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Abstract. — We consider the finite dimensional reduction of the well known non-equilibrium

thermodynamics theory developed through the last two decades by a team of researchers lead
by Giovanni Jona-Lasinio, realized by considering a simplified version – a reaction-di¤usion-like

dynamics – of that theory. We begin with a clear axiomatic format of that framework, showing
that the reaction-di¤usion dynamics emerge in a direct way after a few assumptions. Our goal is to

put focus on the relations between the reduced and the full theory and to underline some topological
features of this theory, more precisely, by first showing that the Morse index distribution of the equi-

libria of the finite dimensional reduced system is exactly the same of the full original system, thus
giving us eventually a good measure of the robustness of the reduction, and secondly, moving

our framework to a Morse–Smale setting, by proposing an alternative way to compute the Morse
index of the equilibria. In order to realize this last program, we propose a weak infinite-dimensional

Maslov–Hörmander theorem.
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1. Introduction

Most macroscopic systems that emerge in chemistry and biology are far from
equilibrium. Classical thermodynamics though does not concern itself with this
ubiquitous behaviour: it describes states of matter which do not change in time,
or change so slowly that they can be described as a sequence of equilibria. In fact,
out of equilibrium, there is no general agreement on the definition of most ther-
modynamic quantities like free energy or entropy.

In a series of papers [2, 3, 16, 1], G. Jona-Lasinio and coworkers have de-
veloped a theory, Macroscopic Fluctuation Theory (MFT), that describes macro-
scopic systems in a stationary non-equilibrium state, called driven di¤usive sys-
tems. The ingredients of the theory are a finite number of fields that represent
thermodynamical quantities like density of mass or charge, whose evolution is
described by a continuity equation coupled with a constitutive equation that ties
currents with the relative density fields. The theory has an axiomatic character,
where the axioms derive from rigorous results in lattice gas theory in the hydro-
dynamic limit. Jona-Lasinio and coworkers then develop the macroscopic fluctu-
ations of the system as a generalization of Friedlin–Wentzell theory to field vari-
ables. In this context, the infinite-dimensional analog of the quasi-potential can
be interpreted as the non-equilibrium free energy of the system, with no assump-
tion of small deviation from equilibrium.

The spirit of thermodynamics though is to describe the state of a macroscop-
ical system via a finite number of variables, often called collective variables. The
task of determining the adequate collective variables for a given system is abso-
lutely nontrivial. The aim of this paper then is to consider a model of MFT given
by a reaction-di¤usion type equation, introduced in [5], and identify its collective
variables using a Lyapunov–Schmidt-type finite-dimensional reduction, called
Amann–Conley–Zehnder (ACZ) reduction. The resulting finite-dimensional sys-
tem mimics two very important features of the system: its gradient structure and
the stability properties of the equilibria, namely, the Morse index of the equilibria
is preserved by the reduction. This is a novel feature: the Morse index of an equi-
librium describes the number of unstable directions that stem from such equilib-
rium, and can be thought as a sort of chemical a‰nity. The reduced system can
be used to calculate the number and the quality of the transitions emerging from
equilibria.

In this paper we also develop the first steps towards a non-homogeneous
Morse–Smale theory, setting the original theory in a symplectic environment.
This extension is based on the construction of a path in the space of boundary
data functions, whose formal cotangent bundle is equipped with a symplectic
structure. The path is lifted on the Lagrangian submanifold that collects the
whole set of solutions. Its description is through a generating function, in the
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Tulczyjew–Weinstein sense [26, 25]. Such generating function is precisely the
action functional of the system. This construction is allowed by a weak infinite-
dimensional Maslov–Hörmander theorem, proposed in the Appendix. As far as
we know, this result is original.

In our language, this Morse–Smale environment o¤ers an alternative compu-
tation scheme for the Morse index, and shows how the Morse index is strictly
linked to the intrinsic symplectic structure of the collection of the solutions of
non-homogeneous Dirichlet problems.

2. The reaction-diffusion system

We outline the premises of MFT and we propose a simplified model of the
evolution equation for the fields given by a reaction-di¤usion equation. Such
reaction-di¤usion system is studied in detail, showing that it can be formulated
as an L2-gradient descent equation.

2.1. Thermodynamic origin

As said before, the MFT is developed on axioms. The first axiom states the evo-
lution equation and the constitutive equation of the theory. Let W be a bounded
domain in Rn, or an n-dimensional smooth manifold, define r ¼ rðt; xÞ, x a W as
the macroscopic density field and j ¼ jðt; xÞ its density of current.

Axiom 1. The macroscopic evolution of the field r is given by the continuity
equation

qr

qt
þ ‘ � j ¼ 0ð2:1Þ

together with the constitutive equation

jðt; xÞ ¼ Jðt; rðt; xÞÞ ¼ �Dðrðt; xÞÞ‘rðt; xÞ þ wðrðt; xÞÞEðtÞð2:2Þ

where D is the di¤usion matrix, EðtÞ an external field and w the relative mobility
matrix of the system with respect to the field.

Substituting the constitutive equation in the continuity equation, we obtain an
equation in the variable r that describes its evolution in time:

qr

qt
¼ ‘ � ðDðrÞ‘rÞ � ‘ � ðwðrÞEðtÞÞð2:3Þ

To put (2.3) in a reaction-di¤usion form, the first thing we must do is approxi-
mate the r-dependent di¤usion matrix D ¼ DðrÞ with a spatial one D ¼ DðxÞ,
and equip W with a Riemannian structure g such that its Laplace–Beltrami oper-
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ator, 4 ¼ 4g ¼ tr‘2, mimics the first term:

4ð�Þ ¼ ‘ � ½DðxÞ‘ð�Þ� x a Wð2:4Þ

If W � Rn, it is su‰cient to define gij ¼ Ddij. This way, equation (2.3) reads

qr

qt
¼ 4r� ‘ � wEð2:5Þ

Now, we simplify the source term ‘ � wE by representing the external field via a
‘‘potential function’’ V : R ! R. By doing this we obtain the desired form:

qr

qt
¼ 4r� V 0ðrÞð2:6Þ

Note that the non-linearity of the source term is preserved by the introduction of
V , while the elliptic term in the reaction-di¤usion system is essentially tamer than
the di¤usion term.

In the MFT, the evolution equation (2.3) is supplied with a continuous distri-
bution of chemical potential on the border, l ¼ lðt; xÞ, x a qW, representing the
presence of reservoirs in contact with the boundary of the system. In this way the
complete evolution equation for MFT is

qr

qt
¼ ‘ � ðDðrÞ‘rÞ � ‘ � ðwðrÞEðtÞÞ; x a W

f 0ðrðt; xÞÞ ¼ lðt; xÞ; x a qW

8><>:ð2:7Þ

where f is the equilibrium free energy per unit volume. These constitute non-
linear non-homogeneous Dirichlet boundary conditions, in the form jðrÞ ¼ l,
x a qW. To encompass the most general non-equilibrium situation in our sim-
plified system while also maintaining a certain degree of tractability, we assume
a‰ne Dirichlet boundary conditions see (2.8)2 below.

2.2. Properties of the reaction-di¤usion system

Consider then the compact n-dimensional manifold ðW; gÞ with C1 boundary qW,
and its Laplace–Beltrami operator 4. We will change notation, from a thermo-
dynamical one to a more common one in the theory of PDEs, hoping no confu-
sion will ensue: take a curve R C t 7! uðt; �Þ a H where H is a suitable Hilbert
space, to be selected later. The functions u a H represent the density of a certain
quantity, like mass. Take V : R ! R a (possibly) nonlinear function. We will
think of its derivative V 0 as the mass production/consumption rate function. The
reaction-di¤usion equation on W is

qu

qt
¼ 4u� V 0ðuÞ; x a W

u ¼ q; x a qW

8<:ð2:8Þ
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where the function q : qW ! R is the stationary boundary data that represents the
external influence on the system. We take the various q in a Hilbert space HqW.

Remark 2.1. Since the reaction-di¤usion equation requires the derivative of the
t-parameter of the curve t 7! uðt; �Þ, we are looking for curves in H 1ðR;HÞ.

