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Abstract. — In this paper we study, in an open bounded set with Lipschitz boundary, the

Dirichlet problem for a nonlinear singular elliptic equation involving the 1-Laplacian and a total
variation term, that is, the inhomogeneous case of the equation appearing in the level set formula-

tion of the inverse mean curvature flow. Our aim is twofold. On the one hand, we consider data
belonging to the Marcinkiewicz space with a critical exponent, which leads to unbounded solutions.

So, we have to begin introducing the suitable notion of unbounded solution to this problem. More-
over, examples of explicit solutions are shown. On the other hand, this equation allows us to deal

with many related problems having a di¤erent gradient term which depend on a function g (see (1)
below). It is known that the total variation term induces a regularizing e¤ect on existence, unique-

ness and regularity. We focus on analyzing whether those features remain true when general gradient
terms are taken. Roughly speaking, the bigger g, the better the properties of the solution.
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1. Introduction

In the present paper we deal with the Dirichlet problem for equations involving
the 1-Laplacian and a total variation term:

�div
� Du

jDuj

�
þ gðuÞjDuj ¼ f ðxÞ in W;

u ¼ 0 on qW;

8<
:ð1Þ

where W � RN is a bounded open set with Lipschitz boundary qW, gðsÞ stands for
a continuous nonnegative function defined for sb 0 and f is a nonnegative func-
tion belonging to the Marcinkiewicz space LN;lðWÞ.

A related class of elliptic problems involving the p-Laplacian operator (de-
fined in W 1;pðWÞ by Dpu ¼ divðj‘uj p�2‘uÞ, where p > 1) with a gradient term
has been widely studied. We recall the seminal paper [27] for a gradient term of
exponent p� 1 and the systematic study of equations having a gradient term
with natural growth initiated by Boccardo, Murat and Puel (see [12, 13, 14]).

The variational approach searches for solutions in the Sobolev space W
1;p
0 ðWÞ

and considers data belonging to its dual W �1;p 0 ðWÞ. (In the setting of Lebesgue



spaces, data are naturally taken in L
Np

Np�Nþ pðWÞ as a consequence of the Sobolev
embedding.)

We point out that the natural space to look for a solution to problem (1)
should be the Sobolev space W 1;1

0 ðWÞ and the space of data, from a variational
point of view, should be its dual W�1;lðWÞ. The Sobolev embedding Theorem
and duality arguments lead to consider as the right function space of data the
space LNðWÞ (among the Lebesgue spaces) and LN;lðWÞ (among the Lorentz
spaces). Evidences that the norm of LN;lðWÞ is suitable enough to deal with
this kind of problems can be found in [16, 29]. As far as the energy space is
concerned, we cannot search for solutions in W

1;1
0 ðWÞ, which is not reflexive,

and we have to extend our setting to the larger space BVðWÞ, the space of all
functions of bounded variation. Therefore, our framework is the following: given
a nonnegative f a LN;lðWÞ, find u a BVðWÞ that solves problem (1) in an appro-
priate sense which will be introduced below (see Definition 4.1).

Two important cases of problem (1) have already been studied. When gðsÞC 0

we obtain just the 1-Laplacian operator: �div
� Du

jDuj

�
. There is a big amount of

literature on this equation in recent years, starting in [25]. Other papers dealing
with this equation are [7, 10, 16, 19, 26, 29]. The interest in studying such a case
came from an optimal design problem in the theory of torsion and related geo-
metrical problems (see [25]) and from the variational approach to image restora-
tion (see [7] and also [8] for a review on the development of variational models
in image processing). The suitable concept of solution to handle the Dirichlet
problem for this kind of equations was introduced in [7]. In this paper, a meaning

for the quotient
Du

jDuj (involving Radon measures) is given through a vector field

z a LlðW;RNÞ satisfying kzkl a 1 and ðz;DuÞ ¼ jDuj as measures. This vector
field also gives sense to the boundary condition in a weak sense. The meaning
of all expressions in which appear vector fields relies on the theory of Ll-
divergence-measure fields (see [9] and [17]).

On the other hand, when gðsÞC 1, we get �div
� Du

jDuj

�
þ jDuj, which occurs

in the level set formulation of the inverse mean curvature flow (see [22], related
developments can be found in [23, 31, 32]). The framework of these papers, how-
ever, is di¤erent since W is unbounded. Furthermore, the concept of solution is
based on the minimization of certain functional and does not coincide with which
has been considered in the previous case. This operator has also been studied in
a bounded domain in [28], where it is proved the existence and uniqueness of a
bounded solution for a datum regular enough.

It is worth noting that, contrary to what happens in the p-Laplacian setting
with p > 1, features of solutions to problem (1) with gðsÞC 0 are very di¤erent
to those with gðsÞC 1. Indeed, the presence of the gradient term has a strong
regularizing e¤ect because in the first case the following facts hold:

(i) Existence of BV -solutions is only guaranteed for data small enough, for large
data solutions become infinity in a set of positive measure.
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(ii) There is no uniqueness at all: given a solution u, we also obtain that hðuÞ is a
solution, for every smooth increasing function h.

Whereas, in the second case, the properties are:

(i) There is always a solution, even in the case where the datum is large.
(ii) An uniqueness result holds.

Regarding regularity of solutions, even an equation related to the case gðsÞC 0
like u� div

�
Du
jDuj

�
¼ f ðxÞ (for which existence and uniqueness hold) has solutions

with jump part. On the contrary, solutions to problem (1) with gðsÞC 1 have
no jump part. Moreover, solutions to u� div

�
Du
jDuj

�
¼ f ðxÞ satisfy the boundary

condition only in a weak sense (and in general, ujqWA 0), while if gðsÞC 1, then
the boundary condition holds in the trace sense, that is, the value is attained
pointwise on the boundary.

We point out that the situation concerning existence is rather similar to that
shown in studying problem

�Duþ j‘uj2 ¼ l
u

jxj2
in W;

u ¼ 0 on qW;

8<
:ð2Þ

in domains satisfying 0 a W, since the presence of the quadratic gradient term
induces a regularizing e¤ect (see [3] and [1], see also Remark 5.4 below). Indeed,
existence of a positive solution to (2) can be proved for all l > 0, while if the
gradient term does not appear, solutions can be expected only for l small enough,
due to Hardy’s inequality.

Our purpose is to study the role of the function g on the above features
satisfied by the solutions. Roughly speaking, we see that the bigger g, the better
the properties of the solution. The standard case occurs when gðsÞbm > 0 for all
sb 0 and the situation degenerates as soon as gðsÞ touch the s-axis.

We begin by considering the case gðsÞ ¼ 1 for all sb 0. To get an idea of the
di‰culties one finds, let us recall previous works on this subject. As mentioned,
this problem was already handled in [28] for data f a LqðWÞ, with q > N. This
condition is somewhat artificial and was taken in this way due to the necessity
of obtaining bounded solutions. This necessity derives from the use of the theory
of Ll-divergence-measure fields. It was initiated in [9], where a sense is provided
with the dot product ðz;DuÞ, where z a LlðW;RNÞ satisfies that div z is a Radon
measure and u a BVðWÞBLlðWÞ is a continuous function. In a di¤erent way, it
was later developed in [17] for a possibly discontinuous function u a BVðWÞB
LlðWÞ (see also [15, 30] for a point of view closest to that of [9]). Since we
must expect unbounded solutions starting from the most natural space of data
LN;lðWÞ, the first result we need is to give sense to the dot product ðz;DuÞ
when u a BVðWÞ can be unbounded. This was achieved in [2], but we include it
for the sake of completeness.
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Endowed with this tool, in the first part of this paper, we prove an existence
and uniqueness result for problem (1) in the particular case gðsÞC 1. The second
part is fully devoted to our main concern, that is, to search for the properties that
solutions to problem (1) satisfy for di¤erent functions g. For better understand-
ing, we summarize the results we will see in Table 1 below.

The plan of this paper is the following. Section 2 is dedicated to prelimi-
naries, we introduce our notation and some properties of the spaces BVðWÞ and
LN;lðWÞ. In Section 3 we generalize the theory of Ll-divergence-measure fields
to take pairings ðz;DuÞ of a certain vector field z and any u a BVðWÞ. This theory
is applied in Section 4 to extend the result of existence and uniqueness of [28]
to LN;lðWÞ-data. In Section 5 we show explicit radial examples of solutions.
Section 6 is devoted to study the standard cases of problem (1), those where gðsÞ
is bounded from below by a positive constant. A non standard case is shown
in Section 7 with gðsÞ touching the s-axis; in this case we need to change our def-
inition of solution since solutions no longer belong to BVðWÞ. Finally, in Section
8 we deal with really odd cases for which the considered properties are not neces-
sarily satisfied.

2. Preliminaries

In this Section we will introduce some notation and auxiliary results which will
be used throughout this paper. In what follows, we will consider Nb 2, and
HN�1ðEÞ will denote the ðN � 1Þ-dimensional Hausdor¤ measure of a set E
and jEj its Lebesgue measure.

Table 1

Function gðsÞ Existence Uniqueness Regularity

0 < ma gðsÞ For every datum(1) Yes(1)
No jump part(1)

Better summability(2)

g vanishes at some points
g B L1ð½0;l½Þ For every datum(3) Yes(3) No jump part(3)

g vanishes at infinity
g B L1ð½0;l½Þ

For every datum(4),
with another concept

of solution(5)
Yes(4) No jump part(4)

g a L1ð½0;l½Þ For data small
enough(6,7)

Yes(7) No jump part(7)

g vanishes on an interval
For data small

enough(8)
No(9)

With jump part(10)
No boundary
condition(11)

Notes: (1) Theorem 6.4 and Theorem 6.5, (2) Proposition 6.6, (3) Theorem 7.1, (4) Theorem 7.3,

(5) Definition 7.2 and Example 7.4, (6) Example 8.4, (7) Theorem 8.1, (8) Remark 8.5, (9) Remark
8.5 and Remark 8.7, (10) Example 8.8, (11) Example 8.6.
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In this paper, W will always denote an open subset of RN with Lipschitz
boundary. Thus, an outward normal unit vector nðxÞ is defined for HN�1-almost
every x a qW. We will make use of the usual Lebesgue and Sobolev spaces,
denoted by LqðWÞ and W

1;p
0 ðWÞ, respectively.

We recall that for a Radon measure m in W and a Borel set A � W the measure
mKA is defined by ðmKAÞðBÞ ¼ mðABBÞ for any Borel set B � W. If a measure
m is such that m ¼ mKA for a certain Borel set A, the measure m is said to be
concentrated on A.

