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Abstract. — We characterize the solution to the Newton minimal resistance problem in a specific

class of hollow profiles, satisfying a q-concavity condition. We treat two-dimensional bodies and
radially symmetric three-dimensional bodies.
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1. Introduction

The simplest model for computing the aerodynamic resistance of a body moving
through a rare, homogeneous incompressible fluid was proposed by Newton in
1685. In particular Newton assumed the fluid as constituted by independent small
particles hitting against the surface of the body at most once and then being
reflected according to the elastic impact laws. This model is not realistic in the
ordinary air and at a relatively low altitude, but it becomes approximately valid
when considering the motion of flying vehicles in a rarefied atmosphere (e.g. mis-
siles, artificial satellites etc . . .).

If a body covers a prescribed cross section W at its rear end and moves
with constant velocity (orthogonally with respect to W), and if its shape can be
described by the graph of a function u : W ! R, Newton aerodynamic resistance
reads

DWðuÞ ¼
rv20
2

Z
W

dx

1þ j‘uj2
;ð1:1Þ

where r is the density of the fluid and v0 is the velocity of the body. The aris-
ing problem consists in finding the shape of the body which undergoes the
least resistance among those satisfying Newton’s assumptions and having same
length and caliber. In this perspective a natural class of profiles for studying the
Newton problem in the format of the Calculus of Variations can be informally
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defined by

SMðWÞ ¼ fu : W ! ½0;M � : almost every fluid

particle hits the body at most onceg;

where M > 0. The condition can be rigorously stated as follows: for W an open
bounded convex subset of Rn, we say that u : W ! R is a single shock function on
W if u is a.e. di¤erentiable in W and

uðx� t‘uðxÞÞa uðxÞ þ t

2
ð1� j‘uðxÞj2Þ

holds for a.e. x a W and for every t > 0 such that x� t‘uðxÞ a W.SMðWÞ is then
defined as the class of single shock functions on W that take values in ½0;M �. The
specified maximal cross section W and the restriction on the body length (not
exceeding M > 0) represent given design constraints.

Unfortunately, as shown in [B], [BFK2], SMðWÞ lacks of the necessary com-
pactness properties in order to gain the existence of a global minimizer. Notice
also that the form of DW favors rapid oscillating shapes, so the choice of the class
of competing functions is a delicate issue. Nevertheless, in [CL1, CL2] existence
of global minimizers is shown among radial profiles in the W

1;l
loc ðWÞBC0ðWÞ-

closure of polyhedral functions u : W ! ½0;M � (W begin a ball) satisfying the
single shock condition. On the other hand, it has been recently shown in [P1, P2]
that a minimizer in the class of functions SMðWÞ does not exist and that the
infimum of the integral in (1.1) in this class is

Z
W

1

2

�
1� Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M 2 þ d 2ðxÞ
p �

dx;

where dðxÞ ¼ distðx; qWÞ.
Among the di¤erent choices in the literature, the most classical problem is set

in the class

CMðWÞ :¼ fu : W ! ½0;M � : u is concaveg;ð1:2Þ

whose elements automatically satisfy the single shock property. Moreover, such
class is compact with respect to the strong W 1;1 topology on compact subsets of
W, a property ensuring existence of global minimizers. The aim of the paper is
to show that the class of competing functions can be enlarged without giving up
the mentioned compactness property and mostly that a complete characterization
of 1D and radial 2D minimizers is possible without assuming concavity of the
profile. As we are interested in minimizing the resistance functional in a class of
possibly hollow profiles, we choose the class of q-concave functions u (i.e., x 7!
uðxÞ � q

2 jxj
2 is concave), with height not exceeding M. That is, for given M > 0

and qb 0, we let

CM
q ðWÞ :¼ fu : W ! ½0;M � j u is q-concaveg;
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and we wish to find the minimal resistance among profiles in CM
q ðWÞ. If q ¼ 0, we

are reduced to the standard Newton problem among concave functions, while if
q > 0 it is possible to show that CM

q ðWÞ � SMðWÞ whenever q diamðWÞa 2 and

that this condition is sharp: indeed if W ¼ ð�1; 1Þ and uðxÞ ¼ a
2 x

2, if a > 1 then
any particle moving vertically downwards to hit the body close to the pointse1
will meet the graph of u a second time.