2.2.1. Equilibria of the system and variational formulation. Note that the search
for stationary solutions

�
qu
qt
¼ 0
�
, the equilibria, of (2.8) is equivalent to solving

the nonlinear Poisson equation

4u ¼ V 0ðuÞ
ujqW ¼ q

�
ð2:9Þ

This equation can be split into a Laplace equation with non-homogeneous
boundary conditions, and a Poisson equation with homogeneous boundary
conditions:

4Q ¼ 0; x a W

QjqW ¼ q;

�
and

4u0 ¼ FQðu0Þ :¼ V 0ðQþ u0Þ; x a W

u0jqW ¼ 0

�
ð2:10Þ

It is clear that u ¼ u0 þQ a H proposes all the solutions of (2.9).

Remark 2.2. The splitting clarifies certain properties of the system that we are
studying:

• Note that equation (2.10)1 has existence and uniqueness for suitable pre-
scribed boundary data q a HqW, hence we must explicit the functional spaces
H, HqW. Since the equation involves the Laplacian, we take H ¼ H 2ðW;RÞ.
Then the trace QjqW of Q on qW must be in H 2�1

2ðW;RÞ ¼ H
3
2ðW;RÞ [4, chapter

9, pg. 315]. The natural choice for the boundary data functions is thus HqW ¼
H

3
2ðW;RÞ.

• Proceeding with observations on functional spaces, the boundary conditions of
(2.10)2 can be restated by taking the u0 in the subspace

H0 :¼ fu a H : ujqW ¼ 0gCH 2
0 ðW;RÞð2:11Þ

where ujqW is intended always in the trace sense.

• The preceding observation also prompts that the solution of (2.10)1 proposes
a map

HqW ! H

q 7! QðqÞ
ð2:12Þ

which is at least injective. This means that the Laplace part (2.10)1 carries all
of the boundary information of the original problem.
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Now, once a solution of (2.10)1 has been found, we can formulate (2.10)2 with
a variational principle: define the functional

J : H0 �HqW ! R

ðu0; qÞ 7! J½u0; q� ¼
Z
W

k‘ðu0Þk2

2
þ Vðu0 þQðqÞÞ dx

ð2:13Þ

The stationary points of J in the H0-component are the solutions of (2.10)2.

2.2.2. Gradient-descent weak formulation for the complete system. The reaction-
di¤usion equation does not have a variational formulation, but the search for
weak solutions can be put in a gradient descent form through a restatement of
the equation that is based on the variational formulation of the equilibria.

Observe that the splitting introduced in (2.10) induces a splitting for the
reaction-di¤usion equation (2.8). These two equations are a heat equation with
a‰ne Dirichlet boundary conditions, and a reaction-di¤usion equation, with
homogeneous boundary conditions.

qQ

qt
¼ 4Q

QjqW ¼ q a HqW

8><>:ð2:14Þ

This is a very well known heat equation. Once a solution Q : W ! R for (2.14) is
found, consider the equation

qu0

qt
¼ 4u0 � FQðu0Þ

u0 a H0

8><>:ð2:15Þ

We have split the flow t 7! uðt; �Þ into two separate flows t 7! Qðt; �Þ a H and
t 7! u0ðt; �Þ a H0, both of regularity class H 1.

When a solution of (2.15) has been found, we have solved (2.8), simply by
posing u ¼ u0 þQ:

qðu0 þQÞ
qt

¼ 4u0 þ4Q� FQðu0Þ ¼ 4u� V 0ðuÞ

ðu0 þQÞjqW ¼ QjqW ¼ q

8><>:ð2:16Þ

This splitting shows that again we may encode the a‰ne boundary conditions
into the function Q that solves a better known, linear equation.

Consider now equation (2.15), and look for its weak solutions, by taking
h a Cl

0 : Z
W

qu0

qt
h dx ¼

Z
W

ð4u0 � FQðu0ÞÞh dx , qu0

qt
; h

� �
¼ �qu0J½u0; q�hð2:17Þ
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Via Riesz representation theorem we can find a ‘J½u0; q� a H0, Eu0, q such that
qu0J½u0; q�h ¼ 3‘J½u0; q�; h4L2 . In this way we can relax the distributional form
into

qu0

qt
¼ �‘J½u0; q�ð2:18Þ

which is manifestly a gradient system, which is called L2-gradient descent form.
Coupled with the heat equation, this equation reproduces all the solutions of the
original system.

3. Finite reduction

In this section we reduce the search of the equilibria (2.9) with a Lyapunov–
Schmidt type global reduction, called Amann–Conley–Zehnder (ACZ) exact
finite reduction, that reduces a variational problem to an ODE and the search
of a fixed point of a map on an infinite-dimensional Banach space. Heuristically,
the reduction works by decomposing the functions in an orthonormal basis of
eigenfunctions for 4, then keeping the first N components. On these first N com-
ponents, the equation is a finite system of equations, while to recover the remain-
ing components of the solution a fixed-point problem must be solved, after a suit-
able choice of N has been made (see equation (3.11) below).

Such reduction is then extended to the reaction-di¤usion equation, near the
equilibria. We show that the reduction preserves (2.8)’s gradient-like structure,
through the identification of a ‘‘reduced action’’.

3.1. Exact finite reduction of equilibria

To reduce the complete equation (2.9) we must pass through the splitting pro-
posed in Section 2.2.2. Let fujgj AN a H0 be the set of eigenfunctions of 4. Since

4 is an elliptic operator, the following identities hold:

4uj ¼ �ljuj

ujjqW ¼ 0

�
) 3ui; uj4 ¼

Z
W

uiuj dx ¼ dij; l0 ¼ 0a l1 a l2 a � � �ð3:1Þ

and also fujgj AN is a basis of H0 (orthonormal). Via the spectral representation
of 4 we can define an inverse Laplacian operator that acts on H0: for any
f a H0

gð f Þ :¼ �
X
j>0

3 f ; uj4

lj
uj ) 4gð f Þ ¼ �

X
j>0

3 f ; uj4

lj
4uj ¼

X
j>0

3 f ; uj4uj ¼ fð3:2Þ

which means that 4 � g ¼ g � 4 ¼ idH0 .
Since fujgj AN is an orthonormal basis of H0, we can decompose any function

f a H0 a finite-dimensional ‘‘head’’ and an infinite-dimensional ‘‘tail’’ by con-
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sidering the projectors

PN : H0 ! UN ¼ PNH
0

f 7! PN f ¼ m ¼
XN
j¼1

3 f ; uj4uj

QN : H0 ! VN ¼ QNH
0

f 7! QN f ¼ h ¼
Xl

j¼Nþ1

3 f ; uj4uj

ð3:3Þ

Note that UN is a finite-dimensional subspace of H0 while VN is infinite-
dimensional. Moreover, H0 ¼ UN aVN .

Through the inverse Laplacian g we may translate equation (2.9) to the search
of a fixed point of a map on H. To do this, we must first assume that FQ actually
is in H0, which is equivalent to asking that

V 0ðQðxÞ þ u0ðxÞÞjqW ¼ V 0ðqðxÞÞ ¼ 0ð3:4Þ

Remark 3.1. This condition has a justification in the simple physical interpre-
tation that we are considering, where V 0 is the mass production/consumption rate
and u is the mass density. What we are asking is that the mass production rate
must be zero on the boundary, a condition that is compatible with the request
of the assignment of a stationary mass distribution q on the boundary.

Moreover, consider the case of q continuous. Then its image must be compact
in R. Since we are prescribing the value of V 0 on the image of q, we observe that
the condition (3.4) is not too restrictive, for example, if V 0 is with compact sup-
port, disjoint from the support of q. In this case, the subsequent condition (3.8) is
automatically satisfied. A compactly supported V 0 is also synergic with the phys-
ical justification given above: the mass production/consumption is creative only
inside our W.

