of all points x a S where the k-dimensional density

of S is 1.
8That is, 3w; aðxÞ4 ¼ 0 for every ðk � 1Þ-vector w whose span is contained in VðxÞ.
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0 ¼ 3qT ; ja4 ¼ 3T ; dðjaÞ4 ¼ 3T ; djba4þ 3T ; j da4

¼ 3T ; j da4 ¼
Z
W

3t; da4j dm

(the first equality follows from the fact that qT is tangent to V and property (i) in
Lemma 3.5; the third one from the identity dðjaÞ ¼ djbaþ j da; the fourth one
by the fact that T is tangent to V and the restriction of the k-form djba to V is
null, again by property (i) in Lemma 3.5).

Since j is arbitrary we infer that 3t; da4 ¼ 0 m-a.e., and since t ¼ev (because
T is tangent to V , cf. Remark 2.6) we obtain that 3v; da4 ¼ 0 m-a.e.

On the other hand, property (ii) in Lemma 3.5 implies that 3v; da4A 0 in a
neighbourhood of x0. Since x0 is in the support of m, this neighbourhood has pos-
itive m measure, and we have a contradiction. r

Using Theorem 3.2 and Proposition 3.4 we immediately obtain the following:

Theorem 3.6. Assume that V is of class C1 and that T is an integral k-current
tangent to V. Then V is involutive at every point in the support of T.

Remark 3.7. (a) The analogue of Theorem 3.6 for rectifiable sets does not
hold. Indeed in [2] we show that for every distribution V , even a nowhere invol-
utive one, it is possible to find a k-dimensional surface S of class C1 whose tan-
gency set

S :¼ fx a S : TanðS; xÞ ¼ VðxÞg

has positive Hk-measure; in particular S is a non-trivial k-rectifiable set tan-
gent to V . (This result was first proved in a slightly less general form in [4],
Theorem 1.4.)

(b) Using Theorem 3.6 we can partly recover (and even extend) the Frobe-
nius theorem for Sobolev surfaces proved in [9], Theorem 1.2. To be precise, by
Sobolev surface we mean a k-rectifiable set S of the form S ¼ f ðUÞ where U is an
open set in Rk and f : U ! W is a continuous map of class W 1;p with p > k, and
we can show the following (see [2]): if V is of class C1 and S is a Sobolev surface
tangent to V , then V is involutive at Hk-a.e. point of S.

4. Foliations of normal currents

We begin this section by giving the definition or foliation of a current, and then
we show that for a normal current which is tangent to a distribution of planes V
of class C1 the existence of a foliation is strictly related to the involutivity of V
(Theorem 4.3).

4.1. Foliations of currents. Let T ¼ tm be a k-current with finite mass in W, and
let fRtg be a family of rectifiable k-currents in W, where t varies in some index
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space I endowed with a measure dt.9 We say that fRtg is a mass decomposition,
or foliation, of T if
(i) 3T ;o4 ¼

R
I
3Rt;o4 dt for every k-form o on W of class Cl

c ;

(ii) MðTÞ ¼
R
I
MðRtÞ dt.

If T is a normal current, we also consider the following additional conditions:
(iii)

R
I
MðqRtÞ dt < þl;

(iv) MðqTÞ ¼
R
I
MðqRtÞ dt.

Remark 4.2. (a) Condition (i) is often written in compact form: T ¼
R
I
Rt dt.

(b) If T is oriented by a continuous k-vectorfield v, then condition (ii) implies
that Rt is oriented by v for a.e. t a I .10 This explains the term ‘‘foliation’’.

(c) Conditions (i) and (iii) imply that qT ¼
R
I
qRt dt. Condition (iv) is stronger

than (iii), and implies that the family fqRtg is a foliation of qT .
(d) A current of finite mass T ¼ tm may admit no foliation. For example this

happens if m is a Dirac mass, or more generally a measure supported on a set E

which is purely k-unrectifiable.11 Or if m is the restriction of Hk to a k-surface S
but t does not span the tangent bundle of S.12

While the question of the existence of foliations for currents with finite mass
is not particularly interesting, the same question for normal currents is quite rel-
evant, and was first formulated by Frank Morgan (see [1], Problem 3.8). The next
result answers this question for normal currents which are tangent to a distribu-
tion of planes of class C1. If no regularity assumption is made on the tangent
bundle of the currents there are a few partial results (see Remark 4.4) and the
question is not completely settled.

Theorem 4.3 (See [2]). Let V be a distribution of k-planes of class C1 on W.
(i) If V is everywhere involutive, then every point of W admits a neighbourhood

U such that every normal k-current in U tangent to V admits a foliation fRtg sat-
isfying conditions (i), (ii), (iv) in §4.1.

(ii) Conversely, if T is a normal k-current in W which is tangent to V and admits
a foliation fRtg satisfying conditions (i), (ii) in §4.1 and such that the currents Rt

are integral, then V is involutive at every point in the support of T.