The truncation function will be use throughout this paper. Given k > 0, it is
defined by

TkðsÞ ¼ minfjsj; kg signðsÞ;ð3Þ

for all s a R. Moreover, we define another auxiliary real function by

GkðsÞ ¼ ðs� TkðsÞÞ:ð4Þ

2.1. The energy space

The space of all functions of finite variation, that is the space of those u a L1ðWÞ
whose distributional gradient is a Radon measure with finite total variation, is
denoted by BVðWÞ. This is the natural energy space to study the problems we
are interested in. It is endowed with the norm defined by

kuk ¼
Z
W

juj dxþ
Z
W

jDuj;

for any u a BVðWÞ. An equivalent norm, which we will use in the sequel, is given
by

kukBVðWÞ ¼
Z
qW

juj dHN�1 þ
Z
W

jDuj:

For every u a BVðWÞ, the Radon measure Du is decomposed into its abso-
lutely continuous and singular parts with respect to the Lebesgue measure:
Du ¼ DauþDsu. We denote by Su the set of all x a W such that the approximate
limit of u does not exist at x, that is, x a WnSu if there exists ~uuðxÞ such that

lim
r#0

1

jBrðxÞj

Z
BrðxÞ

juðyÞ � ~uuðxÞj dy ¼ 0:

We say that x a W is an approximate jump point of u if there exist two real num-
bers uþðxÞ > u�ðxÞ and nuðxÞ a SN�1 such that

lim
r#0

1

jBþ
r ðx; nuðxÞÞj

Z
Bþ
r ðx; nuðxÞÞ

juðyÞ � uþðxÞj dy ¼ 0;

lim
r#0

1

jB�
r ðx; nuðxÞÞj

Z
B�
r ðx; nuðxÞÞ

juðyÞ � u�ðxÞj dy ¼ 0;
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where

Bþ
r ðx; nuðxÞÞ ¼ fy a BrðxÞ : 3y� x; nuðxÞ4 > 0g

and

B�
r ðx; nuðxÞÞ ¼ fy a BrðxÞ : 3y� x; nuðxÞ4 < 0g:

We denote by Ju the set of all approximate jump points of u. By the Federer–
Vol’pert Theorem [6, Theorem 3.78], we know that Su is countably HN�1-

rectifiable and HN�1ðSunJuÞ ¼ 0. Moreover, DuKJu ¼ ðuþ � u�ÞnuHN�1
KJu.

Using Su and Ju, we may split Dsu in two parts: the jump part D ju and the Cantor
part Dcu defined by

Dju ¼ DsuKJu and Dcu ¼ DsuKðWnSuÞ:

Then, we have

Dju ¼ ðuþ � u�ÞnuHN�1
KJu:

Moreover, if x a Ju, then nuðxÞ ¼ Du
jDuj ðxÞ and Du

jDuj is the Radon–Nikodým deriva-

tive of Du with respect to its total variation jDuj.
The precise representative u� : WnðSunJuÞ ! R of u is defined as equal to ~uu

on WnSu and equal to u�þuþ

2 on Ju. It is well known (see for instance [6, Corollary
3.80]) that if r is a symmetric mollifier, then the mollified functions u � r� point-
wise converge to u� in its domain.

A compactness result in BVðWÞ will be used several times in what follows. It
states that every sequence that is bounded in BVðWÞ has a subsequence which
strongly converges in L1ðWÞ to a certain u a BVðWÞ and the subsequence of
gradients �-weakly converges to Du in the sense of measures.

To pass to the limit we will often apply that some functionals defined on
BVðWÞ are lower semicontinuous with respect to the convergence in L1ðWÞ. The
most important are the functionals defined by

u 7!
Z
W

jDujð5Þ

and

u 7!
Z
W

jDuj þ
Z
qW

juj dHN�1:ð6Þ

In the same way, it yields that each j a C1
0 ðWÞ with jb 0 defines a functional

u 7!
Z
W

jjDuj;

which is lower semicontinuous in L1ðWÞ.
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Finally, we recall that the notion of trace can be extended to any u a BVðWÞ
and this fact allows us to interpret it as the boundary values of u and to write
ujqW. Moreover, it holds that the trace is a linear bounded operator BVðWÞ !
L1ðqWÞ which is onto.

For further information on functions of bounded variation, we refer to
[6, 20, 33].

2.2. The data space

Given a measurable function u : W ! R, we denote by mu the distribution func-
tion of u: the function mu : ½0;þl½ ! ½0;þl½ defined by

muðtÞ ¼ jfx a W : juðxÞj > tgj; tb 0:

For 1 < q < l, the space Lq;lðWÞ, known as Marcinkiewicz or weak-
Lebesgue space, is the space of Lebesgue measurable functions u : W ! R such
that

½u�q ¼ sup
t>0

tmuðtÞ
1=q < þl:ð7Þ

The relationship with Lebesgue spaces is given by the following inclusions

LqðWÞ ,! Lq;lðWÞ ,! Lq�eðWÞ;

for suitable e > 0. We point out that expression (7) defines a quasi-norm which is
not a norm in Lq;lðWÞ. (For a suitable norm in this space see (10), (11) and (12)
below).

Some properties of Lorentz spaces Lq;1ðWÞ (with 1 < q < l) must be applied
throughout this paper. To begin with, we define the decreasing rearrangement of
u as the function u� : �0; jWj� ! Rþ given by

u�ðsÞ ¼ supft > 0 : muðtÞ > sg; s a �0; jWj�;

(the main properties of rearrangements can be found in [11, 24, 33]). In terms of
u�, the quasi-norm (7) becomes

½u�q ¼ sup
s>0

fs1=qu�ðsÞg:ð8Þ

We say that a measurable function u : W ! R belongs to Lq;1ðWÞ if

kukLq; 1ðWÞ ¼
1

q

Z l

0

s1=qu�ðsÞ ds
s

ð9Þ

is finite. This expression defines a norm (see [11, Theorem 5.13]). The classical
paper where these spaces are systematically studied is [24] (see also [11, 33]).
Some important properties of Lorentz spaces are:
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1. Lq;1ðWÞ is a Banach space endowed with the norm defined by (9).
2. Simple functions are dense in Lq;1ðWÞ.
3. The norm (9) is absolutely continuous.

Concerning duality, the Marcinkiewicz space Lq 0;lðWÞ is the dual space of
Lq;1ðWÞ. Indeed, it follows from a Hardy–Littlewood inequality that if f a
Lq 0;lðWÞ and u a Lq;1ðWÞ, then fu a L1ðWÞ and a Hölder type inequality holds:

Z
W

fu dx

����
����a

Z l

0

f �ðsÞu�ðsÞ ds ¼
Z l

0

s1=q
0
f �ðsÞs1=qu�ðsÞ ds

s

a q½ f �q 0 kukLq; 1ðWÞ:

Thus,

k f kLq 0 ;lðWÞ ¼ sup
j
R
W fu dxj

kukLq; 1ðWÞ
: u a Lq;1ðWÞnf0g

( )
ð10Þ

defines a norm in the Marcinkiewicz space and k f kLq 0 ;lðWÞ a q½ f �q 0 holds. Taking
into account that if E � W is a measurable set of positive measure and u ¼
jEj�

1
qwE , then kukLq; 1ðWÞ ¼ 1 and also applying the density of simple functions,

we deduce that

k f kLq 0 ;lðWÞ ¼ sup

Z
W

fu dx

����
���� : u ¼ jEj�

1
qwE ; with jEj > 0

� �
ð11Þ

¼ sup jEj�1=q

Z
E

j f j dx : jEj > 0

� �
:

This implies ½ f �q 0 a k f kLq 0 ;lðWÞ, so that, the quasi-norm ½ � �q 0 is equivalent to the

norm k � kLq 0 ;lðWÞ. It also yields

k f kLq 0 ;lðWÞ ¼ sup
s>0

fs1=q 0
f ��ðsÞg;ð12Þ

where f ��ðsÞ ¼ 1

s

Z s

0

f �ðsÞ ds:

On the other hand, we recall that Sobolev’s inequality can be improved in the
context of Lorentz spaces (see [4]): the continuous embedding

W 1;1
0 ðWÞ ,! L

N
N�1

;1ðWÞð13Þ

holds. The best constant in this embedding will be denoted as

SN ¼ sup
kuk

L
N

N�1
; 1ðWÞR

W j‘uj dx : u a W
1;1
0 ðWÞnf0g

8<
:

9=
;:ð14Þ
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Its value is known:

SN ¼
G
�
N
2 þ 1

�1=N
N

ffiffiffi
p

p ¼ 1

NC
1=N
N

;ð15Þ

where CN denotes the measure of the unit ball in RN . (We explicitly point out
that this is the value for the best constant having in mind the norm in the Lorentz
space as defined in (9).) Furthermore, by an approximation argument, this inclu-
sion may be extended to BV-functions with the same best constant SN (see, for
instance, [33]):

BVðWÞ ,! L
N

N�1
;1ðWÞ:ð16Þ

It is worth remarking that the supremum in (14) is attained in BVðWÞ.
As a consequence of this embedding, given f a LN;lðWÞ and u a BVðWÞ, it

yields fu a L1ðWÞ. This fact will be essential in what follows.
Another feature concerning Lorentz spaces and duality is in order. We will de-

note by W �1;q 0 ðWÞ the dual space of W 1;q
0 ðWÞ, 1a q < l. Here we recall just

that the norm in W �1;lðWÞ is given by

kmkW �1;lðWÞ ¼ sup j3m; u4
W �1;lðWÞ;W 1; 1

0
ðWÞj :

Z
W

j‘uj dxa 1

� �
:ð17Þ

Since the norm in L
N

N�1
;1ðWÞ is absolutely continuous, it follows that Cl

0 ðWÞ is

dense in L
N

N�1
;1ðWÞ. A duality argument shows that LN;lðWÞ ,! W�1;lðWÞ and,

having in mind (10) and (14), we obtain: if f a LN;lðWÞ, then

k f kLN;lðWÞ ¼ sup

R
W fu dx

�� ��
kuk

L
N

N�1
; 1ðWÞ

: u a W
1;1
0 ðWÞnf0g

8<
:

9=
;

¼ sup
j
R
W fu dxjR

W j‘uj dx �
R
W j‘uj dx

kuk
L

N
N�1

; 1ðWÞ

: u a W 1;1
0 ðWÞnf0g

8<
:

9=
;

bS�1
N k f kW �1;lðWÞ:

Therefore,

k f kW �1;lðWÞ a
1

NC
1=N
N

k f kLN;lðWÞ;ð18Þ

for every f a LN;lðWÞ. (For a related equality in a ball, see [29, Remark 3.3]).

3. Extending Anzellotti’s theory

In this section we will study some properties involving divergence-measure vector
fields and functions of bounded variation. Our aim is to extend the Anzellotti
theory.
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Following [17] we define DMlðWÞ as the space of all vector fields z a
LlðW;RNÞ whose divergence in the sense of distributions is a Radon measure
with finite total variation, i.e., z a DMlðWÞ if and only if div z is a Radon mea-
sure belonging to W �1;lðWÞ.

