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1. Introduction

In the last half of the past century, much work has been done in the direction of
the axiomatization of mechanics in the spirit of Hilbert’s sixth problem [25]. Just
to quote the milestones, in 1959 the conjecture of Cauchy on the dependence of
the contact actions on the normal was proved by Noll to be a consequence of the
balance law of linear momentum [32]. In 1963, the same author proved that the
balance laws of Euler, generally considered as the basic axioms of mechanics, are
in fact consequences of the more fundamental axiom of the indi¤erence of power
[33]. And again Noll, in 1973, proved that Newton’s law of action and reaction is
a consequence of the additivity of the external actions over disjoint sets [36].

Starting from Noll’s results, Gurtin and Martins [23] in 1976 and Šilhavý [43]
in 1985 showed that the existence of the Cauchy stress is a consequence of the
assumption that the system of contact actions has both a surface and a volume
density. Under this regularity assumption the contact force admits a double rep-
resentation, and this is expressed by an equation which, due to its similarity with
the balance equation of linear momentum, has been called a pseudobalance equa-
tion [11]. With this equation, the existence of the Cauchy stress tensor can be
proved bypassing the law of linear momentum. This led to revolutionary conse-
quences. Indeed, as pointed out by Noll in [38] and briefly commented in Section
3.7 below, this led to the removal of the concepts of motion and inertia from the
list of the fundamental objects of mechanics.



In the recent past, I devoted a number of papers to extend these results to the
mechanics of generalized continua [11, 12, 13]. The resulting axiomatic frame-
work starts with the selection of a set of state variables. Their variations, the
virtual velocities, are put in duality with a set of external actions. The duality
relation, the external virtual power, has the form of a volume plus a surface inte-
gral. The assumed existence of a volume density for the contact actions allows
to transform this relation into a volume integral, the internal virtual power, which
is a duality relation between internal actions and generalized strain rates. When
subjected to the restrictions due to the indi¤erence of power, this relation takes
a reduced form, which identifies the objects to be mutually related by constitutive
equations, thereby determining the field equations of the incremental equilibrium
problem.

After a brief preliminary review of the conceptual framework of classical con-
tinuum mechanics in Sect. 2, the emerging alternative axiomatics is applied to
classical continua in Sect. 3 and to generalized continua in Sect. 4. Section 5
focuses on the class of micromorphic continua, which are generalized continua
characterized by a single tensorial state variable, the microscopic deformation.
Finally, some particular subclasses, obtained subjecting the state variable to in-
ternal constraints, are reviewed in Sect. 6. They include second-order continua,
crystalline continua obeying the Cauchy–Born rule, unconstrained and con-
strained micropolar continua, and the classical theories of plates and beams.

2. The conceptual framework of classical continuum mechanics

The two axioms of classical continuum mechanics are the Euler balance laws of
linear and angular momentum

Z
P

bðxÞ dV þ
Z
qP

sqPðxÞ dA ¼ 0;

Z
P

x� bðxÞ dV þ
Z
qP

x� sqPðxÞ dA ¼ 0:

ð1Þ

Here P is an arbitrary part of the body, qP is the boundary, x is the position vec-
tor, b is the volume density of the distance actions on P, and sqP is the surface
density of the contact actions on qP. From these laws, a number of fundamental
consequences follows:

(i) the hypothesis of Cauchy of the dependence of the contact actions on the
normal1

sqPðxÞ ¼ snðxÞ;ð2Þ

1After Noll’s proof that this is in fact a consequence of Euler’s first law, this hypothesis became
the theorem of Noll.
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(ii) the local form of Newton’s law of action and reaction

s�nðxÞ ¼ �snðxÞ;ð3Þ

(iii) the tetrahedron theorem of Cauchy

snðxÞ ¼ TðxÞn;ð4Þ

(iv) the local equations of motion

divTðxÞ þ bðxÞ ¼ 0; TðxÞ ¼ TTðxÞ;ð5Þ

(v) the theorem of virtual power
Z
P

bðxÞ � vðxÞ dV þ
Z
qP

sqPðxÞ � vðxÞ dA ¼
Z
P

TðxÞ � ‘vSðxÞ dV :ð6Þ

In (2), n is the exterior unit normal to qP at x. In (4), T is the Cauchy stress
tensor. In (6), v is a field of virtual velocities, and ‘vS is the symmetric part of
the gradient of v. Together with a set of constitutive equations and with appro-
priate boundary conditions, these equations concur to the formulation of the
equilibrium problem.

Within classical continuum mechanics, an alternative approach2 consists in
taking equation (6) as the basic axiom, the principle of virtual power, and to
deduce from it the properties (2), (3), and (5).3 This procedure is not free from
criticism. Indeed, while the left-hand side of (6) is fully acceptable because it is
just a declaration of which are the external actions contributing to the external
power, there are no solid reasons for choosing a priori the right-hand side as the
expression of the internal power. The only reason I can see is that this expression
leads to the first Euler equation. But if one has in mind this goal, then the Euler
equation, and not the equation of virtual power, is the real postulate.

Another weak point is that postulating equation (6) means taking for granted
the existence of the stress tensor T . But at the time of the formulation of this prin-
ciple the only known way to prove the existence of T was through the first Euler
equation, and the only known way for proving the symmetry of T was to deduce
it from the second Euler equation.4 Therefore, though in a hidden way, the Euler
equations remain the veritable postulate.

The approach based on Euler’s equations is also subject to a, more subtle,
criticism. In Cauchy’s proof of the existence of the stress tensor, equation (1)1 is
written for a family of regions e 7! Pe scaled by a scale factor e

Z
Pe

bðxÞ dV þ
Z
qPe

sqPe
ðxÞ dA ¼ 0:ð7Þ

2Germain [18, 19].
3The property (4) of the existence of the Cauchy tensor is now implicit in (6).

4 In the formulation of the principle of virtual power, the symmetry of T was postulated sepa-
rately, see [18], p. 245.
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For a bounded volume density b, when e ! 0 the first integral goes to zero faster
than the area AðqPeÞ of the boundary. Then dividing by AðqPeÞ we get

lim
e!0

1

AðqPeÞ

Z
qPe

sqPe
ðxÞ dA ¼ 0:ð8Þ

From this equation, taking appropriate shapes for Pe, the desired properties
(2), (3) and (5)1 can be proved. The critical point is that this equation bears no
trace of the distance action b. That is, (8) is not a property of the pair ðb; sÞ of
internal actions, but of the contact actions s alone. In other words, (8) can be
deduced from (7) even if b is replaced by any other bounded function. Therefore,
the existence of the Cauchy tensor need not be deduced from the balance law of
linear momentum.

3. Classical continuum mechanics revisited

The discovery that the existence of the stress tensor can be proved without assum-
ing the balance of linear momentum was the starting point for a revisitation of
the axiomatic foundations of continuum mechanics. In this section I deal with
classical continuum mechanics. The mechanics of generalized continua will be
the object of the subsequent sections.

3.1. Geometry of the classical continuum

A body is a set B situated in the physical space, whose elements are called mate-
rial points. Though the nature of this set and of this space are not precisely
known, we assume that it is possible to measure the distance between any pair
X , X0 of elements of B. That is, to define a distance function on B. If this func-
tion varies from one measurement to another, we say that the body is deformable,
and that every distance function defines a configuration of the body. In this sense,
configuration becomes a synonym of distance function.5

All distance functions are assumed to be isometric to the Euclidean distance
j � j of the three-dimensional Euclidean point space E.6 That is, it is assumed
that for every distance function D on B there is a map w : B ! E such that7

jwðXÞ � wðXjÞj ¼ DðX ;XjÞ EX ;Xj a B:ð9Þ

A map w with this property is a placement in E of the body in its configuration D.