We shall now state two main results. The first regards the one-dimensional
case, i.e., W is a line segment. The second is concerned with the radial two-
dimensional case, W being a ball in R2. Detailed proofs are contained in the
forthcoming paper [MMOP]. Here we will limit ourselves to describe the key
steps towards the proof of the second result.

2. Main results

One-dimensional case. For every w a W
1;1
loc ða; bÞ, the one-dimensional resistance

functional is given by

Dða;bÞðwÞ ¼
rv20
2

Z b

a

dy

1þ w 0ðyÞ2
:

By setting yðxÞ ¼ 1
2 ðb� aÞðxþ 1Þ þ a, x a ð�1; 1Þ and uðxÞ :¼ 2

b�a
wðyðxÞÞ, we

get

Dða;bÞðwÞ ¼
rv20ðb� aÞ

4

Z 1

�1

dx

1þ u 0ðxÞ2
:ð2:1Þ

It is worth noticing that the integral functional appearing in formula (2.1) repre-
sents an adimensional number that can be regarded as a shape coe‰cient. Then
the problem we shall solve is

min
u ACM

q

Z 1

�1

dx

1þ u 0ðxÞ2
ð2:2Þ

for M > 0 and q a ½0; 1�, where

CM
q :¼ fu : ½�1; 1� ! ½0;M � j u is q-concaveg:

Admissible functions are here defined on the close interval ½�1; 1�, and notice
that it is not restrictive to assume they are continuous up to the boundary.
Existence of minimizers is very easy to prove: indeed if ðunÞ � CM

q is a mini-
mizing sequence then unðxÞ � q

2 x
2 is a sequence of concave and equibounded

functions, hence there exists a concave w such that u 0
nðxÞ ! w 0ðxÞ þ qx a.e.

(possibly on a subsequence) and existence follows by the Lebesgue convergence
theorem.

Our first main result is the following.
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Theorem 2.1. Let M > 0 and q a ½0; 1� be such that 2Mb q. Then problem
(2.2) has a unique solution given by

uM;qðxÞ :¼

q

2
ðx2 � g2M;qÞ þM if jxja gM;q

M

1� gM;q

ð1� jxjÞ if gM;q a jxja 1

8>><
>>:

if M a ð0; 1Þ

Mð1� jxjÞ if M a ½1;þlÞ;

8>>>><
>>>>:

where gM;q a ð0; 1Þ is the unique minimizer of the function RM;q : ½0; 1� ! R
defined by

RM;qðgÞ ¼:

2

q
arctanðqgÞ þ 2ð1� gÞ3

M 2 þ ð1� gÞ2
if q > 0

2gþ 2ð1� gÞ3

M 2 þ ð1� gÞ2
if q ¼ 0:

8>>>><
>>>>:

Theorem 2.1 is stated under the specific high profile assumption 2Mb q,
which ensures that the constructed solution fits the maximal height interval
½0;M �. On the other hand, the restriction qa 1 corresponds to the single shock
condition in this case, as mentioned in the introduction.

Radial two-dimensional case. In this case we let W ¼ BRð0Þ be the open ball in R2,
with center 0 and radius R. For every radially symmetric function w on BRð0Þ
whose radial profile (still denoted by w) is in W

1;1
loc ð0;RÞ, the resistance functional

is

DBRð0ÞðwÞ ¼ prv20

Z R

0

s ds

1þ w 0ðsÞ2
:

As before it can be adimensionalized by setting uðrÞ :¼ R�1vðRrÞ, r a ð0; 1Þ, thus
obtaining

DBRð0ÞðwÞ ¼ prv20R
2

Z 1

0

r dr

1þ u 0ðrÞ2
:

Figure 1. Numerical illustration for M ¼ 0:5 and q ¼ 1 (1d theorem case).
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Then, given M > 0 and qb 0, by setting

RM
q :¼ u : ½0; 1� ! ½0;M � j r 7! uðrÞ � q

2
r2 is nonincreasing and concave

� �
;

we shall solve the problem

min
u ARM

q

Z 1

0

r dr

1þ u 0ðrÞ2
:ð2:3Þ

We will still work with the high profile assumption 2Mb q and the single shock
assumption 0a qa 1. Existence of minimizers is again standard and our second
main result is the characterization of the solution to problem (2.3). It is given by a
parabolic profile in ½0; a�, and a strictly decreasing profile satisfying the radial
two-dimensional Euler-Lagrange equation