The theory of Ll-divergence-measure vector fields is due to G. Anzellotti [9]
and, independently, to G.-Q. Chen and H. Frid [17]. In spite of their di¤erent
points of view, both approaches introduce the normal trace of a vector field
through the boundary and establish the same generalized Gauss–Green formula.
Both two also define the pairing ðz;DuÞ as a Radon measure where z a DMlðWÞ
and u is a certain BV -function. However, they di¤er in handling this concept.
While in [9] it is only considered continuous functions belonging to BVðWÞB
LlðWÞ and the inequality

jðz;DuÞja kzkljDujð19Þ

is proved for those functions; in [17], general functions u a BVðWÞBLlðWÞ are
considered but it is only shown that the Radon measure ðz;DuÞ is absolutely
continuous with respect to jDuj. In the present paper we need that the inequality
(19) holds for every u a BVðWÞ and every z a DMlðWÞ satisfying a certain con-
dition (see Corollary 3.5 below). That is why the way by which the pairings
ðz;DuÞ are obtained will be essential in our work. This is the reason for extending
the Anzellotti approach in this Section.

We finally point out that the theory of divergence-measure fields has been
extended later (see [18] and [34]).

We begin by recalling a result proved in [17].

Proposition 3.1. For every z a DMlðWÞ, the measure m ¼ div z is absolutely

continuous with respect to HN�1, that is, jmjfHN�1.

Consider now m ¼ div z with z a DMlðWÞ and let u a BVðWÞ; then the pre-
cise representative u� of u is equal HN�1-a.e. to a Borel function; that is, to
lime!0 re � u, where ðreÞe is a symmetric mollifier. Then, it is deduced from the
previous Proposition that u� is equal m-a.e. to a Borel function. So, given
u a BVðWÞ, its precise representative u� is always m-measurable. Moreover,
u a BVðWÞBLlðWÞ implies u a LlðW; mÞ � L1ðW; mÞ.

3.1. Preservation of the norm

We point out that every div z, with z a DMlðWÞ, defines a functional onW
1;1
0 ðWÞ

by

3div z; u4
W �1;lðWÞ;W 1; 1

0
ðWÞ ¼ �

Z
W

z � ‘u dx:ð20Þ

To express this functional in terms of an integral with respect to the measure
m ¼ div z, we need the following Meyers–Serrin type theorem (see [6, Theorem
3.9] for its extension to BV -functions).
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Proposition 3.2. Let m ¼ div z, with z a DMlðWÞ. For every u a BVðWÞB
LlðWÞ there exists a sequence ðunÞn in W 1;1ðWÞBClðWÞBLlðWÞ such that

ð1Þ un ! u� in L1ðW; mÞ:

ð2Þ
Z
W

j‘unj dx ! jDujðWÞ:

ð3Þ unjqW ¼ ujqW for all n a N:

ð4Þ junðxÞja kukl jmj-a:e: for all n a N:

Moreover, if u a W 1;1ðWÞBLlðWÞ, then one may find un satisfying, instead of (2),
the condition

ð2 0Þ un ! u in W 1;1ðWÞ:

Since

�
Z
W

z � ‘j dx ¼
Z
W

j dm

holds for every j a Cl
0 ðWÞ, it is easy to obtain this equality for every W

1;1
0 ðWÞB

ClðWÞ. Given u a W 1;1
0 ðWÞBLlðWÞ and applying Proposition 3.2, we may find

a sequence ðunÞn in W 1;1
0 ðWÞBClðWÞ satisfying (1) and (2 0). Letting n go to

infinity, it follows from

�
Z
W

z � ‘un dx ¼
Z
W

un dm

for every n a N, that

�
Z
W

z � ‘u dx ¼
Z
W

u� dm

and so

3div z; u4
W �1;lðWÞ;W 1; 1

0
ðWÞ ¼

Z
W

u� dm

holds for every u a W
1;1
0 ðWÞBLlðWÞ. Then the norm of this functional is given

by

kmkW �1;lðWÞ ¼ sup

Z
W

u� dm

����
���� : u a W

1;1
0 ðWÞBLlðWÞ; with kuk

W
1; 1
0

ðWÞ a 1

� �
:

where kuk
W 1; 1

0
¼

Z
W

j‘uj dx. We have seen that m ¼ div z can be extended from

W
1;1
0 ðWÞ to BVðWÞBLlðWÞ. Next, we will prove that this extension can be

given as an integral with respect to m and it preserves the norm. To this end, the
following Lemma, stated in [9], will be applied.
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Lemma 3.3. For every u a BVðWÞ – so that ujqW a L1ðqWÞ –, there exists a se-
quence ðwnÞn in W 1;1ðWÞBCðWÞ such that

ð1Þ wnjqW ¼ ujqW:

ð2Þ
Z
W

j‘wnj dxa
Z
qW

juj dHN�1 þ 1

n
:

ð3Þ
Z
W

jwnj dxa
1

n
:

ð4Þ wnðxÞ ¼ 0 if distðx; qWÞ > 1

n
:

ð5Þ wnðxÞ ! 0 for all x a W:

Moreover, if u a BVðWÞBLlðWÞ, then wn a LlðWÞ and kwnkla kujqWkl for
all n a N.

Theorem 3.4. Let z a DMlðWÞ and denote m ¼ div z. Then, the functional
given by (20) can be extended to BVðWÞBLlðWÞ as an integral with respect to m
and its norm satisfies

kmkW �1;lðWÞ ¼ sup

Z
W

u� dm

����
���� : u a BVðWÞBLlðWÞ; with kukBVðWÞ a 1

� �
;

where kukBVðWÞ ¼
Z
qW

juj dHN�1 þ
Z
W

jDuj.

Proof. Since we already know that BVðWÞBLlðWÞ is a subset of L1ðW; mÞ, all
we have to prove isZ

W

u� dm

����
����a kmkW �1;lðWÞ

�
jDujðWÞ þ

Z
qW

juj dHN�1
�

ð21Þ

for all u a BVðWÞBLlðWÞ. This inequality will be proved in two steps.

Step 1: Assume first that u a W 1;1ðWÞBLlðWÞ. Consider the sequence ðwnÞn
in W 1;1ðWÞBCðWÞ of the above Lemma. Hence, wn a LlðWÞ and kwnkl a

kujqWkl for all n a N. Then it yieldsZ
W

ðu� � w�
n Þ dm

����
���� ¼ j3m; ðu� wnÞ4W �1;lðWÞ;W 1; 1

0
ðWÞj

a kmkW �1;lðWÞ

Z
W

j‘u� ‘wnj dx

a kmkW �1;lðWÞ

�Z
W

j‘uj dxþ
Z
qW

juj dHN�1 þ 1

n

�
:
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It follows thatZ
W

u� dm

����
����a

Z
W

ðu� � w�
n Þ dm

����
����þ

Z
W

w�
n dm

����
����ð22Þ

a kmkW �1;lðWÞ

�Z
W

j‘uj dxþ
Z
qW

juj dHN�1 þ 1

n

�
þ

Z
W

w�
n dm

����
����:

Since the sequence ðwnÞn tends pointwise to 0 and it is uniformly bounded in
LlðWÞ, by Lebesgue’s Theorem,

lim
n!l

Z
W

w�
n dm ¼ 0:

Now, taking the limit in (22) we obtain (21).

Step 2: In the general case, we apply Proposition 3.2 and find a sequence ðunÞn in
W 1;1ðWÞBClðWÞBLlðWÞ such that

ð1Þ u�
n ! u� in L1ðW; mÞ:

ð2Þ
Z
W

j‘unj dx ! jDujðWÞ:

ð3Þ unjqW ¼ ujqW for all n a N:

ð4Þ junðxÞja kukl jmj-a:e: for all n a N:

Then, it follows fromZ
W

u�
n dm

����
����a kmkW �1;lðWÞ

�Z
W

j‘unj dxþ
Z
qW

juj dHN�1
�

for all n a N

that (21) holds. r

Corollary 3.5. Let z a DMlðWÞ satisfy div z ¼ nþ f for a certain Radon
measure n and a certain f a LN;lðWÞ. If either nb 0 or na 0, then m ¼ div z can
be extended to BVðWÞ and

kmkW �1;lðWÞ ¼ sup

Z
W

u� dm

����
���� : u a BVðWÞ; jDujðWÞ þ

Z
qW

juj dHN�1
a 1

� �
:

Moreover, BVðWÞ ,! L1ðW; mÞ.

Proof. Consider u a BVðWÞ, denote uþ ¼ maxfu; 0g and, for every k > 0,
apply the previous result to TkðuþÞ (recall (3)). ThenZ

W

TkðuþÞ� dm
����

����a kmkW �1;lðWÞ

�
jDTkðuþÞjðWÞ þ

Z
qW

TkðuþÞ dHN�1
�

ð23Þ

a kmkW �1;lðWÞ

�
jDuþjðWÞ þ

Z
qW

uþ dHN�1
�
:
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On the other hand, observe that u� is a n-measurable function, so that we obtainZ
W

TkðuþÞ� dm ¼
Z
W

TkðuþÞ� dnþ
Z
W

TkðuþðxÞÞ f ðxÞ dx

for every k > 0. We may apply Levi’s Theorem and Lebesgue’s Theorem to
deduce

lim
k!þl

Z
W

TkðuþÞ� dn ¼
Z
W

ðuþÞ� dn

and

lim
k!þl

Z
W

TkðuþðxÞÞ f ðxÞ dx ¼
Z
W

uþðxÞ f ðxÞ dx:

Thus,

lim
k!þl

Z
W

TkðuþÞ� dm ¼
Z
W

ðuþÞ� dm:

Now, taking the limit when k goes to l in (23), it yieldsZ
W

ðuþÞ� dm
����

����a kmkW �1;lðWÞ

�
jDuþjðWÞ þ

Z
qW

uþ dHN�1
�
:ð24Þ

Assume, in order to be concrete, that nb 0. SinceZ
W

ðuþÞ� dm� ¼
Z
W

uþðxÞ f�ðxÞ dx;

we already have that ðuþÞ� is m�-integrable. Hence, as a consequence of (24), we
deduce that ðuþÞ� is mþ-integrable as well and then, ðuþÞ� m-integrable too.