5While the term configuration is frequently used informally, a definition of it as an assemblage of

relative positions was given by Maxwell [30]. The distinction between extrinsic configurations, called

placements, and intrinsic configurations, identified with distance functions, is due to Noll [35].
6This assumption seems to suggest that the physical space is Euclidean and three-dimensional.

Whether or not this is true, is not known. If this is not true, the representation of B on E has to be
regarded as an approximation, just like the representation of the terrestrial surface on a plane.

7The points wðX Þ and wðXjÞ are elements of E, and their di¤erence is an element of the vector
space V associated with E.
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The Euclidean space E has the structure of the absolute space of Newtonian
mechanics.8 Therefore, to place a body in E meets with the practical exigence of
working in an absolute space,9 without any commitment on the real nature of the
physical space. In this spirit the set B, whose nature is uncertain, is represented in
E by its image under a selected reference placement wR, which with every point X
of B associates the point

xR ¼ wRðXÞð10Þ

of E. In this way, any other placement w of B is described by the deformation
f ¼ w � w�1

R , which is the function which with every point xR of WR ¼ wRðBÞ
associates the point10

x ¼ f ðxRÞ ¼ wðw�1
R ðxRÞÞ ¼ wðX Þð11Þ

of E. If xR, xjR and x, xj are the images of X , Xj under wR and w, for the vector
ðx� xjÞ we have

jx� xjj ¼ j f ðxRÞ � f ðxjRÞj ¼ jwðX Þ � wðXjÞj:ð12Þ

That is, w and f correspond to the same distance function. By consequence, if two
placements w, w� place the body into the same configuration, the corresponding
deformations f , f � satisfy the condition

f �ðxRÞ � f �ðxjRÞ ¼ Q½ f ðxRÞ � f ðxjRÞ�;ð13Þ

with Q an orthogonal tensor and with xR and xjR arbitrary points of WR.
An evolution is a family t 7! Dt of configurations of B. In E, it is represented

by families t 7! ft of deformations, with each ft endowed with the distance Dt.
The representation is not unique, because each configuration can be represented
by the infinitely many deformations which satisfy the relation (13) for di¤erent
tensors Q.

Denote by d the derivative with respect to t and by xt the point ftðxRÞ. The
vector

vðxtÞ ¼ dftðxRÞð14Þ

8 In Newton’s words, ‘‘in its own nature and without regard to anything external, always remains

similar and immovable’’. For a discussion on the concept of absolute space see Mach [29], pp. 232

and 543.
9 In an absolute space, selecting an origin o it is possible to represent the points x with their posi-

tion vectors ðx� oÞ in the inner product space V associated with E, and with the further choice of a
basis of V it is possible to represent the vectors as elements of R3.

10Quite informally, for the points of E I use the same symbol x used before to denote the position
vector.
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is the velocity of xR at the time t in the given family of deformations.11 At the
time t, rewriting equation (13) in the form

x�
t ¼ x�

jt þQt½xt � xjt�;ð15Þ

with x�
t ¼ f �

t ðxRÞ and x�
jt ¼ f �

t ðxjRÞ, by di¤erentiation with respect to t we get

v�ðx�
t Þ ¼ v�ðx�

jtÞ þQt½vðxtÞ � vðxjtÞ� þ dQt½xt � xjt�ð16Þ
¼ Qt½vðxtÞ þ at þWtxt�;

where xt is identified with its position vector, at is the vector ðQT
t v

�ðx�
jtÞ �

vðxjtÞ �Wtx
�
jtÞ, and Wt is the skew-symmetric tensor QT

t dQt. Moreover, from
(15) and (16) di¤erentiated with respect to xt we have

‘x�
t ¼ Qt; ‘v�ðx�

t Þ‘x�
t ¼ Qt½‘vðxtÞ þWt�;ð17Þ

and, therefore,

‘v�ðx�
t Þ ¼ Qt½‘vðxtÞ þWt�QT

t :ð18Þ

Equations (16) and (18) provide the transformation laws of the velocity and of
the velocity gradient under a change of placement within the same configuration.

3.2. Interactions

An interaction I is a set function which maps the ordered pairs ðP;PjÞ of open
regions of E into the vector space V, endowed with the following properties12

ði 0Þ IðP;PÞ ¼ 0,

ðii 0Þ Ið�;PjÞ and IðP; �Þ are additive on disjoint regions.

By ðii 0Þ, for every pair ðP;PjÞ of disjoint regions we have

IðPAPj;PAPjÞ ¼ IðP;PÞ þIðP;PjÞ þIðPj;PÞ þIðPj;PjÞ;ð19Þ

Then the skew-symmetry of the interactions between disjoint regions

IðP;PjÞ ¼ �IðPj;PÞ; PBPj ¼ j;ð20Þ

11Though we call it time, t need not be identified with the physical time, which is purposely left
out of the present analysis. To emphasize this choice, I called geometry what is usually called kine-

matics, and evolution what is usually called a motion. Note that the definition (14) of velocity is not

intrinsic, since it depends on the specific family t 7! ft of deformations and not on the family t 7! Dt

of configurations.

12The present treatment is informal and relies upon the physical intuition of the reader. For the
notions of geometric measure theory required by a rigorous treatment see [6, 7, 8, 13, 42, 43, 44, 48,

50]. The question of the regularity to be assumed for the regions P has been discussed by several
authors. Besides the papers just quoted, see [5, 10, 24, 34, 36, 37, 39].
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follows from ði 0Þ. The vector IðP;PjÞ is the action exerted on P by Pj. By the
skew-symmetry property, this action is the opposite of the action exerted on Pj
by P. Then (20) is a global form of the action-reaction law (3), which therefore is
a direct consequence of ði 0Þ and ðii 0Þ.

By ðii 0Þ, the actions are measures in the sense of measure theory. It is known
that every measure is the sum of an absolutely continuous and a singular part.13
For the action Ið�;PjÞ, absolute continuity is with respect to the volume mea-
sure, and this means the existence of a volume density

bPj
ðxÞ ¼ lim

e!0

1

VðBx; eÞ
IðBx; e;PjÞ;ð21Þ

at V -almost all x a EnPj.14 For the singular part, in classical mechanics it is
assumed that

ðiii 0Þ the singular part of IðP;PjÞ is concentrated at the interface qPB qPj, and
has a surface density

sqPj
ðxÞ ¼ lim

e!0

1

AððBx; enPjÞB qPjÞ
IðBx; enPj;PjÞð22Þ

at A-almost all x a qPj.

The absolutely continuous and the singular part of Ið�;PjÞ are called the dis-
tance interaction between Pj and P and the contact interaction across the inter-
face qPB qPj, respectively. By (21) and (22), they have the representations

IdðP;PjÞ ¼
Z
P

bPj
ðxÞ dV ; IcðqPB qPjÞ ¼

Z
qPBqPj

sqPj
ðxÞ dA:ð23Þ

By the skew-symmetry property (20), qPB qPj is an oriented surface, with P on
the inner side and Pj on the outer side of P. Then qPB qPj and qPjB qP are
the same surface with opposite orientation, and IcðqPB qPjÞ is the opposite of
IcðqPjB qPÞ. The equality

IðP;PjÞ ¼
Z
P

bPj
ðxÞ dV þ

Z
qPBqPj

sqPj
ðxÞ dAð24Þ

shows the representation of an interaction as the sum of a distance interaction
and of a contact interaction. In particular, if Pj is the exterior EnP of P, we

13By the Radon-Nikodym theorem. See e.g. [1].
14Here Bx; e is the ball of radius e centered at x, Vð�Þ is the volume measure, and at V-almost all x

means at all x except at most a set of volume zero. In the next statement, Að�Þ is the area measure,
and at A-almost all x means at all x except at most a set of area zero.
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write IðPÞ, b, and s in place of IðP;EnPÞ, bEnP and sEnP, and

IðPÞ ¼
Z
P

bðxÞ dV þ
Z
qP

sðxÞ dAð25Þ

in place of (24).

