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Abstract. — We discuss some recent results by Parini and Ruf on a Moser–Trudinger type

inequality in the setting of Sobolev–Slobodeckij spaces in dimension one. We push further their
analysis considering the inequality on the whole R and we give an answer to one of their open

questions.
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1. Introduction

A classical result in analysis states that, if W � Rn is an open set with finite mea-
sure jWj and Lipschitz boundary, k is a positive integer with k < n, and p a

�
1; k

n

�
,

then the Sobolev space W
k;p
0 ðWÞ embeds continuously in L

np

n�kpðWÞ. This results
doesn’t hold for the critical case p ¼ n

k
, that is W

k; n
k

0 ðWÞ doesn’t embed in LlðWÞ.
On the other hand Trudinger [14], Pohozaev [12], Yudovich [6] and others found
that, at least in the case k ¼ 1, functions in W

1;n
0 ðWÞ enjoy summability of expo-

nential type. Namely

W
1;n
0 ðWÞ � u a L1ðWÞ :

Z
W

ebjuj
n

n�1
dx < þl

� �

for any b < þl. Moser [9] sharpened this embedding and determined the opti-
mal exponent an such that

sup
u AW 1; n

0
ðWÞ;k‘ukLnðWÞa1

Z
W

eanjuj
n

n�1
dx < CjWj; an :¼ no

1
n�1

n�1:ð1Þ

Here, on�1 is the volume of the unit sphere in Rn. In particular the exponent an is
sharp in the sense that

sup
u AW 1; n

0
ðWÞ;k‘ukLnðWÞa1

Z
W

eajuj
n

n�1
dx ¼ þl



for any a > an. Moreover, the supremum in (1) becomes infinite as soon as we
slightly modify the integrand, namely

sup
u AW 1; n

0
ðWÞ;k‘ukLnðWÞa1

Z
W

f ðjujÞeanjuj
n

n�1
dx ¼ þlð2Þ

for any measurable function f : Rþ ! Rþ such that limt!þl f ðtÞ ¼ l. This can
be proved, for instance, using the same test functions defined in [9]. In [1] Adams,
exploiting Riesz potentials, extended Moser’s result to higher order Sobolev
spaces Wk;p

0 ðWÞ, k > 1, p ¼ n
k
.

In the present work, we are interested in generalizations of (1) that con-
cern Sobolev spaces of fractional orders. The usual approach is to consider
Bessel potential spaces Hs;p. In this setting, sharp versions of (1) are proven
both in the cases of bounded and unbounded domains of Rn, nb 1 (see [5], [8]
and [4]).

Here, we focus our attention on the case (in general di¤erent from the one of
Bessel potential spaces) of Sobolev–Slobodeckij spaces (see definitions below),
which has been recently proposed, together with some open questions, by Parini
and Ruf. In [10] they considered W � Rn to be a bounded and open domain,
nb 2 and sp ¼ n and they were able to prove the existence of a� > 0 such that
the corresponding version of inequality (1) is satisfied for any a a ð0; a�Þ (see also
[11]). Even though the result is not sharp, in the sense that the value of the opti-
mal exponent is not yet known, an explicit upper bound for the optimal exponent
a� is given.

As a first step, we extend the results in [10] to the case n ¼ 1. For any s a ð0; 1Þ
and p > 1, the Sobolev–Slobodeckij space Ws;pðRÞ is defined as

Ws;pðRÞ :¼ fu a LpðRÞ : ½u�W s; pðRÞ < þlg

where ½u�W s; pðRÞ is the Gagliardo seminorm defined by

½u�W s; pðRÞ :¼
�Z

R

Z
R

juðxÞ � uðyÞj p

jx� yj2
dx dy

�1
p

:ð3Þ

We will often write ½�� :¼ ½��W s; pðRÞ. The space Ws;pðRÞ is a Banach space with
respect to the norm

kukW s; pðRÞ :¼ ðkukp

L pðRÞ þ ½u� p
W s; pðRÞÞ

1
p:ð4Þ

Let I be an open interval in R. We define the space ~WWs;p
0 ðIÞ as the closure of

ðCl
0 ðIÞ; kukW s; pðRÞÞ. An equivalent definition for ~WWs;p

0 ðIÞ can be obtained taking
the completion of Cl

0 ðIÞ with respect to the seminorm ½u�W s; pðRÞ (see [3, Remark
2.5]).