Since we may prove a similar inequality to u� ¼ maxf�u; 0g, adding both
inequalities we deduce that u� is m-integrable and thatZ

W

u� dm

����
����a kmkW �1;lðWÞ

�
jDujðWÞ þ

Z
qW

juj dHN�1
�

holds true. r

3.2. A Green’s formula

Let z a DMlðWÞ and let u a BVðWÞ. Assume that div z ¼ nþ f , with n a Radon
measure satisfying either nb 0 or na 0, and f a LN;lðWÞ. In the spirit of [9], we
define the following distribution on W. For every j a Cl

0 ðWÞ, we write

3ðz;DuÞ; j4 ¼ �
Z
W

u�j dm�
Z
W

uz � ‘j dx;ð25Þ
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where m ¼ div z. Note that the previous subsection implies that every term in
the above definition has sense. We next prove that this distribution is actually a
Radon measure having finite total variation.

Proposition 3.6. Let z and u be as above. The distribution ðz;DuÞ defined
previously satisfies

j3ðz;DuÞ; j4ja kjklkzkLlðUÞ

Z
U

jDujð26Þ

for all open set U � W and for all j a Cl
0 ðUÞ.

Proof. If U � W is an open set and j a Cl
0 ðUÞ, then it was proved in [30] that

j3ðz;DTkðuÞÞ; j4ja kjklkzkLlðUÞ

Z
U

jDTkðuÞja kjklkzkLlðUÞ

Z
U

jDujð27Þ

holds for every k > 0. On the other hand,

3ðz;DTkðuÞÞ; j4 ¼ �
Z
W

TkðuÞ�j dm�
Z
W

TkðuÞz � ‘j dx:

We may let k ! l in each term on the right hand side, due to u� a L1ðW; mÞ and
u a L1ðWÞ. Therefore,

lim
k!l

3ðz;DTkðuÞÞ; j4 ¼ 3ðz;DuÞ; j4;

and so (27) implies (26). r

Corollary 3.7. The distribution ðz;DuÞ is a Radon measure. It and its total
variation jðz;DuÞj are absolutely continuous with respect to the measure jDuj andZ

B

ðz;DuÞ
����

����a
Z
B

jðz;DuÞja kzkLlðUÞ

Z
B

jDuj

holds for all Borel sets B and for all open sets U such that B � U � W.

On the other hand, for every z a DMlðWÞ, a weak trace on qW of the normal
component of z is defined in [9] and denoted by ½z; n�.

Proposition 3.8. Let z and u be as above. With the above definitions, the follow-
ing Green formula holdsZ

W

u� dmþ
Z
W

ðz;DuÞ ¼
Z
qW

½z; n�u dHN�1;ð28Þ

where m ¼ div z.
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Proof. Applying the Green formula proved in [30], we obtainZ
W

TkðuÞ� dmþ
Z
W

ðz;DTkðuÞÞ ¼
Z
qW

½z; n�TkðuÞ dHN�1;ð29Þ

for every k > 0. Note that the same argument appearing in the proof of the
previous Proposition leads to

lim
k!l

Z
W

ðz;DTkðuÞÞ ¼
Z
W

ðz;DuÞ:

We may take limits in the other terms since u� a L1ðW; mÞ and u a L1ðqWÞ.
Hence, letting k go to l in (29), we get (28). r

Proposition 3.9. Let z a DMlðWÞ with kzkl a 1 and let u a BVðWÞ. Then
ðz;DuÞ ¼ jDuj as measures if and only if ðz;DTkðuÞÞ ¼ jDTkðuÞj as measures for
all k > 0.

Proof. We first assume ðz;DuÞ ¼ jDuj and so (recall (4))

jDuj ¼ ðz;DuÞ ¼ ðz;DTkðuÞÞ þ ðz;DGkðuÞÞ
a jDTkðuÞj þ jDGkðuÞj ¼ jDuj:

Then, the inequality becomes equality and so ðz;DTkðuÞÞ ¼ jDTkðuÞj as mea-
sures. Conversely, we assume ðz;DTkðuÞÞ ¼ jDTkðuÞj for all k > 0. For each
j a Cl

0 ðWÞ, we use the same argument which appears in Proposition 3.6 to
obtain:

lim
k!l

3ðz;DTkðuÞÞ; j4 ¼ 3ðz;DuÞ; j4

and

lim
k!l

Z
W

jjDTkðuÞj ¼
Z
W

jjDuj:

So, using the hypothesis, we conclude 3ðz;DuÞ; j4 ¼
Z
W

jjDuj for every j a
Cl

0 ðWÞ, that is, ðz;DuÞ ¼ jDuj as measures. r

3.3. The chain rule

We point out that there is a chain rule for BV -functions, the more general for-
mula is due to L. Ambrosio and G. Dal Maso (see [6, Theorem 3.101], see also
[6, Theorem 3.96]). In our framework, it states that if v a BVðWÞ satisfies D jv ¼ 0
and u ¼ GðvÞ, where G is a Lipschitz-continuous real function, then u a BVðWÞ
and

Du ¼ G 0ðvÞjDvj:
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We cannot directly apply this result in our context since G 0 need not be bounded.
Hence, the following slight generalization is needed.

Theorem 3.10. Let v a BVðWÞ such that D jv ¼ 0 and let g be a continuous and
unbounded real function with gðsÞ > m > 0 for all sb 0. We define

GðsÞ ¼
Z s

0

gðsÞ ds:

Assuming that u ¼ GðvÞ a L1ðWÞ, it holds that u a BVðWÞ if and only if gðvÞ�jDvj
is a finite measure and in that case jDuj ¼ gðvÞ�jDvj as measures.

Proof. Let j a Cl
0 ðWÞ with jb 0. We apply the chain rule to get the next

equality: Z
fjvj<kg

jjDuj ¼
Z
fjvj<kg

jgðTkðvÞÞ�jDvj ¼
Z
fjvj<kg

jgðvÞ�jDvj:

Now, using the monotone convergence theorem, we take limits when k ! l and
it holds Z

W

jjDuj ¼
Z
W

jgðvÞ�jDvj;

and if one integral is finite, the other is finite too. Finally, we extend this equality
to every j a Cl

0 ðWÞ and the result is proved. r

4. Solutions for LN;l
-data

This section is devoted to solve problem

�div
� Du

jDuj

�
þ jDuj ¼ f ðxÞ in W;

u ¼ 0 on qW;

8<
:ð30Þ

for nonnegative data f a LN;lðWÞ. We begin by introducing the notion of solu-
tion to this problem.

Definition 4.1. Let f a LN;lðWÞ with f b 0. We say that u a BVðWÞ satisfy-
ing D ju ¼ 0 is a weak solution of problem (30) if there exists z a DMlðWÞ with
kzkla 1 such that

�div zþ jDuj ¼ f in D 0ðWÞ;
ðz;DuÞ ¼ jDuj as measures in W;

and

ujqW ¼ 0:
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Remark 4.2. We explicitly remark that any solution to problem (30) satisfies

�divðe�uzÞ ¼ e�uf

in the sense of distributions (see [28, Remark 3.4]).

Theorem 4.3. There is a unique nonnegative weak solution of problem (30).

Proof. The proof will be divided in several steps.

Step 1: Approximating problems.
The function f is in LN;lðWÞ so, there exists a sequence ð fnÞn in LlðWÞ such

that fn converges to f in L1ðWÞ.
In [28] it is proved that there exists un a BVðWÞBLlðWÞ, with Djun ¼ 0 and

un b 0, which is a solution to problem

�div
� Dun

jDunj

�
þ jDunj ¼ fnðxÞ in W;

un ¼ 0 on qW:

8<
:ð31Þ

That is, there exists a vector field zn in DMlðWÞ such that

�div zn þ jDunj ¼ fn in D 0ðWÞ;ð32Þ
ðzn;DunÞ ¼ jDunj as measures in W;ð33Þ

and

unjqW ¼ 0:ð34Þ

On account of Remark 4.2, it also holds

�divðe�unznÞ ¼ e�unfn in D 0ðWÞ:ð35Þ

Step 2: BV-estimate.
Taking the function test

TkðunÞ
k

in problem (31), we get

1

k

Z
W

ðzn;DTkðunÞÞ þ
1

k

Z
W

TkðunÞ�jDunj ¼
Z
W

fn
TkðunÞ

k
dxa

Z
W

fn dxaC;

where C does not depend on n. Since ðzn;DunÞ ¼ jDunj, it follows from Proposi-
tion 3.9 that ðzn;DTkðunÞÞ ¼ jDTkðunÞj, which is nonnegative. Thus

1

k

Z
W

TkðunÞ�jDunjaC:

Then, letting k ! 0 in the inequality above we arrive atZ
W

jDunjaC:
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Therefore, ðunÞn is bounded in BVðWÞ and, up to a subsequence, un ! u in L1ðWÞ
and ðDunÞn converges to Du �-weakly as measures when n ! l.

Step 3: Vector field.
Now, we want to find a vector field z a DMlðWÞ with kzkl a 1 such that

�div zþ jDuja f in D 0ðWÞ:

The sequence ðznÞn is bounded in LlðW;RNÞ then, there exists z a LlðW;RNÞ
such that zn * z �-weakly in LlðW;RNÞ. In addition, since kznkla 1 we get
kzkla 1.

Using j a Cl
0 ðWÞ with jb 0 as a function test in (31), we arrive atZ

W

zn � ‘j dxþ
Z
W

jjDunj ¼
Z
W

fnj dx;

and when we take n ! l, using (5) it becomesZ
W

z � ‘j dxþ
Z
W

jjDuja
Z
W

f j dx:

Therefore,

�div zþ jDuja f in D 0ðWÞ

and �div z is a Radon measure. In addition, since ð�div znÞn ¼ fn � jDunj holds
for every n a N, the sequence ð�div znÞn is bounded in the space of measures and,
due to �div zn converges to �div z, we deduce that �div z is a Radon measure
with finite total variation.