�ru 0ðrÞ
ð1þ u 0ðrÞ2Þ2

¼ const

in ða; 1�. The optimal value of a is uniquely determined in ð0; 1Þ. In order to write
down the solution, which is a little less explicit, we need to introduce some further
notation. We let ð�l;�1� C t 7! hðtÞ :¼ �tð1þ t2Þ�2. For a a ð0; 1Þ, let

jðaÞ :¼ �
Z 1

a

h�1
� a

4r

�
drð2:4Þ

and

gqðaÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ð3a2q2 þ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9a4q4 þ 10a2q2 þ 1

p
Þ

r
;

zqðaÞ :¼ �
Z 1

a

h�1
�ahð�gqðaÞÞ

r

�
dr:

We are now in a position to state our 2D result.

Theorem 2.2. Let M > 0 and assume that 0a qa 1 and 2Mb q. Then there
exists a unique aM a ð0; 1Þ such that jðaMÞ ¼ M, and there exists a unique
a� a ½aM ; 1Þ such that zqða�Þ ¼ M. Moreover, there exists a unique solution to
problem (2.3), given by

uM;qðrÞ :¼

q

2
ðr2 � a2�Þ þM if r a ½0; a��

�
Z 1

r

h�1
�a�hð�gqða�ÞÞ

s

�
ds if r a ða�; 1�:

8>><
>>:

ð2:5Þ

It is worth noticing that g0ðaÞC 1, hence when q ¼ 0 we get a� ¼ aM , and we
recover the classical concave radial minimizer.
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Figure 1 and Figure 2 show the graphs of optimal profiles obtained by numer-
ical simulations, which correspond to the results given by Theorem 2.1 and The-
orem 2.2 respectively.

3. Outline of the proofs

We shall discuss the proof of Theorem 2.2, referring to [MMOP] for the full argu-
ments. For 0a aa b and locally absolutely continuous functions u on ða; bÞ, we
let

Dða;bÞðuÞ :¼
Z b

a

r dr

1þ ðu 0ðrÞÞ2
:

We shall also use the notations pqðrÞ :¼
q

2 r
2 and pq; sðrÞ :¼

q

2 ðr� sÞ2: The proof is
based on the combination of the following results, each giving solution to a par-
tial problem.

Proposition 3.1. Let qb 0. Let 0a aa b. Then Dða;bÞðpq;bÞbDða;bÞðpq;aÞ
and equality holds if and only if q ¼ 0 or a ¼ b.

Proof. Let q > 0. Let jðtÞ :¼ t arctan t� logð1þ t2Þ, t a ½0;þlÞ. Since jð0Þ ¼
0 ¼ j 0ð0Þ and j 00ðtÞ ¼ 2t2ðt2 þ 1Þ�2 > 0 for every t a ð0;þlÞ then jðtÞ > 0 for

Figure 2. Numerical illustrations for M ¼ 0:5 and M ¼ 1 (2d theorem case), both for
q ¼ 1.
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every t a ð0;þlÞ. Since Dða;bÞðpq;bÞ �Dða;bÞðpq;aÞ ¼ 1
q2 jðqðb� aÞÞ the result fol-

lows. If q ¼ 0 the result is trivial. r

The following is the key lemma.

Lemma 3.2. Let qb 0, a > 0, H a R. The minimization problem

min

�
Dð0;aÞðuÞ : r 7! uðrÞ � q

2
r2 is concave nonincreasing on ½0; a�;

uðrÞa uðaÞ ¼ H on ½0; a�
�

admits the unique solution u�ðrÞ :¼ q

2 ðr2 � a2Þ þH.

Proof. If q ¼ 0 the result is trivial. Let q > 0. Since r 7! uðrÞ � q

2 r
2 is con-

cave nonincreasing we get u 0ðrÞa qr a.e. in ð0; aÞ. If u 0 b 0 a.e. in ð0; aÞ, then
either u 0ðrÞ ¼ qr a.e. in ð0; aÞ or by pointwise estimating the integrand we get
Dð0;aÞðuÞ > Dð0;aÞðpqÞ ¼ Dð0;aÞðu�Þ.