3.3. Pseudobalance

Since there is a one-to-one correspondence between a region and its boundary,
the contact action Ic can be regarded both as a function of the surfaces qP and
as a function of the regions P. A further regularity assumption is that Ic be
absolutely continuous not only with respect to the area measure as assumed in
(22), but also with respect to the volume measure.15

ðiv 0Þ The function Ic has a volume density

bcðxÞ ¼ lim
e!0

1

VðBx; eÞ
IcðqBx; eÞð26Þ

at V-almost all x a W.

By consequence, Ic has the representation

IcðqPÞ ¼
Z
P

bcðxÞ dV ;ð27Þ

and comparing with (23)2 with Pj ¼ EnP we get

�
Z
P

bcðxÞ dV þ
Z
qP

sðxÞ dA ¼ 0:ð28Þ

Due to its resemblance to a balance equation, this has been called a pseudo-
balance equation.16 It can replace the balance equation of linear momentum in
the hypotheses of the theorem of Noll and of the tetrahedron theorem of Cauchy.
The resulting equations

sEnPðxÞ ¼ snðxÞ; snðxÞ ¼ TðxÞn; divTðxÞ � bcðxÞ ¼ 0;ð29Þ

are counterparts of equations (2), (4) and (5)1 with b replaced by �bc. Note that,
since now they have been deduced from the regularity assumptions ðiii 0Þ and ðiv 0Þ,

15The actions with this property were called weakly balanced Cauchy fluxes by Gurtin and

Martins [23] and by Šilhavý [43].
16Del Piero [11]. This equation looks like the balance equation of linear momentum, but it is not.

Indeed, a balance equation involves two or more actions, while this equation involves two densities
of the same action.
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the dependence of the contact actions on the normal and the existence of the stress
tensor are not anymore consequences of the balance of linear momentum.

3.4. Virtual power

The virtual velocities and the external actions are put into a duality relation by
the functional17

PextðP; vÞ ¼
Z
P

b � v dV þ
Z
qP

s � v dA; P � E;ð30Þ

which is the external power in P exerted by the action I with densities b and s,
against the virtual velocity v. With the aid of equations (29) and of the divergence
theorem, the last integral transforms as follows

Z
qP

s � v dA ¼
Z
qP

Tn � v dA ¼
Z
P

ðdivT � vþ T � ‘vÞ dVð31Þ

¼
Z
P

ðbc � vþ T � ‘vÞ dV :

Then the right-hand side of (30) transforms into the volume integral

Z
P

ððbþ bcÞ � vþ T � ‘vÞ dV ¼ PintðIðPÞ; vÞ;ð32Þ

called the internal power. From their definitions it is clear that the external and
internal powers are not independent, as it occurs when assuming the principle
of virtual power as an axiom. They are two alternative expressions of the same
power. In the following we shall sometimes omit the subscripts ext and int, and
we shall simply refer to the power P.

3.5. Indi¤erence

Till now, some definitions have been given and some regularity assumptions have
been made, but no mechanical axiom has been formulated. In the revisited axi-
omatic approach there is only one axiom:18

Axiom. The power is indi¤erent to changes of placement withinð33Þ
the same configuration:

Let WR be the region occupied by the body in the reference placement, let P and
P� be the images of a part PR of WR under two deformations f , f � mapping WR

17For simplicity of notation, from here on we omit the argument x.
18Noll [33].
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into the same configuration, and let v and v� be virtual velocity fields on P and
P� related by the transformation law (16). Axiom (33) states that

PðP; vÞ ¼ PðP�; v�Þ:ð34Þ

In the external power

PextðP�; v�Þ ¼
Z
P�

b� � v� dV � þ
Z
qP�

s� � v� dA�;ð35Þ

let us make the change of variables from x� to x. Since the distances in P and P�

are the same, we have dV � ¼ dV and dA� ¼ dA. By (16), the right-hand side
takes the form

Z
P

b� �Qðvþ aþ w� xÞ dV þ
Z
qP

s� �Qðvþ aþ w� xÞ dA;ð36Þ

where w is the vector associated with the skew-symmetric tensor W .19 Then,
from (34),

0 ¼
Z
P

ðb� �Qðvþ aþ w� xÞ � b � vÞ dVð37Þ

þ
Z
qP

ðs� �Qðvþ aþ w� xÞ � s � vÞ dA

¼
Z
P

ðQTb� � bÞ � v dV þ
Z
qP

ðQTs� � sÞ � v dA

þ a �
�Z

P

QTb� dV þ
Z
qP

QTs� dA
�

þ w �
�Z

P

x�QTb� dV þ
Z
qP

x�QTs� dA
�
:

For a ¼ w ¼ 0, from the arbitrariness of v and P it follows that

b� ¼ Qb; s� ¼ Qs:ð38Þ

These are the transformation rules for the densities b and s under changes of
placements within the same configuration. Equation (37) then reduces to

a �
�Z

P

b dV þ
Z
qP

s dA
�
þ w �

�Z
P

x� b dV þ
Z
qP

x� s dA
�
¼ 0:ð39Þ

Note that, by (30),

19Defined as the unique vector such that Wx ¼ w� x for all x.
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a �
�Z

P

b dV þ
Z
qP

s dA
�
¼ PextðP; aÞ;

w �
�Z

P

x� b dV þ
Z
qP

x� s dA
�
¼ PextðP;w� xÞ:

ð40Þ

That is, the two terms in (39) are the powers for virtual rigid translations and
for virtual rigid rotations, respectively. By the arbitrariness of a and w, the two
powers must be zero

PextðP; aÞ ¼ 0; PextðP;w� xÞ ¼ 0:ð41Þ

These are the conditions of translational indi¤erence and of rotational indi¤er-
ence, respectively.

Again by the arbitrariness of a and w, these two conditions imply the balance
equations (1). Therefore, the balance laws of linear and of angular momentum are
consequences of the axiom (33) of the indi¤erence of power.

3.6. The reduced power

Using the pseudobalance equation (28) and equations (40)1, the translational
indi¤erence condition (41)1 takes the form

Z
P

ðbþ bcÞ dV ¼ 0;ð42Þ

and from the arbitrariness of P it follows that

bþ bc ¼ 0:ð43Þ

For the rotational condition, from equations (29) and from the divergence theo-
rem we have

Z
qP

x� s dA ¼
Z
qP

x� Tn dA ¼
Z
P

ðtþ x� divTÞ dVð44Þ

¼
Z
P

ðtþ x� bcÞ dV ;

with t the vector associated with the skew-symmetric part of T . Then by (40)2,
(41)2 and (43),

0 ¼
Z
P

ðtþ x� ðbþ bcÞÞ dV ¼
Z
P

t dV ;ð45Þ

and again by the arbitrariness of P it follows that t ¼ 0, that is, that T is a sym-
metric tensor.
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For bþ bc ¼ 0 and T symmetric, the internal power (32) takes the reduced
form

PredðP; vÞ ¼
Z
P

T � ‘vS dV ;ð46Þ

with ‘vS the symmetric part of the gradient of v. In general, the reduced power
identifies the internal actions and the generalized strain rates, which are the
objects to be interrelated by constitutive equations. Thus, equation (46) tells us
that in classical mechanics there is a single internal action, the stress tensor T ,
and that the corresponding generalized strain rate is ‘vS. Then there is a single
constitutive equation, which is a relation between T and ‘vS.