On the other hand, multiply (35) by j a Cl
0 ðWÞ, then Green’s formula pro-

vides us Z
W

e�unzn � ‘j dx ¼
Z
W

fne
�unj dx;

and letting n go to l we getZ
W

e�uz � ‘j dx ¼
Z
W

fe�uj dx:

Namely,

�divðe�uzÞ ¼ fe�u in D 0ðWÞ:ð36Þ

Step 4: D ju ¼ 0.
In this step, we are adapting an argument used in [21], which relies on [5,

Proposition 3.4] and [15, Lemma 5.6]. A previous result is needed, namely,
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inequality (39) bellow. To prove (39), we begin by recalling

�divðe�unznÞ ¼ e�unfn in D 0ðWÞ;

since un is the solution to problem (31). Using that un ¼ GkðunÞ þ TkðunÞ, we can
write

�divðe�unznÞ ¼ �e�GkðunÞ divðe�TkðunÞznÞ þ ðe�unÞ�jDGkðunÞj;

and so

e�TkðunÞfn ¼ �divðe�TkðunÞznÞ þ ðe�TkðunÞÞ�jDGkðunÞjð37Þ
¼ �divðe�TkðunÞznÞ þ e�kjDGkðunÞj:

Applying first the chain rule and then [28, Proposition 2.3], we have

jDe�TkðunÞj ¼ ðe�TkðunÞÞ�jDTkðunÞjð38Þ
¼ ðe�TkðunÞÞ�ðzn;DTkðunÞÞ ¼ ðe�TkðunÞzn;DTkðunÞÞ:

Let j a Cl
0 ðWÞ with jb 0, due to (38) and (37), we getZ

W

jjDe�TkðunÞj ¼ 3ðe�TkðunÞzn;DTkðunÞÞ; j4

¼ �
Z
W

TkðunÞj divðe�TkðunÞznÞ �
Z
W

TkðunÞe�TkðunÞzn � ‘j dx

¼
Z
W

TkðunÞje�TkðunÞfn dx�
Z
W

ke�kjjDGkðunÞj

�
Z
W

TkðunÞe�TkðunÞzn � ‘j dx:

That is, Z
W

jjDe�TkðunÞj þ k

ek

Z
W

jjDGkðunÞj

¼
Z
W

TkðunÞje�TkðunÞfn dx�
Z
W

TkðunÞe�TkðunÞzn � ‘j dx:

Now, we can take limits when n goes to l, and applying the lower semicon-
tinuity of the total variation, we arrive to the next inequality:Z

W

jjDe�TkðuÞj þ k

ek

Z
W

jjDGkðuÞj

a

Z
W

TkðuÞje�TkðuÞf dx�
Z
W

TkðuÞe�TkðuÞz � ‘j dx:
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Finally, letting k ! l it holds thatZ
W

jjDe�uja
Z
W

uje�uf dx�
Z
W

ue�uz � ‘j dx ¼ 3ðe�uz;DuÞ; j4:

Therefore,

jDe�uja ðe�uz;DuÞð39Þ

as measures in W.
On the other hand, we already know that

divðue�uzÞ ¼ ðe�uz;DuÞ þ u divðe�uzÞ;

as measures and now we are considering the restriction on the set Ju. Since, by
(36) we have

u divðe�uzÞ ¼ �ue�uf a L1ðWÞ

and jJuj ¼ 0, it follows that the measure u divðe�uzÞ vanishes on Ju, so that

divðue�uzÞKJu ¼ ðe�uz;DuÞKJu b jDe�ujKJu:

Applying [21, Lemma 2.3 and Lemma 2.4], the following manipulations can be
performed on Ju:

divðue�uzÞ ¼ ½ue�uz; nu�þ � ½ue�uz; nu��ð40Þ
¼ uþ½e�uz; nu�þ � u�½e�uz; nu��:

Moreover, we also deduce that, on Ju,

divðe�uzÞ ¼ ½e�uz; nu�þ � ½e�uz; nu��

and, due to

divðe�uzÞ a L1ðWÞ and jJuj ¼ 0;

it follows that ½e�uz; nu�þ ¼ ½e�uz; nu��. We will write this common value as
½e�uz; nu�. With this notation, (40) becomes

divðue�uzÞ ¼ ðuþ � u�Þ½e�uz; nu�
¼ ðuþ � u�Þe�uþ½z; nu�
a ðuþ � u�Þe�uþ :

Thus, we have seen that

ðuþ � u�Þe�uþ
HN�1

KJu b jDe�ujKJu ¼ ðe�u� � e�uþÞHN�1
KJu:
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Hence, for HN�1-almost all x a Ju, we may use the Mean Value Theorem to get

ðuðxÞþ � uðxÞ�Þe�uðxÞþ
b e�uðxÞ� � e�uðxÞþ ¼ ðuðxÞþ � uðxÞ�Þe�wðxÞ

with uðxÞ� < wðxÞ < uðxÞþ. Therefore, it yields uðxÞþ ¼ uðxÞ�. Since this argu-
ment holds for HN�1-almost every point x a Ju, we get

Dju ¼ 0:

Step 5: u is a solution to problem (30).
To finish the proof, it remains to check that u satisfies the three conditions

of the definition of solution. The previous step will be essential in this checking.
Indeed, it allows us to perform the following calculations:

fe�u ¼ �divðe�uzÞ ¼ �ðz;Dðe�uÞ�Þ � ðe�uÞ� div z
a jDe�uj þ fe�u � ðe�uÞ�jDuj
¼ fe�u:

Therefore, the inequality becomes equality and so

�div zþ jDuj ¼ f in D 0ðWÞ:ð41Þ

To prove that ðz;DuÞ ¼ jDuj as measures in W, we just take into account (39),
[28, Proposition 2.3] and the chain rule to get

jDðe�uÞja ðe�uz;DuÞ ¼ ðe�uÞ�ðz;DuÞa ðe�uÞ�jDuj ¼ jDðe�uÞj;

from where the equality ðe�uÞ�ðz;DuÞ ¼ ðe�uÞ�jDuj as measures follows. We con-
clude that ðz;DuÞ ¼ jDuj as measures.

Now, we will prove that uðxÞ ¼ 0 for HN�1-almost all x a qW. To do that, we
use the test function TkðunÞ in problem (31), so thatZ

W

ðzn;DTkðunÞÞ þ
Z
W

ðTkðunÞÞ�jDunj ¼
Z
W

fTkðunÞ dx:

Defining the auxiliary function Jk by

JkðsÞ ¼
Z s

0

TkðsÞ ds ¼
s2

2 if 0a sa k;

ks� k2

2 if k > s;

8<
:

we obtainZ
W

jDTkðunÞj þ
Z
qW

jTkðunÞj dHN�1 þ
Z
W

jDJkðunÞj þ
Z
qW

jJkðunÞj dHN�1

¼
Z
W

fTkðunÞ dx:
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Taking into account that JkðunÞ ! JkðuÞ in L1ðWÞ, we let n ! l and applying
the lower semicontinuity of functional (6) we arrive atZ

W

jDTkðuÞj þ
Z
qW

jTkðuÞj dHN�1 þ
Z
W

jDJkðuÞj þ
Z
qW

jJkðuÞj dHN�1

a

Z
W

fTkðuÞ dxa
Z
W

fu dx:

Letting now k ! l we obtain

Z
W

jDuj þ
Z
qW

juj dHN�1 þ
Z
W

D
� u2

2

�����
����þ

Z
qW

u2

2
dHN�1

a

Z
W

fu dx:

On the other hand, Green’s formula implies

Z
W

fu dx ¼ �
Z
W

u� div zþ
Z
W

u�jDuj ¼
Z
W

jDuj �
Z
qW

u½z; n� dHN�1 þ
Z
W

u�jDuj:

Then Z
qW

ðjuj þ u½z; n�Þ dHN�1 þ
Z
qW

u2

2
dHN�1

a 0

and for that, u ¼ 0 in qW.
Now, using the same argument which is used in [28] we prove that there is a

unique solution to our problem. r

Proposition 4.4. The nonnegative solution u to problem (30) is trivial if and
only if the function f is such that k f kW �1;lðWÞ a 1.

Proof. Assume first that k f kW �1;lðWÞ a 1 and let u a BVðWÞ be the solution to
problem (30). Using the test function TkðuÞ in that problem and applying Theo-
rem 3.4 we obtainZ

W

ðz;DTkðuÞÞ þ
Z
W

TkðuÞ�jDuj ¼
Z
W

fTkðuÞ dxð42Þ

a k f kW �1;lðWÞkTkðuÞkBVðWÞ a

Z
W

jDuj;

owing to k f kW �1;lðWÞ a 1 and ujqW ¼ 0. Since ðz;DTkðuÞÞ ¼ jDTkðuÞj, letting
k ! l in (42) we arrive at

Z
W

jDuj þ
Z
W

u�jDuja
Z
W

jDuj:
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Then,

Z
W

u�jDuj ¼ 0 and thus, u� ¼ 0 in W and we conclude uðxÞ ¼ 0 for almost

every x a W.
Now, we suppose that

k f kW �1;lðWÞ ¼ sup

Z
W

jf dx :

Z
W

j‘jj dx ¼ 1; j a W
1;1
0 ðWÞ

� �
> 1;

that is, there exists c a W
1;1
0 ðWÞ such that

Z
W

j‘cj dx ¼ 1 and

Z
W

cf dx > 1:

Finally, we use c as a test function in (30), so we get

Z
W

cjDuj ¼
Z
W

cf dx�
Z
W

z � ‘c dx >

Z
W

j‘cj dx�
Z
W

z � ‘c dxb 0:

Therefore, jDujA 0 and so uA 0 in W. r

Remark 4.5. This phenomenon of trivial solutions for non-trivial data is usual
in problems involving the 1-Laplacian. It is worth comparing the above result
with [29, Theorem 4.1] (see also [30, Theorem 4.2]), where the Dirichlet problem

for the equation �div
�
Du
jDuj

�
¼ f ðxÞ is studied. Indeed, for such a problem it is

seen that a datum satisfying k f kW �1;lðWÞ < 1 implies a trivial solution, while no
BV -solution can exist for k f kW �1;lðWÞ > 1. Obviously, the most interesting case is

when k f kW �1;lðWÞ ¼ 1; then non-trivial solutions can be found for some data but

the trivial solution always exists. In our case, this dichotomy does not hold: for
k f kW �1;lðWÞ ¼ 1, only trivial solutions exist.

To study the summability of the solution to problem (30), we need the follow-
ing technical result which will also be useful in Sections 6 and 7.

Lemma 4.6. Let u a BVðWÞ with D ju ¼ 0 and let z be a vector field with
kzkl a 1 and div z ¼ mþ f , where m is a positive measure. If G is an increasing
and C1 function and lim

s!l
GðsÞ ¼ l, then, ðz;DuÞ ¼ jDuj implies ðz;DGðuÞÞ ¼

jDGðuÞj.

Proof. Since ðz;DuÞ ¼ jDuj, we have ðz;DTkðuÞÞ ¼ jDTkðuÞj for all positive k.
Using [28, Proposition 2.2] we get ðz;DGðTkðuÞÞÞ ¼ jDGðTkðuÞÞj for all k > 0.
Now, since GðTkðuÞÞ ¼ TGðkÞGðuÞ and lim

s!l
GðsÞ ¼ l we apply Proposition 3.9

to arrive at ðz;DGðuÞÞ ¼ jDGðuÞj. r

Proposition 4.7. If u is the solution to problem (30), then un a BVðWÞ for all
n a N. Consequently, u a LqðWÞ for all 1a q < l.
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Proof. We will prove the result by induction. If u is the solution of problem
(30), then choosing the solution itself as test function in problem (30), we get

Z
W

jDuj þ
Z
W

u�jDuj ¼
Z
W

fu dx:

Since the first integral is positive, we have that u�jDuj is a finite measure. Thus,
by Theorem 3.10 we know that u2 a BVðWÞ and 2u�jDuj ¼ jDu2j.