Remark 3.2. Solving (2.9) is equivalent to solving the following equation:

u ¼ gðFQðu0ÞÞ þQ , u0 ¼ gðFQðu0ÞÞð3:5Þ

As above, we suppose the function Q is known. The statement of (3.5) is easily
verifiable:

4u ¼ 4½gðFQðu0ÞÞ þQ� ¼ FQðu0Þ ¼ V 0ðuÞ

ujqW ¼ �
X
j

3FQðu0ð�ÞÞ; uj4
lj

ujjqW þQjqW ¼ q

8>><>>:ð3:6Þ

We must impose some conditions on V 0 to guarantee that the problem (3.5)
admits a solution. To find these conditions, consider the decomposition of (3.5)2
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on the finite- and infinite-dimensional subspaces UN , VN :

m ¼ PNgðFQðmþ hÞÞ
h ¼ QNgðFQðmþ hÞÞ

�
ð3:7Þ

Equation (3.7)1 is a finite-dimensional equation and poses no convergence prob-
lem, while for (3.7)2 we need to find conditions for which the r.h.s is a contrac-
tion. Suppose that V 0 is globally Lipschitz, that is,

LipðV 0Þ ¼ C < lð3:8Þ

Then the question is reduced to finding the appropriate N such that for any fixed
m a UN the map

VN ! VN

h 7! QNgðFQðmþ hÞÞ
ð3:9Þ

is a contraction. This is possible for the properties of the spectral decomposition
of 4: let h1; h2 a VN , then

kQNgðFQðmþ h2ÞÞ �QNgðFQðmþ h1ÞÞka
C

lN
kh2 � h1kð3:10Þ

so we can choose N such that

C

lN
< 1ð3:11Þ

since the sequence of eigenvalues is growing and unbounded. Note that this does
not depend on the choice of m: with the appropriate N the problem (3.7)2 admits
a solution for any m.

Proceeding with the reduction, suppose we have chosen N satisfying (3.11).
Then there is an unique solution to the fixed-point problem (3.7)2, which we will
call ~hhQ. Such solution depends on the choice of a m a UN , so we will write

~hhQðmÞ ¼ QNgðFQðmþ ~hhQðmÞÞÞð3:12Þ

Once this solution has been found, equation (2.9) is equivalent to solving the
finite-dimensional equation

m ¼ PNgðFQðmþ ~hhQðmÞÞÞð3:13Þ

3.1.1. Variational character of the reduced equation (3.13). The reduced equa-
tion (3.13) can still be obtained by a variational problem. To see this, consider
the functional J defined above. As a first step, note that the reduced equation
(3.13) can be restated introducing the action functional’s ‘‘gradient’’ (in the sense
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of Riesz representation), ‘J:

m ¼ PNgðFQðmþ ~hhQðmÞÞÞ , PN‘J½mþ ~hhQðmÞ; q� ¼ 0ð3:14Þ

this can be easily seen by taking the Laplacian of both sides of (3.13) and noting
that PN and 4 commute; moreover, we can see in the same way (taking the
Laplacian) that equation (3.12) is an identity once J is introduced, that is,

~hhQðmÞ ¼ QNgðFQðmþ ~hhQðmÞÞÞ , QN‘J½mþ ~hhQðmÞ; q� ¼ 0ð3:15Þ

This will be an important fact in the rest of the section.
Define the real valued function

W : UN GRN ! R

m 7! W ðmÞ :¼ J½mþ ~hhQðmÞ; q�
ð3:16Þ

Now calculate its gradient:

‘WðmÞ ¼ ‘J½u0; q�ju0¼mþ~hhQ

�
PN þQN

d~hhQ
dm

�
ð3:17Þ

¼ PN‘J½u0; q�ju0¼mþ~hhQ
þQN‘J½u0�ju0¼mþ~hhQ

d~hhQ
dm

¼ð3:12Þ PN‘J½u0; q�ju0¼mþ~hhQ

This shows that m stationarizes W if and only if u ¼ mþ ~hhQðmÞ þQ stationarizes
J. We have thus identified a finite dimensional representation of the action func-
tional, which we will call reduced action function.

3.2. Reduction out of equilibrium and gradient structure

We can use the fact that the equilibria admit an exact reduction to construct a
reduction of the reaction-di¤usion equation. Consider the same decomposition
of H0, and project equation (2.15) on the subspaces UN and VN :

qm

qt
¼ 4m� PNFQðmþ hÞ

qh

qt
¼ 4h�QNFQðmþ hÞ

8>>><>>>:ð3:18Þ

As a reduction, we propose to substitute any occurrence of h with the ‘‘stationary
tail’’ ~hhQðmÞ. Thus the projected equation becomes

dm

dt
¼ 4m� PNFQðmþ ~hhQðmÞÞ

0 ¼ 4~hhQðmÞ �QNFQðmþ ~vvðmÞÞ

8><>:ð3:19Þ
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While (3.19)2 is an identity, completely equivalent to the definition of ~hhQ, equa-
tion (3.19)1 is the reduced equation we were looking for:

4m� PNFQðmþ ~hhQðmÞÞ ¼ PN ½4ðmþ ~hhQðmÞÞ � FQðmþ ~hhQðmÞÞ�ð3:20Þ
¼ �PN‘J½mþ ~hhQðmÞ; q�C�‘WðmÞ

thus we have obtained a finite-dimensional gradient-like ODE:

dm

dt
¼ �‘W ðmÞð3:21Þ

Although this reduction is not exact anymore – an error estimate is worked out
in [5] – it preserves the gradient structure of the original PDE, found in equation
(2.18) Note that due to the form of equation (3.21), W has the right to be called
potential energy of the system.

3.3. Thermodynamic features of the reduction

The heart of the reduction of the complete system around its equilibria is the sub-
stitution of the stationary tail ~hhQðmÞ to the non-stationary one. This procedure
must be justified. To do this we can find estimates of the ‘‘error’’ committed in
the substitution. Moreover, such substitution carries a strong thermodynamical
interpretation. Both such discussions can be found in [5], and in this section we
present the major results stated there without their development.

The first clue pointing to the adequacy of this type of reduction can be found
in a well-known phenomenology in chemistry: the eigenvalues of the elliptic
operator that describes the system present a large gap [17, 20, 21]. Such large
gap is a flag of the emergence of a finite-dimensional description of the system,
obtained through the leading eigenvalues. We can indeed identify a large gap
for the reaction-di¤usion equation: the ‘‘head’’ m, on su‰ciently long periods of
time, is larger, in a precise sense, of the non-stationary head h, once the cuto¤ N
has been chosen large enough. This means that substituting the stationary tail to
the non-stationary one does not perturb the system greatly. The proof of this fact
is based on the theory of approximate inertial manifolds developed by Temam,
Manley and Foias [23, 13]: the original dynamics are confined to an inertial man-
ifold, while the reduced dynamics to an approximate inertial manifold. Thus the
proof of the adequacy of the reduction lies in proving that the two manifolds are
close, at least for finite (long) times and in a neighborhood of equilibrium. Such
proof follows the line of thought found in [19].

Even though the error committed by substituting the stationary tail is small, it
still exists. In [5] the loss of information that occurs in the approximate form
(3.21) has been compensated with the addition of some random Gaussian noise,
leading to an SDE

dm

dt
¼ �‘W þ

ffiffiffi
n

p
wð3:22Þ

where w is the Gaussian noise and n the di¤usion coe‰cient.
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We can link (3.22) to a Fokker–Planck equation in a canonical way:

qpn

qt
� ‘ � ðpn‘WÞ ¼ nDpnð3:23Þ

As it is well known, the stationary
�
qpn
qt

C 0
�
solution of the Fokker–Planck equa-

tion is

peq
n ðmÞ ¼ ZðnÞ�1

e�
W ðmÞ

n ; ZðnÞ ¼
Z
UN

e�
W ðmÞ

n dmð3:24Þ

A large deviation reading of (3.22), on the line of thought of Friedlin and
Wentzell [14], together with the Varadhan contraction principle (see e.g. [24]),
leads us to an asymptotic probability density. The following development is
borrowed from [5]. First set some notation. To be in line with the literature,
pose m ¼ x. Then we give the following

Definition 1.