Suppose instead that there are negativity points of the left derivative u 0
� on

ð0; aÞ. Since u is q-concave, u 0
� is upper semicontinuous on ð0; aÞ, therefore the

set I :¼ fr a ð0; aÞ : u 0
�ðrÞ < 0g is open, thus a (at most) countable union of (non-

empty) disjoint open intervals ðaj; bjÞ. Moreover, if bj < a there holds u 0
�ðbjÞ ¼ 0

(left continuity of u 0
�). A direct consequence of q-concavity and of the restric-

tion uðrÞa uðaÞ on ½0; a� is that u 0
�ðrÞb

q

2 ðr� aÞ on ð0; aÞ, therefore if instead
bj ¼ a we still have limr!a� u

0
�ðrÞ ¼ 0. On the other hand, q-concavity yields

0b u 0
�ðrÞb qðr� bjÞ on any interval ðaj; bjÞ. Since u 0

� < 0 at some point in
ð0; aÞ, there is at least one of these intervals ðaj; bjÞ. If there exists and index j
such that aj > 0, Proposition 3.1 entails

Z
I

r dr

1þ u 0ðrÞ2
¼

X
j

Z bj

aj

r dr

1þ u 0ðrÞ2
b

X
j

Z bj

aj

r dr

1þ q2ðr� bjÞ
2

b
X
j

Z bj

aj

r dr

1þ q2ðr� ajÞ2
>

X
j

Z
I

r dr

1þ q2r2
¼

Z
I

r dr

1þ q2r2
:

By taking into account that

Z
½0;a�nI

r dr

1þ u 0ðrÞ2
b

Z
½0;a�nI

r dr

1þ q2r2
we get

Dð0;aÞðuÞ > Dð0;aÞðu�Þ. The remaining case is I ¼ ð0; bÞ for some b a ð0; a�. If
b < a, q-concavity and Proposition 3.1 yield Dð0;aÞðuÞbDð0;bÞðpqÞ þDðb;aÞðpq;bÞ
> Dð0;aÞðpqÞ ¼ Dð0;aÞðu�Þ. If b ¼ a, we use u 0ðrÞa q

2 ðr� aÞ a.e. on ð0; aÞ and we
get Dð0;aÞðuÞbDð0;aÞðpq=2Þ > Dð0;aÞðpqÞ ¼ Dð0;aÞðu�Þ. r

Another important result is the following

Lemma 3.3. Let qb 0. Let 0a aa ga b and qðb� gÞa 2. Let moreover
u : ½a; b� ! R be an absolutely continuous function such that
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(i) uðgÞ ¼ uðbÞb uðrÞ for any r a ½g; b� and the restriction of u on ½g; b� is
q-concave;

(ii) u 0ðrÞa�1 a.e. on ða; gÞ.

Then Dða;bÞðuÞbDða;bÞðwuÞ, where

wuðrÞ :¼
uðrþ g� aÞ þ uðaÞ � uðbÞ if r a ½a; aþ b� gÞ
uðr� bþ gÞ if r a ½aþ b� g; b�:

�

Equality holds if and only if g ¼ a or g ¼ b.

Proof. We show the proof of this result in the extremal case uðrÞ ¼
q

2 ðr� gÞðr� bÞ þm on ½g; b�, for some m a R. The full proof would require in
fact a generalized version of Lemma 3.2, that we omit. Let q > 0. It is easily
seen, by taking (ii) into account, that

Z b

a

r dr

1þ w 0
uðrÞ

2
¼

Z b

g

ðrþ a� bÞ dr
1þ u 0ðrÞ2

þ
Z g

a

ðrþ b� gÞ dr
1þ u 0ðrÞ2

a ða� gÞ
Z b

g

dr

1þ u 0ðrÞ2
þ
Z b

a

r dr

1þ u 0ðrÞ2
þ 1

2
ðb� gÞðg� aÞ:

Since u 0ðrÞ ¼ qr� q

2 ðgþ bÞ on ðg; bÞ, a direct computation shows that

Dða;bÞðwuÞ �Dða;bÞðuÞa ða� gÞ
Z b

g

dr

1þ u 0ðrÞ2
þ 1

2
ðb� gÞðg� aÞ

¼ a� g

q
c
�q
2
ðb � gÞ

�

where cðzÞ :¼ 2 arctan z� z: Since cðzÞ > 0 for every z a ð0; 1� and q

2 ðb � gÞ a
½0; 1�, the result follows. If q ¼ 0 the term 2

q
arctan

�q
2 ðb � gÞ

�
becomes b � g and

the result follows as well. r

There is a close relation between minimization of the resistance among con-
cave and monotonic profiles. The following lemma is reminiscent of the results
by Marcellini [M] (we refer to Section 5 therein). It is also related to the property
ju 0j B ð0; 1Þ for concave minimizers of the resistance functional, which is estab-
lished by Buttazzo, Ferone and Kawohl in [BFK2, Theorem 2.3]. We omit the
proof, which follows the same line therein.