Now, set n a N and assume that un a BVðWÞ. Taking the test function un in
(30), it yields Z

W

ðz;DunÞ þ
Z
W

ðunÞ�jDuj ¼
Z
W

fun dx:

By Lemma 4.6 we have ðz;DunÞ ¼ jDunjb 0, then the integral

Z
W

ðunÞ�jDuj is
bounded and consequently unþ1 a BVðWÞ by Theorem 3.10. r

Remark 4.8. If f a LmðWÞ for m > N, then the solution to problem (30)
belongs to LlðWÞ (see [28]).

5. Radial solutions

In this section we will show some radial solutions in W ¼ BRð0Þ with R > 0
for particular data in LN;lðWÞ. In [28, Section 4], some examples of bounded
solutions for data f a LqðWÞ, with q > N, can be found. In Example 5.1 we
show bounded solutions for f a LN;lðWÞnLNðWÞ, while in Example 5.3 we
show unbounded solutions. Therefore, unbounded solutions really occur.

Throughout this section, we will take uðxÞ ¼ hðjxjÞ with hðrÞb 0, hðRÞ ¼ 0
and h 0ðrÞa0. To deal with the examples, we will consider two zones. If h 0ðrÞ < 0,
we know that zðxÞ ¼ Du

jDuj ¼ � x
jxj , so that �div zðxÞ ¼ N�1

jxj . In the other case,

h 0ðrÞ ¼ 0 and then, the solution is constant and we only have to determine the
radial vector field zðxÞ ¼ xðjxjÞx, so that div zðxÞ ¼ x 0ðjxjÞjxj þNxðjxjÞ. The con-
tinuity of the vector field is always searched, otherwise it would has a jump and as
a consequence, the measure div z would have a singular part concentrated on a
surface of the form jxj ¼ %, and measure jDuj would also have that singular
part. Hence, it would induce jumps on the solution.

Example 5.1.

�div
� Du

jDuj

�
þ jDuj ¼ N � 1

jxj þ l

jxjq in BRð0Þ;

u ¼ 0 on qBRð0Þ;

8><
>:

with 0 < q < 1 and l > 0.
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First, we assume that u is constant in an annulus: h 0ðrÞ ¼ 0 for all r1 < r < r2,
and we consider the vector field zðxÞ ¼ xxðjxjÞ. Then, denoting r ¼ jxj, the equa-
tion yields

�ðrx 0ðrÞ þNxðrÞÞ ¼ N � 1

r
þ l

rq
;

which is equivalent to

�ðrNxðrÞÞ0 ¼ ðN � 1ÞrN�2 þ lrN�1�q:

Therefore, solving the equation we get the vector field

zðxÞ ¼ �xjxj�1 � l

N � q
xjxj�q þ Cxjxj�N ; r1 < jxj < r2;ð43Þ

for some constant C. We next see under what conditions we can find a value for
this constant satisfying kzkl a 1. To this end, we will distinguished three cases.

1. Assuming that 0 < r1 < r2 < R (and that z is continuous), if jxj ¼ r1, then

�xjxj�1 ¼ �xjxj�1 � l

N � q
xjxj�q þ Cxjxj�N ;

and it implies l
N�q

xjxj�q ¼ Cxjxj�N . Thus, we deduce that C ¼ l
N�q

r
N�q
1 . The

same argument leads to C ¼ l
N�q

r
N�q
2 when jxj ¼ r2. Therefore, r1 ¼ r2 and

we have got a contradiction.
2. If we assume 0 < r1 < r2 ¼ R, then we may argue as above and find

C ¼ l
N�q

r
N�q
1 . Substituting in (43), we get

zðxÞ ¼ �xjxj�1 � l

N � q
xjxj�q þ l

N � q
r
N�q
1 xjxj�N :

Thus, condition kzkla 1 yields

1þ l

N � q
jxj1�q � l

N � q
r
N�q
1 jxj1�N

����
����a 1:

Nevertheless, this fact does not hold since 1þ l
N�q

r1�q � l
N�q

r
N�q
1 r1�N > 1 for

r > r1.
3. If we assume 0 ¼ r1 < r2 < R, then z a LlðW;RNÞ implies C ¼ 0. So (43)

becomes

zðxÞ ¼ �xjxj�1 � l

N � q
xjxj�q

and it follows from kzkl a 1 that l
N�q

xjxj�q vanishes. Hence, l ¼ 0 and a
contradiction is obtained.
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In any case we get a contradiction, so that h 0ðrÞ ¼ 0 cannot hold on �r1; r2½.
Hence, we take zðxÞ ¼ � x

jxj . Then, the equation becomes

�h 0ðrÞ ¼ l

rq
;

and the solution satisfying the boundary condition is given by

uðxÞ ¼ l

1� q
ðR1�q � jxj1�qÞ:

Remark 5.2. We may perform similar computations to those of the previous
example to study problem

�div
� Du

jDuj

�
þ jDuj ¼ N � 1

jxj þ l in BRð0Þ;

u ¼ 0 on qBRð0Þ;

8><
>:

with l > 0. Then the solution is given by uðxÞ ¼ lðR� rÞ, with associated vector
field zðxÞ ¼ � x

jxj .

Example 5.3. Consider 0 < raR.

�div
� Du

jDuj

�
þ jDuj ¼ l

jxj
w
Brð0ÞðxÞ in BRð0Þ;

u ¼ 0 on qBRð0Þ;

8><
>:

with l > 0.

Two cases according to the value of l will be distinguished:

• Case 0 < laN � 1.

Assuming h 0ðrÞ < 0 for any 0a r < R, the vector field is given by zðxÞ ¼ � x
jxj and

the equation becomes

N � 1

r
� h 0ðrÞ ¼ l

r
w
�0;r½ðrÞ:

When r < R, we have to distinguish two zones: where ra raR in which
we get h 0ðrÞ ¼ ðN � 1Þ=r, and where 0a r < r in which we arrive at h 0ðrÞ ¼
ðN � 1� lÞ=r. Both expressions are nonnegative and so they are in contradiction
with our hypothesis. We arrive at the same contradiction when r ¼ R. Therefore,
h 0ðrÞ ¼ 0 holds for all 0a r < R and it follows hðrÞ ¼ 0 for all 0a r < R due to
the boundary condition. To obtain the field zðxÞ ¼ xðjxjÞx we have to consider
the equation

�ðrNxðrÞÞ0 ¼ lrN�2 w
�0;r½ðrÞ:
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If 0a r < r we get the field xðrÞ ¼ �l=ðN � 1Þr�1 þ Cr�N but since we ask
kzkl a 1, then C ¼ 0. On the other hand, if ra r < R we arrive at xðrÞ ¼
�Cr�N . In order to determine the value of C, we demand the continuity of x
and then the field becomes

zðxÞ ¼
� l

N � 1

x

jxj if 0a r < r;

� lrN�1

N � 1

x

jxjN
if ra r < R:

8>>><
>>>:

• Case l > N � 1.

In the region 0a r < r, we may argue as in the above example and have a con-
tradiction when h 0ðrÞ ¼ 0. So h 0ðrÞ < 0 and the solution is given, up to constants,
by

uðxÞ ¼ ðN � 1� lÞ log
� jxj

r

�

with the vector field zðxÞ ¼ �x=jxj. On the other hand, if r < r < R, we have a
contradiction when h 0ðrÞ < 0, wherewith the solution is uðxÞ ¼ 0 and the vector
field is given by xðrÞ ¼ �Cr�N . Since we have kzkl ¼ 1 when 0a r < r, in order
to preserve the continuity we require

1 ¼ jzðrÞj ¼ Cr�Nr:

Therefore, the vector field becomes zðxÞ ¼ �rN�1 x

jxjN
and the solution is given

by

uðxÞ ¼ ðN � 1� lÞ log
� jxj

r

�
if 0a ra r;

0 if r < r < R:

8><
>:

Remark 5.4. An important particular case of the previous example is the
problem

�div
� Du

jDuj

�
þ jDuj ¼ l

1

jxj in BRð0Þ;

u ¼ 0 on qBRð0Þ;

8><
>:ð44Þ

with l > 0. We have seen that the solution is given by

uðxÞ ¼
0 when 0 < laN � 1;

ðN � 1� lÞ log
� jxj
R

�
when l > N � 1:

8<
:
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Problem (44) can be seen as the limit case of problems with a Hardy-type
potential, namely,

�divðj‘uj p�2‘uÞ þ j‘uj p ¼ l
u p�1

jxj p in BRð0Þ;

u ¼ 0 on qBRð0Þ:

8><
>:

Problems with Hardy-type potential received much attention in recent years. We
point out that in [3] has been studied problem (44) with p ¼ 2 showing the regu-
larizing e¤ect produced by the gradient term as absorption.

6. Changing the unknown: more general gradient terms

From now on, we will generalize problem (30) adding a continuous function
g : ½0;l½ ! R in the gradient term:

�div
� Dv

jDvj

�
þ gðvÞjDvj ¼ f ðxÞ in W;

v ¼ 0 on qW:

8<
:ð45Þ

In this section, this problem will be studied for a function g good enough for
obtaining standard cases.

The existence and uniqueness of solutions to problem (45) depend on the
properties of the function g, and the definition of solution to a problem may
depend of the case we are studying. In any case, we have to give a sense to
gðvÞjDvj, since the meaning of that term depends on the representative of gðvÞ
we are actually considering. First of all, we will assume that a solution satisfies
Djv ¼ 0 and then we will take gðvÞ as the precise representative gðvÞ� ¼ gðv�Þ,
which is integrable with respect to the measure jDvj.

6.1. Bounded g

In this subsection, let g be a continuous and bounded function such that there
exists m > 0 with gðsÞbm for all sb 0. We define the function

GðsÞ ¼
Z s

0

gðsÞ ds:

With this notation, the term gðvÞjDvj in the equation means jDGðvÞj.

Definition 6.1. We say that a function v is a weak solution to problem (45)
with g defined as above, if v a BVðWÞ with Djv ¼ 0 and there exists a field
z a DMlðWÞ with kzkl a 1 such that

�div zþ gðvÞ�jDvj ¼ f in D 0ðWÞ;
ðz;DvÞ ¼ jDvj as measures in W;
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and

vjqW ¼ 0:

Theorem 6.2. Let u be the nonnegative solution to problem (30). Assume that g is
a continuous function such that 0 < ma gðsÞ for all sb 0 and let u ¼ GðvÞ. Then,
v is a nonnegative solution to problem (45).