3.7. Revolutionary character of the alternative approach

With the balance laws (1) replaced by the pseudobalance equation (28), the local
equation of motion (5)1 is replaced by equation (29)3 which involves only quanti-
ties related to the contact actions. In particular, the volume density b of the dis-
tance actions is replaced by the volume density bc of the contact actions. Then,
since inertia is a particular distance action, the ‘‘inertia forces’’ do not appear
anymore in the basic set of equations (29). The result is that the inertia law is
downgraded from a general principle to a constitutive postulate:

– . . . l’on regarde les forces d’inertie comme des forces véritables qui sont les inter-
actions entre les corps dans notre système solaire et la totalité des objets dans le
reste de l’univers . . . [33],

– les repères inertiaux n’entrent plus dans la partie générale de la nouvelle axio-
matisation. La loi d’inertie est regardée comme un postulat constitutif [33],

– when dealing with deformable bodies, inertia plays very often a secondary role.
In some situations, it is even appropriate to neglect inertia altogether . . . [38].

This implies the removal of all concepts related to motion from the fundamentals
of mechanics:

– I believe that the basic concepts of mechanics in general should not include items
such as momentum, kinetic energy, and angular momentum [38].

This removal is revolutionary because it goes against a firmly established tradi-
tion which considers these concepts as fundamental

– le mouvement et ses propriétés générales sont le premier et le principal objet de la
Mécanique [9],

– die Mechanik ist die Wissenschaft der Bewegung [27],
– Mechanics is concerned with the motions and equilibrium of masses [29].

The tradition is amply motivated by the fact that gravitation was practically the
only known distance action until relatively recent times, and that for long time
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the most challenging goal of mechanics has been the discovery of the laws of mo-
tion of the celestial bodies. But nowadays in a formulation of mechanics founded
on rational bases a drastic reduction of the traditional role played by inertia
seems to be unavoidable.

4. Generalized continua

In a classical continuum, the only state variable is the deformation f .20 On the
contrary, a generalized continuum is characterized by the presence of additional
state variables xa. They are maps from the region WR occupied by the body in
the reference placement into finite dimensional inner product spaces Y a made of
scalars, vectors, or tensors of any order, depending on the physical nature of the
phenomenon described by each state variable. The state variables can be both
geometric and non-geometric.21 Only geometric variables are considered in the
following.

Just as with f are associated the virtual velocity v and the interaction I, a
generalized virtual velocity va and a generalized interaction Ia are associated
with each xa. The generalized interactions are subject to the same hypotheses
ði 0Þ–ðiv 0Þ made for I. That is, each Ia can be split into the sum of a distance
action and a surface action

Ia ¼ Iad þIac;ð47Þ

each Iad is supposed to have a volume density ba, and each Iac is supposed to
have both a surface density sa and a volume density bac. For every region P of E,
each contact action Iac admits a double representation as a surface integral and
as a volume integral, and this gives origin to additional pseudobalance equations

�
Z
P

bac dV þ
Z
qP

sa dA ¼ 0:ð48Þ

From each of them, using extensions of the theorems of Noll and Cauchy to the
spaces Y a, the existence of a generalized stress tensor T a is deduced. This tensor
is a linear mapping T a : V ! Y a such that

sa ¼ T an; divT a � bac ¼ 0:ð49Þ

20This needs some clarification. By a state of a material point I mean the set of all variables
which influence its relation with the exterior. That is, whose variations appear in the expression of

the external power as virtual velocities. There may be other state variables, which I call constitutive,
which influence the response of the material but do not contribute to the power. To see the di¤er-

ence, consider the plastic strain. In classical plasticity as described, for example, in Hill’s book [26],

the plastic strain appears in the constitutive equation but not in the expression of the power. In other
models, for example, in gradient plasticity, an external power is associated with the plastic strain

rate. According to the terminology adopted here, in the first case the plastic strain is a constitutive
variable, while in the second case it is a state variable.

21Examples of non-geometric variables are the temperature, the electric and magnetic fields, and
the physical time.
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Then the external power has the form22

PextðP; v; vaÞ ¼
Z
P

ðb � vþ ba � vaÞ dV þ
Z
qP

ðs � vþ sa � vaÞ dA:ð50Þ

In the surface integral the first term transforms as in (31), and similarly for the
second term we have

Z
qP

sa � va dA ¼
Z
P

ðbac � va þ T a � ‘vaÞ dV :ð51Þ

The external power then transforms into the internal power

Z
P

ððbþ bcÞ � vþ T � ‘vþ ðba þ bacÞ � va þ T a � ‘vaÞ dV ¼ PintðP; v; vaÞ:ð52Þ

In contrast to classical continua, the axiom of the indi¤erence of power does not
take a unique mathematical form. Since the concept of indi¤erence now depends
on the physical nature of the state variables, for each generalized continuum it
is necessary to decide what is a configuration, and then to specify, on physical
bases, the laws of variation of the virtual velocities va under changes of placement
within the same configuration.

Once the indi¤erence conditions have been determined for a specific con-
tinuum, their combination with the pseudobalance equations yields a set of equi-
librium equations, which are the field equations of the equilibrium problem. For
classical continua, the indi¤erence conditions bþ bc ¼ 0 and T ¼ TT combined
with the pseudobalance equation (29)3 yield equilibrium equations which coin-
cide with Euler’s balance laws. It is not so for generalized continua. For example,
for the micromorphic continua considered in the next section, the first of the equi-
librium equations (81) is again Euler’s first law, and the third is similar to Euler’s
second law, since it requires the symmetry of a stress tensor. But the second is an
extra equation.

In the traditional treatment of generalized continua, the new equation is inter-
preted as a balance law of a microscopic quantity,23 which shows up in the pres-
ence of microstructure. Thus, for generalized continua the assumed basic laws are
the balance laws of macroscopic and microscopic linear momentum, while there
is no general agreement about the form and role of the balance law of angular
momentum.

This framework covers a significant number of specific models,24 but is not
su‰cient to build a fairly general theory. Indeed, in the presence of several state

22With sum over repeated indices a.
23Balance of spin momentum [47], Sect. 98, microstress [19], micromomentum [6], microforce [22],

Sect. 8.
24See e.g. the list given in [6], Sect. 2.
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variables, each of them would require its own balance equation. If each equation
were to be considered as a fundamental law of mechanics, we should assist to an
indefinite proliferation of fundamental laws.25

In the alternative approach, a state variable does not produce a balance law,
but only a ‘‘pseudobalance equation’’, which is the e¤ect of a regularity assump-
tion. As such, its contradiction does not imply the collapse of the theory, but only
some technical complication due to dealing with less regular objects. The basic
laws are dictated by the indi¤erence of power, and are quite independent of the
number of the state variables.

In what follows, we restrict our analysis to models in which the state vari-
ables are purely geometric and originate from distance measures taken at dif-
ferent length scales. Among such models, we further restrict ourselves to the
case in which only two scales, macroscopic and microscopic, are taken into
consideration.