(1) Continuous paths of the SDE:

Cðx0; tÞ
n ¼ fxnðtÞ : t a ½0; t�; xð0Þ ¼ x0; xn continuous path of the SDE ð3:22Þg

(2) Quasi-potential

Vðt; x; x0Þ ¼ inf
xð�Þ a C

ðx0 ; tÞ
n ;xðtÞ¼x

1

2

Z t

0

dx

dt
ðtÞ þ ‘WðxðtÞÞ

				 				2 dt
( )

(3) Lagrangian of the stochastic process

Lðx; _xxÞ :¼ 1

2
j _xxþ ‘WðxÞj2

The aforementioned asymptotic probability density px0
n , that is, relative to (3.23)

with initial point x0, is then found to satisfy (Ellis logarithmic equivalence):

lim
n!0

n log px0
n ðt; xÞ ¼ lim

n!0
n log e�

1
nVðt;x;x0Þ ¼ lim

n!0
�Vðt; x; x0Þð3:25Þ

In a neighborhood of a critical point x̂x, ‘Wðx̂xÞ ¼ 0, the equilibrium density
peq
n ðxÞ has the form

lim
n!0

n log peq
n ðxÞ ¼ lim

n!0
n log e�

1
nV

eq
l ðx; x̂xÞ ¼ lim

n!0
�V eq

l ðx; x̂xÞ;

where V eq
l ðx; x̂xÞ ¼ lim

t!þl
Vðt; x; x̂xÞ;

ð3:26Þ

and a straightforward computation shows that

V eq
l ðx; x̂xÞ ¼ W ðxÞ:ð3:27Þ
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Therefore, as expected, in the infinite-time limit the large deviation description of
the probability density tends to the equilibrium solution of the Fokker–Planck
equation peq

n ¼ e�
W
n .

Now, we have to recall the well known Lax–Oleinik representation formula

Sðt; x; x0Þ ¼ inf
xð0Þ¼x0;xðtÞ¼x

Z t

0

LðxðtÞ; _xxðtÞÞ dt
� 


ð3:28Þ

for the viscosity solutions of the evolutive Hamilton–Jacobi problem, where the
Hamiltonian is

Hðx; pÞ ¼ 1

2
jpj2 � ‘W ðxÞ � pð3:29Þ

which is the Legendre transform of the Lagrangian of the stochastic process L
of Definition 1–(4). Then we see that the quasi-potential (3) of Definition 1 is pre-
cisely the viscosity solution of the Hamilton–Jacobi equation, namely

qS

qt
þ 1

2
j‘Sj2 � ‘W ðxÞ � ‘S ¼ 0; Sð0; x0; x0Þ ¼ 0;ð3:30Þ

that is: Sðt; x; x0Þ ¼ Vðt; x; x0Þ. Our circle of ideas is completed when we consider
the Cole-Hopf transformation

pnðt; xÞ ¼ e�
1
nŜSnðt;xÞð3:31Þ

where we look for solutions of the Fokker–Planck equation that have a similar
structure to the equilibrium solution, and again by a straightforward computa-
tion we see that, n-asymptotically, ŜSnðt; xÞ solves the evolutive viscous Hamilton–
Jacobi equation in (3.30) if and only if pnðt; xÞ solves Fokker–Planck. Standard
results in weak KAM theory, see e.g. [9, 12], assure us that any viscosity solution
of the evolutive H-J equation (3.30), for t ! þl, is C0-asymptotic (i.e. in the uni-
form convergence topology) to ŜSðxÞ � ct, where ŜS is a suitable viscosity solution
of the related stationary H-J equation, 1

2 j‘ŜSj
2 � ‘ŜS � ‘W ¼ c, at the (unique)

real value

c :¼ inf
u AC1ðD;RÞ

sup
x AD

Hðx;‘uðxÞÞð3:32Þ

called theMañé critical value. A standard computation (see [5]), shows that in our
case c ¼ 0, so that, for time running to þl, we have that

1

2
j‘V eq

l j2 � ‘V eq
l � ‘W ¼ 0:ð3:33Þ

The above defined quasi potential V eq
l parallels (up to the inessential 1=2) the

definition of F by Jona-Lasinio and coworkers, the so-called free energy of the
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system in the dynamic state r,

FðrÞ ¼ � inf
h

Il½h� : hð0Þ ¼ r̂r; lim
t!l

hðtÞ ¼ r
n o

ð3:34Þ

which in their framework can be seen as the solution of an infinite dimensional
Hamilton–Jacobi equation of the form (see [16])

‘
dF

dr
� wðrÞ‘ dF

dr

� �
� dF

dr
‘ � jðrÞ

� �
¼ 0;ð3:35Þ

where angular brackets stand for integration on the spatial domain.
We think that the strong analogies between the original MFT with the present

approximate reduction that have been found above support the physical interest
of this framework, where the very gradient structure that is recovered in the
reduction seems to play a determinant role.

4. Morse index and Morse index invariance

The reductions proposed above preserve a lot of the structure of the original
equations. We have seen, in particular, that the equilibria are exactly preserved.
In this section we will show in addition that the reductions respect the stability
properties of the equilibria, that is, the stability of the equilibria of the original
system (2.8) can be investigated via the stability of the equilibria of (3.21) with
exactness. This is guaranteed by the fact that the reduction preserves the Morse
index of the equilibria. The invariance of the Morse index can be computed
directly by confronting the spectrum of the reduced and full actions, as has been
first observed in [7].

Finally, in the next sections we will develop a symplectic environment for our
elliptic PDE, appropriate to the presentation of a Morse–Smale–like theory in
the background of our setting.

4.1. The Morse index

The Morse index can be defined for any bilinear form on a vector space. In our
case, we want to define it for a solution of a dynamical system.

Definition 2 (Morse index). Let V be a vector space (eventually infinite-
dimensional) and b : V � V ! R a bilinear form. Then the Morse index MðbÞ
of b is the dimension of the negative space of b:

MðbÞ ¼ dim½fv a V : bðv; vÞ < 0gA f0g�ð4:1Þ

In particular, we can define a Morse index for a stationary point starting from
any variational problem: if a function u belongs to some functional (vector) space
V and stationarizes a functional I : V ! R, then its Morse index mðuÞ is

mðuÞ ¼ Mðd2I ½u�jdI ½u�¼0Þð4:2Þ
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In this sense the Morse index tells us about the definiteness of the Hessian of
the action, evaluated on the stationary curve.

Remark 4.1. Regarding the non-linear Poisson equation, the Morse index of a
solution has a further meaning: the first variation of J gives us the Poisson equa-
tion, while the second variation gives us its linearization around a solution u0, in
the form of a selfadjoint bounded operator A ¼ F 0

Qðu0Þ � 4:

q2u0J½u0; q�ðw; vÞ ¼
Z
W

½�4wþ V 00ðu0 þQðqÞÞw�v dx Ev;w a H0ð4:3Þ

The Morse index at a solution u0 is then the number of negative eigenvalues of A
at u0. If we consider Poisson equation as the search for equilibria in the reaction-
di¤usion system, this means that the Morse index of an equilibrium gives us
information on the unstable directions that stem from such equilibrium. There is
interest in these unstable directions because they flag the emergence of a possible
transition in the system, for example, from an unstable equilibrium to a stable,
mðuÞ ¼ 0 equilibrium.

4.2. Morse index invariance

To make the notation lighter, in this section we will suppress the depen-
dence of J from q and we will write the variation of the action functional as
d :¼ qu0 . We will show that the negative space of d2WðmÞjdW ðmÞ¼0 is the same of
d2J½mþ ~hhQðmÞ�jdJ½mþ~hhQðmÞ�¼0. This will let us conclude immediately that the Morse

index is preserved after the reduction.
Take the usual action functional J : H0 ! R. We have seen that the introduc-

tion of the eigenfunctions of the Laplacian and the cuto¤ realizes the split H0 ¼
UN aVN . Consequently, the dual space splits into ðH0Þ� ¼ U�

N aV�
N , where

U�
N :¼ fc a ðH0Þ� : cjVN

¼ 0g
V�

N :¼ fj a ðH0Þ� : cjUN
¼ 0g

ð4:4Þ

We may decompose the di¤erential of J under this split:

dJ½u0� ¼ qUN
J½u0�a qVN

J½u0� a U�
N aV�

Nð4:5Þ

By Riesz representation, we may identify

qfUN ;VNgJ½u0�ð�Þ ¼ 3fPN ;QNg‘J½u0�; �4ð4:6Þ

In a similar way, we write q2UN
J ¼ PNd

2JPN , qUN
qVN

J ¼ QNd
2JPN . . . With

this notation we can represent the second variation of J in block-matrix form
on UN aVN :

d2J ¼
q2UN

J qVN
qUN

J

qUN
qVN

J q2VN
J

 !
ð4:7Þ
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Moreover we can find an expression for d2W starting from J. Equation (3.17)
shows us that dW ðmÞ ¼ qUN