With a mild adaptation of the techniques used in [10], we are able to prove
that their result holds also in dimension one.
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Theorem 1.1. Let s a ð0; 1Þ and p > 1 be such that sp ¼ 1. There exists a� ¼
a�ðsÞ > 0 such that for all a a ½0; a�Þ it holds

sup
u A ~WW s; p

0
ðIÞ; ½u�W s; pðRÞa1

Z
I

eajuj
1

1�s
dx < l:ð5Þ

Moreover, there exists a� ¼ a�ðsÞ :¼ g
s

1�s
s such that the supremum in (5) is infinite

for any a a ða�;þlÞ.

It is worth to remark that, as already pointed out in [10], the exponent a��1
2

�
is equal to 2p2 and it coincides, up to a normalization constant, with the optimal
exponent p determined in [5] in the setting of Bessel potential spaces.

We move now to the case I ¼ R, pushing further the analysis of [10]. An
inequality of the form (5) cannot hold if we don’t consider the full Ws;pðRÞ-
norm, i.e. we take into account also the term kukL pðRÞ. This has been done by
Ruf [13] in the case of H 1;2ðR2Þ, see also [5], [4] for the case of Bessel potential
spaces. We define

FðtÞ :¼ et �
Xdp�2e

k¼0

tk

k!
;ð6Þ

where dp� 2e is the smallest integer greater than, or equal to p� 2.

Theorem 1.2. Let s a ð0; 1Þ and p > 1 be such that sp ¼ 1. There exists a� ¼
a�ðsÞ > 0 such that for all a a ½0; a�Þ it holds

sup
u AW s; pðRÞ;kukW s; pðRÞa1

Z
R

Fðajuj
1

1�sÞ dx < l:ð7Þ

Moreover the supremum in (5) is infinite for any a a ða�;þlÞ, where a� is as in
Theorem 1.1.

As we shall see, Theorem 1.1 and 1.2 are sharp in the sense of (2). Indeed one of
the open questions in [10] was whether an inequality of the type

sup
u A ~WW s; p

0
ðIÞ; ½u� ~WW

s; p
0

ðIÞa1

Z
I

f ðjujÞeajuj
1

1�s
dx < þl;

where f : Rþ ! Rþ is such that f ðtÞ ! l as t ! l holds true for the same
exponents of the standard Moser–Trudinger inequality (see [4], [5]). For n ¼ 1
we prove the following

Theorem 1.3. Let I � R be a bounded interval, s a ð0; 1Þ and p > 1 such that
sp ¼ 1. We have
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sup
u A ~WW s; p

0
ðIÞ; ½u�W s; pðRÞa1

Z
I

f ðjujÞea�juj
1

1�s
dx ¼ l;ð8Þ

sup
u AW s; pðRÞ;kukW s; pðRÞa1

Z
R

f ðjujÞFða�juj
1

1�sÞ dx ¼ l;ð9Þ

where f : ½0;lÞ ! ½0;lÞ is any Borel measurable function such that limt!þl f ðtÞ
¼ l.

2. Proof of Theorem 1.1

We start this section proving the validity of the Moser–Trudinger inequality (5).
The result for nb 2 is proved in [10] and the proof in the one dimensional case,
which we report here for the sake of completeness, follows by a mild adaptation
of the techniques in [10].

Thanks to [11, Theorem 9:1], using Sobolev embeddings and Hölder’s inequal-
ity we have that there exists a constant C > 0 independent of u such that for any
u a ~WWs;p

0 ðIÞ

kukLqðRÞ aC½u�W s; pðRÞq
1�sð10Þ

for any q > 1. For ½u�W s; pðRÞ a 1 we write

Z
I

eajuj
1

1�s
dx ¼

Xl
k¼0

Z
I

ak

k!
juj

k
1�s dxa

Xl
k¼0

1

k!

� C

1� s
ak

�k
;ð11Þ

where in the last inequality we used (10). Thanks to Stirling’s formula

k! ¼
ffiffiffiffiffiffiffiffi
2pk

p �k
e

�k�
1þO

�1
k

��
ð12Þ

the series in (11) converges for small a and we recover a bound (uniform w.r.t. u)
for Z

I

eajuj
1

1�s
dx;

yielding (5).
As a direct consequence of (5), using the density of Cl

c ðIÞ in ~WWs;p
0 ðIÞ, we have

the following corollary (see [10, Proposition 3.2]).

Corollary 2.1. If u a ~WWs;p
0 ðIÞ, for every a > 0 it holdsZ

I

eajuj
1

1�s
dx < l:
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We now give a useful result on the Gagliardo seminorm of radially symmetric
functions (see [10, Proposition 4.3]), which will turn out to be useful later on.