5. Micromorphic continua

In a classical continuum, a placement of a body on the Euclidean space is made
on the basis of distance measurements. In a generalized continuum with purely
geometric state variables, a more accurate picture of the ‘‘real’’ body is obtained
by refining the distance measurements in the neighborhood of each material
point. Iterating this procedure, a multi-scale model is obtained. In particular,
for a single series of refined measures there are two length scales, macroscopic
and microscopic. The resulting two-scale continuum is called a micromorphic
continuum.26

5.1. Geometry of the micromorphic continuum

In the geometry of classical continua developed in Subsection 3.1, a starting point
was the possibility of defining distance functions over the body by means of dis-
tance measurements. In fact, this possibility is only theoretical, because common
sense suggests that distance measurements necessarily involve only a finite num-
ber of points.27 Then only a finite set X of material points X ;Xj; . . . can be placed
in such a way that the Euclidean distance of their images wðX Þ; wðXjÞ; . . . on E be
equal to the measured distance DðX ;XjÞ, as required in (9). To model the body
as a continuum, the finite set wðXÞ obtained by the placement of X is ‘‘filled’’ to

25This is acceptable for geometric variables involving distance measures made at a di¤erent

scales, like e.g. in [19]. More di‰cult is to justify this proliferation in the case of non-geometric vari-

ables, or of geometric variables defined on the same distance scale.
26Eringen [15].

27Of course this is also true for classical mechanics. But since the more informal approach
adopted there bears no serious consequences, this aspect is generally ignored. On the contrary, for

generalized continua there are consequences. See for example the comment on second-order con-
tinua made in Subsection 6.1.

45generalized continua



form a continuous region wðBÞ.28 If X is su‰ciently ‘‘spread’’ over the body, this
region can be considered a representative of B in the absolute space E.

Now let Xj be a material point in X, and let NXj
be a neighborhood of Xj.

Let, further, DXj
be the distance function obtained from refined distance mea-

surements on a finite subset XXj
of NXj

, and let wXj
be a placement of XXj

on E
such that

jwXj
ðX Þ � wXj

ðXjÞj ¼ DXj
ðX ;XjÞ EX a XXj

:ð53Þ

Just like wðXÞ, the set wXj
ðXXj

Þ can be ‘‘filled’’, to form a continuum wXj
ðNXj

Þ,
and if XXj

is su‰ciently ‘‘spread’’ over NXj
, this continuum can be considered a

representative of NXj
in E.

For a micromorphic continuum, a configuration is a pair ðD;Xj 7! DXj
Þ, with

D a macroscopic distance function on the region wðBÞ and with Xj 7! DXj
a finite

family of microscopic distance functions, one for each region wXj
ðNXj

Þ. A place-
ment of a configuration ðD;Xj 7! DXj

Þ in E is a pair ðw;Xj 7! wXj
Þ, where w is a

macroscopic placement satisfying condition (9) and each wXj
is a microscopic

placement satisfying condition (53).
Let us choose a reference placement in which every microscopic placement wXj

coincides with the restriction of the macroscopic placement wR to the correspond-
ing NXj

. With this choice, every other placement ðw;Xj 7! wXj
Þ is described by

the pair ð f ;Xj 7! fXj
Þ, where f is the macroscopic deformation

f ðxRÞ ¼ wðw�1
R ðxRÞÞ; xR a WR ¼ wRðBÞ;ð54Þ

and each fXj
is the microscopic deformation

fXj
ðxRÞ ¼ wXj

ðw�1
R ðxRÞÞ; xR a NRðXjÞ ¼ wRðNðXjÞÞ:ð55Þ

We recall that f and fXj
are initially defined over finite sets, and only after the

‘‘filling’’ operation they are extended to the continuous regions WR and NRðXjÞ.
This operation can be made smooth enough to render the extended functions con-
tinuous and di¤erentiable, so that

f ðxRÞ ¼ f ðxjRÞ þ ‘f ðxjRÞ½xR � xjR� þ oðjxR � xjRjÞ ExR a WR;

fXj
ðxRÞ ¼ fXj

ðxjRÞ þ ‘fXj
ðxjRÞ½xR � xjR� þ oðjxR � xjRjÞ ExR a NRðXjÞ:

ð56Þ

I emphasize that the regularity of f and fXj
is not a physical property detected by

measurement, but only a smoothness property due to the filling procedure.
In equation (56)2, the last term can be neglected for a su‰ciently small

NRðXjÞ. Moreover, there is no loss in generality in fixing the point fXj
ðxjRÞ, for

example, taking

fXj
ðxjRÞ ¼ f ðxjRÞ:ð57Þ

28For example, this can be done taking the convex hull of wðXÞ.
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Then fXj
is determined by its local approximation

F ðxjRÞ ¼ ‘fXj
ðxjRÞ; xjR a wRðBÞ:ð58Þ

This allows us to define a deformation from the reference placement wR as a pair
ð f ;FÞ, with f a macroscopic deformation from WR and F a tensor field on WR.
The microscopic deformation gradient F is the additional state variable of the
micromorphic continuum.29

If ð f ;FÞ and ð f �;F �Þ are deformations from the reference placement to place-
ments ðw;Xj 7! wXj

Þ, ðw�;X �
j 7! w�

X �
j
Þ belonging to the same configuration, the

macroscopic deformations f , f � must satisfy the condition (13) of preservation
of the macroscopic distance, and the microscopic deformation gradients F , F �

must satisfy the condition

F �ðxjRÞ½xR � xjR� ¼ QxjRF ðxjRÞ½xR � xjR�;ð59Þ

of preservation of the microscopic distance, with xjR 7! QxjR a family of orthog-
onal tensors. Then the distance preserving conditions

‘f � ¼ Q‘f ; F � ¼ QxjRF ;ð60Þ

tell us that in a deformation between placements belonging to the same con-
figuration both deformation gradients, macro- and microscopic, are orthogonal
tensors.

But there is a third, less obvious, condition. The vectors e ¼ xR � xjR repre-
sent material directions from xjR in the reference placement, and the angle be-
tween the transformed vectors ‘f ðxjRÞe and FðxjRÞe is the deviation between
the macroscopic and microscopic images of e in the deformation ð f ;F Þ. The third
condition is that this angle be the same

‘f �e � F �e

j‘f �ej jF �ej ¼
‘fe � Fe
j‘fej jFej Ee a V;ð61Þ

for all pairs of deformations ð f ;F Þ, ð f �;F �Þ which map the reference placement
into placements belonging to the same configuration.30 Then from conditions
(60), by the arbitrariness of e and by the invertibility of ‘f and F we get the
deviation preserving condition31

QxjR ¼ Q ExjR a WR:ð62Þ

29Though ‘fXj
is the gradient of fXj

, the field xjR 7! ‘fXj
ðxjRÞ is not in general the gradient of a

function over WR, because ‘fXj
is the gradient of di¤erent functions fXj

at di¤erent points of WR.

30For example, in the plate theory of Subsection 6.4, if e is the director orthogonal to the un-

deformed surface G, the deviation of e is the angle between the deformed director and the normal
to the deformed surface. It seems obvious that this angle be the same in all placements belonging

to the same configuration.
31At my knowledge there is no trace of this condition in the literature. In micromorphic continua

the concept of deviation is particularly relevant, since the deviation Lm between the macroscopic and
microscopic velocities is one of the generalized strain rates, see Subsection 5.3 below.
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Thus, in a deformation between placements belonging to the same configuration
all microscopic deformation gradients are equal to the macroscopic deformation
gradient.

For a micromorphic continuum, an evolution is a family t 7! ðDt;Xj 7! DXjtÞ
of configurations. In E, it is represented by families t 7! ð ft;FtÞ of deformations
from a reference placement wR. The expansion

FtðxjRÞ ¼ FtðxjRÞ þ ðt� tÞ dFtðxjRÞð63Þ
¼ ðI þ ðt� tÞLðFtðxjRÞÞFtðxjRÞ þ oðt� tÞ;

shows that, to within higher-order terms, Ft is the composition of Ft with the
perturbation ðI þ ðt� tÞLÞ. If xjt ¼ FtðxjRÞ, the tensor

LðxjtÞ ¼ dFtðxjRÞF�1
t ðxjtÞð64Þ

is the microscopic velocity at xjt at the time t. Thus, a virtual velocity is a pair
ðv;LÞ, with the macroscopic velocity v given by (14) and with L as above. Under
a change of placement within the same configuration v transforms as in (16), and
for L from (64), (60)2 and (62) we have

L� ¼ dF �
t F

��1
t ¼ ðQtdFt þ dQtFtÞF�1

t QT
t ¼ QtLQ

T
t þ dQtQ

T
t ;ð65Þ

that is,

L�ðx�
0tÞ ¼ Qt½Lðx0tÞ þWt�QT

t ;ð66Þ

with Qt an orthogonal tensor and Wt ¼ QT
t dQt a skew-symmetric tensor.