J½mþ ~hhQðmÞ�: then

d2WðmÞ ¼ q2UN
J½mþ ~hhQðmÞ� þ qVN

qUN
J½mþ ~hhQðmÞ�

q~hhQ
qm

qVN
J½mþ ~hhQðmÞ� ¼ 0 ) 0 ¼ qUN

qVN
J½mþ ~hhQðmÞ� þ q2VN

J½mþ ~hhQðmÞ�
q~hhQ
qm

ð4:8Þ

From (4.8)2 we can extract an expression for q~hh
qm
, explicitly:

q~hhQ
qm

¼ �½q2VN
J½mþ ~hhQðmÞ��

�1qUN
qVN

J½mþ ~hhQðmÞ�ð4:9Þ

This way we can represent d2W in block-matrix form on UN aVN :

d2W ¼
q2UN

J � ½q2VN
J��1qUN

qVN
J O

O q2VN
J

 !
ð4:10Þ

We are ready for

Theorem 1 (Proposition 4 of [7]). The negative space of d2W ðmÞjdWðmÞ¼0 is the
same of d2J½mþ ~hhQðmÞ�jdJ½mþ~hhQðmÞ�¼0.

Proof. To simplify notation, let

d2J ¼ A B

C D

� �
ð4:11Þ

We can block-diagonalize d2J with a technique called Schur’s complement,
namely, via the matrix

T ¼ 1UN
O

�D�1C 1VN

� �
ð4:12Þ

Setting gd2Jd2J ¼ T �d2JT , which is the block-diagonalized form of d2J, we have

that
g
d2Jd2J ¼ d2W . Then, at least the negative spaces of the two bilinear forms

must coincide. Note that the positive and null spaces will in general not be the
same, since d2J is infinite-dimensional. r

4.3. Towards a symplectic non-homogeneous Morse–Smale theory

Morse theory was first developed by M. Morse as a technique to investigate the
stability properties of the solutions of variational problems, precisely, geodesic
problems, with applications in di¤erential topology. Such theory has been con-
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siderably extended by S. Smale in the seminal paper [22], where instead of a one-
dimensional geodesic problem, n-dimensional elliptic boundary deformation
problems are considered. The results that are obtained are remarkable: we may
study the spectrum of an elliptic operator on an n-dimensional Riemannian mani-
fold W, by shrinking its boundary qW until it is small in measure. To be precise,
the result can be explained in steps: first of all Smale studies how the eigenvalues
of the elliptic operator vary when the boundary is smoothly deformed, showing
that they depend continuously on the deformation and that they are strictly in-
creasing if the deformation is towards a boundary that is small in measure, on
which the eigenvalues must be all positive. Next, conjugate instants are defined,
namely, the instants of the deformation at which the elliptic operator has at least
one null eigenvalue. Finally, the original boundary is shrunk until it is small in
measure: since the eigenvalues must all become positive, and since they strictly
increase continuously, the negative ones on the original boundary must pass by
zero. The negative eigenvalues on the initial boundary are equal in number to
the conjugate instants. This theory, which has the right to be called Morse–Smale
theory, is a real extension of the Morse theory, as remarked in Smale’s article: in
the geodesic case, W is simply the geodesic curve, the elliptic operator is defined
by Jacobi’s equation, and the boundary shrinking is the procedure of moving one
extremal point of the curve towards the other.

This theory finds a further expansion in the articles [10, 8], where the Morse
index is translated in its natural cohomological language, by the identification
of a symplectic environment for the boundary deformation procedure. A Maslov
index is used to prove the Morse index theorem. The theory is genuinely extended
not only because of the identification of the symplectic environment, but also
because the deformation now does not have to go towards a small boundary
necessarily.

In this section we wish to develop the first steps towards a generalization
of this environment to a non-homogeneous one. In fact, Deng and Jones’ theory
is done for homogeneous Robin conditions (linear combination of Neumann
and Dirichlet conditions). We wish to borrow the cohomological language used
in that theory, and use it to formulate a Morse theorem for, this time, smooth
variations of boundary data functions (curves in HqW), realizing a true non-
homogeneous extension. What we want to capture is that the intersection
index of such curves with the Maslov cycle of a certain Lagrangian submani-
fold in phase space carries with it all the stability properties of the underlying
system.

4.3.1. Symplectic view of the nonlinear Poisson equation. The first thing that has
to be done is set our elliptic boundary value problem in an infinite-dimensional
symplectic environment. In this section we construct such phase space, in the
spirit of [10], and show that the solutions of (2.9) play the role of the infinite
parameters of a generating function for a Lagrangian submanifold. Such generat-
ing function, or Morse family, results to be the action functional of the equation.
These ideas originate from the tractation found in [6], on the line of thought of
Weinstein and Tulczyjew.
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Consider the variational formulation via J. We may look at the q a HqW as
points in configuration space. Thus a reasonable choice for a phase space seems
to be the formal cotangent bundle of HqW (see Remark 2.2):

H ¼ T�HqW ¼ HqW � ðHqWÞ�ð¼ H
3
2 �H�3

2Þð4:13Þ

The canonical (strong) symplectic form on H can be defined starting from the

natural pairing between HqW and ðHqWÞ�, as seen in [18, Chap. 5, Par. 7], and
also in Appendix A

oðq;pÞððQ1;P1Þ; ðQ2;P2ÞÞ ¼ P1ðQ2Þ � P2ðQ1Þ;ð4:14Þ
Eðq; pÞ a H; EðQi;PiÞ a Tðq;pÞH

We want to obtain a Lagrangian submanifold description of the set of solutions.
To do this, define

pð�Þ ¼ qqJ½u0; q�ð�Þð4:15Þ

Now clearly the set of solutions is

L ¼ fðq; pÞ a H : p ¼ qqJ½u0; q�; 0 ¼ qu0J½u0; q�; u0 a H0gð4:16Þ

Figure 1. The Lagrangian submanifold L of equation (4.16), the path qt in phase space,
the lifted path on L (in yellow) and L’s Maslov cycle (in red)
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which is a Lagrangian submanifold of H, with J acting as a generating func-
tion with infinite parameters u0. To see the proof of this, refer to Theorem 2 in
Appendix A.

4.3.2. Conjugate instants and the Morse–Smale theorem. We now want to take a
path in the configuration space HqW, lift it on the Lagrangian submanifold, then
look at its Maslov index, defined as the intersection index of the path with the
Maslov cycle on L. The Morse index of the solutions will thus be brought back
to such Maslov index.

The main result used in this section is the existence of the map u0 ¼ ~uu0ðq; pÞ,
guaranteed for our Lagrangian submanifold L by point (1) of Theorem 2.

Suppose that 0 a ðH0Þ� is a regular value (see Theorem 2) for the map
ðu0; qÞ 7! qu0J½u0; q�. This is a structural hypotheses, that makes L a well-
behaving submanifold of the cotangent fiber bundle. Then we are in the hypoth-
eses of Theorem 2, and we may find a function u0 ¼ ~uu0ðq; pÞ that, in particular
satisfies

qu0J½~uu0ðq; pÞ; q�C 0

qqJ½~uu0ðq; pÞ; q� � pC 0

�
ð4:17Þ

Now suppose that we know that for a generic fixed q1 a certain ûu0 a H0 is a
global minimum for the map

u0 7! qu0J½u0; q1�ð4:18Þ

Conditions on J for which such minimizer exists can be found in [11, Theorem 2,
Par. 8.2]. Then, locally, it must be that ûu0 ¼ ~uu0ðq1; p1Þ for ðq1; p1Þ a L. We
may connect q1 in configuration space with a q0 constructing a path ½0; 1� C t 7!
qt a HqW, and we can lift it to L setting pt ¼ qqJ½u0; qt� (where we take u0 such
that 0 ¼ qu0J½u0; qt�) for all t. The idea is that the Morse index at u0 ¼ ~uu0ðq0; p0Þ
can be extracted from the topological features of such path.