Remark 4.4. (a) Statement (ii) is an immediate consequence of Theorem 3.6.
(b) Statement (ii) shows that the answer to Morgan’s question is negative

whenever 1 < k < n, at least if we require that the currents in the foliation are
integral (and not just rectifiable); the example is given by any normal current T

9We also assume that the function t 7! MðRtÞ and t 7! 3Rt;o4 are Borel measurable for every

k-form o on W of class Cl
c (or, equivalently, of class C0).

10Conversely, if
R
I
MðRtÞ dt is finite, (i) holds, and Rt is oriented by v for a.e. t, then (ii) holds.

11That is, HkðEB SÞ ¼ 0 for every k-rectifiable set S.
12The point is that for currents with finite mass the supporting measure m can be chosen inde-

pendently of the orientation t. This is not the case with normal currents, and indeed none of these
examples is a normal current.
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tangent to distribution of k-planes which is nowhere involutive, for example the
normal k-current T given in Remark 3.3(d).

(c) A negative answer to Morgan’s question was first given by M. Zworski,
who proposed the following variant of statement (ii) above (see [13], Theorem
2): if v is a nowhere involutive k-vectorfield and T is a current of the form
T ¼ vLn, then T admits no foliation. However this statement is not correct,
because it does not require that the currents in the foliation are integral, and for
k ¼ n� 1 it contradicts the fact that every normal current admits a foliation, see
remark (e) below.

(d) Every normal 1-current in W admits a foliation satisfying conditions (i),
(ii), (iii) in §4.1; this is essentially a consequence of the decomposition result by
S. Smirnov [12] (see also [10]), even though it is not explicitly stated there. This
result does not hold if we require that condition (iv) holds.

(e) Consider a normal ðn� 1Þ-current T in W. A consequence of the coarea
formula for BV functions is that if T is a boundary then it admits a foliation sat-
isfying conditions (i), (ii), (iv) in §4.1 (see [5], Theorem 4.5.9(13)). Such a foliation
exists also if the boundary of T is rectifiable, as proved in [13], Theorem 1, using
an idea from [6]. By modifying the argument in [6] we prove in [2] that that every
normal ðn� 1Þ-current admits a foliation.13

(f ) The existence of foliations for normal currents of dimension d ¼ 1 or d ¼
n� 1 mentioned in items (d) and (e) above has no counterpart for 2a da n� 2.
Indeed, for any nb 4, Andrea Schioppa constructed in [11] a normal current T
of codimension 2 in Rn whose support is purely 2-unrectifiable. Clearly such
T admits no foliation, and more precisely it cannot even be decomposed as T ¼R
I
Rt dt with the only assumption that

R
I
MðRtÞ dt is finite.

Acknowledgments. Part of this research was carried out while the second author was visiting

the Mathematics Department in Pisa, supported by the University of Pisa through the 2015 PRA
Grant ‘‘Variational methods for geometric problems’’. The research of the first author has been par-

tially supported by the Italian Ministry of Education, University and Research (MIUR) through the
2011 PRIN Grant ‘‘Calculus of variations’’, and by the European Research Council (ERC) through

the 2011 Advanced Grant ‘‘Local structure of sets, measures and currents’’. The research of the sec-
ond author has been partially supported by the European Research Council through the 2012 Start-

ing Grant ‘‘Regularity theory for area minimizing currents’’.

References

[1] Some open problems in geometric measure theory and its applications suggested by

participants of the 1984 AMS summer institute, edited by J. E. Brothers. In Geo-
metric measure theory and the calculus of variations. Proceedings of the 32nd
summer research institute held at Humboldt State University, Arcata, CA, July 16–
August 3, 1984, edited by W. K. Allard and F. J. Almgren, pp. 441–464. Proceedings
of Symposia in Pure Mathematics, 44. American Mathematical Society, Providence,
RI, 1986.

13 In this case the currents in the foliation are no better than rectifiable.

868 g. alberti and a. massaccesi



[2] G. Alberti - A. Massaccesi, On the geometric structure of normal and integral cur-

rents, I. Paper in preparation.

[3] G. Alberti - A. Massaccesi - E. Stepanov, On the geometric structure of normal

and integral currents, II. Paper in preparation.

[4] Z. M. Balogh, Size of characteristic sets and functions with prescribed gradient,
J. Reine Angew. Math. 564 (2003), 63–83.

[5] H. Federer, Geometric measure theory, Grundlehren der mathematischen Wissen-
schaften, 153. Springer, Berlin–New York, 1969. Reprinted in the series Classics in
Mathematics. Springer, Berlin-Heidelberg, 1996.

[6] R. M. Hardt - J. T. Pitts, Solving Plateau’s problem for hypersurfaces without

the compactness theorem for integral currents, In Geometric measure theory and the
calculus of variations. Proceedings of the 32nd summer research institute held at
Humboldt State University, Arcata, CA, July 16–August 3, 1984, edited by W. K.
Allard and F. J. Almgren, pp. 441–464. Proceedings of Symposia in Pure Mathematics,
44. American Mathematical Society, Providence, RI, 1986.

[7] S. G. Krantz - H. R. Parks, Geometric integration theory, Cornerstones.
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