5.2. Generalized interactions and virtual power

In a micromorphic continuum there are two external actions, a macroscopic
action I and a microscopic action Im. The first has the integral representation
(25), and for the second we have

ImðPÞ ¼
Z
P

BðxÞ dV þ
Z
qP

SðxÞ dA;ð67Þ

with B the volume density of the distance action and S the surface density of the
contact action. The additional assumption that the contact interaction also has a
volume density Bc gives origin to the pseudobalance equation

�
Z
P

BcðxÞ dV þ
Z
qP

SðxÞ dA ¼ 0:ð68Þ
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From it and from the theorems of Noll and of Cauchy the following counterparts
of the relations (29)

SEnPðxÞ ¼ Sðx; nÞ; Sðx; nÞ ¼ TðxÞn; divTðxÞ � BcðxÞ ¼ 0;ð69Þ

follow, with T a third-order tensor.32
The duality between the external actions and the virtual velocities v, L is

established by the external power

PextðP; v;LÞ ¼
Z
P

ðb � vþ B � LÞ dV þ
Z
qP

ðs � vþ S � LÞ dA:ð70Þ

With the relations (29), (69), and the divergence theorem, the right-hand side
transforms into the volume integral

Z
P

ððbþ bcÞ � vþ T � ‘vþ ðBþ BcÞ � Lþ T � ‘LÞ dV ¼ PintðP; v;LÞ;ð71Þ

which is the internal power of the micromorphic continuum.

5.3. Indi¤erence requirements

By the transformation rules (16), (18) and (66), under a change of placement
within the same configuration the internal power (71) transforms as follows33

PintðP�; v�;L�Þð72Þ

¼
Z
P�
ððb� þ b�cÞ � v� þ T � � ‘v� þ ðB� þ B�cÞ � L� þ T� � ‘L�Þ dV �

¼
Z
P

ððb� þ b�cÞ �Q½vþ aþWx� þ T � �Q½‘vþW �

þ ðB� þ B�cÞ �Q½LþW � þ T� �Q½‘L�Þ dV :

By the indi¤erence axiom (33), the powers (71) and (72) are equal. Then, by sub-
traction, from the arbitrariness of v, ‘v, L, ‘L and P we get

b� þ b�c ¼ Q½bþ bc�; T � ¼ Q½T �; B� þ B�c ¼ Q½Bþ Bc�; T� ¼ QT;ð73Þ

32 In accordance with the definition (49)1, T is a map from V into the second-order tensors. In
components, Sij ¼ Tijknk .

33Here we use the notation

Q½L� ¼ QLQT ; ðQ½L�Þij ¼ QirLrsQjs;

by which

‘ðQ½L�Þ ¼ Q½‘L�; ðQ½‘L�Þij;k ¼ QirLrs;kQjs:
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and the di¤erence of the powers (71), (72) reduces to

a �
Z
P

ðbþ bcÞ dV þW �
Z
P

ððbþ bcÞn xþ T þ Bþ BcÞ dV ¼ 0:ð74Þ

By the arbitrariness of a and W , the two integrals must vanish separately. The
vanishing of the first integral is the condition of translational indi¤erence

PðP; a; 0Þ ¼ 0;ð75Þ

and the vanishing of the second integral is the condition of rotational indi¤erence

PðP;Wx;WÞ ¼ 0:ð76Þ

By the arbitrariness of P, these conditions take the local forms

bþ bc ¼ 0; T m ¼ T mT ;ð77Þ

with

T m ¼ T þ Bþ Bc:ð78Þ

Conditions (75) and (76) are the counterparts of the balance equations (1) of the
classical continuum, and equations (77) are the counterparts of their local forms
(5). Since (77)1 is the same as (43), the balance laws of linear momentum for a clas-
sical continuum and for a micromorphic continuum are the same. Additional terms
due to the microscopic interactions appear only in the balance law of angular
momentum, and their e¤ect is that in a micromorphic continuum the stress tensor
T is symmetric if and only if the microscopic action Bþ Bc is symmetric.

From conditions (77) the reduced form of the internal power

PredðP; v;LÞ ¼
Z
P

ðT � Lm þ T m � LS þ T � ‘LÞ dVð79Þ

follows, where

Lm ¼ ‘v� Lð80Þ

is the deviation between the macroscopic and microscopic velocities. Therefore,
in a micromorphic continuum the internal actions are T , T m and T, and the cor-
responding generalized strain rates are Lm, LS and ‘L.

5.4. Equilibrium equations and constitutive equations

For the micromorphic continuum, the field equations of the equilibrium problem
are the equilibrium equations

divT þ b ¼ 0; divTþ B ¼ T m � T ; T m ¼ T mT :ð81Þ
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In them, b and B are the given external actions, and T , T m and T are the internal
actions to be specified by incremental constitutive equations of the form

T � T0 ¼ jðLm;LS;‘LÞ; T m � T
m
0 ¼ cðLm;LS;‘LÞ;

T� T0 ¼ wðLm;LS;‘LÞ;
ð82Þ

where T0, T
m
0 , T0 are the actions on a given initial placement, which are supposed

to be known, and ðT � T0Þ, ðT m � T
m
0 Þ, ðT� T0Þ are their increments due to

the virtual velocities Lm, LS, ‘L. Substitution into the equilibrium equations
provides a system of di¤erential equations with the generalized strain rates as
unknowns.34

6. Constrained micromorphic continua

Special micromorphic continua are obtained by subjecting the state variable F to
internal constraints. We first consider two models, the second-gradient continua
and the continua which obey the Cauchy–Born rule, which are not originally
conceived as, but are reducible to, micromorphic continua. Then we consider
the micropolar continua and some of their many constrained versions.

6.1. Second-gradient continua and the Cauchy–Born rule

A second-gradient continuum is a non-local classical continuum. It is classical, in
the sense that there are no state variables besides the macroscopic deformation,
and non-local, because the external power includes an extra term involving the
gradient of v

PextðP; vÞ ¼
Z
P

ðb � vþ B � ‘vÞ dV þ
Z
qP

ðs � vþ S � ‘vÞ dA:ð83Þ

Alternatively, this can be considered as a micromorphic continuum with the state
variable F subjected to the constraint

F ¼ ‘f :ð84Þ

This is a generalized continuum with latent microstructure,35 in which the
microdeformations are hidden because of their dependence on the macrodefor-
mations.

In the present axiomatic framework, to assume this constraint does not seem
to be a good idea. Indeed, the additional information obtained by taking ‘f as
state variable does not come from refined measurements at the microscopic level,

34The formulation of the problem is completed by the prescription of a set of boundary condi-
tions, see e.g. [13].

35Capriz [6]. For more details on second-gradient continua and on continua with latent micro-
structure see also [13], Sects. 10 and 11.
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but from the fine details of the ‘‘filling’’ procedure. Since this procedure has no
physical basis, to look at its fine details to know more on the microscopic defor-
mation looks a bit awkward.