Consider the linearized dynamics on L along the path ðqt; ptÞ as found in
(4.3):

�Atw :¼ 4w� F 0
Qð~uu0ðqt; ptÞÞw ¼ 0

wjqW ¼ 0

�
ð4:19Þ

Definition 3 (Conjugate Instant). If equation (4.19) has a nontrivial solution
for t ¼ t�, then we say that t� is a conjugate instant to t ¼ 0, and qt� is a conju-
gate point to q0. The multiplicity of the conjugate instant is the dimension of the
solution space:

aðt�Þ ¼ dimkerAt�ð4:20Þ

Remark 4.2. Restating the definition of a conjugate instant via the second vari-
ation of the action functional, once we restrict on the subspace H0 to suppress
the boundary conditions, we see that what we are looking for is a fall in the rank
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of the ‘‘Hessian’’ of the generating function:

q2u0J½~uu0ðqt� ; pt�Þ; qt� �ðw; vÞ ¼ 0 Evð4:21Þ

When such system has only w ¼ 0 as a solution, we can actually find a function
u0 ¼ �uu0ðqÞ that satisfies qu0J½�uu0ðqÞ; q�C 0, and thus we find that around q, L is
transversal to the fibers of the cotangent bundle.

On the contrary, when such system has a nontrivial solution for a time t�, we
cannot locally explicit a function u0 ¼ �uu0ðqÞ from qu0J½u0; qt� ¼ 0, but we must be
satisfied with the function prompted by Theorem 2. It is well known in the finite-
dimensional theory of generating functions that these are also the instants at
which the curve t 7! ðqt; ptÞ crosses a non-transversal locus on L, that is, its
Maslov cycle. This can be extended also to infinite dimensions, as has been pre-
sented in [15], through the spectral theory of Fredholm operators. In other words,
when we look at the linearized dynamics along the path t 7! ðqt; ptÞ, we pro-
duce a flow of operators t 7! At. This can be seen as a path in the subset of
the Grassmanian of Lagrangian subspaces of H, called Fredholm Lagrangian
Grassmanian, which is the natural habitat for the current treatment of the Morse
and Maslov indices.

Rephrase the definition given in (4.2) as:

mð~uu0ðqt; ptÞÞ ¼ dimðfw a H0 : 3Atw;w4 < 0gA f0gÞð4:22Þ

that is, the number of negative eigenvalues of At. The eigenvalue problem for At

is

Atw ¼ lðtÞwð4:23Þ

Such eigenvalue problem is well defined on H0, since At is selfadjoint with com-
pact resolvent on it ([10]).

What we want to prove is that the number of negative eigenvalues at the
instant t ¼ 0 is the number of null eigenvalues found at some conjugate instants
t�1 ; t

�
2 . . . , which correspond to the times at which t 7! ðqt; ptÞ crosses the Maslov

cycle. The multiplicity of the conjugate instant is precisely the degree of the cross-
ing. Suppose, as before, that ûu0 ¼ ~uu0ðq1; p1Þ is a global minimum for J. This
means that the spectrum of A1 is composed of only positive eigenvalues: its
Morse index is zero. Now, proceeding in analogy to Smale’s construction carried
out above, starting from a generic point ðq0; p0Þ – from which we want to extract
the Morse index of ~uu0ðq0; p0Þ – we construct a path ½0; 1� C t 7! ðqt; ptÞ a L.
Along ðqt; ptÞ, by crossing time by time ZðLÞ, the spectrum looses or gains neg-
ative eigenvalues, correspondingly to the sign of the crossing, to produce some
null eigenvalues. Since the final point corresponds to a minimum, we must have
lost all the negative eigenvalues of the beginning in this crossing phenomenon.
The natural homological invariance inherited in this environment o¤ers us that
the Morse index of ~uu0ðq0; p0Þ is precisely such Maslov index of the path with the
Maslov cycle ZðLÞ.
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The very di¤erence with Smale’s construction consists in the fact that the
deformations that are considered in his work are deformations of the domain
Wt, while our deformations are of the boundary data qt for a fixed W.

4.3.3. Finite reduction as finite parameters. The point of view of taken in the
previous sections shifts the attention from the solution of the Poisson equation
to the boundary conditions. The boundary conditions, in fact, make up the con-
figuration space of the system, which is quite natural. In this section the ACZ
finite reduction is reinterpreted as the identification of a finite set of parameters
that describe the same Lagrangian submanifold L.

As has been done multiple times throughout this paper, consider the natural
splitting of the dynamics in the ‘‘boundary-less’’ and ‘‘boundary’’ parts:

4Q ¼ 0

QjqW ¼ q

�
and

4u0 ¼ FQðu0Þ
u0jqW ¼ 0

�
ð4:24Þ

The boundary-less part admits a finite-dimensional description, once the fixed-
point function ~hhQðmÞ has been found. This also prompts a reduction of the action
functional, by defining

W ðm; qÞ ¼ J½mþ ~hhQðqÞðmÞ; q�ð4:25Þ

We have added the functional dependence of W from q for convenience, while in
the preceding treatment it seemed superfluous.

Since the variational character of the equation is preserved by the reduction,
such finite-dimensional description reflects itself onto the Lagrangian submani-
fold defined by the action. Through the reduction we have identified a set of finite
parameters that describe L in this sense:

LC ðq; pÞ a H : p ¼ qqWðm; qÞ; 0 ¼ qW

qm
ðm; qÞ

� 

ð4:26Þ

The p-component of L is left unchanged, while the auxiliary parameters are now
in a finite number.

4.3.4. Finite reduction and the Morse index. There is a strong synergy between
the reduction and the Morse–Smale setting we put our theory in. The Lagrangian
submanifold is still described, once the fixed-point function ~hhQ has been found, by
the finite parameters m, as has been shown in the previous section. Thus the path
t 7! qt can be still lifted on the Lagrangian submanifold L, in the exact same way
we have constructed it in the infinite-parameters case, with the caution of invert-
ing the equation dWðmÞ ¼ 0 to obtain a function m ¼ �mmðqÞ away from the degen-
erate points for which d2W ðmÞ ¼ 0, that will act as conjugate points for this finite
description. Around the points where the rank of d2W falls, exactly at the conju-
gate points qt� , we have the function m ¼ ~mmðq; pÞ whose existence is assured by
Theorem 2, where H0 is replaced by UN and J½u0; q� is substituted by Wðm; qÞ.
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In fact, the proof of the Morse theorem we gave does not concern itself on the
structure of the auxiliary parameters, while the reduction does not concern itself
with the boundary conditions.

Since the finite parameters m are obtained via a spectral decomposition, and
considering the negative-space invariance proved above, we are at least sure that
the spectrum of d2WðmÞ is composed of positive eigenvalues when m ¼ �mmðq1Þ
corresponds to the aforementioned minimum �uu0ðq1Þ ¼ mþ ~hhQð�mmðq1ÞÞ for J. So
if we want to know the Morse index at a point m0 ¼ ~mmðq0; p0Þ, we construct the
usual smooth path t 7! qt from q0 to q1 and we lift it on the finitely-described
Lagrangian submanifold L. The proof then proceeds as in the infinite-
dimensional case, with the conjugate points substituted by the finitely-described
conjugate points defined above (points for which d2ðW � ~mmÞ has a nonempty
kernel). This fact underlines how the stability properties of the system are intrin-
sically tied with the topology of the Lagrangian submanifold, which admits a
description through finite parameters.

5. Conclusions

In this article we have reproposed the reduction elaborated in [5], extending it to
the non-homogeneous Dirichlet case. The extension also underlines that the non-
homogeneous boundary conditions can be loaded completely on an easier, linear
PDE, the heat equation, thanks to its existence and uniqueness theorem.

The Morse index invariance of the reduction, first found in [7], is extended
to this thermodynamical theory. In such spirit, we wish to give a more thermo-
dynamical interpretation to the Morse index of any critical solution: it is a sort
of qualitative chemical a‰nity, since it measures the tendency of a certain con-
figuration of the system to undergo a transition. The viscous component given
by the Laplacian also suggests that a stable, null-Morse index might attract other
instable, positive Morse index equilibrium configurations, in the sense that any
solution close to an instable equilibrium will eventually ‘‘fall’’ into the stable
equilibrium.