Proof. Since the function u is the nonnegative solution of problem (30), there
exists a vector field z a DMlðWÞ such that

�div zþ jDuj ¼ f in D 0ðWÞ;ð46Þ
ðz;DuÞ ¼ jDuj as measures in W;

and

ujqW ¼ 0:

By the properties of g, the function G is increasing and the derivative of G�1

is bounded. Then, we apply the chain rule to get v ¼ G�1ðuÞ a BVðWÞ. We also
deduce Djv ¼ 0 and

vjqW ¼ G�1ðuÞjqW ¼ 0:

Moreover, it holds by Lemma 4.6:

ðz;DvÞ ¼ jDvj as measures in W:

Finally, making the substitution u ¼ GðvÞ in (46) and applying the chain rule we
get

�div zþ gðvÞ�jDvj ¼ f in D 0ðWÞ: r

Corollary 6.3. If v is a nonnegative solution to problem (45) with g continuous,
bounded and such that gðsÞbm > 0 for all sb 0, then, u ¼ GðvÞ is the nonnegative
solution to problem (30).

Proof. Applying the same argument which is used in Theorem 6.2 and keeping
it in mind that g is bounded and G is increasing, the result is proved. r

Theorem 6.4. There exists a unique nonnegative solution to problem (45) with
g continuous, bounded and such that gðsÞbm > 0 for all sb 0.

Proof. Assuming there are two solutions v1 and v2 of problem (45), by the
Corollary 6.3, Gðv1Þ and Gðv2Þ are solutions to problem (30). Thus, Gðv1Þ ¼
Gðv2Þ and since G is injective we get v1 ¼ v2. r
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6.2. Unbounded g

In this subsection we will prove an existence and uniqueness result to problem
(45) assuming gðsÞbm > 0 be an unbounded function.

Theorem 6.5. There is a unique nonnegative solution to problem (45) with g con-
tinuous and such that gðsÞbm > 0 for all sb 0.

Proof. First of all, we consider the approximate problem

�div
� Dvk

jDvkj

�
þ TkðgðvkÞÞjDvkj ¼ f ðxÞ in W;

vk ¼ 0 on qW:

8<
:ð47Þ

By Theorem 6.4, it has a unique nonnegative solution. Then, there exists
vk a BVðWÞ with D jvk ¼ 0 and also a vector field zk a DMlðWÞ such that
kzkkla 1 and

�div zk þ TkðgðvkÞÞ�jDvkj ¼ f in D 0ðWÞ;
ðzk;DvkÞ ¼ jDvkj as measures;

and

vkj ¼ 0 HN�1-a:e: in qW:

First, we take the test function
ThðvkÞ

h
in problem (47) and we get

1

h

Z
W

ðzk;DThðvkÞÞ þ
Z
W

TkðgðvkÞÞ�
ThðvkÞ�

h
jDvkj ¼

Z
W

f
ThðvkÞ

h
dxa

Z
W

f dx:

Keeping in mind that the first integral is positive (by Lemma 4.6), we can take
limits in the second integral when h ! 0 and so we obtainZ

W

TkðgðvkÞÞ�jDvkja
Z
W

f dx:ð48Þ

Since TkðgðvkÞÞ is bigger than m, it yields

m

Z
W

jDvkja
Z
W

f dx:

Therefore, vk is bounded in BVðWÞ and there exists v a BVðWÞ such that, up to
subsequences, vk ! v in L1ðWÞ and a.e. Moreover, Dvk ! Dv �-weak as mea-
sures when k ! l.

To prove Djv ¼ 0 we use the same argument which appears in Theorem 4.3,
so we get D jGðvÞ ¼ 0 and then we deduce that D jv ¼ 0. On the other hand, we
define the function

FkðsÞ :¼
Z s

0

TkðgðsÞÞ ds:
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Using (48) and the chain rule we have the next inequality:Z
W

jDFkðvkÞja
Z
W

f dx:

which implies that the sequence FkðvkÞ is bounded in BVðWÞ and converges in
L1ðWÞ to GðvÞ. Now, denoting uk ¼ FkðvkÞ and u ¼ GðvÞ we get that uk converges
to u in L1ðWÞ and Z

W

jDukja
Z
W

f dx:

Therefore, it is true that u a BVðWÞ. Moreover, keeping in mind Theorem 3.10,
we get jDuj ¼ gðvÞ�jDvj as well.

By Corollary 6.3, uk is the solution to

�div
� Duk

jDukj

�
þ jDukj ¼ f ðxÞ in W;

uk ¼ 0 on qW:

8<
:

The same argument used in the proof of Theorem 4.3 works for determining that
u is the solution to

�div
� Du

jDuj

�
þ jDuj ¼ f ðxÞ in W;

u ¼ 0 on qW:

8<
:

Finally, since gðsÞbm > 0 for all sb 0 and applying Theorem 6.2, we deduce
that v is the solution to problem (45). r

Proposition 6.6. The solution v to problem (45) satisfies v a LqðWÞ for all
1a q < l.

Proof. The proof follows the argument of the proof of Proposition 4.7, on
account of gðsÞbm > 0 for all sb 0. r

7. A non-standard case: g touches the axis

In this section we assume that g is a continuous, bounded and non integrable
function with gðsÞ > 0 for almost every sb 0. In this case, G is increasing but
ðG�1Þ0 may be unbounded.

First, we analyze the case when there exist m; s > 0 such that gðsÞbm > 0
for all sb s. Observe that this condition resembles Condition (1.7) in [1].

Theorem 7.1. Let g be as above. Then, there exists a nonnegative solution to
problem (45).
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Proof. Let vn be the solution to the approximating problem

�div
� Dvn

jDvnj

�
þ
�
gðvnÞ þ

1

n

�
jDvnj ¼ f in W;

vn ¼ 0 on qW;

8<
:

with the associated vector field zn. Using the test function
Tkðvn�TsðvnÞÞ

k
in that

problem we getZ
fvn>sg

gðvnÞ�
Tkðvn � TsðvnÞÞ�

k
jDvnja

Z
fvn>sg

f dx;

and taking limits when k ! 0þ it yieldsZ
fvn>sg

gðvnÞ�jDvnja
Z
fvn>sg

f dx:

Since there exist m > 0 such that gðsÞbm for all sb s, then, the previous
inequality becomes: Z

fvn>sg
jDvnja

1

m

Z
W

f dx:ð49Þ

Now, we use the test function TsðvnÞ in the same problem, so we getZ
fvnasg

jDvnja
Z
W

fTsðunÞ dxa s

Z
W

f dx:ð50Þ

Finally, with (49) and (50) we haveZ
W

jDvnja
�
sþ 1

m

�Z
W

f dx for all n a N;

that is, the sequence ðvnÞn is bounded in BVðWÞ and this implies that, up to
subsequences, there exists v a BVðWÞ with vn ! v in L1ðWÞ and a.e. as well
as Dvn ! Dv �-weak in the sense of measures. We conclude the proof using
arguments of Theorem 4.3. r

For a general function g we have to change the definition of solution. We will
show in Example 7.4 that Definition 6.1 does not really work.

Definition 7.2. Let g be a continuous, bounded and non integrable function
with gðsÞ > 0 for almost every sb 0. We say that a function v is a weak solution
to problem (45) if vðxÞ < l a.e. in W, GðvÞ a BVðWÞ with DjGðvÞ ¼ 0 and there
exists a field z a DMlðWÞ with kzkl a 1 such that

�div zþ gðvÞ�jDvj ¼ f in D 0ðWÞ;
ðz;DGðvÞÞ ¼ jDGðvÞj as measures in W;
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and

vjqW ¼ 0;

where the function G is defined by

GðsÞ ¼
Z s

0

gðsÞ ds:

Theorem 7.3. Assume that the function g is continuous, bounded and non inte-
grable with gðsÞ > 0 for almost every sb 0. Then, there exists a unique nonnegative
solution to problem (45) in the sense of Definition 7.2.

Proof. The approximating problem

�div
� Dvn

jDvnj

�
þ
�
gðvnÞ þ

1

n

�
jDvnj ¼ f ðxÞ in W;

vn ¼ 0 on qW;

8<
:ð51Þ

has a unique solution for every n a N because of Theorem 6.4. That is, there
exists a vector field zn a DMlðWÞ with kznkl a 1 and a function vn a BVðWÞ
with D jvn ¼ 0 and such that

�div zn þ
�
gðvnÞ þ

1

n

��
jDvnj ¼ f in D 0ðWÞ;ð52Þ

ðzn;DGnðvnÞÞ ¼ jDGnðvnÞj as measures in W;

and

vnjqW ¼ 0;

where we denote

GnðsÞ ¼
Z s

0

�
gðsÞ þ 1

n

�
ds:

We will show that the limit of the sequence ðvnÞn is the solution to problem (45).

First of all, we take the test function
TkðvnÞ

k
in problem (51) and we arrive at

1

k

Z
W

TkðvnÞ�jDGnðvnÞja
Z
W

f dx

for every k. Now, letting k ! 0 and using Fatou’s Theorem we getZ
fvnA0g

jDGnðvnÞja
Z
W

f dx:
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In addition, since Djvn ¼ 0 it follows that Dvn ¼ 0 almost everywhere in fvn ¼ 0g.
Thus, Z

W

jDGnðvnÞja
Z
W

f dx;

and so GnðvnÞ is bounded in BVðWÞ. This implies that, up to subsequences, there
exist w such that GnðvnÞ ! w in L1ðWÞ and a.e., and also DGnðvnÞ ! Dw �-weak
in the sense of measures. We denote v ¼ G�1ðwÞ, which is finite a.e.

In what follows, we apply the same argument used in Theorem 4.3 with minor
modifications, hence we just sketch it. We get zn * z �-weakly in LlðWÞ with
kzkla 1 and �div z is a Radon measure with finite total variation. Moreover,
using the test function e�GnðvnÞj with j a Cl

0 ðWÞ in problem (51) and letting n

go to l, it leads �divðe�GðvÞzÞ ¼ e�GðvÞf in the sense of distributions. The next
step is to show, with the same argument used in Theorem 4.3, that DjGðvÞ ¼ 0.
Then is easy to obtain

�div zþ jDGðvÞj ¼ f in D 0ðWÞ

in the sense of distributions and

ðz;DGðvÞÞ ¼ jDGðvÞj

as measures. Moreover, we take TkðGnðvnÞÞ in (51) to arrive at GðvÞjqW ¼ 0 and
then, we also get

vjqW ¼ 0:

The uniqueness can be proved as in [28]. r

To remark the necessity to have a new definition to the concept of solution,
we show in the next example that the solution to (45) when g is such that
lim
s!l

gðsÞ ¼ 0 is not in BVðWÞ.

Example 7.4. Set W ¼ BRð0Þ. The solution to problem

�div
� Dv

jDvj

�
þ 1

1þ v
jDvj ¼ l

jxj in W;

v ¼ 0 on qW;

8<
:ð53Þ

is not in BVðWÞ for l big enough.