But this does not mean that the second-order continua must be discarded
altogether. As we shall see below, such continua come up naturally when internal
constraints are introduced. Examples are the rotation constraints in Toupin’s con-
strained theory of Cosserat continua, in the Kirchho¤–Love plate theory, and in
the Euler–Bernoulli beam theory.36

Another example is the Cauchy–Born rule for continua with a crystalline
structure. The directions d a of the crystal lattice are taken as state variables,
and for their virtual velocities va it is assumed that

va ¼ ‘v d a:ð85Þ

That is, the directors d a are supposed to follow the macroscopic deformation. If
ba and sa are the volume and surface densities of the external actions associated
with the virtual velocities va, the corresponding external powers are

ba � va ¼ ba � ‘v d a ¼ ðba n d aÞ � ‘v;
sa � va ¼ sa � ‘v d a ¼ ðsa n d aÞ � ‘v;

ð86Þ

and after setting

B ¼ ba n d a; S ¼ sa n d a;ð87Þ

the external power takes the form (83). Thus, a continuum obeying the Cauchy–
Born rule is in fact a second-gradient continuum, with densities B and S of the
particular form (87). In this case, the geometrical constraint by itself does not
bring any simplification of the constitutive equation.37

6.2. Micropolar continua

Micropolar continua38 are micromorphic continua whose state variable F is an
orthogonal tensor. This means that the refined measurements reveal negligible
changes of distance but significant deviations. By (64), the virtual velocity L as-
sociated with an orthogonal tensor F is a skew-symmetric tensor W . Then in
the external power (70) the products B �W and S �W involve only the skew-
symmetric parts BW and SW of B and S. It is then convenient to replace the

36See Sects. 6.3 and 6.4 below. In these theories, the purpose is to reduce the number of the

required material constants, both because it is in general exceedingly large, and because these con-
stants are not so easy to measure.

37The reduction in the number of material constants obtained in the so called Cauchy elasticity is
not due to a simplified kinematics but to the central-force constitutive assumption on the molecular

interactions.
38Also called Cosserat continua.
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products BW �W and SW �W by those of their associated vectors

B �W ¼ c � o; S �W ¼ m � o;ð88Þ

which are the body couple c, the surface couple m, and the rotation vector o=2.39
The external power then takes the form

PextðP; v;oÞ ¼
Z
P

ðb � vþ c � oÞ dV þ
Z
qP

ðs � vþm � oÞ dA:ð89Þ

The assumption that the contact actions also have volume densities bc, cc pro-
vides the pseudobalance equations

�
Z
P

bc dV þ
Z
qP

s dA ¼ 0; �
Z
P

cc dV þ
Z
qP

mdA ¼ 0:ð90Þ

From the theorems of Noll and Cauchy follows the existence of second-order
tensors T and M such that

s ¼ Tn; divT � bc ¼ 0; m ¼ Mn; divM � cc ¼ 0;ð91Þ

with T the Cauchy stress of classical continuum mechanics and M the couple-
stress tensor of the micropolar continuum. After substitution into (89), the diver-
gence theorem provides the expression

Z
P

ððbþ bcÞ � vþ T � ‘vþ ðcþ ccÞ � oþM � ‘oÞ dV ¼ PintðP; v;oÞð92Þ

of the internal power. From the indi¤erence requirements (77) we have

bþ bc ¼ 0; cþ cc ¼ �t:ð93Þ

Then from the identities40

T � ‘v ¼ T S � ‘vS þ TW � ‘vW ¼ T S � ‘vS þ t � curl v;ð94Þ

for the internal power we get the reduced form

PredðP; v;oÞ ¼
Z
P

ðT S � ‘vS þ t � yþM � ‘oÞ dV ;ð95Þ

39 If W and W0 are skew-symmetric tensors and w and w0 are the associated vectors, then
W �W0 ¼ 2w � w0. The definition of associated vector is given in footnote 19.

40The last equality in (94) is due to the passage from the skew-symmetric tensors TW , ‘vW to
the associated vectors t, curl v=2.
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where

y ¼ curl v� oð96Þ

is the deviation between the macroscopic and microscopic rotations, obtained
from (80) replacing the skew-symmetric tensors by their associated vectors.
Thus, the internal actions of the micropolar continuum are T S, t, M, and the cor-
responding generalized strain rates are ‘vS, y, ‘o. The constitutive equations
(82) are replaced by

T S � T S
0 ¼ jð‘vS; y;‘oÞ; t� t0 ¼ cð‘vS; y;‘oÞ;

M �M0 ¼ wð‘vS; y;‘oÞ:
ð97Þ

The equilibrium equations

divT þ b ¼ 0; divM þ c ¼ �t;ð98Þ

follow from (91) and the indi¤erence conditions (93), and appropriately rear-
ranged boundary conditions complete the formulation of the incremental equilib-
rium problem.

6.3. Micropolar continua with constrained rotations

According to its definition (96), y is the deviation between the macroscopic rota-
tion curl v and the microscopic rotation o. The constrained theory of micropolar
continua41 is obtained assuming that the two rotations are equal

o ¼ curl v; y ¼ 0:ð99Þ

Under this supplementary constraint, the power (95) reduces to

PredðP; vÞ ¼
Z
P

ðT S � ‘vS þM � ‘ curl vÞ dV :ð100Þ

The elimination of o from the independent kinematical variables characterizes
this continuum as a continuum with latent microstructure, and the fact that
the curl is a first-order di¤erential operator makes it a particular second-order
continuum.

Comparing with (95), we see that the vector t now disappears from the list of
the internal actions. This vector can also be eliminated in the field equations (98).
Indeed, thanks to the identity

divTW ¼ �curl t;ð101Þ

41Toupin [46].
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equation (98)1 can be given the form

divT S � curl tþ b ¼ 0:ð102Þ

By substitution into the curl of (98)2, a single higher-order field equation

divT S þ curlðdivM þ cÞ þ b ¼ 0;ð103Þ

involving only the internal actions T S and M, is obtained.42 Compared with
(97), the constitutive equations

T S � T S
0 ¼ jð‘vS; curl vÞ; M �M0 ¼ wð‘vS; curl vÞ;ð104Þ

show a significant reduction of the number of the required material constants.

6.4. Plate and beam theories

Appropriate internal constraints may lead to dimensional reduction, that is, to
models for two- and one-dimensional Cosserat continua. In this way, the classical
theories of plates and beams can be obtained.

Assume that the image of the body on E has a cylindrical shape, and let
fe; eag, with a a f1; 2g, be an orthonormal triple of vectors, with e parallel to
the axis of the cylinder. The constraints

vðxÞ ¼ v3ðx1; x2Þe; oðxÞ ¼ oaðx1; x2Þea; a a f1; 2g;ð105Þ

impose virtual velocities v parallel to e and virtual rotations o about an axis
orthogonal to e, both of intensity independent of the axial coordinate x3. By con-
sequence, the external power (89) reduces to

PextðG; v3;oaÞ ¼
Z
G

ðb3v3 þ caoaÞ dAþ
Z
qG

ðs3v3 þmaoaÞ dl;ð106Þ

with the volume element P replaced by its cross section G, and with dl the length
measure on the boundary line qG. Moreover, the vectors b and s reduce to the
scalars b3 and s3, and the vectors c and m reduce to the 2-vectors ca and ma.
Accordingly, the pseudobalance equations (90) reduce to