We propose two ways to compute the Morse index of an equilibrium:

• The direct way, passing from the finite-dimensional reduction.

• The geometric way, constructing a path in the space of boundary data towards
a minimizer for the action, counting the intersection of the lifted path with the
Maslov cycle of the Lagrangian submanifold L that summarizes the equilib-
rium solutions. Such path also has a remarkable thermodynamical interpreta-
tion: we are actuating a quasistatic transformation, moving the boundary con-
ditions while keeping the system at equilibrium. The topological features of
such transformation, in the dynamical landscape of the system, influence the
stability of the equilibrium in exam.

These two computation schemes combined propose some insight on the proper-
ties of the system, namely, that the stability of the equilibria of the system is
a ‘‘shadow’’ of the topology of the Lagrangian submanifold constructed in the
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cotangent bundle of the space of boundary data. Also, such topological structure
does not depend significantly from the solutions of the equations, that act as
auxiliary parameters: to be precise, the dimension of the parameter space, finite
or infinite may it be, does not influence the topological features of the Lagrangian
submanifold, thus, does not influence the stability properties of the system.

To conclude, we wish to remark that the finite reduction also carries some in-
formation on the global stability properties of the system. In fact, the appropriate
cuto¤ N that has to be chosen to make the reduction possible depends only on
the spectral properties of 4 on W and the Lipschitz constant C of V 0. The cuto¤
then tells us the minimal number of parameters that must be used to describe the
system. Consequently, since the reduction preserves the Morse index, such dimen-
sion of the space of parameters gives us a strict, global upper bound for the Morse
indexes of every equilibrium of the system.

These features signal that the reduction is indeed a robust procedure, that
gives a faithful skeleton of the thermodynamical theory in study.

Appendix A. A weak infinite-dimensional Maslov–Hörmander

theorem

In this section, we state and prove a theorem, that is the infinite-dimensional anal-
ogous of the well-known Maslov–Hörmander theorem. The finite-dimensional
result is a necessary and su‰cient condition that characterizes Lagrangian sub-
manifolds of the cotangent fiber bundle of a manifold, with the introduction of
a generating function in the sense of Weinstein and Tulczyjew.

Our result is weaker, in the sense that it only provides a necessary condition,
which is what we need for the development of the Morse–Smale theory. The rea-
son is that to find a su‰cient condition, it is customary to integrate the Liouville
1-form on the submanifold, which cannot be done in infinite dimensions for the
lack of a theory of integration of forms.

As far as we know, this theorem is original. Our treatment relies heavily on
the infinite-dimensional di¤erential geometry developed in the book by S. Lang
[18]. The theory of di¤erential forms on Banach manifolds in the form we need
is also proposed and utilized in [18, Chap. V].

Theorem 2. Let H0, HqW be two Hilbert spaces, and J : H0 �HqW ! R a
C2-Fréchet map. Consider the subset of the formal cotangent bundle of HqW,

T�HqW ¼ ðHqWÞ � ðHqWÞ� C ðq; pÞ

L :¼ fðq; pÞ : p ¼ qqJ½u0; q�; 0 ¼ qu0J½u0; q�gðA:1Þ

Suppose that the map

H0 �HqW C ðu0; qÞ 7! qu0J½u0; q� a ðH0Þ�ðA:2Þ

admits 0 a ðH0Þ� as a regular value, namely the following condition holds:

ker dðu0;qÞðqu0J½u0; q�Þj0¼q
u0
J½u0;q� ¼ f0gðA:3Þ
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Then:

(1) There exist locally maps ~uu0 : T�HqW ! H0, C2-Fréchet, that identically nul-
lify the map defined in (A.2), for the ðq; pÞ a L

(2) L is a Lagrangian submanifold of T�HqW. This means that every tangent
space to L, TlL, is a maximal isotropic subspace, or Lagrangian subspace,
of TiðlÞT

�HqW, where i : L ! T�HqW is the embedding defined by (A.1).

Remark A.1. The first point of the thesis of the theorem is telling us that the
submanifold L, that may be tangled up and wildly non-transversal to the fibers
of T�HqW, gets ‘‘straightened out’’ once we see it as a submanifold of the aug-
mented space H0 � T�HqW, namely, it is (locally) the graph of a function ~uu0,
and thus, transversal to the fibers.

As a note, we keep the notation we set in the rest of the paper for clarity, but
the result is general and does not rely on the particular Hilbert spaces that are
chosen.

Lemma A.2. If 0 a ðH0Þ� is a regular value for the map in (A.2), then ð0; 0Þ a
ðH0Þ� � ðHqWÞ� is a regular value for the map

ðu0; q; pÞ 7! ðqu0J½u0; q�; qqJ½u0; q� � pÞðA:4Þ

Proof. First of all, we observe that the di¤erential of the map in (A.2) can be
written in block-matrix form

dðu0;qÞðqu0J½u0; q�Þ ¼ ðq2u0J½u0; q� qqqu0J½u0; q�ÞðA:5Þ

so that the hypotheses is equivalent to asking that any ðhu0 ; hqÞ a H0 �HqW that
solve the linear system

q2u0J½u0; q�j0¼q
u0
J½u0;q�ðhu0 ; �Þ ¼ 0

qqqu0J½u0; q�j0¼q
u0
J½u0;q�ðhq; �Þ ¼ 0

(
ðA:6Þ

are in fact both zero: ðhu0 ; hqÞ ¼ ð0; 0Þ. Then, we also write the di¤erential of the
map in (A.4):

dðu0;q;pÞðqu0J½u0; q�; qqJ½u0; q� � pÞ ¼
q2u0J½u0; q� qqqu0J½u0; q� O

qu0qqJ½u0; q� q2qJ½u0; q� �1

 !
ðA:7Þ

So, ðhu0 ; hq; hpÞ a ker dðu0;q;pÞðquJ½u; q�; qqJ½u; q� � pÞj0¼quJ½u;q� if, and only if, it
solves the linear system

q2u0J½u0; q�j0¼q
u0
J½u0;q�ðhu0 ; �Þ þ qqqu0J½u0; q�j0¼q

u0
J½u0;q�ðhq; �Þ ¼ 0

qu0qqJ½u0; q�j0¼q
u0
J½u0;q�ðhu0 ; �Þ þ q2qJ½u0; q�j0¼q

u0
J½u0;q�ðhq; �Þ � hp ¼ 0

(
ðA:8Þ

But the first equation is solved only for ðhu0 ; hqÞ ¼ ð0; 0Þ by the hypotheses, so
that the only surviving term in the second equation is hp, forcing hp ¼ 0. The
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only vector in the kernel is ð0; 0; 0Þ, thus ð0; 0Þ is a regular value for the map
defined in (A.4). r

We also must invoke the following theorem, that can be found in [18, Chap. I,
5.9]

Theorem 3 (Implicit function). Let X, Y, Z be Banach spaces, A � X � Y open
in X � Y and f : A ! Z a Ck-Fréchet function, kb 1. Take ðu0; v0Þ a A such that
f ðu0; v0Þ ¼ 0. If duð f ð�; v0ÞÞðu0Þ is an isomorphism between X and Z, then there
exists locally a function ~uu : Y ! X such that

(1) ~uu is Ck-Fréchet
(2) Locally f ð~uuðvÞ; vÞ ¼ 0
(3) Locally, if some u is such that f ðu; vÞ ¼ 0, then u ¼ ~uuðvÞ

We are now ready for the proof of Theorem 2.

Proof. (1) We must verify that we are in the hypotheses of Theorem 3. The
Lemma will be important for this purpose, and also the request that the spaces
are not only Banach, but also Hilbert, giving us reflexivity and in particular the
Riesz representation theorem.