Proposition 2.1. Let u a Ws;pðRÞ be radially symmetric and let sp ¼ 1. Then

½u�W s; pðRÞ ¼
Z
R

Z
R

juðxÞ � uðyÞj p

jx� yj2
dx dyð13Þ

¼ 4

Z þl

0

Z þl

0

juðxÞ � uðyÞj p x2 þ y2

ðx2 � y2Þ2
dx dy

Proof. The proof will follow from a direct computation. We split

Z
R

Z
R

juðxÞ � uðyÞj p

jx� yj2
dx dy

¼
Z þl

0

Z þl

0

juðxÞ � uðyÞj p

jx� yj2
dx dyþ

Z 0

�l

Z 0

�l

juðxÞ � uðyÞj p

jx� yj2
dx dy

þ
Z þl

0

Z 0

�l

juðxÞ � uðyÞj p

jx� yj2
dx dyþ

Z 0

�l

Z þl

0

juðxÞ � uðyÞj p

jx� yj2
dx dy:

Using a straightforward change of variable and the symmetry of u, we obtain the
claim. r

To give an upper bound for the optimal exponent a such that the supremum in
(5) is finite for a a ½0; aÞ, we define the family of functions

ueðxÞ :¼
jlog ej1�s if jxja e
jlogjxj j
jlog ej s if e < jxj < 1

0 if jxjb 1:

8><
>:ð14Þ

Notice that the restrictions of ue to I belong to ~WWs;p
0 ðIÞ.

Proposition 2.2. Let sp ¼ 1 and ðueÞ � ~WWs;p
0 ðIÞ be the family of functions

defined in (14). Then

lim
e!0

½ue� pW s; pðRÞ ¼ gs :¼ 8Gðpþ 1Þ
Xl
k¼0

1

ð1þ 2kÞ p :ð15Þ

Proof. We will follow the proof in [10]. Define

IðeÞ :¼
Z
R

Z
R

jueðxÞ � ueðyÞj p

jx� yj2
dx dy:ð16Þ
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Using Proposition 2.1 and (14) we see that IðeÞ can be decomposed as

IðeÞ ¼ I1ðeÞ þ I2ðeÞ þ I3ðeÞ þ I4ðeÞ;

where

I1ðeÞ ¼
8

jlog ej

Z 1

e

Z e

0

jlog x� log ej p x2 þ y2

ðx2 � y2Þ2
dx dy;

I2ðeÞ ¼
4

jlog ej

Z 1

e

Z 1

e

jlog x� log yj p x2 þ y2

ðx2 � y2Þ2
dx dy;

I3ðeÞ ¼ 8jlog ej p�1

Z þl

1

Z e

0

x2 þ y2

ðx2 � y2Þ2
dx dy;

I4ðeÞ ¼
8

jlog ej

Z 1

e

Z þl

1

jlog xj p x2 þ y2

ðx2 � y2Þ2
dx dy:

With an integration by parts, it is easy to check that lime!0 IiðeÞ ¼ 0 for
i ¼ 1; 3; 4. As for I2ðeÞ, integrating by parts after a change of variables we
have

I2ðeÞ ¼
4

jlog ej log y
�Z 1

y

e
y

jlog xj p x2 þ 1

ðx2 � 1Þ2
dx

�( )					
y¼1

y¼e

þ 4

jlog ej

Z 1

e

log y

y2
log

1

y

				
				
p 1

y2 þ 1�
1
y2 � 1

�2 dy

� 4e

jlog ej

Z 1

e

log y

y2
log

e

y

				
				
p

�
e
y

�2 þ 1��
e
y

�2 � 1
�2 dy:

A direct computation for the first term gives

4

jlog ej log y
�Z 1

y

e
y

jlog xj p x2 þ 1

ðx2 � 1Þ2
dx

�( )					
y¼1

y¼e

¼ 4

Z 1
e

1

jlog xj p x2 þ 1

ðx2 � 1Þ2
dx;

which converges to

4

Z þl

1

jlog xj p x2 þ 1

ðx2 � 1Þ2
dx;
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as e ! 0. Moreover, sinceZ 1