�
Z
G

bc
3 dV þ

Z
qG

s3 dA ¼ 0; �
Z
G

cca dV þ
Z
qG

ma dA ¼ 0;ð107Þ

42Here t plays the role of a reaction. That is, it is not determined by a constitutive equation, but
directly by the active internal action M through equation (98)2.
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the counterparts of the relations (91) are

s3 ¼ T3ana; T3a;a � bc
3 ¼ 0; ma ¼ Mabnb; Mab;b � cca ¼ 0;ð108Þ

and the internal power (92) takes the form

PintðG; v3;oaÞ ¼
Z
G

ððb3 þ bc
3Þv3 þ T3av3;a þ ðca þ ccaÞoa þMaboa;bÞ dA:ð109Þ

The translational indi¤erence condition (75) reduces to

b3 þ bc
3 ¼ 0:ð110Þ

For the rotational indi¤erence condition (76), recalling that the vector associated
with W is o=2, for the pair ðWx;W Þ we have

v3 ¼ W3ixi; oa ¼
1

2
ekjaWjk ¼

1

2
ðeb3aW3b þ e3baWb3Þ ¼ eabW3b:ð111Þ

Then imposing condition (76) to the power (109) we get

ca þ cca ¼ �eabT3b;ð112Þ

and the reduced form

PredðG; v3;oaÞ ¼
Z
G

ðT3aya þMaboa;bÞ dA;ð113Þ

follows, where

ya ¼ v3;a þ eabobð114Þ

is the deviation between the rotated directors d a and the corresponding directions
on the deformed surface G. The internal actions are T3a and Mab, and ya and oa;b

are the corresponding generalized strain rates. The field equations (98), now
reduced to

T3a;a þ b3 ¼ 0; Mab;b þ ca ¼ �eabT3b;ð115Þ

are the equilibrium equations of the Reissner–Mindlin plate theory.
The Kirchho¤–Love plate theory is obtained by imposing the additional con-

straint ya ¼ 0, by which the directors follow the macroscopic deformation. In this
way, the first term in the reduced power (113) cancels, and oa;b is replaced by
eagv3; gb. With the modified moment tensor43

M �
ab ¼ eagMgb;ð116Þ

43This is the moment tensor used in the Kirchho¤–Love plate theory, see e.g. [45], Sect. 10.
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the reduced power takes the form

PredðG; v3Þ ¼ �
Z
G

M �
abv3;ab dA:ð117Þ

The tensor M �
ab is the only active internal action, and the associated generalized

strain rate is the curvature tensor �v3;ab. The vector T3;a, which is now an internal
reaction, can be eliminated from the balance equations (115), which are replaced
by the unique higher-order equation

M �
ab;ab þ c�a;a þ b3 ¼ 0;ð118Þ

where c�a ¼ eabcb is the modified external couple. This is the equilibrium equation
of the Kirchho¤–Love plate theory.

In a quite similar way, it can be shown that the constraints

vðxÞ ¼ vðx3Þ; oðxÞ ¼ oðx3Þ;ð119Þ

provide the Timoshenko beam theory, and that the additional constraint

oa ¼ �eabv
0
bð120Þ

leads to the Euler–Bernoulli beam theory. For more details on the beam theory
and for the boundary conditions in both plate and beam theories, the reader is
addressed to the paper [14].

6.5. Some remarks on plate and beam theories

This Subsection has been added to answer a criticism addressed by the anony-
mous reviewer, who writes: ‘‘A reader of Sect. 6.4 is driven to believe that the
method of dimensional reduction by the use of internal constraints is due to the
Author, who in fact quotes only ref. [14], a paper of his which appeared in
the year 2014. Now, even in that paper there is no mention of the fact that,
much before 2014, that method has been introduced and exploited in a number
of papers . . . This dearth should be amended.’’ Since the subject may be of inter-
est for some readers, it seems appropriate to attach a public answer to the present
paper. I am doing this with a double purpose: ðiÞ to reject the idea that I am
claiming for any priority, and ðiiÞ to express my view on the position of the con-
tents of the paper [14] in the huge literature on the subject.

The attempts for a systematical deduction of the equations for one- and two-
dimensional bodies from the three-dimensional theory have a long story. In gen-
eral, these attempts are based on the expansion of the displacement field in the
powers of the distance from the mid-plane, for plates, and from the cylinder’s
axis, for beams. According to Novozhilov, the first attempts trace back to
Galerkin [17]. In his book [40], he extended Galerkin’s approach to finite defor-
mations, developing a first-order theory for plates and a first- and second-order
theory for beams. A first-order theory for beams was formulated later by E.
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Volterra [49], to whom is due the name of method of internal constraints to the
techniques based on Galerkin’s projection method. First-order theories were pro-
posed afterwards by several authors, among which Green [20] for beams and
Eringen [16] for micropolar plates. The first formal expansion of the displacement
field involving higher-order powers seems to be due to Green, Laws and Naghdi
[21].

All mentioned approaches su¤er the same drawback: the results obtained by a
first-order expansion are unsatisfactory if compared with those provided by the
so-called technical theories. For example, for beams, the in-plane deformation in
simple tension (Poisson e¤ect) and the out-of plane deformation of a non-circular
cross section in torsion are not captured by constraints such as (119), but are well
described by Saint-Venant’s theory. This is mainly because this theory makes use
of the stress constraint Tab ¼ 0. A first attempt to include this constraint in more
formal procedures are the modified theories of Antman and Warner [4]. The
mixing of kinematical constraints with constitutive restrictions on T posed some
problems, and in fact the modified theories seem to have been abandoned by the
proposers, since they were not mentioned in the subsequent contributions [2, 3].

Stress constraints were reconsidered later in a series of papers by Podio
Guidugli and co-authors, [41], [31], [28]. A problem which emerged from their
analysis is that the constraints T33 ¼ 0 for plates and Tab ¼ 0 for beams are
incompatible with isotropy, and can be used, at most, for transversely isotropic
materials with the symmetry axis coincident with the cylinder’s axis. Another
problem, not examined by them, is that in the presence of such constraints the
elastic tensor ceases to be positive definite. This may cause problems of existence
and uniqueness of the solution, as it occurs in Saint-Venant’s problem.

With the deduction of the lower-dimensional incremental equilibrium prob-
lems made in [14] and summarized in Subsection 6.4 above, I do not aim at any
priority and I do not pretend to say anything definitive on the subject. In partic-
ular, the above mentioned disadvantage with respect to the technical theories has
not been eliminated. The only merit I claim is the simplicity of the deduction of
the classical theories of plates and beams, which is made with the sole use of the
kinematical restrictions (105) and (119), without any constraint on the stress and
without any assumption on the nature of the material.

References

[1] L. Ambrosio - N. Fusco - D. Pallara, Functions of Bounded Variation and Free

Discontinuity Problems, Clarendon Press, Oxford 2000.

[2] S. S. Antman, The Theory of rods, in: C. Truesdell ed., Handbuch der Physik,
vol. Via/2, Springer, Berlin 1972.

[3] S. S. Antman, Nonlinear Problems of Elasticity, Springer, New York 1994.

[4] S. S. Antman - W. H. Warner, Dynamical theory of hyperelastic rods, Arch. Ration.
Mech. Anal. 23: 135–162 (1956).

[5] C. Banfi - M. Fabrizio, Sul concetto di sottocorpo nella meccanica dei continui,
Rend. Accad. Naz. Lincei 66: 136–142 (1979).

[6] G. Capriz, Continua with Microstructure, Springer, Berlin 1989.

58 g. del piero



[7] G. Capriz - E. G. Virga, Interactions in general continua with microstructure, Arch.
Ration. Mech. Anal. 109: 323–342 (1990).

[8] G. Q. Chen - M. Torres - W. P. Ziemer, Gauss-Green theorem for weakly di¤eren-

tiable vector fields, sets of finite perimeter, and balance laws, Comm. Pure Appl. Math.
62: 242–304 (2009).
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[43] M. Šilhavý, The existence of the flux vector and the divergence theorem for general

Cauchy fluxes, Arch. Ration. Mech. Anal. 90: 195–212 (1985).
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