Lemma 3.4. Let 0a a < 1, m1 > m2 and

W :¼ fu a W
1;1
loc ða; 1Þ : u

0
a 0 a:e: in ða; 1Þ; uðaÞ ¼ m1; uð1Þ ¼ m2g;

where the boundary values are understood as limits. Then Dða;1Þ admits a minimizer
on W which is concave in ða; 1Þ. If u� a argminWDða;1Þ, then ju 0

�ðrÞj B ð0; 1Þ for
a.e. r a ða; 1Þ.
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All the necessary elements for the proof of Theorem 2.2 are now settled.

Proof of Theorem 2.2. Let M > 0, q a ½0; 1�, 2Mb q. Let u be solution to
(2.3) It is not restrictive to assume that u is continuous up to the boundary
of ½0; 1�. Let m :¼ maxfuðrÞ : r a ½0; 1�g and a :¼ maxfr a ½0; 1� : uðrÞ ¼ mg. We
immediately see that a < 1. Indeed, if a ¼ 1, Lemma 3.2 and a direct compar-
ison with wðrÞ given by wðrÞ ¼ q

2 ðr2 � ð1� dÞ2Þ þM if r a ½0; 1� d� and wðrÞ ¼
m
d
ð1� rÞ þM �m if r a ð1� d; 1� yield contradiction for small enough d (notice

that w is admissible since 2Mb q).

Step 1 – u decreases on the side. We claim that u is strictly decreasing in ½a; 1�.
For simplicity, we show the proof in a particular case, which however features
the key point: we shall reach a contradiction by supposing that u admits a unique
local maximum point a 00 on ða; 1�. We let a 0 the unique point in ða; a 00Þ such that
uða 0Þ ¼ uða 00Þ and notice that u is nonincreasing on ða; a 0Þ. We can apply first
Lemma 3.4 and then Lemma 3.3 (since qa 1). In this way, we get Dð0;1ÞðuÞ >
Dð0;1Þðu�Þ, where u� is constant on ða; cÞ for some c a ½a; a 0Þ, u�ðcþ a 00 � a 0Þ ¼
u�ðcÞ ¼ u�ðaÞ, u� has slope less than or equal to �1 a.e. on ðcþ a 00 � a 0; a 0Þ and
u� ¼ u outside ða; a 0Þ. By construction, u� is q-concave in ð0; cþ a 00 � a 0Þ and
nonincreasing on ðcþ a 00 � a 0; 1Þ, with u�ð1Þ ¼ uð1Þ. If we apply Lemma 3.4
again on ðcþ a 00 � a 0; 1Þ, we find a q-concave function on ½0; 1� with not greater
resistance and a contradiction. The general case requires approximation of u with
functions having finitely many local maxima on ða; 1�, to which one recursively
applies the above argument.

Step 2 – u 0 a�1 a.e. on the side. We give other structure properties of the mini-
mizer u. Its restriction to ½a; 1� minimizes the resistance functional in ða; 1Þ among
all nonincreasing v in ½a; 1�, such that vðaÞ ¼ m, vð1Þ ¼ uð1Þ, v a W

1;1
loc ða; 1Þ.

Indeed, if this was not the case, the concave minimizer of the resistance in
such class, given by Lemma 3.4, would give contradiction. Lemma 3.4 yields
ju 0j B ð0; 1Þ a.e. in ða; 1Þ and by taking into account that u is q-concave (thus the
right derivative u 0

þ is right continuous) we get that if u 0
þðaÞ ¼ 0 then there exists

d > 0 such that u 0 ¼ 0 in ða; aþ dÞ, contradicting the definition of a. Then
u 0 a�1 a.e. in ða; 1Þ still by q-concavity since u 0 can only jump downwards.
Simple comparison arguments also show that m ¼ M and uð1Þ ¼ 0.