0

log y

y2
log

1

y

				
				
p 1

y2
þ 1�

1
y2
� 1

�2 dy < þl

the second term in the sum converges to 0 as e ! 0.
After setting e

y
¼ x, for the last term in the sum we have

� 4e

jlog ej

Z 1

e

log y

y2
log

e

y

				
				
p

�
e
y

�2 þ 1��
e
y

�2 � 1
�2 dy

¼ � 4

jlog ej

Z 1

e

log
�e
x

�
jlog xj p x2 þ 1

ðx2 � 1Þ2
dx

¼ 4

Z 1

e

jlog xj p x2 þ 1

ðx2 � 1Þ2
dx� 4

jlog ej

Z 1

e

jlog xj pþ1 x2 þ 1

ðx2 � 1Þ2
dx

which converges to

4

Z 1

0

jlog xj p x2 þ 1

ðx2 � 1Þ2
dx ¼ 4

Z þl

1

jlog xj p x2 þ 1

ðx2 � 1Þ2
dx

as e ! 0. Summing up, we have

lim
e!0

½ue� pW s; pðRÞ ¼ lim
e!0

I2ðeÞ ¼ 8

Z þl

1

jlog xj p x2 þ 1

ðx2 � 1Þ2
dx:ð17Þ

Integrating by parts we obtain

Z þl

1

jlog xj p x2 þ 1

ðx2 � 1Þ2
dx ¼ p

Z þl

1

jlog xj p�1

x2 � 1
dx

¼ p

Z 1

0

jlog tj p�1

1� t2
dt;

where we set t ¼ 1
x
. Recall now

1

1� x2
¼

Xl
k¼0

x2k;

Z 1

0

jlog xj p�1
x2k dx ¼ GðpÞ

ð1þ 2kÞ p ;ð18Þ

where Gð�Þ is the Euler Gamma function. Thanks to (18) we write

Z 1

0

jlog tj p�1

1� t2
dt ¼

Xl
k¼0

Z 1

0

jlog tj p�1
t2k dt ¼ GðpÞ

Xl
k¼0

1

ð1þ 2kÞ p ;ð19Þ

proving (15). r
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The upper bound for the optimal exponent follows directly from Proposition
2.2.

Proposition 2.3. Let sp ¼ 1. There exists a� :¼ g
s

1�s
s such that

sup
u A ~WW s; p

0
ðIÞ; ½u�W s; pðRÞa1

Z
I

eajuj
1

1�s
dx ¼ þl for a a ða�;þlÞ:

Proof. Let ue be the family of functions in ~WWs;p
0 ðIÞ defined in (14). Thanks to

Proposition 2.2 we have that ½ue�W s; pðRÞ ! ðgsÞ
1
p as e ! 0. Fix a > g

s
1�s
s . For e small

enough, there exists b > 0 such that a½ue��
1

1�s b b > 1. If we set ve :¼ ue
½ue� we haveZ

I

eajvej
1

1�s
dxb

Z e

�e

eajvej
1

1�s
dxb

Z e

�e

e�b log e dx ¼ 2e1�b ! þl

as e ! 0, since b > 1. r

3. Proof of Theorem 1.2

We shall adapt a technique by Ruf [13] to our setting.
For a measurable function u we set juj� : R ! Rþ to be its non-increasing

symmetric rearrangement, whose definition we shall now recall. For a measurable
set A � R, we define

A� ¼ ð�jAj=2; jAj=2Þ:

The set A� is symmetric (with respect to 0) and jA�j ¼ jAj. For a non-negative
measurable function f , such that

jfx a R : f ðxÞ > tgj < l for every t > 0;

we define the symmetric non-increasing rearrangement of f by

f �ðxÞ ¼
Z l

0

wfy AR: f ðyÞ>tg�ðxÞ dt:

Notice that f � is even, i.e. f �ðxÞ ¼ f �ð�xÞ and non-increasing (on ½0;lÞ).
We will state here the two properties that we shall use in the proof of Propo-

sition 1.2. The following one is proven e.g. in [7, Section 3.3].

Proposition 3.1. Given a measurable function F : R ! R and a non-negative
non-decreasing function f : R ! R, it holdsZ

R

Fð f Þ dx ¼
Z
R

F ð f �Þ dx:

The following Pólya–Szegő type inequality can be found e.g. in [2, Theorem 9.2].
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Theorem 3.1. Let 0 < s < 1 and u a Ws;pðRÞ. Then

½juj��s;pW ðRÞa ½u�s;pW ðRÞ:

Now given u a Ws;pðRÞ, from Proposition 3.1 we getZ
R

FðaðjujÞ
1

1�sÞ dx ¼
Z
R

Fðaðjuj�Þ
1

1�sÞ dx; k juj�kL p ¼ kukL p ;

and according to Theorem 3.1

k juj�k p

W s; pðRÞ ¼ k juj�k p

L pðRÞ þ ½juj�� p
W s; pðRÞ a kuk p

L pðRÞ þ ½u� p
W s; pðRÞ ¼ kuk p

W s; pðRÞ:

Therefore in the rest of the proof of (7) we may assume that u a Ws;pðRÞ is even,
non-increasing on ½0;lÞ, and kukW s; pðRÞ a 1. We will use a technique by Ruf [13]
(see also [5]) and writeZ

R

FðaðjujÞ
1

1�sÞ dx

¼
Z
I c

FðaðjujÞ
1

1�sÞ dxþ
Z
I

FðaðjujÞ
1

1�sÞ dx

¼: ðIÞ þ ðIIÞ;

where I ¼ ð�r0; r0Þ, with r0 > 0 to be chosen. Notice that since u is even and non-
increasing, for xA 0 and p > 1, we have

juðxÞj p a 1

2jxj

Z jxj

�jxj
juðyÞj p dya kukp

L p

2jxj :ð20Þ

We start by bounding ðIÞ. We observe that for r0 g 1, we have juðxÞja 1 on I c

and hence

juj
pdp�1e
p�1 a juj p on I c;

since
pdp�1e
p�1 b p. For k > p� 1 we boundZ

I c

ðjuj pÞ
k

p�1 dxa

Z
I c

�kuk p
L p

2jxj

� k
p�1 ¼ kuk

pk

p�1

L p r
1� k

p�1

0 ðp� 1Þ
2

k
p�1ðk þ 1� pÞ

:

Hence

ðIÞ ¼
Xl

k¼dp�1e

Z
I c

ak

k!
juj

kp

p�1 dx

¼ adp�1e

dp� 1e!

Z
I c

juj
pdp�1e
p�1 dxþ

Xl
k¼dpe

Z
I c

ak juj
kp

p�1

k!
dx
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aCða; pÞkukp
L p þ r0ðp� 1Þ

Xl
k¼dpe

akðkuk p
L pÞ

k
p�1

k!ðk þ 1� pÞð2r0Þ
k

p�1

aCða; pÞkukp
L p þ C

Xl
k¼dpe

� a

ð2r0Þ p�1

�k 1

k!ðk þ 1� pÞ aC:

As for ðIIÞ, define v a ~WWs;p
0 ðIÞ as follows

vðxÞ ¼ uðxÞ � uðr0Þ jxja r0

0 jxj > r0:

�

Let x a I . We compute using the monotonicity of u

Z l

0

jvðxÞ � vðyÞj p x2 þ y2

ðx2 � y2Þ2
dya

Z l

0

juðxÞ � uðyÞj p x2 þ y2

ðx2 � y2Þ2
dy:ð21Þ

Let x a I c. We have

Z l

0

jvðxÞ � vðyÞj p x2 þ y2

ðx2 � y2Þ2
dyð22Þ

¼
Z
I

juðr0Þ � uðyÞj p x2 þ y2

ðx2 � y2Þ2
dy

a

Z
I

juðxÞ � uðyÞj p x2 þ y2

ðx2 � y2Þ2
dy:

Combining (21), (22) and integrating in x, we get

½v� p a ½u� p:ð23Þ

Using the definition of v and the inequality ðaþ bÞsa as þ s2s�1ðas�1bþ bsÞ
for a; bb 0 and sb 1, we have

u
1

1�s a v
1

1�s þ 1

1� s
2

s
1�sðv s

1�suðr0Þ þ uðr0Þ
1

1�sÞð24Þ

a v
1

1�s

�
1þ 2

2s�1
1�s

pr0ð1� sÞ kuk
p
p

�
þ 2

s
1�s þ 2

s
1�s

1� s
r0

¼ v
1

1�s

�
1þ 2

2s�1
1�s

pr0ð1� sÞ kuk
p
p

�
þ Cðr0Þ:

This implies

880 s. iula



uðxÞa vðxÞ
�
1þ 2

2s�1
1�s

pr0ð1� sÞ kuk
p
p

�1�s

þ C1�sðr0Þ

:¼ wðxÞ þ C1�sðr0Þ:

From (23) and the definition of w, we get

½w� p ¼ ½v� p
�
1þ 2

2s�1
1�s

pr0ð1� sÞ kuk
p
p

�1�s
sð25Þ

a ð1� kukp
p Þ
�
1þ 2

2s�1
1�s

pr0ð1� sÞ kuk
p
p

�1�s
s

Consider now the function f ðtÞ ¼ ð1� tÞð1þ ttÞs, where t :¼ 2
2s�1
1�s

pr0ð1�sÞ and
s ¼ 1�s

s
> 0. We compute

f 0ðtÞ ¼ ð1þ ttÞs�1ðttð�s� 1Þ þ ts� 1Þð26Þ

which vanishes for t1 ¼ � 1
t
< 0 and t2 ¼ ts�1

tðsþ1Þ . We choose now r0 > 2
2s�1
1�s so that

t2 < 0. This implies that f is decreasing in ð0; 1Þ and since f ð0Þ ¼ 1 we have that
f ðtÞ < 1 for t a ð0; 1Þ, which implies

½w� p a 1:ð27Þ

We can apply now Theorem 1.1 on the interval I ¼ ð�r0; r0Þ to get that there
exists a� > 0 such that Z

I

ea�w
p 0
dxaCð28Þ

and using (24) we get Z
I

ea�u
1

1�s
dxaC

Z
I

ea�w
1

1�s
dxaC;ð29Þ

concluding the proof of (7).
To prove the second part of the claim one can argue as in the previous section,

using the sequence of functions ue defined in (14) and taking into account that
now the norm we are working with is the full Ws;p-norm. Indeed we have

kuekp
L p ¼

Z
R

juej p dx ¼
Z
jxjae

ðjlog ej p�spÞ dxþ
Z
e<jxj<1

jlog xj
jlog ejsp dxð30Þ

¼ Oðjlog ej�1Þ:

Hence from (15), it follows that

lim
e!0

kuek p

W s; pðRÞ ¼ gs:ð31Þ
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Choose M > 0 large enough so that

FðtÞb 1

2
et; tbM:

Then one hasZ
R

F
�
gss

ue

kuekW s; pðRÞ

1
1�s
�
dxb

Z
uebM

F
�
gss

ue

kuekW s; pðRÞ

1
1�s
�
dxð32Þ

b
1

2

Z e

�e

e

�
g ss

ue
kuekW s; pðRÞ

� 1
1�s

dx:

for e small enough. Now, thanks to (31), one can argue as in the proof of Propo-
sition 2.3 to conclude the proof of Theorem 1.2.

4. Proof of Theorem 1.3

We will start by proving (8) since the proof of (9) will follow adapting the reason-
ing of the previous section.

Let ue be as in (14). To prove (8) it is enough to show that there exists a con-
stant d > 0 such that Z e

�e

e
a�
�

ue
½ue �

� 1
1�s

dxb d:

Indeed, ue ! þl uniformly for jxj < e as e ! 0 and we have

sup
u A ~WW s; p

0
ðIÞ; ½u�W s; pðRÞa1

Z
I

f ðjujÞea
�
�
juj
½u�

� 1
1�s

dxb inf
jxj<e

f ðjuejÞ
Z e

�e

e
a�
�
jue j
½ue �

� 1
1�s

dx:

From Proposition 2.2, it follows that

lim
e!0

½ue�
gss

¼ 1ð33Þ

and in particular

lim
e!0

½ue� p ¼ 8

Z þl

1

jlog xj p x2 þ 1

ðx2 � 1Þ2
dx ¼ gs:

We compute

lim
e!0

log
1

e
ð½ue� p � gsÞ ¼ 8 lim

e!0
log

1

e

Z þl

1
e

jlog xj p x2 þ 1

ðx2 � 1Þ2
dx ¼ 0:ð34Þ
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Then we can write

½ue� p

gs
a 1þ

�
C log

1

e

��1

ð35Þ

and in particular, recalling

lim
t!þl

t�
1þ C

t

� 1
1�s

� t ¼ � 1

1� s
;

we have

Z e

�e

e
g

s
1�s
s

�
jue j
½ue �

� 1
1�s

dx ¼
Z e

�e

e

�
g ss
½ue �

� 1
1�sjuej

1
1�s

dxð36Þ

b

Z e

�e

e

log 1e

ð1þCðlog 1eÞ
�1Þ

1
1�s dx

¼ 2ee

log 1e

ð1þCðlog 1eÞ
�1Þ

1
1�s ! e�

1
1�s

as e ! 0. Therefore Z
I

e
g

s
1�s
s

�
jue j
½ue �

� 1
1�s

dxb dð37Þ

for some d > 0, proving (8). We shall now prove (9). From (30) and (34) it follows
that

kuek p

W s; pðRÞ
gs

a 1þOðjlog ej�1Þ:ð38Þ

Now using (32) and arguing as in (36) and (37), we conclude the proof.
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