First, we will solve the related problem

�div
� Du

jDuj

�
þ jDuj ¼ l

jxj in W;

u ¼ 0 on qW;

8<
:ð54Þ
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and then, using the inverse function of

GðsÞ ¼
Z s

0

1

1þ s
ds ¼ logð1þ sÞ

we will get the solution v.
Due to Example 5.3 we know that, for l > N � 1, the solution to problem

(54) is given by uðxÞ ¼ ðN � 1� lÞ logðjxj=RÞ with the associated field zðxÞ ¼
�x=jxj. Moreover, the inverse of function G is given by G�1ðsÞ ¼ es � 1. There-
fore, the solution to (53) is given by

vðxÞ ¼ G�1ðuðxÞÞ ¼
� jxj
R

�N�1�l

� 1

when l > N � 1. Nevertheless, v is not in BVðWÞ when N < l=2þ 1 because in

that case, jDuj ¼ l�N þ 1

RN�1�l
jxjN�2�l is not integrable.

8. Odd cases

In this last section we will show some cases where the properties of the function g
does not provide uniqueness, existence or regularity of solutions to problem (45).

8.1. First case

First of all, we suppose the function g is integrable. With that condition about g,
it is the function f who determines the existence or absence of solution.

Theorem 8.1. Let f a LN;lðWÞ with f b 0 and we consider problem (45) with
g a L1ð½0;l½Þ. Then,

(i) if k f kW 1;�lðWÞ a 1, the trivial solution holds;
(ii) if k f kW 1;�lðWÞ > eGðlÞ, does not exist any solution;

with GðlÞ ¼ supfGðtÞ : s a �0;l½g.

Proof. The first point is deduced following the proof of Proposition 4.4.
On the other hand, let j a W

1;1
0 ðWÞ, we use �divðe�GðvÞzÞ ¼ e�GðvÞf to get

e�GðlÞ
Z
W

f jjj dxa
Z
W

e�GðuÞf jjj dx ¼
Z
W

e�GðuÞz � ‘jjj dxa
Z
W

j‘jj dx:

Then, if k f kW �1;lðWÞ > eGðlÞ, cannot exist any solution to problem (45). r

Remark 8.2. Since we have shown in (18) that

k f kW �1;lðWÞ aSNk f kLN;lðWÞ;
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Theorem 8.1 implies the following fact:

(i) If k f kLN;lðWÞ aS�1
N , the trivial solution holds.

Remark 8.3. One may wonder what happens when 1 < k f kW �1;lðWÞ a eGðlÞ.
Consider the approximate solutions vn to problem (51) and let w satisfy
GðvnÞ ! w. Then w a ½0;GðlÞ�. In particular, if w a ½0;GðlÞ½, the function
v ¼ G�1ðwÞ is finite a.e. in W and is the solution to problem (45). However, w
can be equal to GðlÞ in a set of positive measure and so v is infinite in the
same set. We conclude that v, in this case, is not a solution.

Example 8.4. Problem

�div
� Dv

jDvj

�
þ 1

1þ v2
jDvj ¼ N � 1

jxj þ l in BRð0Þ;

v ¼ 0 on qBRð0Þ;

8<
:ð55Þ

has not radial solutions when l is large enough.

Assuming there exists a radial solution uðxÞ ¼ hðjxjÞ with h : ½0;R� ! R is
such that hðrÞb 0, hðRÞ ¼ 0 and h 0ðrÞa 0, we will get a contradiction. First, we
suppose that h 0ðrÞ ¼ 0 for r1 < r < r2 and, reasoning as in Example 5.1, we get a
contradiction. Therefore, we only can have h 0ðrÞ < 0 for all 0a r < R. In this
case, we know that the vector field is given by zðxÞ ¼ �x=jxj and the equation
becomes

�gðhðrÞÞh 0ðrÞ ¼ l;

which is equivalent to ðGðhðrÞÞ0 ¼ �l. Then, the solution is given by GðhðrÞÞ ¼
lðR� rÞ.

On the other hand, we know that GðsÞ a ½0; p2 ½ because

GðsÞ ¼
Z s

0

gðsÞ ds ¼
Z s

0

1

1þ s2
ds ¼ arctan s:

Thus, we have a radial solution if l <
p

2R
. When l ¼ p

2R
, we also obtain a radial

solution, which is given by

uðxÞ ¼ tanðlðR� rÞÞ;

since GðlÞ ¼ p
2 is only attained in a null set.

8.2. Second case

Now, we will take the function g : ½0;l½ ! R such that gðsÞ ¼ 0 when s a ½0; l�
and gðsÞ > 0 for all s > l. We assume g B L1ð½0;l½Þ as well.

Remark 8.5. With g defined as above, there is not uniqueness of solutions.
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On the one hand, if k f kLN;lðWÞ aS�1
N and u a BVðWÞ satisfies ujqW ¼ 0, then

the function TlðuÞ is a solution to problem (45). Thus, there is not uniqueness
in any way.

On the other hand, if k f kLN;lðWÞ > S�1
N we define

hðsÞ ¼ gðsþ lÞ

and let w be a solution to problem

�div
� Dw

jDwj

�
þ hðwÞjDwj ¼ f in W;

w ¼ 0 on qW;

8<
:ð56Þ

with associated field z. Therefore, vðxÞ ¼ wðxÞ þ l is a solution to problem (45)
with the same vector field z.

Moreover, let c : ½0; lþ 1� ! ½l; lþ 1� be an increasing and bijective C1-
function such that c 0ðlþ 1Þ ¼ 1. Then we consider

hðsÞ ¼ c 0ðsÞgðcðsÞÞ if 0a sa lþ 1;

gðsÞ if lþ 1 < s;

�

and let w be a solution to problem (56) with h defined as above. Therefore, the
function

vðxÞ ¼ cðwðxÞÞ if 0awðxÞa lþ 1;

wðxÞ if lþ 1 < wðxÞ;

�

is a solution to (45), as we can see as follows. It is straightforward that the equa-
tion holds in D 0ðWÞ and vjqW ¼ 0. We only have to see that ðz;DGðvÞÞ ¼ jDGðvÞj
as measures in W. If 0a sa lþ 1 we get

HðsÞ ¼
Z s

0

hðsÞ ds ¼
Z s

0

c 0ðsÞgðcðsÞÞ ds ¼
Z cðsÞ

0

gðsÞ ds ¼ GðcðsÞÞ;

Hðlþ 1Þ ¼ Gðcðlþ 1ÞÞ ¼ Gðlþ 1Þ;

and for s > lþ 1 we have

HðsÞ ¼ Hðlþ 1Þ þ
Z s

lþ1

hðsÞ ds ¼ Gðlþ 1Þ þ
Z s

lþ1

gðsÞ ds ¼ GðsÞ:

Therefore, DGðvðxÞÞ ¼ DHðwðxÞÞ and we conclude ðz;DGðvÞÞ ¼ jDGðvÞj as
measures in W.

Example 8.6. Set W ¼ BRð0Þ. The solution to problem

�div
� Du

jDuj

�
þ gðuÞjDuj ¼ N

jxj in W;

u ¼ 0 on qW;

8<
:ð57Þ
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with

gðsÞ ¼ 0 if sa a;

s� a if a < s;

�

for a > 0 does not vanish on qW.

We define

GðsÞ ¼
Z s

0

gðsÞ ds ¼
0 if 0a sa a;

a

2
þ s2

2
� as if a < s:

8<
:

It is easy to prove that

uðxÞ ¼ hðjxjÞ ¼ hðrÞ ¼ G�1
�
�log

� r

R

��

with z ¼ x
jxj is such that ðz;DuÞ ¼ jDuj as measures in W and �div zþ gðuÞ�jDuj ¼

N
r
in D 0ðWÞ. However,

hðRÞ ¼ G�1ð0Þ ¼ 1:

Although the boundary condition is not true, the solution achieves the boundary
weakly (see [7]), that is

½z; n� ¼ � x

jxj
x

jxj ¼ �1 ¼ �signðuÞ:

8.3. Third case

Finally, let 0 < a < b, we will take g a function with gðsÞ ¼ 0 when s a ½a; b� and
gðsÞ > 0 for all s < a and s > b. Moreover we assume that g B L1ð½0;l½Þ.

Remark 8.7. We will use a similar argument to the previous one to show that
there is not uniqueness of solution to problem (45) with function g defined as
above.

Let c : ½0; b� ! ½0; a� be an increasing and bijective C1-function. Now, we
define

hðsÞ ¼ c 0ðsÞgðcðsÞÞ if 0a sa b;

gðsÞ if b < s:

�

If w is a solution to problem (56), then, we have that

vðxÞ ¼ cðwðxÞÞ if 0awðxÞa b;

wðxÞ if b < wðxÞ;

�
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is a solution to the original problem (45) because the equation holds in D 0ðWÞ and
also wjqW ¼ 0. In addition, for 0a sa b we have

HðsÞ ¼
Z s

0

hðsÞ ds ¼
Z s

0

c 0ðsÞgðcðsÞÞ ds ¼
Z cðsÞ

0

gðsÞ ds ¼ GðcðsÞÞ;

HðbÞ ¼ GðcðbÞÞ ¼ GðaÞ ¼ GðbÞ

and for s > b we get

HðsÞ ¼ HðbÞ þ
Z s

b

hðsÞ ds ¼ GðbÞ þ
Z s

b

gðsÞ ds ¼ GðsÞ:

Therefore, we have proved the remaining condition: ðz;DGðvÞÞ ¼ jDGðvÞj as
measures in W.

Example 8.8. Set W ¼ BRð0Þ. Problem

�div
� Du

jDuj

�
þ gðuÞjDuj ¼ N

jxj in W;

u ¼ 0 on qW;

8<
:ð58Þ

with

gðsÞ ¼
a� s if s < a;

0 if aa sa b;

s� b if b < s;

8<
:

where 0 < a < b, has a discontinuous solution.

We define

GðsÞ ¼
Z s

0

gðsÞ ds ¼

�s2

2
þ as if 0a sa a;

a2

2
if aa sa b;

a2 þ b2

2
þ s2

2
� bs if b < s:

8>>>>>>><
>>>>>>>:

We will prove that the radial function

uðxÞ ¼ hðjxjÞ ¼ G�1
�
�log

� jxj
R

��

is a solution to problem (58) pointing out that, since G�1 is discontinuous, the
solution u is discontinuous too.
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We get the radial solution

h 0ðrÞ ¼ �1

g
�
G�1

�
�log

�
r
R

��
r
� ;

and since we take

zðxÞ ¼ �x

jxj ;

it is easy to prove

ðz;DuÞ ¼ jDuj as measures in W;

�div zþ gðuÞ�jDuj ¼ N

jxj in D 0ðWÞ;

and also

hðRÞ ¼ G�1ð0Þ ¼ 0:
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