Step 3 – Euler-Lagrange equation. Let h : ð�l� 1� ! R be defined by hðtÞ ¼
�tð1þ t2Þ�2. Notice that the inverse function h�1 is defined on

�
0; 14

�
, it is

smooth, increasing and there hold limr!0 h
�1ðrÞ ¼ �l and h�1

�
1
4

�
¼ �1. Let

jðaÞ, a a ð0; 1Þ, be defined by (2.4). It is readily seen, from the definition of h,
that lima!1 jðaÞ ¼ 0, lima!0 jðaÞ ¼ þl and j 0 < 0 on ð0; 1Þ. Then there exists
a unique aM in ð0; 1Þ such that jðaMÞ ¼ M and ½aM ; 1Þ ¼ fa a ð0; 1Þ : jðaÞa
Mg. For every a a ½aM ; 1Þ let ca :

�
0; a4

�
! ½0;þlÞ be defined by

caðhÞ :¼ �
Z 1

a

h�1
�h
r

�
dr:
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Similarly as above we may check that for any a a ½aM ; 1Þ there is c 0
aðhÞ < 0 on�

0; a4
�
, and moreover limh!0 caðhÞ ¼ þl, limh!a=4 ¼ jðaÞaM. Hence for every

a a ½aM ; 1Þ there exists a unique number h a ð0; a=4� such that caðhÞ ¼ M is sat-
isfied, and we denote it by hðaÞ. Notice that caðhÞ strictly decreases with a for
each h a

�
0; a4

�
so that the function ½aM ; 1Þ C a 7! hðaÞ is strictly decreasing, and

it satisfies hðaMÞ ¼ a
4 , lima!1 hðaÞ ¼ 0, and caðhðaÞÞ ¼ M on ½aM ; 1Þ. We concen-

trate on ða; 1Þ, where u 0a�1 is a.e. thanks to Step 2, and we use the first varia-
tion of the resistance functional

Z 1

a

ru 0f 0 dr

ð1þ u 02Þ2
¼ 0 for every f a C1

0 ða; 1Þ;

that is, there exists a constant c > 0 such that �ru 0 ¼ cð1þ u 02Þ2 a.e. in ða; 1Þ. We
get therefore hðu 0ðrÞÞ ¼ c=r. Hence, 4c=r a ð0; 1� for every r a ða; 1Þ, so that
0 < ca a=4. Since uð1Þ ¼ 0, uðaÞ ¼ M, then c has to satisfy caðcÞ ¼ M, that is,
c ¼ hðaÞ, which also implies jðaÞaM, then a a ½aM ; 1Þ.

Step 4 – Global structure of the solution. Summing up if u a C0ð½0; 1�Þ solves
(2.3), there exist a a ½aM ; 1Þ and a unique h ¼ hðaÞ a ð0; a=4� such that (also using
Lemma 3.2) u takes the form

uðrÞ ¼

q

2 ðr2 � a2Þ þM if r a ½0; a�

�
Z 1

r

h�1
�hðaÞ

s

�
ds if r a ða; 1�;

8><
>:

and then

Dð0;1ÞðuÞ ¼
Z a

0

r dr

1þ q2r2
þ
Z R

a

r dr

1þ jh�1ðhðaÞ=rÞj2
:ð3:1Þ

We are now left to minimize over a a ½aM ; 1Þ. That is, we have to solve
mina A ½aM ;1Þ EðaÞ, where EðaÞ is defined by the right hand side of (3.1). After some
computations using the implicit expression for hðaÞ, that is, caðhðaÞÞ ¼ M, it is
possible to show that this one variable minimization problem admits a unique
solution a� a ½aM ; 1Þ, which is characterized by means of functions gq and zq
that appear in Theorem 2.2. We omit the details of this computation. The con-
sequence is that problem 2.3 admits a unique solution that can be expressed
by (2.5). r

4. Conclusive remarks

The proof of Theorem 2.1 is in the same spirit of that of Theorem 2.2 and follows
the same line. Some extra di‰culties arise since in Theorem 2.1 we do not assume
a priori that the solution is symmetric on ½�1; 1�. On the other hand, it is not pos-
sible to drop the radial symmetry assumption in the two-dimensional case, since
it is well known that the minimization problem for DW on the class CM from (1.2)
exhibits symmetry break in case W is a ball in R2, see [BFK1]. A second di¤erence
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between one- and two-dimensional case is that in the latter we always have
aM > 0, for any value of M. On the other hand, we see in Theorem 2.1 that there
is no parabolic profile in the center if Mb 1, so that in such case the concave and
the q-concave solutions coincide.
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