First of all, we compose the map (A.2) with the Riesz isomorphism, defining
qu0J½u0; q�h ¼: 3‘u0J½u0; q�; h4H0 , Eh a H0, obtaining:

H0 �HqW C ðu0; qÞ 7! ‘u0J½u0; q� a H0ðA:9Þ

We know that the di¤erential of this map is at least injective, when evaluated on
the set fðu0; qÞ : 0 ¼ ‘u0J½u0; q�g. The Lemma assures us that this fact also trans-
lates to the map in the augmented space, namely, also via Riesz representation,
the following map

H0 � T�HqW C ðu0; q; pÞ 7! ð‘u0J½u0; q�;‘qJ½u0; q� � paÞ a H0 �HqWðA:10Þ

where we have defined 3pa; q4HqW ¼ pðqÞ (in this case, the ‘‘musical isomor-
phism’’ is the same as Riesz isomorphism), is injective on the set

fðu0; q; pÞ : pa¼ ‘qJ½u0; q�; 0 ¼ ‘u0J½u0; q�gðA:11Þ

which is simply L seen in the augmented space.
To use Theorem 3 to extract a map ~uu0 : T�HqW ! H0 from the function de-

fined in (A.10), we have to verify that the di¤erential, evaluated on the ðq; pÞ a L,
is not only injective (guaranteed by the Lemma), but also surjective. To do this,
consider the evaluated map

F :¼ dðu0;q;pÞð‘u0J½u0; q�;‘qJ½u0; q� � paÞð�; hq; hpÞ : H0 ! H0ðA:12Þ
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We know that kerF ¼ 0. Also, using the first isomorphism theorem (which also
holds in infinite dimensions),

H0 ¼ kerFa imFðA:13Þ

and thus in our case H0 ¼ imF, proving surjectivity. We are in the hypotheses
of Theorem 3, so we know there exists locally a function ~uu0 : T�HqW ! H0 that
satisfies

(1) ~uu0 is C2-Fréchet
(2) locally on L, ðqu0J½~uu0ðq; pÞ; q�C 0; qqJ½~uu0ðq; pÞ; q� � pC 0�Þ
(3) also if the preceding equations are satisfied by some u, then u is the image

under ~uu0 of some ðq; pÞ

and in particular, we have that the submanifold defined by such equations in
H0 � T�HqW is the graph of ~uu0 : f~uu0ðq; pÞ : ðq; pÞ a Lg

(2) We now show that, given the existence of the function ~uu0, the pull-back on
L of the canonical symplectic form

oðq;pÞððQ1;P1Þ; ðQ2;P2ÞÞ ¼ P1ðQ2Þ � P2ðQ1ÞðA:14Þ
¼ 3Pa

1 ;Q24HqW � 3Pa
2 ;Q14HqW

where ðq; pÞ a T�HqW is thought as a base point and ðQi;PiÞ a Tðq;pÞT
�HqW are

thought as tangent vectors, is identically zero, showing that at least, the tangent
spaces to L are all isotropic.

The situation is the following:

L T�HqW

pL

x??? p
T�HqW

x???
TL !Ti TT�HqW

l 7! iðlÞ ¼ ðqðlÞ; qqJ½~uu0ðq; pÞ; qðlÞ�Þ
ðl; hlÞ 7! Tiðl; hlÞ ¼ ðiðlÞ; diðlÞhlÞ

�
ðA:15Þ

H!i

where hl denotes a vector in TlL and diðlÞ the Fréchet di¤erential of i, calculated
in l. The pull-back of o under i is

i�olðhl; klÞ ¼ oiðlÞðdiðlÞhl; diðlÞklÞðA:16Þ

Denote with dq~uu
0 the Fréchet di¤erential of ~uu0 in the q component. First, notice

that diðlÞhl has a q and a p component. The q component is clearly dqðlÞhl,
while the p component is

qu0qqJ½~uu0ðq; pÞ; q�ðdq~uu0ðq; pÞ dqðlÞhl; �Þ þ q2qJ½~uu0ðq; pÞ; q�ðdqðlÞhl; �ÞðA:17Þ

Now, qu0J½~uu0ðq; pÞ; q�C 0 by the definition of ~uu0, so we are left with

diðlÞhl ¼ ðdqðlÞhl; q2qJ½~uu0ðq; pÞ; q�ðdqðlÞhl; �ÞÞðA:18Þ
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and now we substitute:

i�olðhl; klÞ ¼ �3q2qJj...ðdqðlÞhl; �Þ
a; dqðlÞkl4HqWðA:19Þ

þ 3q2qJj...ðdqðlÞkl; �Þ
a; dqðlÞhl4HqW

¼ �q2qJ½~uu0ðq; pÞ; q�ðdqðlÞhl; dqðlÞklÞ
þ q2qJ½~uu0ðq; pÞ; q�ðdqðlÞkl; dqðlÞhlÞ

C 0

where J is evaluated in ð~uu0ðq; pÞ; qÞ.
To prove maximality, we use the following characterization, given in the form

of a

Lemma A.3. Let H be a Hilbert space and o : H �H ! R the canonical sym-
plectic form. Take a subspace L of H and define its o-annihilator

L§ :¼ fh a H : oðh; lÞ ¼ 0; El a LgðA:20Þ

Then L is a Lagrangian subspace, namely, the maximal isotropic subspace of H, if
and only if L§ ¼ L.

Proof. The proof is based on the ideas found in the beginning of [15].
Some preliminary remarks: first of all, it is a well known fact that the existence
of a symplectic form on H implies that there is an orthogonal isomorphism
J : H ! H that satisfies oðh; kÞ ¼ 3Jh; k4 and J2 ¼ �1 ([18, Chap. 5, Par. 6]).
Notice that through such isomorphism clearly L§ ¼ ðJLÞ?, where ? is the ortho-
gonality with respect to the scalar product 3� ; �4. Secondly, for any subspace K ,
K § is closed, and for any subset S 	 H, ðS §Þ§ ¼ S.

Now, suppose L§ ¼ L, and, by absurd, that there is another isotropic subspace
L̂L of H that contains it: L 	 L̂L. This implies L̂L? 	 L?. Now, since L̂L is isotropic,
necessarily L̂L?JL̂L, that is, JL̂L 	 L̂L?. This means that JL̂L 	 L?, and passing to
the orthogonals, L§ ¼ L 	 ðJL̂LÞ? ¼ L̂L§, which is equivalent to saying JL̂L 	 JL.
But J is bijective, so L̂L 	 L, bringing us to the conclusion that L̂L ¼ L.

Conversely, suppose L maximally isotropic. Also L§ is isotropic, and as before
we have that L?JL ) JL 	 L? ) L 	 ðJLÞ? ) L 	 L§ and for maximality we
may conlude L§ ¼ L. r

To finish the proof it su‰ces to control that El a L, TlL coincides with its
o-annihilator when seen as a subspace of TiðlÞT

�HqW, that is, we must control
that ½diðlÞðTlLÞ�§ ¼ diðlÞðTlLÞ. To simplify notation: H ¼ TiðlÞT

�HqW, L ¼
diðlÞðTlLÞ. Surely L 	 L§ because o pulled-back on L is identically zero. Fi-
nally, restate L ¼ L§ as L? ¼ JL. Since we are dealing with Hilbert spaces, and
not with genuine Hilbert manifolds, J can be written in a block-matrix form,
starting from its action on two generic vectors:

oððQ1;P1Þ; ðQ2;P2ÞÞ ¼ P1ðQ2Þ � P2ðQ1ÞC ðQ1 P1Þ
O 1

�1 O

� �
Q2

P2

� �
ðA:21Þ
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thus the image of L under J is characterized this way:

ðQ;PÞ a JL , Q ¼ q2qJ½~uu0ðq; pÞ; q�ðdqðlÞhl; �Þ
a; Pa¼ �dqðlÞhl EhlðA:22Þ

Moreover, the natural Hilbert structure on H is the cartesian product one,
namely

HGHqW � ðHqWÞ�ðA:23Þ
) 3ðQ1;Q2Þ; ðP1;P2Þ4H ¼ 3Q1;Q24HqW þ 3Pa

1 ;P
a
2 4HqW

The orthogonal to L now can be explicited: take

ðdqðlÞhl; q2qJ½~uu0ðq; pÞ; q�Þ a L; so ðQ;PÞ a L?ðA:24Þ
) 3Q; dqðlÞhl4HqW ¼ �3Pa; q2qJ½~uu0ðq; pÞ; q�ðdqðlÞhl; �Þ

a4HqW

) Q ¼ q2qJ½~uu0ðq; pÞ; q�ðdqðlÞhl; �Þ
a; Pa¼ �dqðlÞhl Ehl

thus surely L? 	 JL , L 
 ðJLÞ? ¼ L§. This concludes the proof. r
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